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Abstract—Mercier’s localized perturbed criterion of stability near an arbitrary modulated curvature
magnetic axis of a non-circular toroidal plasma cross section is investigated. In this magnetic
configuration, the magnetic surfaces arbitrarily rotate around the magnetic axis. The influence of the
non-circular cross section of the magnetic surface and that of the modulation of the magnetic axis on
the domains of equilibrium and stability are studied.

1. INTRODUCTION

MERCIER's general geometric criterion of stability for a magnetic toroidal config-
uration of a modulated curvature magnetic axis and circular plasma cross section
is calculated by SHAFRANOV (1968). ADAMs and MERCIER (1969) and MIKHALOV-
skl and ABURDZHANTYA (1978, 1979), but with a different method from that
used here.

In the present work, we study the equilibrium and analyze Mercier’s criterion
of stability (MERCIER, 1964) near an arbitrary modulated curvature planar magne-
tic axis (with zero torsion and variable curvature) of non-circular (elliptically and
triangularly deformed) toroidal plasma cross section with high pressure. A lon-
gitudinal uniform current is allowed to flow through the plasma. Also, we study
the influence of the modulation of the magnetic axis on the equilibrium and
stability of this plasma configuration.

By introducing the coordinates (p, 6, s) (see Fig. 1), where (p, 8) is the polar
coordinate and s is the curvilinear coordinate. The curvature of modulated
curvature planar magnetic axis (hereafter referred to as m.a.) is represented by
(1/R(s)) =Y:2_. a, exp 2mkis/L) where a_, = a,, and L =¢ds is the total length
of the magnetic axis. If all the k’s are even, this curve will be closed with
ao = 27/L. The simplest form for the closed modulated curvature planar magnetic
axis is given by:

1 < 27Tks>
— = — 1
R apl 1+ 2p, cos T (D

where w, = a,/a, is the depth of modulation and a,=2=/L.

At this point, one would like to mention that the magnetic surfaces rotate —k
(=the number of modulation periods or the resonance index related to the
resonant Fourier coefficient g, ) times around the magnetic axis (Luc et al.. 1974).
This rotation d'(s)/2 (=2wk/L) which is associated with the non-vanishing lon-
gitudinal current [, is necessary in order to apply the method of helical images.
Also, one can see from the equilibrium solution considered here, that this rotation
is important when the magnetic surface chosen has a non-circular or circular (at
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F1G. 1.—System of coordinates.

high pressure) cross section. It can be neglected at low pressure since the magnetic
surfaces are nearly concentric circles. This toroidal plasma configuration is a
geometric model which is only an image of the real configuration. Moreover, the
MHD equiiibria of the Tokamak is just a special case of the equilibrium solution
given here.

At the Fusion Laboratory of Fontenay-aux-Roses in France, a toroidal plasma
configuration with modulated curvature magnetic axis with k=2, called
‘Harmonica-II" was built (see Fig. 2). This experiment successfully demonstrated
Mercier’s result (MERCIER, 1964).

2. EQUILIBRIUM

The equations of interest are the ideal MHD equations: V-B=0, VxB=j
and jXB=VP where B, j, and P are respectively the magnetic field, current
density, and scalar pressure.

The expressions for the magnetic field, current density, and the MHD equilib-
rium equation can be obtained with the aid of the helical images hypothesis by
putting 1/T =0, 6 = 6,, and ¢, = ¢,, in the set of equations given in reference (Luc
et al., 1974). The result is:

B=fu+unVF (2)
i= (2o + 2 Y unviop 3
ag
2e.f 1df7 dP
FF+——+-——=+g—=
of e T3aF T8gF 0 @
Central

axis

FiG. 2.~—Magnetic toroidal configuration with modulated curvature magnetic axis
‘Harmonica-II"; k = 2.
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where

Emp)? (_ ) _ . 40s)
g=h’+ (a>’ he=1{1 acost t6+2

1 Emp
u=- (hkeS +—m-69 s & = Ay, Em=—k€0,
g a

ol E)a Gen)]
Fop= ph, [ap g dp/ ot \ph at

g9 (=2ma/L) is the inverse of the aspect ratio. a is the characteristic dimension of
the plasma cross section. (d(s)/2) (=2ks/L) is the turning angle of the minor
axis of the ellipse near the m.a. The functions f and P are arbitrary functions of
the equilibrium solution F.

We will choose Pg,=P,+P,F and f& =f,”+AF where P, P;, A and f, are
constant parameters. This respectively corresponds to a parabolic pressure profile
and a nearly flat current density profile. The function f has been extended to yield
f=f,+0(e?. If we take F=P =0 on the plasma boundary. this leads to P,=0.
The analytical solution of equation (4) is given by:

F=F[F,. (5
—1_ 32 2 E) [ 3 _ 1 E)]
FiF,=1-X"- Y(1+E X*-3XY? (1+E (6)
. ,(1-E
Fc—l—VX-rskv{‘yl +v,Y? (1+E>] M

=xfa, Y=y/a, x=pcost vy=psint and Fy, v, v;, and vy, are constants. & is
the appropriate distortion factor. —1<E =1 is the ellipticity parameter of the
plasma boundary cross section. The equation of the triangular deformation cross
section is given by: F, = (. Figure 3 shows the possible shapes of this plasma cross
section. It has been assumed that P =0. F=0 on the toroidal surface of the

24 :E>o’ E,>O
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FI1G. 3.—Possible shapes of the triangular deformation plasma cross section.
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non-circular cross section given by F, =0. Also, we assume that g ~¢g ~¢,, ~
[ « 1.
By introducing the parameters, the mean pressure

2AP) _PiF
<(B 2)X l> Boz ’
the inverse of the safety factor for an equivalent cylinder
1 L 1 I ajo ( . )
9o 2ma (Bs)X=1 2mb 25030 ( (8)) an -

where B, and j, are respectively the longitudinal magnetic field and current
density at the plasma center, the expresions for F,, v, v,, and vy, are given by:

1
(P)'—'";JPdV 2P1F0a B=

F,= aze" B,(1+E)G ®)
CeEEn L (i?+1)5]+§+6*} o

( )(1+2E 2EZ)+( )(1 E)2+E)

1
=3 42— 152) (10)
and
(1+E)2{ —(1- E)+( )(2+E)}
Y2 = (11)
42—-E3(1-E)
where 8
B = Eeic (12

Figure 4 shows a typical plot of this magnetic surface.
The limiting value of 8 for equilibrium corresponds to v=1 at which a new
magnetic axis appears on the plasma boundary and is given
E\ 1 6¢, k
=go°G¥(1+E { (1+ ) [1+( +1>E]———}
BP,,,“ €o ( ) e 5)" 4 G

€
(8°G2>(1+E)(1+E)(1+O(s) (13)

The investigation of this expression will be given in the stability section.

The expressions of the ratio j,,/2B,, of the longitudinal current density j,, and
the longitudinal magnetic field B,, near the m.a., the rotational transform t.o/27
near the m.a., and the function P, (which is the derivative near the m.a. of the
pressure with respect to the poloidal flux function) can be put in the following
forms:

Js0/2Bso = 2 ( +8 GW) (14)

2‘—°=—k+1‘—% with ¥ =/(1-E,2 (’“’ ‘“”) (15)

27 ZBso 2
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F1G. 4(a).—Magnetic surfaces in the plasma for 1/g,=0.2, £,=0.1, E=0.6, ¢,=0.1,
we=1, k=2, g =01, ¢;=0.024, 8 =0.57, and different values of F/F,. The magnetic
axis is placed at distance x,, = —0.246 from the central axis of the plasma.

Fi1G. 4(b).—Magnetic surfaces in the plasma for 1/q;=0.18, ¢, =0.1, E=0.6, £,=0.1,
g, =01, u, =1, k=2, ;=0.024, 8 =0.07 and different values of F/F,. The magnetic
axis is placed at distance x,, =—0.05 from the central axis of the plasma.
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and

J(1-E%) ( Jso d'(5)> dP,
2Bso+ 2 / dF (16)
where W =2g(x,./a) = (g2 + £,2)(xn/a)?, x/a =[1=+(1+3v?)]/3v and the point
(%, 0) is assumed to be the position of the magnetic axis. The ellipticity E,, of the
magnetic surfaces near the m.a. and the functions 7, § which give the corrections
to the elliptical form of the magnetic surfaces near the m.a. relative to the
principle normal to the m.a. are given by:

M (1+E)-M,(1-E)

Py=

Lo

= S U7 E) = My(1-E) (a7
- 1<M2N2'M1N1>~/(1—Em2)
=
VB =5\ A 2+E,) (18)
and
JB:oS=0 (19)
where

M, =(ygv—1)+3(v- 8>( )*6”(8 Ylsk)(%mf
= (yagv = 1)+ (v + 3¢, )<);) v[3e, +ek(“/1+vz)]<2m>z
Nl=(p+3£s)—2V[385+8k(¥1+72)}(%m>

N,=(v—g,)+4v(e,—v,8.) (%) .

The vacuum magnetic well V,," near the m.a. for our class of equilibria is given
by:
L

v H= n 2
© 7B.2/(1-E, 2 Q" (20
with
n a02 2 Em 2
Q=% 12022~ B 1= (S e, ) ~[2-E,)C ~3E, Clao,
where
1 3Ny(1+E)+Ny(1-E)
724 3M,(1+E)
and

1 N,(1+E)-N,(1-E)
"2¢  2M,(1+E)
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The investigation of the expression (20) shows that it is possible to have a system
with vacuum magnetic well V,"<0 with all different magnetic surfaces, and by
allowing current to flow only in the forward direction (defined by (1/q,) > (~k) or
G <0). We have a deeper magnetic well with horizontal elliptical (E <0, g, = 0)
and triangular deformation (E <0, g, <0) cross sections with an increase of the
depth of modulation w,, and a decrease of the number of modulation periods k.

3. STABILITY

The final form of Mercier's criterion near the m.a. is given by formula (70) of
reference (MERCIER, 1964). This criterion for the class of equilibria described by
the parameters E,, = (th n(s)), jio, Beo, d'(s)/2, F(s), and S(s) being constants
and the torsion of the m.a. 1/T(s)=0, has the form:

(—Po’)[—(%mzalz—n ( ) ( <COSZ) > <R1?s>>>

- d/2 - sin d/2>>
= Jos
ds{> 21
LchnR§4P0 s|70 @

where the average is taken over the length of the magnetic axis, i.e.

1 L
<g<s>>=fj0 dsg(s),

the prime () means the derivatives with respect to s. P =P, —iP,. Z(s)=
#,(s)+i%,(s) and the functions ¥,(s) and ,(s) are the solutions of the couple of
equations:

' )
H,'(s)+ HHo(s) - 41:92>e-n/2 (cos d/_> 0

3 R(s) 29
4P, i d/’\, -
, _ _[(F2o }\em2 EE—.' =
Hy'($) = HHK\(s) (Bfé,2>e (R(S) / >

%, and P, for this class of equilibria are given by:

» = (2/vBle™ {< Jso. ><sin d/z>+mg (% ,vByg) sh” n/2
" (2chn-shm) R(s) 4 ch n/2
~shme™ (cos d(s)/Z)’ 5 ( Jso _d'(s))(sin d/2>} -
! R ) "1 op " Nre I

_ QRI¥Bype™ { < Jso ) (cos d/2>; ool (Hov Byo) sh* m/2
“(2chm+shm) R(s) /| 4ch 2

n M /‘) 7 ~ { ' 3 2
N <sh ne )(sm d,..) +2th TI( Jso +d (s))(cos d/ )} 24)

4 R(s) 4 2B, 2 R(s) /
It will be interesting to consider Mercier’s criterion (21) for the real plasma
configuration of modulated curvature m.a. without the rotation of the magnetic




392 H. M. Rizx

surfaces. This will enable us to compare the domains obtained with and without
this helical images hypothesis. This criterion for the considered case (d'(s)/2=0)

has the form:

o[- () - (- avBre wa L)

ch®’n \2B,,/ \R?(s)
2(1—thm) , s 1 Py liol\  F(m) 1
T2rth) (2+4thn)<R2(s)>+< B, )2050/2350)2 <R2(s>]>0 23)
where
—=3n/2 2
g(n) 4e sh (71/2) Ch’n

" ch (n/2)2chn +sh7)
4E,2V(1-E2)

= =
(1+E,,1)(2+I:“,,1)2[1+~/(1—Em2 ———”‘—]

(2+E,)

Condition (25) with E,, =0 is equivalent to that given by formula (26) in MERCIER
(1963), and does not depend on the plasma pressure P, term.

Figures (5) and (6) show the plots of Lj,o/47B,, Vs |i.o| Py'/Byo for the domains
of stability with vertical elliptical (E,, = 0.6, B, = 0) and triangular deformation
(E,.=0.6, VB,,f=0.1) plasma cross sections near the m.a. respectively. The
domains of stability for a real plasma configuration are given by the dotted curves
and are calculated from the condition (25) with the expression (1). These domains
have a perfect symmetry between k and —k (without this rotation related to k)
and will not change if the longitudinal current is inversed (i.e. j,o — —Js). The
limiting value of B for stability in this case becomes zero if Lj,o/47B;,=0.
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FiG. 5.—Comparison between the domains of stability with vertical elliptical plasma
cross section near the magnetic axis for E,, = 0.6, JB,,F =0, ¢y =0.0233, and , = 1.
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Fic. 6.—Comparison between the domains of stability with triangular deformation
plasma cross section near the magnetic axis for E,, = 0.6. /B,of = 0.1, a,=0.0233. and
w, =1

For the case in which the rotation of the magnetic surfaces has the form:

d(s) _2aNS
2 L

(26)

where N is an integer. The criterion of stability (21) corresponding to the
resonance case L¥/2w« 1 is given by;

<—Po'>[—chi n(z—jg‘:—())z—‘hz (d()> (o <COS;(IS > <R2is))>>

+3th7](\/Bs0F _“< (d<> vBjoSe <Sl_1;%>>

B, §(?z> ]
+ 250 p >0 (27
Lehn 6§ Gp, )98 (

with
B, %(@Z> 4a,(1—thn) { Iso_ ( Jso_ d,(s\)> }
- | ds =— += thn
Lchn J \4P, (]w . (ﬂy7+tl) 2B,o 8 2B, 2
2B, 2
% <COS d/2> + (!Lcol POI> ak- g(Em) - (28)
R(s) Byo

(jsO +d'(s)>2 2
2B, 2

Condition (27) represents the criterion of stability in a geometrical plasma
configuration model. The domains of stability given in Figs. 5 and 6 represented by



394 H. M. Rizx

the broken and solid curves are calculated from condition (27) with expression (1)
for N=k and N+#k respectively. The influence of the rotation d'(s)/2 (=
2wN/L) of the magnetic surfaces (which is associated with the helical hypothesis)
casued a disturbance to the domains of stability and is symmetry when the
longitudinal current is inversed. The limits of these domains in this case are given
by the condition: N*>=<(Lj,o/47B,o)*> < N?/8y where 8y is a numerical factor less
than one. Kruskal limit is exceeded within this condition (the case N =1 corres-
ponds to Kruskal limit). Indeed, the magnetic axis of the plasma configuration
could become strongly inadequate for a plasma machine. The limiting value of 8
for stability in the geometrical model plasma configuration becomes zero if
Lj.o/4mBy,=—N.

The final form of criterion (27) for the toroidal plasma configuration with an
arbitrary rotation of d'(s)/2 (=2mk/L) related to the k Fourier coefficient of the
development of the m.a. curvature which is given by expression (1) can be written
as:

(2| (B~ D (5 ) - (o, P+ a3 (B~ 2)- 1)
sO

—_ I—Em 2a02IJ~k2 (1—Em)
+3\/Bs0r(a0“’k)Em V (1+Em>+< jsO tq k>2 1+Em
2B,
. ) 2a-2w.? dP\V(1-E,
x{ﬁ_ (2+§Em)+§kaoEm}+ i oo <_> : )g(E"‘)]>O'

2 ] dF 4
Beo B, (2]; T kao)%o
sO

(29)

The explicit expression for Mercier's criterion (29) for the class of equilibria
described in the equilibrium solution can be determined by substituting respec-
tively for the parameters j,0/2B;y, t.o/27, E,., 7 from formulae (14)-(18). At high
value of beta (8™ ~ O(1/¢)) the expressions for these parameters with all magnetic
surfaces (circular or non-circular) depend on the plasma pressure. In other words,
the effect of the plasma pressure on the criterion of stability (29) is not linear with
respect to B*. It is not easy to determine analytically to what order of 8* the
plasma pressure has an effect on this criterion. At low beta (8*=<1) we find
that x,/a~e. v~e, E,~E M;=M,=-1, N;=v+3g, N,=v-—g,.
[(MyN, =M N)/M M,]~4de,, W=0, ju~Jjo. B.o~ B, and

2.1 - 2 2
(py /By = -] g (20T
“cO a
In this case condition (29) takes the form:
' 1)? 2 2 2 68# 1-E
~P [(—> (E*= 1) = (kEy*+(wAE-2)— (___k>< )
(=Pg) o Y= (KEY* +(uA(E-2)-1)+ e T+ E
() E) (Lo () (T ]
(G 1+E/\q, sEG )~ (Lco B*J(1-EHFE)[>0. (30)
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Fic. 7.—Domains of equilibrium and stability for the considered toroidal plasma
configuration characterized by k=2, p, =1 £,=0.1. a=4.2918. a,=0.0233, and
different values of E and ¢,.

It is clear that the effect of the plasma pressure on the condition (30) is linear with
respect to B* and vanishes with that of the circular cross section.

The numerical calculations represented by Figs. 7 and 8 show the plot of 1/q,
vs the limiting value of 8 for equilibrium calculated from equation (13). These are
shown by the solid curves while those for stability as calculated from (29 are
indicated by the broken curves. The intersection of curves limiting the domain of
equilibrium and stability gives the limiting value of 8 for each magnetic surface.
We observe that the domains for all the equilibrium and stability depend on the
direction of the longitudinal current I. Figures 7 and 8 show respectively the
influence of the non-circular cross section and the number of modulations with
their depths on the domain of equilibrium and stability.
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FiG. 8. —Domains of equilibrium and stability for the considered toroidal plasma
configuration with vertical elliptical cross section characterized by E=0.6, ¢, =0,
£0=0.1, a =4.2918, a,=0.0233, K =4, and different values of w,.

As it is clear from equation (13) that the case 1/q; = —k, corresponds to the
resonance case at which G =0 and 8 =0. We note that the influence of triangular
deformation on the limiting value of beta for equilibrium is weak and can be
neglected. A vertically elongated elliptic (E>0, g =0) plasma cross section is
preferable for equilibrium. The limiting value of beta for equilibrium increases
with the increasing of the number of modulation periods and the decreasing of the
depth of modulation.

The domains of stability exist with all possible shapes of the magnetic surfaces.
It increases in the forward direction due to the appearance of the magnetic well
(Vy"<0). This domain decreases in the backward direction (defined by 1/g,<
(=ko) or G>0). In both directions with (8<pp_ ), the horizontal elliptical and
triangular deformations are the most preferable plasma cross sections for stability
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(a deeper magnetic well exists with these cross sections). Also, the domains of
stability increase by increasing the depth of modulation and decreasing the
number of modulation periods.

4. CONCLUSIONS

The equilibrium and stability near an arbitrary modulated planar magnetic axis
of a toroidal plasma configuration with non-circular cross sections are studied.
This plasma configuration is a geometrical configuration mode! in which the
magnetic surfaces arbitrarily rotate along the magnetic axis. From investigating
the domains of stability in both real and geometrical model plasma configurations,
it is found that these rotations of the magnetic surfaces cause a disturbance to the
domains of stability and their symmetry. These domains are given the condition
N?=(Lj,o/47B,,)* =N?/8y where N is the number of rotations of the magnetic
surfaces and 8y is a numerical factor less than one. Kruskal limit is exceeded
within this condition.

Also, it is found from the domains of equilibrium and stability (which belong
to the k-Fourier resonant coefficient of the development of the curvature of the
magnetic axis) that the vertical elliptical plasma cross section with increasing the
number of modulation periods and decreasing the depth of the modulation is
preferable for equilibrium. On the other hand, a horizontal elliptical or triangular
deformation plasma cross section with decreasing of the number of modulation
periods and increasing the depth of modulation is preferable for stability.

At this point, one would like to mention qualitatively that the influence of the
other neglected Fourier coefficient «, on the stability of the plasma configuration
under consideration may add a stabilization contribution within the above condi-
tions, and otherwise add a de-stabilization contribution.
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