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ABSTRACT. Devices for  single-photon emission tomography  currently  take projections 
either in  a  plane over a full angular  range (0-360") or in  a volume with a limited  angular 
range.  The planar, pseudo-random,  time-coded aperture, in  conjunction with  an 
Anger camera, is a device of the limited  angular  range type. It employs multiple 
pinholeswhosetransmissionvariesasafunctionoftime. Previously,imagereconstruction 
was accomplished by simple back-projection of coefficients obtained by time-correlating 
pinhole transmission with detector-element  count rate, resulting  in a low-contrast 
image. 

Using the Algebraic Reconstruction  Technique (ART) a method is introduced for 
divisiog of the  iorrelation coefficients into  subsets allowing the three-dimensional 
reconstruction to be accomplished on a  minicomputer.  Results from simulations and 
experimental phantom  data show that ART improves depth resolution compared to 
back-projection, that  under-relaxation produces better images in the case of noisy 
data,  and  that  the division of the correlation coefficients into subsets  has no effect on 
quality. The images depict the expected  resolution  degradation  in the direction 
normal to  the  detector plane due t o  the limited  angular  range of projections but yield 
quantitative results whose relative  values are good, even though  attenuation is 
neglected. 

1. Introduction 
Tomographic imaging in  nuclear medicine using gamma-emitting  radio- 

tracers  is  currently  under  active  investigation.  A  planar,  multi-pinhole, 
pseudo-random,  time-coded aperture  in conjunction  with an Anger camera 
(Koral, Knoll and Rogers 1977) is  a  tomographic device that operates in a fixed 
position and covers a limited  angular  range.  This  aperture  has  already been 
shown to have  better resolution than  that of a  parallel hole collimator in the 
case of moderately sized objects,  due to image magnification onto  the camera. 
It has also been shown to have  higher efficiency than a single pinhole of the 
same  resolution when imaging planar  objects  (Koral, Rogers and Knoll 1975). 
Finally,  the limited  tomography of this device is sufficient to improve signifi- 
cantly the contrast of cold nodules in  thyroid imaging compared to multiple 
view pinhole imaging (Koral,  Freitas, Rogers and Keyes 1979). 

In comparison with  tomographic devices utilising parallel hole collimation 
and  rotation (Budinger and Gullberg 1974, Kuhl,  Edwards, Ricci, Yacob, Mich 
and Alavi 1976, Keyes,  Orlandea,  Heetderks,  Leonard and Rogers 1977), the 
coded aperture  has  these  advantages : (1) the system  is mechanically simple, (2) 
the  aperture can be placed directly over and  near  a small organ, and (3) the 
longitudinal  resolution, that in  a  plane  parallel to  the camera  face, is very good. 
A new fixed-position 7-pinhole collimator (Vogel, Kirch,  LeFree,  Klingensmith, 
Trow and Steele 1977, Vogel, Kirch,  LeFree  and Steele 1978) is similar to  the 
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time-coded aperture  but does not code the  data  and has the disadvantage of 
gross sampling over the angular  range of projections  (however, this gross 
sampling does reduce the reconstruction time).  The  disadvantage of either of 
these  fixed-position  systems  in  comparison to a  system  involving rotation is 
that  a  complete set of projections ( 0  to 360') is not  obtained. Compared to a 
two-dimensional  reconstruction,  a true three-dimensional  reconstruction  has 
been shown (Colsher 1976) partially to compensate for this  limited  angular 
range, but one must  as  yet  accept a  transverse  resolution which is inferior to 
the longitudinal  resolution. 

A  disadvantage of the time-coded aperture is the long reconstruction  time. 
Routine clinical application will require  implementation of the algorithm 
outlined  herein  on  a  digital microprocessor which emphasises parallel computa- 
tion. However, this microprocessor might  have  other uses or might  be part of 
an existing  system. 

A brief description of time-coded  tomography follows. The  collimator is 
similar to a standard pinhole collimator but with  a  large  square  opening or 
defining aperture in place of the pinhole. Over this defining aperture lies a long 
lead  plate  with multiple pinholes arranged  on  a  unit  grid. Data  are  taken  in L 
distinct  time  intervals, between each of which the code plate is translated one 
unit  in  its long direction. As the  plate  translates, each positional  element in the 
defining aperture is subject to a series of conditions of either  complete trans- 
mission or complete  absorption of impinging  gamma rays, according to a known 
code. A  time  correlation of aperture-element  transmission  and  detector-element 
count  rate is then carried out for each aperture element in combination  with 
each  detector  element.  Previously,  image  reconstruction was carried out  by 
simple back-projection of these  time  correlations into  the image  volume  with the 
result being a  low-contrast  image. 

It is shown in section 2 below that  the time-coded-aperture  reconstruction 
problem is amenable to ART, the Algebraic Reconstruction  Technique  (Herman, 
Lent  and Rowland 1973, Herman  and  Lent 1976) and so image improvement  can 
be  expected. Since a true three-dimensional  reconstruction is to be carried out, 
to compensate for the  limited  angular  range,  the ART computation could be 
prohibitively long and  require extensive  computer  storage but  it  is here 
accomplished on a  minicomputer  by  employing  a special image-volume 
geometry  and a core-saving division of the  data  into  subsets. No correction for 
attenuation is carried out  in  the present  formulation. I n  section 3, the results 
from one particular coded aperture  and several  variations of ART are considered. 
The effects of array  thinning,  relaxation  parameter  and mode of sampling 
together  with  the influence of both noise and  spatial  distortion  are examined  by 
means of two-dimensional  simulation. Both  quantitative  and  qualitative 
results  are  then  given for experimentally  obtained phantom  data. 

2. Theory 
2.1. Correlation  coeficient as projection  element 

Time-coded tomography involves a  two-step  reconstruction  in which one 
first  calculates the mean  subt'racted  correlation coefficient for the  ith detector 



ART and Time-coded Emission Tomography 881 

and  the  jth  aperture element over v time  intervals, Qij: 
L L 

Qij = cui q + u  - m c Qv, (1) 
u=l  u=l  

where C,,, is t'he  number of counts  in the 4th detector  during  the vth time 
int'erval, is ( j+v ) th  element of a  pseudo-random code sequence and m is 
the mean  transmittance of the code. To  do the second step  in  the  reconstruction, 
define the line  from the centre of the  ith  detector  through  the  centre of the  j th  
aperture  as  the  ijth  ray.  Then consider Np discrete  depths  indexed by integer k 
and define the image strength per unit  area in the  kth  longitudinal plane at   the 
point  intersected by  the  ijth  ray  as Ak, 1 = f (i,j, k). Assuming a slowly varying 
image, we then show in  Appendix 1 that a  correlation coefficient corrected  for 
finite  geometry effects, Qij, is equal  to  the simple ray  sum of image strengthlunit 
area  over Np planes: 

where Np = k, - ki + 1. 
The corrected  correlation coefficient, Qij, is,  therefore,  a  projection  element  for 
the image strength per unit  area  with  the angle of the projection defined by  the 
ij subscripts. 

The correction  for  finite  geometry effects is made  as  follows: 

Qij = Qij/(FSij cos3 eij) (3) 

with P equal to a  constant  depending on the code and geometrical  factors, Sij 
equal to  the open  area of the  j th  aperture  as viewed by  the  ith  detector,  and 0,, 
equal to  the angle  between the normal  and  the  ijth  ray.  This correction is seen 
to involve  boosting the value of those  correlation coefficients which view the 
source a t  a large  angle so as  to preserve  consistency  with the image.  The  open 
area Sii is given by a  geometrical formula: 

Sij = r ( a  - t tan eij) (a'- t 2  tan2 (4) 

where t is the thickness of the code plat'e and a is the diameter of the pinholes. 
In practice, because of edge penetration, t is usually set  to  an empirical  value 
derived  from  requiring  agreement  between  eqn (4) and  the image of a field  flood 
taken with a single pinhole. 

2.2. Image space 
To  save  computing  time, the image  volume  is  divided into elements  such that 

all  element  centres lie along rays (fig. l ( a ) ) .  The  development below is for one 
longitudinal  direction  in  combination  with  depth but holds  for both  orthogonal 
longitudinal  directions.  The division is accomplished by first  requiring that 
rays which pass  through  a given aperture  element  and  adjacent  detector 
elements  pass  through  adjacent  image  elements  in  all  planes  as  depicted  in 
fig. l ( b )  : 

g,/d = AJB.  (5) 
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Fig. 1. Division of image  volume into  elements  such  that each ray passes through  the 

centre of one element a t  each depth. (a) Unthinned  algorithms; all image  elements 
are referenced. ( b )  Geometry  involved in establishing the  mean  depths, A h ,  and 
image  element  dimensions, g,. (c) Thinned algorithm-one subset of coefficients 
(detector jo,j,,+ 2, ... in correlation with  aperture io, io+ 2, ...) references only  a 
thinned image  (shown shaded).  This would not be the case with a subset  such  as 
jo ,  j ,  + 2. .  . and io, io + 1.. . , 

Secondly, rays originating  from  a  given  detector  element and passing through 
adjacent  aperture elements  pass through image  elements  separated by k - 1 
elements  in  the  kth  plane: 

kg,/a = (A,  + B)/B. (6) 
The  integer  relationships expressed in  eqns ( 5 )  and (6) determine the required 
plane  depths, A,, and image element  dimensions, g,: 

A, = aB/(kd-a)  
g ,  = ad/ (kd-a) ,  k = 1,2,3,  ... . ( 7 )  

2.3. Algebraic  Reconstruction  Technique (ART) 

The  entire  set of linear  equations to which ( 2 )  belongs can  be  represented as : 
6 = W l  (8) 

where Q is a column vector of dimension m = ND x N’, I is  a column vector of 
dimension n = NI x Np and W is an m by n matrix of weights (ND, N,, NI and 
Np are  the  number of detectors,  apertures, image elements and planes respec- 
tively).  The  matrix W is sparse and for point  sampling, the use of a single 
image  element  in  each  plane for each ray, is composed of only l’s and 0’s. The 
method used for  solution of these  equations  in  this  paper  is the  partially 
constrained Algebraic Reconstruction  Technique (ART). 

The form of this  iterative technique appropriate  to 0-1 weight’s is 

A = Q i j  - C I&, I = f(i,j, E )  
kY 

k=kr 
(9) 

If21 = max [(Ipk + r A / N p ) ,  01, k = k,, ..., k, (10) 
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where A is the discrepancy  between  projection  element and  ray  sum  at  the  pth 
iteration, I& is the  lkth image  element strength at  the pth  iteration, r is a 
relaxation  parameter  and  max (a,  0 )  is an operator which returns  the  value a if a 
is positive and zero otherwise.  The starting condition is I:, = 0 for all 1E and 
the order  is to  step systematically  through the  aperture  subscript  faster  than 
the detector  subscript. 

An algorithm  variation,  ART^, and a  criterion  for  stopping the iteration 
process (Herman et al. 1973) are  investigated  in  section 3. I n   ART^ the max 
operation  is  eliminated  from  eqn (10) and inserted into  eqn (9) as follows : 

Jv 

k=ki 
A = - C max (I&, 0) 

If'$' = Ifk+rA/Np,  k = ki, ..., k,. 

After the  last  iteration,  the  max  operation is applied to all image  elements to 
set  negative  values to 0. The convergence criterion is to  stop when the variance 
from the mean of the images changes by less than a fixed percentage  between 
iterations. That is : 

TIP = C ( I$$ I ! fP )2 /N  (13) 
2, k 

VPfl- VP PVP 

where MP is the mean and Vp is the variance  after p iterations, N is the  total 
number of elements in  the image volume, and P is the stopping  fraction, 
usually 4% in  the work detailed  here. 

2.4. Thinning 
For  the coded aperture which is used in  this  study (see section 3.1), the image- 

element  longitudinal  dimension, g,, is as small as 0.6 mm while the correspond- 
ing field  of view is a 7.8 cm square.  Thus,  a 192 x 192 matrix is required  for 
this plane and a  very  large  computer core is required for the  total image. 

The  large  number of image elements  can  be  reduced by dividing the 
correlation data  into  subsets, for each of which the detector  and  aperture  arrays 
are  thinned, so that only  a thinned version of the image array is required. 
Fig. l ( c )  shows a data subset for a  thinning  factor, h, of 2"that is, only data 
corresponding to every second detector and every second aperture is considered. 
Because of the integer  relationships imposed by eqns (5) and ( B ) ,  only  a  subset 
of the image array,  every second image  element  in each plane, is referenced. 
Indexing  the  starting  aperture element by one while using the same  detector 
elements (and vice versa)  produces  a  similar sub-array  in image  space. (Note: 
specific sub-arrays  contain some elements in common.) For two-dimensional 
detector  and  aperture  arrays,  the  total  number of subsets  is h4 and  the 
computer  storage  requirement  is  cut  by  a  factor of h2. The final image averages 
the independent  values  obtained for each  image  element. If  the image grid is 
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fine with  respect to  the  total resolution,  small  elements  can be combined, h2 to 1,  
which reduces  computer disc storage and simplifies the averaging. 

In  general,  the  set of equations  given  by  eqn (8) is  overdetermined (m > n)  
if all the  equations  are  independent. In  thinning,  the  number of equations 
decreases faster than  the number of image  elements so that each  subset  can be 
guaranteed to be  underdetermined.  Effects of this  fact  are looked for in the 
simulations of section 3.2 .  

2.5. Integral  sampling 
Instead of point  sampling the  image-strength  density, one can  average over 

several image elements,  the  number  to be determined  by the finite size of the 
backprojected  cone: 

where the u l k  are  fractional  weights. I n  this case, the general ART formulation 
(Herman et al. 1973) is used and  the calculation is longer since a second sum is 
involved and more image elements need to be  corrected for each  correlation 
coefficient. 

3. Methods and results 
3.1.  Experimental  dimensions  and  computation  times 

The  aperture used for the experimental  investigation is an 11 x 11 array of 
contiguous  elements 3.57 mm in diameter  (Koral et al. 1975). It is  spaced 15 cm 
from an Anger camera  detector which is 25.4 cm in  diameter  with  a 64 x 64 
digitisation. These dimensions yield the values  given  in table 1 for the  depths 

Table 1. Dimensions of image  space 

Plane 
index, 

k 

Aperture 
to  plane 
distance, 
A ,  (cm) 

2.2 
2.65 
3 .3  
4.35 
6.4 

Size of square field of view 
Fine-grid Coarse-grid  Thickness of 

image- h = 3 image- longitudinal In   he -g r id  
element size, element size, plane,  image 

g k  (mm) g k  (mm) t ,  (cm) elements (cm) 
~ _ _  ~~ 

0.59 1.75 0.36 134 7.85 
0.70 2.10 0.52 124 8.68 
0.87 2.61 0.82 114 9.93 
1.15 3.45 1.44 104 11.98 
1.70 5.10 3.20 94 15.99 

and scale factors of the  reconstructed planes.  The  angular  range of projections 
for a central  point  in the k = 5 plane ( 3 . 3  cm depth) is then  computed  to be 
that over a cone with half angle 28'. 

Calculations are carried out on  a 32 K minicomputer  with the following 
running  times.  Computation of the correlation coefficients with  a  non-optimised 
assembly language  program and correction for angular  variation  with a 
similarly  non-optimised Fortran  program  take 20 min €or each program. 
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Reconstruction of 4 planes by  an 81-subset ART using a Fortran program which 
employs an assembly  language  subroutine for the inner loop takes one hour 
per iteration. 

3.2. Simulations 
Simulations  in  two  dimensions  (longitudinal  distance and  depth) are  carried 

out  with  an 1 l-element  aperture  and an infinite  detector  with the element sizes 
and  the  depths of the 'planes' the same as  in the experimental case. Since a 
signal-to-noise  analysis is not carried out,  the calculation is simplified by 
assuming  a moving pinhole (code 10000000000) rather  than a more general code 
and a  perfect  angular  variation  correction.  The  approximation of lumping  the 
object-element  strength  into  the  centre of the  element  in  generating  the  data is 
also made. 

Fig. 2 presents the simulation  results  for a noise-free point source in the 
2.2 cm plane as shown at  the left.  The ART reconstruction  without  thinning is 
essentially  perfect after 5 iterations, allowing for the resolution of the finite- 
sized aperture elements.  This  result  justifies  point  sampling.  The ART recon- 
struction  with  thinning is displayed  in the  next column.  The thinning  factor, 

Object 
r I 

Point  sampled  Integral sampled 
7 

I 
Unth 1 nned  Thinned '"- 

0,LlOpCi 0.L38pC1 O,L17pCi 
l I I Depth 

- 1  0 1 -1 0 1 -1  0 l 
D l s t a n c e   l c m l  

Fig. 2. Simulation  results  for a  noise-free point source after 5 iterations of ART. The  mean 
depth, A,, of the  longitudinal,  one-dimensional 'planes'  is  given at  the  right.  Depth 
resolution  is very good for  this simple object. 

h, equals 3 as i t  will throughout  the  rest of this  paper  and  the image  elements 
are combined 3 to 1 and displayed  on  a coarse grid.  There  is an artificial 
drop-off in the 2 . 2  cm image due  to  the  registration of the coarse and fine grid 
and  there is some residual strength  in  the  other  two planes. With more iterations, 
this  strength decreases further  and so the  thinning  technique  has  little effect. 
The integral-sampled  reconstruction  without  thinning at the  right shows a 
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much  sharpened image in  the 2.2 cm plane,  implying that  this sampling 
produces  ‘super  resolution’. 

Fig. 3 shows noise-free simulation  results for a source volume which is more 
nearly filled and which is, therefore,  a more difficult reconstruction  problem. 
The ART reconstruction  without  thinning  and  with  relaxation  parameter  equal 
to  1 produces an image which has  the correct total  strength ( 2 5  pCi) but which 

Objec t  
r 

Reconstwctions 
I A 

7 
Polnt  sampled  Integral  sampled 

h 
A 

Ur.thinned Thlnned ’ Unthlnned ’ 
Total  strength 25.2pCi  2 5 . 3 f i C 1  25.6pCi 2A.7 Cl 

I 

- 

G 2 2  1-m 1 1 3 ’ 3 c m  
5 0  

-1 0 1 -1 0 1 -1 0 1 -1 0 1 

Distance [ cm)  
Fig. 3. Simulation  results  after 8 iterations of ART for  two line  sources located  behma 

each  other. For this  object  part of the  correctly  reconstructed  total  strength 
appears  in  the 2.68 cm ‘plane’  because of poor depth resolution. 

has  the relatively poor resolution  in depth one expects.  There is also  some 
overshoot  in the shapes of the reconstructed  lines.  The  result  with  the  thinned 
algorithm, r = 1, and a coarse display  grid is similar and perhaps  slightly 
improved as  there is less overshoot. If one employs a  relaxation  para’meter of 
1jS instead of 1, the images, which are  not shown, are similar but 10 iterations 
are required to reach the  total  strength of 25 pCi. 

The images as  reconstructed  by the  unthinned-array algorithm  with  integral 
sampling are shown at  the  right. The total  strength  in  the  empty ‘plane’  is 
reduced and  the objects  are  again  rendered  with better resolution at  the edges 
but these  favourable  characteristics  are offset by a  low-frequency  ringing. 
Because of this ringing,  integral  sampling is not  investigated  further  in  this 
paper. 

Reconstructions of the two-line-source  object of fig. 3 with noise and with 
noise plus a camera  distortion which mimics Anger camera  edge  packing are 
illustrated in fig. 4. For a typical  time  interval,  the effect of Poisson statistics 
upon the  number of counts  in  each  detector  element is shown at  the lower left 
(the line being noise-free data). The  thinned  and  unthinned  algorithm  with 
relaxation  parameter  equal to 1 produce  very  similar  results,  indicating that 
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Noisy  data Noisy and  d is tor ted  data 
I 

Unthinned  Thinned ’ -7 ,. 
\ r -  110 

L - 
m 
C 

- 1  0 1 -1 0 1 -2  -1 0 1 2-2 -1 0 1 2 
D i s t a n c e  l c m )  

. .. . .  
W 

! l 

” 20 LO 50 1 53 106 
Detector  element  number 

Fig. 4. Simulation  results for the  object of fig. 3 when noise or noise and  camera  distortion 
are  taken  into  account.  With noise alone, the  unthinned  and  thinned  algorithm 
produce similar results  as shown for r = 1 in  the  left  two columns. With noise 
alone, T = 1 j S  produces smoother images than T = 1 as seen by  comparing  the 
middle  two columns. The  magnitude of noise is shown at  the lower left.  With 
noise and  distortion  the  back ‘plane’ is considerably broadened  as seen by 
comparing  the  right two columns. The  magnitude of distortion is demonstrated  by 
the  curvature of the  plot at  the lower right. 

even  with noise thinning  has  little effect. A significant improvement  in  the 
uniformity of the results occurs for both  algorithms  when  a  relaxation  parameter 
of 1/8 is  employed as is shown for the  thinned  algorithm  in  the  third column 
of the figure. 

The  assumed  camera  distortion tends  to misplace counts  towards  the edges ; 
the magnitude of the  distortion is illustrated at  the lower right  by  the  results 
for a field-flood input.  At  the  top  right  are  the image reconstructions with  the 
thinned  algorithm  and a  relaxation  parameter of 1jS. The  image  in the deepest 
plane  has  been  considerably  broadened, but otherwise the images have  not been 
drastically affected. 

3.3. Phantoms 
Experimental  results for data obtained  from  phantoms filled with 99Tcm 

and reconstructed  by  the  thinned  algorithm  are  presented below. A point 
source located  on  axis a t  a depth of 2.2 cm is  reconstructed  with ART2. Iteration 
for each subset of correlation coefficients is terminated  automatically when the 
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variance  from the mean  changes by less than 4%, but  this  termination  results 
in  a  change from a fixed limit of 4 iterations  in only 4 of 81 subsets  and  in  these 
only to 5 iterations.  The  result only  approaches that for the  simulated  point 
source  due to  statistical noise, camera  distortion  and inaccuracies in the 
correction  for  finite  geometry.  However, the resolution is 3.5 mm FWHRI and 
the peak  image strength  in  the 2.65 cm plane is only 13% of that in the plane 
of the point source while the value is 64% with simple back  projection. 

An N ,  S and L letter  phantom (see Koral et al. 1977) is reconstructed  by a 
thinned-array  ART^ algorithm  with r = 1.0. A 2% stopping  criterion  was 
satisfied after 4, 5, 6 and 7 iterations  in 1, 36, 43 and 1 of the S1 subsets 
respectively. Values for the  strength  in each letter  (table 2 )  are  obtained by 

Table 2 .  Comparison of actual  and  reconstructed  strength,  plane-by-plane 
and  total 

(a) Letter  phantom  with 2% stopping criterion 

Plane 
depth  Reconstructed 

Letter  (cm)  values Correct  values 

( b )  Volume phantom  after four iterations 

Reconstructed values 
Plane 
depth ART ART2 ART 
(cm) r =  1 r = l  r = 118 Correct values 

defining the region occupied and multiplying the average  reconstructed 
image-strength  density  in microcuries per  image  element  times the  total  area 
in  image  elements. The general  tencency for the reconstructed  strengths to be 
about 25% low compared to  the  true values is attributable  to neglecting the 
Anger camera  photopeak efficiency. The values for the  strength of each letter 
as a percentage of the  total  strength agree  with the  true values  within the 
accuracy of the measurement. 

A more difficult phantom  to  reconstruct is one in which the  radioactivity is 
continuously distributed  throughout a  volume.  Such  a phantom is  a  cylinder 
5 cm in  diameter  and 3.5 cm long which contains  both EL 2 cm diameter cold 
cylinder at  the  bottom  and a  smaller cold cylinder  near the  top,  as  sketched 
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in fig. 5 .  The  results for this  phantom,  as viewed from the  top,  arc shown at  the 
right of the figure where reconstructions  from the  thinned-army ART algorithm 
with  relaxation  parameter  equal to  1 and lj8 arc compared. It is seen that  the 
‘under-relaxed’  result ( r  < 1) is  superior as  the small defect is rounder  in the 
2-66 cm plane and  the  strength is more uniform in the  front  and back  planes. 

Fig. 5. Four-iteration ART reconstructions of a .7 c t n  tliatrrttter v o l ~ ~ t n c  pllnrltom. The 
mean depths of the planes intersect the pllnrltolrl :IS shown and corrcspond to 
k = 7 ,  6, 5 and 4. The images are  quite faithful,  within the limits of degraded 
depth resolution, especially with r = 1/8. 

Both  reconstructions show elongation of the cold cylinders, the result of the 
limited  angular  range of the projections, and  both resolve the 6 mm  diameter, 
8 mm long cold defect.  There  is an  artifactual cross in the  front planes, 
especially with r = 1, due to  the effective  camera  mask being too large. 

Reconstructed  strengths  for the four  planes after 4 iterations  are given in 
table 2 as a  function of algorithm,  as well as  the  actual values  calculated from 
the geometrical  volumes. The  reconstructed  values  are  in  greater  disagreement 
with  the  true values  in this case than in the case of the  letter  phantom. Assuming 
a photopeak efficiency  of 75%, one finds a  discrepancy  in the  total  strength 
with r = l. of 61 pCi. Selfabsorption  accounts for only 46% of this discrepancy. 
With  the relaxtion  parameter  equal to 1, table 2 shows little difference betmeen 
employing ART or ART2 (a  fact which is also true of the images qualitatively). 
The ART results  with r = 1jS produce  smaller  values than those  with r = 1, 
indicating that 4 iterations  are  not  sufficient for this algorithm to converge 
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quantitatively  although  the ima,ge is not visually  changed  with furthcr 
iterations.  The  percentage  distribution  among planes  with 1' = 1/8, however, 
is better  than  with r = 1 and is  actually  surprisingly good since an absorption 
correction has not been  made. 

For  the above  phantom, fig. 6(a)  shou-s a comparison of profiles through  the 
cold spot  in  the 2.65 cm plane  with ART reconstruction (T  = lis) and with 
simple  back-projection of the corrected  correlation cocfficicnts. The  superiority 
of the ART technique is seen in  the clear shoulder  located  over the cold defect 

Back-projection ART Uncorrect>ed  Corrected 

Fig. 6. Results  from tllc volu111c pl1at11,om. (a) Profile comparison (X: = t i  plane). The arrotv 
marks thc  location of t>he 6 nnn diameter cold defect  which is scc11 \\.it11 ART but uot 
with  back-projection. ( b )  Profiles correspond to  the band across the irnagc 
( k  = i planc).  With  correction  tho  dip  in  the  middle of \\.hat should  be a disc 
disappears. 

compared to  the  unperturbed profile obtained  with  back-projection.  The effect 
of correcting the correlation coefficients (eqn (3)) was  investigated by recon- 
structing a set of' images without  the  correction. A large qualitative  cl~ange 
occurs  in  t,hc near  ])lane  as shown by  the norma81ised profilcs of fig. B@).  \Vithout 
the correction,  large-angle  ra,ys which pass through  the  centre of the disc are 
sufficiently reduced  from  their correct  values so as to combine with norlnally 
jncidcnt  rays that are small  in  value due to  the large cold defect, to produce nn 
incorrect clip in  the  strength.  With  the  correction, a much more  uniform 
profile is produced.  The  quantitative  result of the correction is an increase  in 
calculated  strength by a  factor of approximately 1.5. 

The speed of convergence ofthe  iterative process has been n difficult pnrnmetcr 
t o  assess in  this  study.  Qualitatively, a l l  algorithms  have converged rapidly 
n-it11 1 or  a,t  most 2 it,erations  revealing the image  in very  ncarly  its final  form. 
Qtmntitative d u e s  continue to cha.ngc for  iterat,ions bcJ-oncl 2, especidly i n  
the under-rela,xed  case. This  behavior is illustrated in fig. 7 for  one  subsct of' 
clata in  the case of reconstruction of the cylinclrical phantom.  The  variance 
satisfies a 27$ stopping  criterion  after 5 iterations when r = 1, but only after 
16 iterations when r = 1j8. Three  iterations  are sufficient to obtain  a 1% 
total-strength  stability when r = 1 while 'i are necessary to rncct this  criterion 
~7he11 r = 1/8. 
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Fig. 7. Speed of convergence for one subset of data  in  the case of the volume phantom. 
Total  strength,  relative  units  and  variance  from  the  mean  are  plotted  against 
number of iterations. For this single subset, final total  strength  appears 15% 
higher with r = 1 compared  to r = 1 j S .  

4. Conclusions 
From  the previous  results  one  can conclude the following: Projections  in  a 

conical volume  over  a  limited  angular  range  produce images which are 
interpretable,  but which feature a  resolution  in the direction  normal to  the 
det'ector  plane which is inferior to  that in  planes  parallel to  the detector. 
Two-dimensional simulations show that  the effect upon the image of array 
thinning to save  computer core space is small while the effect of under-relaxation 
is to produce an improvement for noisy data.  Experimental  measurements 
upon small phantoms confirm the beneficial effects of relaxation  upon  image 
quality  and  the  superiority of the ART algorithm  compared to non-iterative 
back-projection.  Finally,  although the absolute  strength for a  volume phantom 
is low by a factor which is greater than one would expect  based  on an assumed 
camera  photopeak efficiency of 78%) relative  strength  values  are  good,  even 
though  absorption  has been ignored. 

APPENDIX 1 
V7e wish to derive the relationship  between the time-correlation coefficient 

and  the  emitting  strength of an image  element  for the general  three-dimensional 
finite-geometry ca'se. The  starting  point is the result for a single det'ector and a 
number of discrete sources (Koral et al. 1978) : 

Qi = ( P - d N , Q ,  (A1 1 
where Qi is the mean-subtracted  correlation coefficient for the 4th region of the 
aperture, p is the peak  and q the side-lobe value of the autocorrelation of the 
code, Ni is the mean  number of gamma  rays  emitted  per  time  interval for the  ith 
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source,  and Ri is the solid angle of the  detector a.s seen from the  ith source. 
(Note that in  the reference  all  sources were taken  to see a solid angle of 1 so 
that Ri did  not  appear  explicitly.) 

ernent 

Fig. AI.  Sketch of image  volume  associated with  ijth  correlation coefficient and position 
of Zkth image  element  within that volume. 

We now generalise the  situation  to  that shown  in fig.  A1 with n(r)  equal to 
the source strength per unit  volume: 

where 
U = r - p and u2(r, p) = usu. 

Assuming that  the  detectors  are  quite small and of area D, 

Qi(p,r) = (p-p)D d3rn(r)cosei /~2(r ,pi) ,  i = 1 , 2  ,..., ND 

where pi is the vector to  the centre of the  ith  detector  element  and ND is the 
number of such  elements. Then specify that  the image  volume, Kj, to be 
associated with  the  particular  correlation coefficient, Qij is that enclosed by a 
cone with  apex a t  pi and  with sides specified by  the open  area Sij of the  j th  
aperture  as seen from the  ith  detector (fig. A l ) .  

Qij = ( p - q ) D J  d3m(r)cosei/~12(r,pi), j = 1 , 2  ,..., AL. (A4) 

Now consider A\ discrete depths  indexed  by k and  make  the  further  assump- 
tion that  the image  distribution is changing slowly enough so that we can sum 
the volume of a truncated cone a t  each of the discrete  depths  times the source- 
strength  density a t  a single central location  within the cone to  evaluate  the 
integral  above. If we choose, in particular,  the  source-strength  density along 
the  ijth  ray,  nlk, where 1 is a  function of i, j and k, then 

.r (A3) 

Vi5 
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The volume  integral will be  approximated  by the  area Sij back-projected 
into  the plane at  depth A ,  times the thickness of the image  elements  in that 
plane, t,, so 

P 1 d3 r = #,,(A, + B)2  tk/B2 
V1.k 

where B is the distance  from the  aperture  to  the  detector. Therefore, 

Qij = (p - q )  D cos3 di j  Sij B-2 c nl,t,. 
kf 

k=ks 

The  factor  outside the summation is a  function of only i and j and each 

Finally, if  we redefine the image  in terms of emission strength per unit  area, 
correlation coefficient may  be  corrected  by i t  (eqn ( 3 ) )  with F = D ( p  - q)/B2. 

.l,,< = n,, t,, then 

RESUME 
Application de  la Technique de Reconstruction Algebrique (ART) B la  tomographie B emission a 

temps code 
Les dispositifs de tomographie B Qmission B photon simple prennent couramment  des  projections 

soit dans  un plan  sur  une  gamme  angulaire totale ou dans LLII volume sur une gamme angulaire 
limitQe.  L’ouverture L temps code plane,  pseudo-hazard,  en conjonction avec  une camera Anger, 
est  un dispositif du  type B gamme angulaire limitbe. I1 utilise des stQnopAs qui ant une trans- 
mission variant en fonction du temps. PrQcBdemment, la reconstruction d’image etait effectuee 
par simple projection des coefficients obtenus  dans le temps  en mettant  en corr6lation la  trans- 
mission des  st6nopQs  avec le taux de  comptage  de 1’61Qment dktecteur, ce qui rQsultait en  une 
image B contraste faible. La Technique de  Reconstruction Algbbrique est utilisee, et une mirthode 
est  introduite, pour la division des coQfficients de  corrQlation  en sous-ensembles permettant d’effec- 
tuer  la reconstruction  en  trois dimensions sur mini-ordinateur. Les rbsultats de simulations et de 
donnQes  expQrimentales fantBmes montrent que  la ART ameliore la  rQsolution  en profondeur par 
rapport a la projection,  que  la  sous-relaxation  produit  de meilleures images dans le cas de donnees 
bruyantes,  et que  la division des coefficients en sous-ensembles n’a aucun effet sur la qualit6. Les 
images montrent la  degradation attendue de resolution dans la  direction  perpendiculaire au plan 
du detecteur dde a la gamme angulaire limitbe des projections, mais donnent  des resultats  quanti- 
tatifs  dont les valeurs  relatives  sont bonnes, bien m6me que  l’attbnuation  soit nQgligQe. 

ZUSAMMENFASSUNG 
Die Anwendung van Algebraisches Abblidrekonstruktionsverfahren (ART) auf zeitkodierte 

Emissionstomographie 
Bei den tomographischen  Geraten mit Einzelphotonenemission werden gegenwartig Pro- 

jektionen  entweder  in einer Ebene  innerhalb eines vollstandigen Winkelbereichs oder in einem 
Raum bzw. Volumen mit begrenztem Winkelbereich erfasst. Die ebene zeitkodierte Blende mit 
Pseudo-Willkiirlichkeit stellt im Zusammenhang mit einer Anger-Kamera eine Vorrichtung dar, 
die zum Typus  mit beschrhnktem Winkelbereich gehort.  Hierbei werden mehrere Feinlocher mit 
einer zeitvariablen Transmission verwendet. Zuvor erfolgte die Abbildrekonstruktion  durch 
einfache Riickprojektion von Koeffizienten, die durch zeitkorrelierende Feinlochiibertragung bei 
Zahlraten, die fur Detektorelemente zutreffen. Die sich daraus ergebende Abbildung war kon- 
trastarm.  Es wird nunmehr des Algebraische Rekonstruktionsverfahren eingesetzt und eine 
Methode zur Untergliederung der Korrelationskoeffizienten in  Untergruppen eingefuhrt, die die 
dreidimensionale Rekonstruktion  mit Hilfe eines Minikomputers ermoglicht. Die durch  Simu- 
lationsversuche und  an experimentelleu Phantomen erhaltenen  Werte zeigen, dass das Algebraische 
Rekonstruktionsverfahren gegenuber der Riickprojektion zu beserren Bildauflosungen bzw. 
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-scharfen fiihrt, dass eine Unterrelaxation bei  gerauschbehafteten Daten bessere Abbildungen 
ergibt und dess  die  Unterteilung der Korrelationskoeffizienten in  Untergruppen keine Auswirkung 
auf die Qualitat  der Abbildung hat. Die Abbildungen zeigen die erwartete Schwachung der 
duflosung  in der  Richtung quer  zur  Detektorebene  als Folge des begrenzten Winkelbereichs der 
Projektionen. Allerdings zeitigen die Abbildungen quantitative  Werte von relativ  guter Aussage- 
kraft, obwohl die Schwachung der Schbrfe ausser Acht gelassen worden ist. 
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