
Phys. Med. Biol.42 (1997) 549–567. Printed in the UK PII: S0031-9155(97)76676-4

Computerized classification of malignant and benign
microcalcifications on mammograms: texture analysis
using an artificial neural network

Heang-Ping Chan†, Berkman Sahiner, Nicholas Petrick, Mark A Helvie,
Kwok Leung Lam, Dorit D Adler and Mitchell M Goodsitt
Department of Radiology, University of Michigan, Ann Arbor, MI, USA

Received 22 July 1996

Abstract. We investigated the feasibility of using texture features extracted from mammograms
to predict whether the presence of microcalcifications is associated with malignant or benign
pathology. Eighty-six mammograms from 54 cases (26 benign and 28 malignant) were used as
case samples. All lesions had been recommended for surgical biopsy by specialists in breast
imaging. A region of interest (ROI) containing the microcalcifications was first corrected for the
low-frequency background density variation. Spatial grey level dependence (SGLD) matrices at
ten different pixel distances in both the axial and diagonal directions were constructed from
the background-corrected ROI. Thirteen texture measures were extracted from each SGLD
matrix. Using a stepwise feature selection technique, which maximized the separation of the
two class distributions, subsets of texture features were selected from the multi-dimensional
feature space. A backpropagation artificial neural network (ANN) classifier was trained and
tested with a leave-one-case-out method to recognize the malignant or benign microcalcification
clusters. The performance of the ANN was analysed with receiver operating characteristic (ROC)
methodology. It was found that a subset of six texture features provided the highest classification
accuracy among the feature sets studied. The ANN classifier achieved an area under the ROC
curve of 0.88. By setting an appropriate decision threshold, 11 of the 28 benign cases were
correctly identified (39% specificity) without missing any malignant cases (100% sensitivity) for
patients who had undergone biopsy. This preliminary result indicates that computerized texture
analysis can extract mammographic information that is not apparent by visual inspection. The
computer-extracted texture information may be used to assist in mammographic interpretation,
with the potential to reduce biopsies of benign cases and improve the positive predictive value
of mammography.

1. Introduction

Mammography is the most sensitive method for detection of early breast cancer. However,
the specificity for classification of malignant and benign lesions from mammographic images
is quite low. In the United States, the positive predictive value, i.e., the ratio of the number
of breast cancers found to the total number of biopsies, of mammography is typically
between 15 and 30% (Kopans 1991, Adler and Helvie 1992). An improvement in the
positive predictive value would reduce health care costs and eliminate the anxiety and
morbidity of patients who would have to undergo unnecessary biopsy otherwise. One
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of the potential approaches to improving the specificity of mammography is the use of
computerized feature extraction techniques to extract information that may not be readily
perceived by human readers. The computer-extracted features may complement the visual
characteristics of the mammographic abnormalities and provide additional information to
the radiologists in distinguishing malignant and benign lesions. The computer-extracted
features, alone or in combination with human-perceived features, may also be input to
a trained classifier to estimate the likelihood of malignancy of a mammographic lesion,
thereby assisting radiologists in making diagnostic decisions.

A number of researchers have attempted to develop feature extraction and classification
techniques for masses (Ackerman and Gose 1972; Kildayet al 1993, Huoet al 1995,
Sahineret al 1996a) or microcalcifications (Weeet al 1975, Foxet al 1980, Chanet al
1992, Chitreet al 1993, Chanet al 1994b, Shenet al 1994, Chanet al 1995a, c, d, Wuet al
1995, Jianget al 1996, Thieleet al 1996). Other researchers used radiologists’ ratings of
mammographic features or encoded the radiologists’ readings with numerical values as input
to classifiers (Ackermanet al 1973, Galeet al 1987, Gettyet al 1988, D’Orsiet al 1992, Wu
et al 1993, Bakeret al 1996). While the accuracy of lesion characterization in these studies
varied, they demonstrated that computer-aided classification has the potential to improve the
malignant and benign diagnosis of breast lesions. We have been developing computerized
feature-extraction techniques for classification of masses or microcalcifications (Chanet al
1992, 1994b, 1995a, c, d, Sahineret al 1996a). The extracted features are analysed by linear
or non-linear classifiers which are trained for a specific classification task. We have found
that texture features are effective for differentiation of masses and normal tissues (Chan
et al 1995b, Weiet al 1995b), and that morphological features can be used to distinguish
malignant and benign clustered microcalcifications (Chanet al 1995c). Because the tissue
texture in regions containing microcalcifications associated with a malignant process may be
different from that associated with a benign process, in the present study we analysed texture
features from a region of interest (ROI) containing clustered microcalcifications (Chanet al
1995d). The effectiveness of these texture features, in combination with a backpropagation
neural network classifier (Freeman and Skapura 1991), for the differentiation of malignant
and benign microcalcifications was evaluated. The performance of the neural network was
analysed with receiver operating characteristic (ROC) methodology (Swets and Pickett 1982,
Metz et al 1990).

2. Materials and methods

2.1. Case selection and digitization

In this study, 86 mammograms with clustered microcalcifications were selected from patient
files in the Department of Radiology at the University of Michigan. The mammograms were
acquired with dedicated mammographic systems with a 0.3 mm focal spot, molybdenum
(Mo) anode and 0.03 mm Mo filter. A Kodak Min R/MRE mammographic screen–film
system using extended cycle processing was employed as the image receptor. The selection
criteria were that the mammogram contained a cluster of microcalcifications, that about
half of the case samples were malignant and half were benign, and that no grid lines were
visible on the mammogram. The data set included 86 films, some of which were films of
different views from the same patient. A total of 54 different patients were included in the
data set. There were 41 malignant (26 patients) and 45 benign (28 patients) clusters. The
malignant and benign pathology of the microcalcifications had been proven by open surgical
biopsy and histologic analysis. The visibility of the microcalcification clusters was ranked
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by experienced radiologists on a scale of 1–5 (1, very obvious; 5, very subtle) relative to the
range of cases seen in clinical practice. The histogram of the visibility for the 86 clusters
is shown in figure 1.

Figure 1. A histogram of the subjective ranking of the visibility of the 86 microcalcification
clusters on the mammograms. The clusters were ranked on a five-point scale relative to the
range of visibility of clusters found in clinical practice (1, very obvious; 5, very subtle).

All mammograms were digitized with a laser film scanner (Lumisys DIS-1000) at a
pixel size of 35µm× 35 µm and with a 12-bit grey level. The light transmitted through
the film was amplified logarithmically before analogue-to-digital conversion. The digitizer
had an optical density range of 0–3.5. It was calibrated so that the optical density (O.D.) on
film was linearly proportional to the output pixel value in the range of about 0.1–2.8 O.D.
with a slope of 0.001 O.D./pixel value. The slope of the calibration curve outside this range
decreased gradually. Before input to the detection program, the pixel values were linearly
converted such that low optical densities were represented by high pixel values.

In this study, the locations of the microcalcification cluster on each mammogram were
identified by radiologists so that only true microcalcification clusters were analysed. An
ROI of 1024× 1024 pixels (corresponding to 3.58 cm× 3.58 cm on the film), with the
cluster approximately at its centre was extracted for analysis. This ROI size could enclose
the majority of the clusters in the data set. A few of the obvious clusters scattered over a
larger area, but the main area of the clusters was covered within the ROI.

The low-frequency background grey levels of each ROI depend mainly on the density
of the overlapping breast tissue and the x-ray exposure conditions. The background levels
therefore do not relate directly to the presence of the microcalcifications, but they bias
the numerical values of the texture features. In order to eliminate the variability in the
texture feature distributions caused by these factors that are not related to malignancy, we
applied a background correction technique to the ROI before texture feature extraction.
This technique has been described in detail previously (Chanet al 1995b). Briefly, the grey
level at a given pixel of the low-frequency background was estimated as the average of
the distance-weighted grey levels of four pixels at the intersections of the normals from the
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given pixel to the four edges of the ROI. An example of an original ROI with a malignant
cluster, its estimated background image, and the background-corrected ROI is shown in
figure 2(a)–(c), respectively. It can be seen that the sloped background grey level of the
ROI was removed by the correction. The high-frequency information in the ROI was
basically unchanged because the background image only contained low spatial frequencies.

Figure 2. An example demonstrating the effect of
background correction: (a) an original ROI with a malignant
microcalcification cluster; (b) the estimated low-frequency
background image; and (c) the background-corrected ROI.
The mean pixel value of the ROI in (c) was shifted by a
constant to match that of the ROI in (a), and slight contrast
enhancement (by windowing) was applied to the ROI in
(c) for display purposes. It can be seen that the sloped
background grey level of the ROI was removed by the
correction.

2.2. Texture features

Our previous studies indicated that the texture features derived from the spatial grey level
dependence matrix (SGLD) (Haralicket al 1973), also known as the concurrence matrix
or the co-occurrence matrix, of the ROI were useful in classification of masses and normal
breast tissue (Chenget al 1994, Petrosianet al 1994, Chanet al 1995b). We further
expanded the texture feature space to include multi-distance features and obtained improved
results (Weiet al 1995a). In this study, we applied texture analysis to the evaluation of
textural changes in the breast tissue due to a developing malignancy. The SGLD matrix
element,pθ,d(i, j), is the joint probability of the occurrence of grey levelsi andj for pixel
pairs which are separated by a distanced and at a directionθ . Because of the discrete
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nature of the digital image, the distanced is limited to integral multiples of the pixel size,
and the value ofθ is limited to 0, 45, 90, and 135◦ at d = 1, and to these and other discrete
angles asd increases. We constructed SGLD matrices from pixel pairs in a sub-region of
512×512 pixels centred approximately at the cluster in the background-corrected ROI. Four
SGLD matrices, one at each of the four directions, 0, 45, 90, and 135◦, were constructed
for a given pixel pair distance. The pixel pair distance was varied from four to 40 pixels in
increments of four pixels. Therefore, a total of 40 SGLD matrices were derived from each
ROI.

The SGLD matrix depends on the bin width (or grey level interval) used in accumulating
the histogram. We found in our previous mass classification study (Chanet al 1995b) that
a bin width of 16 grey levels was a reasonable compromise between grey level resolution
and statistical noise. In this study, the ROIs had two times more pixels in width and in
height than those in our previous studies, resulting in four times as many pixels in each
ROI. Thus, we could use a smaller bin width to obtain approximately the same statistics
in the SGLD matrices. Furthermore, our previous study on the digitization requirements of
mammograms (Chanet al 1994a) indicated that at least nine-bit grey level resolution was
required for detection of subtle microcalcifications. We therefore chose a bin width of four
grey levels for all SGLD matrices in this study. This is equivalent to reducing the grey
level resolution (or bit depth) of the 12-bit image to ten bits by eliminating the two least
significant bits.

A number of texture features can be derived from an SGLD matrix (Haralicket al
1973, Conners 1979). In our previous studies for mass and normal tissue classification
(Chan et al 1995b, Weiet al 1995a), we evaluated eight texture measures: correlation,
entropy, energy (angular second moment), inertia, inverse difference moment, sum average,
sum entropy, and difference entropy. In this study, we included five additional texture
features: difference average, sum variance, difference variance, information measure of
correlation 1, and information measure of correlation 2. The mathematical expressions of
these 13 texture features are given in the appendix. These features describe the shape of
the SGLD matrix and generally contain information about the image characteristics such as
homogeneity, contrast, and the presence of organized structures, as well as the complexity
and grey level transitions within the image (Haralicket al 1973).

As discussed in our previous study (Chanet al 1995b), we did not find a significant
dependence of the discriminatory power of the texture features on the direction of the pixel
pairs for mammographic textures. However, since the actual distance between the pixel pair
in the diagonal direction was a factor of

√
2 of that in the axial direction, we averaged the

feature values at the axial directions (0 and 90◦) and also at the diagonal directions (45 and
135◦) separately for each texture measure derived from the SGLD matrix at a given pixel
pair distance. The average texture features at the ten pixel pair distances therefore formed
a 260-dimensional feature space for the classification task.

2.3. Feature selection

The dimension of the texture feature space derived from the SGLD matrices at different
pixel distances and directions is very large. It is well known that the presence of ineffective
features often degrades classifier performance, especially when the training data set is small
(Raudys and Pikelis 1980, Fukunaga and Hayes 1989). Investigators in CAD research have
employed different methods for feature selection. Goldberget al (1992) selected features
for classifying malignant and benign masses on ultrasound images by evaluation of the
discriminatory ability of the individual features. Wuet al (1993) selected features based
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on the difference in the average values of the individual features between the two classes.
Lo et al (1995) ranked the importance of each feature based on its effect on the classification
accuracy, and then eliminated the features, one at a time, from the least important to the most
important, to determine the smallest set of features that provided the highest classification
accuracy in their data set.

The stepwise procedure in linear discriminant analysis is an established method for
selection of useful features for a classification task (Norusis 1993). In our previous studies,
we have employed stepwise feature selection and successfully selected a small number of
effective features from very large feature spaces (Chanet al 1995b, Weiet al 1995a). A
detailed description of this procedure can be found in the literature. Briefly, one feature
is added to or removed from the selected feature set in alternate steps. The effect of the
feature on the separation of the two groups is analysed using the Wilks lambda criterion
(minimization of the ratio of the within-group sum of squares to the total sum of squares
of the two class distributions). The significance of the change in the Wilks lambda when a
feature is added to or removed from the model is estimated byF statistics. The user can
choose the values of two parameters, theF -to-enter threshold (Fin) and theF -to-remove
threshold (Fout ), to control the number of features to be selected. In the feature entry step,
each of the features not yet in the model is entered one at a time. The feature variable that
causes the most significant change in the Wilks lambda will be included in the feature set
if the F value is greater than theFin threshold. In the feature removal step, each of the
features already in the model is removed one at a time. The feature variable that causes
the least significant change in the Wilks lambda will be excluded from the feature set if the
F value is below theFout threshold. The stepwise procedure terminates when theF values
for all features not in the model are smaller than theFin threshold and theF values for all
features in the model are greater than theFout threshold. Therefore, the number of selected
features will decrease if either theFin threshold or theFout threshold is increased. Since
the optimal values of the twoF thresholds are not knowna priori, we varied these two
thresholds over a wide range to obtain feature sets containing different number of features.
The classification accuracies of the different feature sets were then evaluated as described
below.

2.4. The artificial neural network (ANN)

We used a feed-forward backpropagation ANN for feature classification in the texture feature
space. In this ANN, the nodes are organized in an input layer, an output layer, and one
or more hidden layers as shown in figure 3. The nodes are interconnected by weights and
information propagates from one layer to the next through a sigmoidal activation function.
The learning of the ANN is a supervised process in which known training cases are input to
the ANN and the weights are adjusted with an iterative backpropagation procedure in order
to achieve a desired input–output relationship. Detailed description of the backpropagation
algorithm can be found in the literature (Freeman and Skapura 1991).

To improve the convergence rate and the stability of training, we implemented batch
processing in which the weight changes obtained from each training case were accumulated
and the weights were updated after the entire set of training cases was evaluated. The
batch processing method improves the stability with a tradeoff in the convergence rate. To
improve the convergence rate, we included a momentum term and used the delta-bar-delta
rule for updating the weights (Sahineret al 1996b). The updated weight is given by

wi(t + 1) = wi(t)− ηi(t)1wi(t)
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Figure 3. A schematic diagram of the backpropagation neural network classifier used in this
study. The number of input nodes was equal to the number of input features. The number of
hidden nodes could be varied to obtain the best performance. One output node was used in all
ANNs. An ANN with I input nodes,H hidden nodes, and one output node will be denoted as
I–H–1.

whereηi(t) is the learning rate,wi(t) is the weight and1wi(t) is the weight increment
for the ith node at training epocht . Whenηi(t) is small, the learning is slow but stable.
Whenηi(t) is large, learning is fast but can be unstable. In the delta-bar-delta rule,ηi(t) is
adjusted adaptively based on the weight increments in two consecutive epochs.

If 1wi(t − 1)1wi(t) > 0, ηi(t − 1) is too small and can be increased:

ηi(t) = ηi(t − 1)+ ε ε > 0.

If 1wi(t − 1)1wi(t) < 0, ηi(t − 1) is too large and should be reduced by a factorr:

ηi(t) = ηi(t − 1)r 0< r < 1.

In this study, we applied a leave-one-out method to training and testing of the ANN classifier.
If a data set withN samples is available for training and testing, (N − 1) samples will be
used for training the classifier and the trained classifier will be evaluated with the left-out
test sample. The procedure is repeatedN times, each time with a different left-out sample.
The test results of theN samples are accumulated to form a distribution of test scores.
In the present study, all images of the same patient were left out as test samples in each
training cycle and the images from the other (N − 1) patients were used for training. The
results of all test images from theN training cycles were accumulated to form a distribution
of test scores.

Another commonly used method for training and testing a classifier with a small data
set is a cross-validation method (Weiss and Kulilowski 1991). In this method, the data set
is randomly partitioned into a training set and a test set with a specified training-to-test-case
ratio. The training and testing of the classifier are then performed with the partitioned
training and test sets, respectively. To reduce the dependence on the training and test
cases, the procedure is repeated many times with different partitioning. The results are
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then averaged over the many partitions to obtain an estimate of the classifier performance.
We performed a limited study using the cross-validation method and compared the results
with the leave-one-out method. To ensure independence of the training and test sets in the
cross-validation method, the case partitioning was performed with the constraint that images
of the same patient were always grouped into the same set.

The performance of the ANN classifier was evaluated by ROC methodology (Swets and
Pickett 1982, Metz 1986). The output value of the ANN was used as the decision variable
in the ROC analysis. An ROC curve, which is the relationship between the true-positive
fraction (TPF) and false-positive fraction (FPF), could be generated by setting different
decision thresholds on the output values of the ANN. In this study, we used the LABROC
program (Metzet al 1990), which assumes binormal distributions of the decision variable
for the normal and abnormal cases and fits an ROC curve based on maximum-likelihood
estimation, to estimate the area under the ROC curve (Az) and the standard deviation (SD)
of Az. Az was used as an index of classification accuracy. For the leave-one-out method,
the testAz was obtained from analysis of the accumulated test score distribution from
all N cycles. For the cross-validation method, the average performance of the ANN was
estimated as the average of the 50 testAz values obtained from training and testing with
50 different partitions of the data sets.

3. Results

Some representative subsets of features selected by the stepwise procedure from the 260-
dimensional texture feature space are listed in table 1. The number of features was varied by
changing theFin andFout thresholds as shown in the table. The number of features selected
usually remained constant over a range ofFin andFout thresholds. For example, there were
six selected features when (Fin, Fout ) were reduced from about (2.65, 2.55) to (2.1, 2.0), and
seven selected features when reduced from about (1.9, 1.8) to (0.56, 0.55). When theFin
andFout were reduced slightly further, the number of selected features increased abruptly
to 19.

We evaluated each feature subset by using the feature subset as input to the ANN and
estimating the classification accuracyAz. For a given feature set containingI features, an
ANN with I input nodes, one to ten hidden nodes, and one output node was trained with
the leave-one-case-out method as described above. For each training cycle with (N − 1)
training cases, the ANN was trained up to 30 000 epochs. The test result for the left-out case
was obtained at fixed intervals of epochs (e.g., every 1000 epochs). After theN training
cycles were completed, the test results of the entire dataset would have been accumulated
at the fixed intervals of epochs. Therefore, an ROC curve could be fitted to the output of
the test cases and theAz estimated at the fixed intervals of epochs. Figure 4 shows the
typical convergence trend of the testAz results as the training epochs increased. The testAz
generally increased rapidly for the first few thousand epochs and then levelled off gradually.
In this example, the testAz remained at a constant level of about 0.88 when the ANN was
trained for more than 8000 epochs. In some cases, the testAz decreased if the ANN was
over-trained. The testAz values reported in the following discussion were obtained at the
maximum plateau region.

The dependence of the classification accuracy,Az, on the ANN architecture is shown in
figure 5 for the different feature subsets. For convenience of comparison, an ANN without
a hidden layer was plotted as an ANN with zero hidden nodes. The number of hidden nodes
for a three-layer ANN was varied from one to ten. The standard deviation (SD) of theAz,
estimated by the LABROC1 program, ranged from 0.035 to 0.045. For a given feature set,
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Figure 4. An example demonstrating the dependence of testAz on the number of training
epochs. The testAz generally increased rapidly during the first 5000 epochs and then gradually
reached a plateau or a broad maximum.

Figure 5. The dependence of the classification accuracy,Az, on the number of hidden nodes
in the ANN classifier. To facilitate comparison, the results for a two-layer ANN that had no
hidden layer were plotted as data points with zero hidden nodes. The ANNs with one hidden
node consistently provided higher accuracy than the other ANNs for all input feature sets. The
input feature set with six selected features was the most effective in classifying malignant and
benign microcalcifications among the selected feature sets.
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Table 1. Texture features selected by stepwise feature selection procedure for differentF -to-
enter (Fin) andF -to-remove (Fout ) thresholds.

Fin = 3.84 Fin = 2.7 Fin = 2.5 Fin = 1.7 Fin = 0.55
Fout = 2.71 Fout = 2.6 Fout = 2.4 Fout = 1.5 Fout = 0.45

Diff. entropy Correlation Diff. average Correlation Correlation
(d = 8) (d = 40, diagonal) (d = 4) (d = 40, diagonal) (d = 8)
Inv. diff. moment Diff. entropy Diff. entropy Diff. average Diff. average
(d = 4) (d = 8) (d = 8) (d = 4) (d = 32)

Inertia Diff. entropy Diff. entropy Diff. average
(d = 40) (d = 32, diagonal) (d = 8) (d = 4)
Inv. diff. moment Inertia(d = 4) Diff. entropy Diff. average
(d = 4) (d = 32, diagonal) (d = 40, diagonal)

Inertia (d = 40) Inertia (d = 40) Diff. entropy (d = 8)
Inv. diff. moment Inv. diff. moment Diff. entropy
(d = 12) (d = 12) (d = 32, diagonal)

Inv. diff. moment Diff. variance
(d = 4) (d = 40, diagonal)

Energy
(d = 24, diagonal)
Information measure
of correlation 1
(d = 36)
Information measure
of correlation 1
(d = 40, diagonal)
Information measure
of correlation 2
(d = 24)
Information measure
of correlation 2
(d = 36)
Information measure
of correlation 2
(d = 4, diagonal)
Inertia (d = 4)
Inertia (d = 40)
Inv. diff. moment
(d = 12)
Inv. diff. moment
(d = 8)
Inv. diff. moment
(d = 4, diagonal)
Inv. diff. moment
(d = 8, diagonal)

the variation of theAz values with the number of ANN hidden nodes was within one SD.
However, the maximumAz consistently occurred at the ANN with one hidden node for all
feature sets. The feature set with six features provided the highestAz over the entire range
of hidden nodes studied. The maximumAz of 0.88 was obtained with an ANN of six input
nodes, one hidden node, and one output node. The ROC curves that had the two highest
Az values obtained with six and seven input features and one hidden node are plotted in
figure 6.
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Figure 6. ROC curves that had the two highestAz values obtained with the six-feature and
seven-feature sets and one hidden node shown in figure 5.

Figure 7. The effect of the initialization of the weights in the ANN on classifier performance.
An ANN with seven input nodes, zero to four hidden nodes, and one output node was studied.
The two data points at each ANN configuration represent the two different initializations of
its weights. The difference in the initial weights appears to have very small effect on the
convergence of the ANN.
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To evaluate the variation of the classification accuracy on the initialization of the ANN,
we used two different random number seeds to generate the initial weights for the ANNs
with seven input features. TheAz values are plotted in figure 7 for the ANNs with different
numbers of hidden nodes. The differences inAz were within 0.01 for the different ANNs,
indicating that the initial weights do not have a strong effect on the convergence of the
ANNs.

Figure 8. The dependence ofAz on the number of training cases obtained from a cross-
validation method. The number of training cases was varied by randomly partitioning the data
set into a training set and a test set with training-to-test-sample ratios of one to five. For a given
training-to-test-sample ratio, the training (or test)Az plotted was the average of the 50Az values
obtained from the 50 random partitions of the data set. For comparison, theAz values obtained
with the leave-one-case-out training and test method were also plotted as the data points with
84 training samples.

Figure 8 shows the performance of the ANN classifiers which were trained and tested
with a cross-validation method. The number of input nodes of the ANNs corresponded to
the number of input features; the numbers of hidden nodes and output nodes were both
set to be one. The training-to-test sample ratio was varied from one to five. The data set
was randomly partitioned 50 times at each ratio and the mean training and testAz values
from the 50 partitions were plotted against the number of training samples. Because of the
constraint that films of the same patient were always grouped into the same set, the number
of training (or test) samples in each of the 50 partitions might not be equal: the expected
number of training samples calculated as the nearest integer of [86R/(R + 1)], whereR is
the training-to-test-sample ratio, was plotted as the abscissae. As the training-to-test-sample
ratios increased from one to five, the expected number of training samples increased from 43
to 72. To facilitate comparison, theAz for the corresponding ANN classifiers trained with
the leave-one-case-out method was plotted as the data point having an expected number of
training samples of 84.

It can be seen that the trainingAz decreased slowly as the number of training samples
increased. The testAz, on the other hand, increased as the number of training samples
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increased. Because the number of test samples was small when the ratio was large, the
SD for each testAz ranged from 0.06 to 0.12 when the ratio increased from one to five.
However, the SDs of the mean testAz values from the 50 partitions varied from 0.01 to
0.02. It can be seen that the fluctuations of the data points were within one SD of the
mean. The trend of the curves generally agrees with the expectations that small training
sets over-estimate the classifier performance and the trained classifiers perform poorly on
test sets, and that both the training and test results will approach the ‘true’ performance
as the number of training samples approaches infinity (Raudys and Pikelis 1980, Fukunaga
and Hayes 1989).

The output scores of the ANN with six input features, one hidden node, and one output
node for the 86 test samples obtained with the leave-one-case-out method are plotted in
figure 9(a). The output scores of the ANN have been scaled linearly for the purpose of
plotting the graph. The linear transformation simply expands the horizontal scale without
any effect on the relative distribution of the scores. It can be seen that there was good
separation between the malignant and benign clusters. If the decision threshold was set
at 0.85, 11 of the 45 benign samples were correctly classified without any false negatives
(a sensitivity of 100% at a specificity of 24%). At a decision threshold of 0.75, 23 of the
benign samples were correctly classified but one malignant sample was missed (a sensitivity
of 98% at a specificity of 51%). When the ANN output scores were analysed with the
LABROC1 program, the area under the fitted ROC curve was 0.88.

Because some of the samples are films from the same patient, it will be reasonable
to make the malignant or benign decision on a case-by-case basis. Two approaches were
investigated: one used the average score from all films of the same patient and the other
used the minimum score from all films of the same patient for decision making. The latter
was a more conservative approach because a lower score corresponded to higher likelihood
of malignancy in our analysis. The distributions of the average scores and the minimum
scores for the 54 cases are shown in figure 9(b) and (c), respectively. If a decision threshold
were set at an average score of 0.80, ten of the 28 benign cases would be correctly classified
without any false negative (a sensitivity of 100% at a specificity of 36%). Alternatively,
if a decision threshold was set at a minimum score of 0.75, 11 of the 28 benign cases
would be correctly classified without missing any malignant cases (a sensitivity of 100% at
a specificity of 39%).

4. Discussion

We have investigated the usefulness of texture analysis in predicting the malignant and
benign nature of abnormal breast tissue containing clustered microcalcifications. All case
samples used in this study had been surgically biopsied, indicating that definitive diagnosis
could not be made by the mammographic appearance of the benign clusters. Our results
show that there are changes in the texture of the breast tissue in which a malignancy is
developing, and that these changes can be distinguished from the benign tissue texture by
computerized analysis although their differences are not visually apparent on mammograms.
Based on the results of texture analysis and ANN classification, a significant fraction of
benign cases can be correctly identified. This information may be used to reduce the
number of biopsies, thereby improving the positive predictive value of mammography. Our
preliminary study therefore demonstrates that computerized classification may be a useful
aid in mammographic interpretation. Further investigation to determine if this approach can
be generalized to large data sets is warranted.
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(c)

Figure 9. The distributions of the discriminant scores for the malignant (black) and benign
(white) microcalcification clusters. The test results for the ANN with six input features, one
hidden node, and one output node trained with the leave-one-case-out method are shown. The
output scores of the ANN have been scaled linearly for the purpose of plotting. (a) Distribution
of the output scores from the ANN classifier for 86 test samples; (b) distribution of the average
scores for 54 cases; (c) distribution of the minimum scores for 54 cases.
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We used an ANN as a feature classifier for this classification task. By varying the
structure of the ANN, both linear and non-linear classifiers could be studied. An analysis of
the dependence of the classification accuracy on ANN architecture (figure 5) indicated that
ANNs with one hidden node provided the best performance for all feature sets. Because an
ANN with one hidden node is equivalent to a linear classifier, the results appear to indicate
that a linear classifier may be the optimal choice for this classification task. However, it
should be cautioned that the performance of a classifier depends on the number of training
samples relative to the number of parameters to be trained in the classifier (Raudys and
Pikelis 1980, Fukunaga and Hayes 1989). Since the data set in this study was small and
the number of weights to be trained in an ANN increased rapidly with the number of
hidden nodes, the observed reduction in classification accuracy with the increasing number
of hidden nodes could be caused by insufficient training samples. The optimal choice of a
feature classifier for this classification task will have to be investigated further when a large
data set is available.

Thiele et al (1996) recently studied the classification of the tissue texture surrounding
calcification clusters to predict malignant or benign outcomes. They used texture measures
calculated from the SGLD matrices and fractal geometry as input to a linear discriminant
classifier or a logistic discriminant classifier. Their results also demonstrated that texture
analysis showed significant discriminatory power between benign and malignant tissue.
In a data set of 54 cases (36 benign, 18 malignant), they obtained a sensitivity of
89% at a specificity of 83%. In their calculation of the SGLD matrices in the tissue
region, they included subtle microcalcifications but excluded the pixels containing large
and bright calcifications by manually identifying the calcification areas with grey level
thresholding. In our SGLD matrix calculation, all pixels in the 512× 512 ROI containing
the microcalcification cluster were included. Because of the many differences between the
two studies and the difference in the data set, it is not known which approach will provide
more effective texture features. However, the advantage of our approach is that no manual
identification of individual microcalcifications is needed and the analysis can be much more
efficient. Minimal operator intervention will be a practical consideration if the computerized
classification technique is to be implemented in clinical settings.

In this study, we performed background correction in a 1024×1024 ROI but calculated
texture features in a subregion of 512× 512 pixels centred approximately at the cluster of
microcalcifications. The use of a subregion smaller than the original 1024×1024 ROI would
avoid any potential edge effects caused by background correction. Furthermore, because
many of the clusters in our data set could be enclosed by a 512×512 region, calculation of
texture features in the original ROI would average the texture features in the cluster region
with those in a large region of possibly normal tissue. The choice of the subregion size
was subjective in this study, taking into consideration the tradeoff between the averaging
effect and the statistics needed in the SGLD matrix formation. Whether a different choice
of the region size, or use of variable size according to the cluster diameter, would improve
the effectiveness of the texture features remains to be studied.

In this study, we did not perform a systematic optimization of the parameters for
texture extraction. Many of the parameters were chosen based on our experience in other
applications. The goal of this study is to demonstrate the feasibility of using computerized
texture analysis for classification of malignant and benign microcalcifications. Our results
indicate that the SGLD texture features are useful in such an application although the
techniques have not been optimized. In future studies, both the feature extraction techniques
and the classifier should be improved by optimization of the various parameters using a large
data set.
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5. Conclusion

We have developed a computerized method for classification of malignant and benign
microcalcification clusters on mammograms. The computer extracts texture features from
an ROI containing the microcalcification cluster and predicts its pathology using a trained
neural network classifier. The effectiveness of our approach has been demonstrated with a
small data set. The classifier could correctly identify a significant fraction of benign cases,
which had been recommended for surgical biopsy under current clinical criteria, without
missing any malignant cases. The computerized texture analysis may therefore provide
useful information for reducing the number of negative biopsies. Further investigation
will be conducted with a larger data set to determine the generalizability of these results.
The combination of this texture classification method with other morphological features or
patient information will be investigated. The optimization of the classifier design will also
be examined.
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Appendix. The spatial grey level dependence (SGLD) matrix and texture features

The (i, j )th element of the SGLD matrix,pθ,d(i, j), is the joint probability that the grey
levels i and j occur in a direction of angleθ and at a distance ofd pixels apart over the
entire ROI. The joint probabilitypθ,d(i, j) is normalized by the number of grey level pairs
obtained from the ROI with a pixel distance ofd. For each ROI, thirteen texture measures
were derived from its SGLD matrix as described below. Most of the expressions can be
found in the literature (Haralicket al 1973). Some differences in the expressions may be
noted. A simplified notationp(i, j) will be used to denote the SGLD matrix elements in
the following equations.

Energy=
n−1∑
i=0

n−1∑
j=0

[p(i, j)]2 (A1)

wheren is the number of grey levels in the image.

Correlation=
( n−1∑
i=0

n−1∑
j=0

(i − µx)(j − µy)p(i, j)
)/

(σxσy) (A2)

where

µx =
n−1∑
i=0

ipx(i) σ 2
x =

n−1∑
i=0

(i − µx)2px(i)

µy =
n−1∑
j=0

jpy(j) σ 2
y =

n−1∑
j=0

(j − µy)2py(j)
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are the mean and variance of the marginal distributionspx(i) andpy(j), respectively.

px(i) =
n−1∑
j=0

p(i, j)

py(j) =
n−1∑
i=0

p(i, j).

Inertia=
n−1∑
i=0

n−1∑
j=0

(i − j)2p(i, j) (A3)

Entropy= −
n−1∑
i=0

n−1∑
j=0

p(i, j) log2p(i, j) (A4)

Inverse difference moment=
n−1∑
i=0

n−1∑
j=0

1

1+ (i − j)2p(i, j) (A5)

Sum average=
2n−2∑
k=0

kpx+y(k) (A6)

where

px+y(k) =
n−1∑
i=0

n−1∑
j=0

p(i, j) i + j = k k = 0, . . . ,2n− 2.

Sum variance=
2n−2∑
k=0

(k − sum average)2px+y(k) (A7)

Sum entropy= −
2n−2∑
k=0

px+y(k) log2px+y(k) (A8)

Difference average=
n−1∑
k=0

kpx−y(k) (A9)

where

px−y(k) =
n−1∑
i=0

n−1∑
j=0

p(i, j) |i − j | = k k = 0, . . . , n− 1.

Difference variance=
n−1∑
k=0

(k − difference average)2px−y(k) (A10)

Difference entropy= −
n−1∑
k=0

px−y(k) log2px−y(k) (A11)

Information measure of correlation 1= (entropy−H1)/max{Hx,Hy} (A12)

where

H1 = −
n−1∑
i=0

n−1∑
j=0

p(i, j) log2[px(i)py(j)]

Hx = −
n−1∑
i=0

px(i) log2px(i)
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Hy = −
n−1∑
j=0

py(j) log2py(j).

Information measure of correlation 2=
√

1− exp[−2(H2− entropy)]

(A13)

where

H2 = −
n−1∑
i=0

n−1∑
j=0

px(i)py(j) log2[px(i)py(j)].
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