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Abstract. A genetic algorithm (GA) based feature selection method was developed for the
design of high-sensitivity classifiers, which were tailored to yield high sensitivity with high
specificity. The fitness function of the GA was based on the receiver operating characteristic
(ROC) partial area index, which is defined as the average specificity above a given sensitivity
threshold. The designed GA evolved towards the selection of feature combinations which yielded
high specificity in the high-sensitivity region of the ROC curve, regardless of the performance at
low sensitivity. This is a desirable quality of a classifier used for breast lesion characterization,
since the focus in breast lesion characterization is to diagnose correctly as many benign lesions
as possible without missing malignancies. The high-sensitivity classifier, formulated as the
Fisher’s linear discriminant using GA-selected feature variables, was employed to classify
255 biopsy-proven mammographic masses as malignant or benign. The mammograms were
digitized at a pixel size of 0.1 mm× 0.1 mm, and regions of interest (ROIs) containing the
biopsied masses were extracted by an experienced radiologist. A recently developed image
transformation technique, referred to as the rubber-band straightening transform, was applied
to the ROIs. Texture features extracted from the spatial grey-level dependence and run-length
statistics matrices of the transformed ROIs were used to distinguish malignant and benign masses.
The classification accuracy of the high-sensitivity classifier was compared with that of linear
discriminant analysis with stepwise feature selection (LDAsfs). With proper GA training, the
ROC partial area of the high-sensitivity classifier above a true-positive fraction of 0.95 was
significantly larger than that of LDAsfs, although the latter provided a higher total area (Az)
under the ROC curve. By setting an appropriate decision threshold, the high-sensitivity classifier
and LDAsfs correctly identified 61% and 34% of the benign masses respectively without missing
any malignant masses. Our results show that the choice of the feature selection technique is
important in computer-aided diagnosis, and that the GA may be a useful tool for designing
classifiers for lesion characterization.

1. Introduction

Due to its high sensitivity, mammography is usually the first radiological examination
used for the early detection of malignant breast lesions. However, the positive predictive
value (PPV) of mammographic diagnosis (ratio of the number of malignancies to the total
number of biopsy recommendations) is not high. Biopsies performed for mammographically
suspicious non-palpable breast masses had PPVs of 20 to 30% in three studies (Hermann
et al 1987, Hall et al 1988, Jacobson and Edeiken 1990). To reduce health-care costs
and patient morbidity, it is desirable to increase the PPV of mammographic diagnosis
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while maintaining its sensitivity of cancer detection. Computerized mammographic analysis
methods can potentially aid radiologists in achieving this goal.

In recent years, several researchers have developed new techniques for the classification
of mammographic masses based on computer-extracted features (Brzakovicet al 1990,
Kilday et al 1993, Huoet al 1995, Pohlmanet al 1996, Rangayyanet al 1996, Sahiner
et al 1996a, 1997, 1998). Kildayet al (1993) classified masses using morphological
features and patient age. Brzakovicet al (1990) classified suspected lesions using their
shape and intensity variations. Huoet al (1995) developed a technique to quantify the
degree of spiculation of a lesion, and classified masses as malignant and benign using
these spiculation measures. Pohlmanet al (1996) developed a region growing algorithm
for tumour segmentation, and used features describing the tumour shape for classification.
Rangayyanet al (1996) used an edge acutance measure extracted from the grey-scale
intensity along the normal direction to the mass shape, as well as moments to classify
masses. We have developed the rubber-band straightening transform (RBST) for facilitating
the extraction of effective texture features, and used the texture features extracted from the
transformed image for classification (Sahineret al 1996a, 1997, 1998).

A common characteristic of the above approaches is that the lesion is first segmented
from the surrounding tissue, and then features are extracted from the shape and grey-level
characteristics of the lesion and the surrounding tissue. The extracted features usually
represent a mathematical description of characteristics that are helpful for distinguishing
malignant and benign lesions. When several features are extracted for classification, it may
be difficult to predict which features or feature combinations will result in more accurate
classification. For example, it is known that the borders of malignant masses tend to be more
irregular than those of benign masses; therefore, it is expected that the normalized radial
lengths (Kildayet al 1993) carry useful information about the probability of malignancy of
a mass. However, since the normalized radial lengths, and especially the features extracted
from them (for example variance and entropy), do not exactly measure irregularity but
instead merge information from a combination of border characteristics, it is difficult to
predict which feature combination will yield the highest classification accuracy when used in
a statistical classifier. It is known that the inclusion of inappropriate features may adversely
affect classifier performance, especially when the training set is not sufficiently large (Raudys
and Jain 1991, Sahineret al 1996c). Therefore, in many situations, one must face the task
of selecting a subset of effective features for classification.

One systematic method for feature selection is linear discriminant analysis with stepwise
feature selection (LDAsfs), which has been applied to feature selection problems in computer-
aided diagnosis (Chanet al 1995, Weiet al 1995). LDAsfs is an iterative procedure, where
one feature is entered into or removed from the selected feature pool at each step by
analysing its effect on a selection criterion. The nature of the stepwise selection procedure
makes it imperative that the selection criterion be a statistical distance measure between the
two groups to be classified. The Wilks lambda and the Mahalanobis distance are commonly
used measures. Genetic algorithm (GA) based feature selection, which is capable of using
any numerically computed criterion for its fitness function, is a slower but more versatile
method than stepwise feature selection. We have demonstrated that when the GA fitness
criterion is related to the areaAz under the receiver operating characteristic (ROC) curve,
GA-based feature selection yields slightly more effective features than LDAsfs (Sahineret al
1996c).

In the task of lesion characterization, the cost of missing a malignancy is very high.
Therefore, the performance of a classifier in the high-sensitivity (high true-positive fraction)
region of the ROC curve is more important than the overall areaAz under the ROC curve. In



Genetic algorithm based high-sensitivity classifier 2855

other words, if a classifier is to be designed for breast lesion characterization, the specificity
at high levels of sensitivity is much more important than the specificity at low levels of
sensitivity. Recently, Jianget al (1996) developed a method for describing an ROC partial
area index that may be useful as a performance measure in lesion characterization problems.
Since a feature (or feature combination) that can provide a large overallAz (or a large Wilks
lambda and Mahalanobis distance) may not provide a large partial ROC area, it is important
to develop a feature selection method for the design of high-sensitivity classifiers. The
partial ROC area is potentially a good feature selection criterion for this application. The
flexibility of a GA in the selection of its fitness function allows this index to be incorporated
for feature selection.

In this study, we developed a methodology to design high-sensitivity classifiers. The
design process was illustrated by the task of classifying masses on digitized mammograms
as malignant or benign. A GA-based algorithm with the ROC partial area index as the
feature selection criterion, in combination with Fisher’s linear discriminant, was used for
the design of this classifier. Texture features extracted from RBST images (Sahineret al
1998) were used for classification. The performance of the high-sensitivity classifier was
compared with the performance achieved by LDAsfs using the Wilks lambda as the feature
selection criterion.

2. Materials and methods

2.1. Data set

The mammograms used in this study were selected from the files of patients at the Radiology
Department of the University of Michigan who had undergone biopsy. The mammograms
were acquired with dedicated mammographic systems with 0.3 mm focal spots, molybdenum
anodes, 0.03 mm thick molybdenum filters and 5:1 reciprocating grids. For recording the
images, a Kodak MinR/MRE screen/film system with extended cycle processing was used.
The criterion for inclusion of a mammogram in the data set was that the mammogram
contained a biopsy-proven mass, and that approximately equal numbers of malignant and
benign masses were present in the data set.

Our data set consisted of 255 mammograms from 104 patients. For most of the patients
we had two mammograms in the data set, which were the craniocaudal and the mediolateral
oblique views. However, for some of the patients, extra views such as lateral and oblique
views were included in the data set. There were 128 mammograms with benign masses,
of which 8 were spiculated based upon radiologist interpretation, and 127 mammograms
with malignant masses, of which 62 were spiculated. Of the 104 patients evaluated in
this study, 48 had malignant masses. The probability of malignancy of the biopsied mass
on each mammogram was ranked by a Mammography Quality Standards Act (MQSA)
approved radiologist experienced in mammographic interpretation on a scale of 1 to 10. A
ranking of 1 corresponded to the masses with the most benign mammographic appearance,
and a ranking of 10 corresponded to the masses with the most malignant mammographic
appearance. The distribution of the malignancy ranking of the masses is shown in figure 1.
The true pathology of the masses was determined by biopsy and histological analysis.

The mammograms in the data set were digitized with a Lumisys DIS-1000 laser scanner
at a pixel resolution of 0.1 mm×0.1 mm and 4096 grey levels. The digitizer was calibrated
so that grey-level values were linearly proportional to the optical density (OD) within the
range of 0.1 to 2.8 OD units, with a slope of 0.001 OD/pixel value. Outside this range,
the slope of the calibration curve decreased gradually, with the OD range extending to 3.5.
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Figure 1. The distribution of the malignancy ranking of the masses in our data set, as determined
by a radiologist experienced in mammographic interpretation: 1, very likely benign; 10, very
likely malignant.

The pixel values were linearly converted before they were stored on the computer so that a
high pixel value represented a low optical density.

The location of the biopsied mass was identified by the radiologist, and a region of
interest (ROI) containing the biopsied mass was extracted for computerized analysis. The
size of the ROI was allowed to vary according to the lesion size. The extracted ROIs
contained a non-uniform background, which depended on the overlapping breast structures
and the location of the lesion on the mammogram. The non-uniform background is not
related to mass malignancy, but may affect the segmentation and feature extraction results
used in our computerized analysis. To reduce the background non-uniformity, an automated
background correction technique was applied to each ROI as the very first step in our
analysis. Details and examples of our background correction technique can be found in the
literature (Sahineret al 1996b).

2.2. The rubber-band straightening transform (RBST)

In this study, the classification of malignant and benign masses was based on the textural
differences of their mammographic appearance. We have previously designed a rubber-
band straightening transform (RBST) which was found to facilitate the extraction of texture
features from the region surrounding a mammographic mass. The image transformation per-
formed by the RBST is depicted in figure 2, and a block diagram of different stages of the
RBST is given in figure 3. A detailed discussion of the transform can be found in the litera-
ture (Sahineret al 1996a, 1997, 1998). For completeness, a brief description is given below.

The RBST transforms a band of pixels surrounding a mass onto the Cartesian plane.
The four basic steps in the RBST are mass segmentation, edge enumeration, computation
of normals and interpolation. A modifiedK-means clustering algorithm (Sahineret al
1995) was used for segmentation. The parameters of the segmentation algorithm were
chosen so that the segmented region was slightly smaller than the actual size of the mass.
After clustering, one to several objects would be segmented in the ROI. If more than
one object was segmented, the largest connected object was selected. The selected object
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Figure 2. The formation of the RBST image.

Figure 3. Block diagram of the stages of RBST image computation.

was then filled, grown in a local neighbourhood, and eroded and dilated with morphological
operators. The implementation details of these steps have been described elsewhere (Sahiner
et al 1998). After the outline of the mass was obtained, an edge enumeration algorithm
assigned a pixel number to each border pixel of the mass, such that neighbouring pixels
were assigned consecutive numbers. The computation of normals depended on the output
of the edge enumeration algorithm. The normalL(i) at border pixeli was determined
as the normal to the line joining border pixelsi − K and i + K. The choice of the
constantK represents a trade-off between a noisy estimate of the normal direction (small
K) and an estimate that misses fine variations in the normal direction (largeK). In order
to determine the constantK to be used in this study, we selected a small subset of images
from our database, and plotted the normal direction obtained by using different values ofK

superimposed on the segmented image. By performing a visual comparison of the computed
normal direction to what was perceived to be the true normal direction, it was empirically
found thatK = 12 resulted in a satisfactory normal estimation. In the interpolation step,
the value of the pixel in rowj , column i of the RBST image was found as follows. Let
p(i, j) denote the location in the original image at a distancej alongL(i) from border
pixel i. The two closest pixels in the original ROI to locationp(i, j) were identified, and
the (i, j )th pixel value of the RBST image was defined as the distance-weighted average of
these two pixel values.

The width of the band transformed by the RBST was chosen as 40 pixels in this study,
which corresponded to 4 mm on the mammogram. An example of the background-corrected
ROI, the segmented and morphologically filtered mass shape, and the RBST image are
shown in figure 4.
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Figure 4. (a) The original mammographic ROI. (b) The segmented and morphologically filtered
mass shape (white), and the 40-pixel-wide band around it (grey). For the purpose of illustration,
the normals computed ati = 0, 20 and 50 are also shown. (c) The RBST image. Notice that due
to the position of the first normal location (i = 0), the calcifications c1 and c2 on the original
ROI appear at the right and the left of the RBST image respectively. The pathological analysis
indicated that this was an invasive ductal and intraductal carcinoma.

2.3. Texture features

The texture features used for the classification of the malignant and benign masses were
spatial grey-level dependence (SGLD) and run length statistics (RLS) features. These
features were extracted from SGLD and RLS matrices, which were constructed from the
RBST images as described below.

2.3.1. SGLD features.The (i, j )th element of the SGLD matrixpθ,d(i, j) represents the
probability that grey levelsi andj occur at an angleθ and a distanced with respect to each
other. The use of SGLD matrices for feature extraction was motivated by the assumption
that texture information is contained in the average spatial relationships between the grey-
level tones in the image (Haralicket al 1973). The features extracted from SGLD matrices
of mammographic ROIs have been shown to be useful in classification of mass and normal
tissue, and malignant and benign masses or microcalcifications in computer-aided diagnosis
(CAD) (Chanet al 1995, 1997a, Weiet al 1995, Sahineret al 1996b, 1998).

In this study, four different directions (θ = 0◦, 45◦, 90◦ and 135◦) and ten different
pixel pair distances (d = 1, 2, 3, 4, 6, 8, 10, 12, 16 and 20) were used for the construction
of SGLD matrices from RBST images. The total number of SGLD matrices was therefore
40. Based on our previous studies (Chanet al 1995), a bit depth of eight bits was used in
the SGLD matrix construction.

A number of SGLD features, which describe the shape of the SGLD matrices, can be
extracted from each SGLD matrix. In this study, we extracted eight such features, which
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were also used in our previous studies (Chanet al 1995, Weiet al 1995, Sahineret al
1998). These texture features were correlation, difference entropy, energy, entropy, inertia,
inverse difference moment, sum average and sum entropy. This resulted in the computation
of 320 SGLD features per RBST image. These features characterize information such as
homogeneity, contrast and structural linearity in the images. However, it is difficult to
establish a one-to-one correspondence between these qualitative image characteristics and
the extracted texture features (Haralicket al 1973). The definitions of the SGLD features
used in this study can be found in the literature (Haralicket al 1973, Chanet al 1995, Wei
et al 1995).

2.3.2. RLS features.The pixels along a given line in an image occasionally contain runs
of consecutive pixels that all have the same grey level. A grey-level run is defined as a set
of consecutive, collinear pixels in a given direction which have the same grey-level value.
A run length is the number of pixels in a grey-level run. The RLS matrix for a given image
describes the run length statistics in a given direction for each grey-level value in the image.
The (i, j )th element of the RLS matrixrθ(i, j) represents the number of times that runs
of length j in the directionθ consisting of pixels with a grey leveli exist in the image
(Weszkaet al 1976).

The RLS matrices in this study were extracted from the vertical and horizontal gradient
magnitudes of the RBST images. The vertical and horizontal gradients were obtained by
filtering the RBST images with horizontally and vertically oriented Sobel filters (Jain 1989)
respectively. Examples of the gradient magnitude images are shown in figure 5. The RLS
matrices were obtained from each gradient magnitude image in two directions,θ = 0◦ and
θ = 90◦. Therefore, a total of four RLS matrices were obtained for each RBST image.

Figure 5. Gradient magnitude images for the RBST image in figure 4: (a) horizontal gradient
magnitude image and (b) vertical gradient magnitude image.

Based on our previous study, a bit depth of 5 was used for the computation of RLS
matrices (Sahineret al 1998). Five RLS features, namely short runs emphasis, long runs
emphasis, grey-level non-uniformity, run length non-uniformity and run percentage were
extracted from each RLS matrix. This resulted in the computation of 20 RLS features per
RBST image. The definitions of these features can be found in the literature (Galloway
1975). It is possible to describe the general aspects of the relationship between the image
characteristics and the RLS feature values. For example, run percentage is low for images
with long linear structures, and grey-level non-uniformity is low for images where runs
are equally distributed throughout the grey levels (Galloway 1975). However, it is again
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difficult to establish a one-to-one correspondence between these texture features and visual
image features.

2.4. Fisher’s linear discriminant andLDAsf s

For a two-class problem, Fisher’s linear discriminant projects the multidimensional feature
space onto the real line in such a way that the ratio of between-class sum of squares to
within-class sum of squares is maximized after the projection (Duda and Hart 1973). This
is the optimal classifier if the features for the two classes have a multivariate Gaussian
distribution with equal covariance matrices (Lachenbruch 1975). It has been shown to be a
reasonably good classifier even when the feature distributions for the two classes are non-
Gaussian (Duda and Hart 1973). Linear discriminant analysis (LDA) is a class of statistical
techniques based on Fisher’s linear discriminant.

When the training data size is limited, the inclusion of inappropriate features in a
classifier may reduce the test accuracy due to overtraining. Therefore, when a large number
of features are available for a classification task, it is necessary to select a subset of the
most effective features from the feature pool. LDAsfs is a commonly used feature selection
method (Lachenbruch 1975). In this study, the performance of a GA-based high-sensitivity
feature selection method was compared with that of stepwise feature selection.

Wilks’ lambda, which is defined as the ratio of within-group sum of squares to the total
sum of squares (Lachenbruch 1975), was used as the selection criterion for the stepwise
feature selection method. The stepwise feature selection algorithm starts with no selected
features at step 0. At steps of the algorithm, the available features are entered into the
selected feature pool one at a time during feature entry, and those already selected are
removed one at a time during feature removal. The significance of the change in the Wilks’
lambda, as determined byF -statistics, when a new feature is entered into the selected
feature pool is compared with a thresholdFin. The feature with the highest significance is
entered to the selected feature pool only if the significance is higher thanFin. Likewise, the
significance of the change in the Wilks’ lambda when a selected feature is removed from
the feature pool is compared with a thresholdFout. The feature with the least significance
is removed from the selected feature pool only if the significance is lower thanFout. This
completes steps of the algorithm. The algorithm terminates when no more features can
satisfy the criteria for either being added to or removed from the selected feature pool.

2.5. Genetic algorithms for feature selection

Genetic algorithms solve optimization problems by mimicking the natural selection process.
A GA follows the evolution of a population of chromosomes which are encoded so that
each chromosome corresponds to a possible solution of the optimization problem. The
chromosomes consist of genes, which are components of the solution. The goal of a GA
is to search for better combinations of the genes, i.e. new chromosomes which are better
solutions to the optimization problem. This goal is achieved by evolution. A new generation
of chromosomes is produced from the current population by means of parent selection,
crossover and mutation. The probability that a chromosome is selected as a parent is
related to its ability to solve the optimization problem, i.e. its fitness. Chromosomes which
are better solutions to the optimization problem are given a higher chance to reproduce than
those which are worse solutions to the problem, similar to the principle of natural selection.
The fitness of a chromosome is computed using a fitness function, which is designed on
the basis of the optimization criterion for the problem. The probability that a chromosome
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is selected as a parent is equal to its normalized fitness, which is defined as the fitness of
the chromosome divided by the sum of fitnesses for all chromosomes. The chromosomes
of the selected parents are allowed to randomly cross over and mutate, introducing new
genes and new chromosomes into the population. This process generates a new population
of chromosomes, which tends to evolve towards a better solution.

GAs had been applied to the problem of feature selection (Brillet al 1992, Sahiner
et al 1996c). The most natural way of encoding a chromosome for this problem is as
follows (Sahineret al 1996c). Each gene in a chromosome is a bit, which takes a value of
either 1 or 0. Each gene location in a chromosome corresponds to a particular feature. If
the bit value at a gene location is 1, the corresponding feature is selected for the solution
of the classification problem. Otherwise, the corresponding feature is not selected. Each
chromosome thus defines a set of selected features. A statistical classifier, such as Fisher’s
linear classifier or a neural network classifier, is then employed for classification based on
the selected feature set. The fitness function reflects the success of the selected feature set for
solving the classification problem. The design of the fitness function for a high-sensitivity
classifier is described in the next section. The GA training method and the choice of GA
parameters are summarized next.

2.5.1. GA training. The GA in this study was trained using a leave-one-case-out paradigm.
In this paradigm, all ROIs except those from a particular patient were defined as the
training set, and the ROIs from that particular patient were defined as the test set. For
each chromosome of the GA, the coefficients of Fisher’s linear discriminant function were
determined using the features of the training set. The trained discriminant function was
then used to classify the test cases using the features of the test cases as the input. In a
given generation of the GA, all patients were visited in a round-robin manner, so that test
scores were obtained for each ROI in the entire data set. The fitness of the chromosome
was computed based on the classification accuracy for the test cases, as described in the
next section.

2.5.2. GA parameters.The fundamental parameters of a GA are the number of chro-
mosomes, the chromosome length, the crossover rate, the mutation rate and the stopping
criterion. In a GA, the population must contain a large number of chromosomes to pro-
vide the variability that offers the opportunity to evolve towards the optimal solution. This
requirement and computing speed considerations are trade-offs for selecting the number of
chromosomes in a given application. The length of a chromosome is determined by the en-
coding mechanism which translates the optimization problem into a GA. With the encoding
mechanism described earlier in this subsection, the length of each chromosome is equal to the
total number of features. The fitness function is the most important component of the GA,
and its design is described in the next section. Pairs of chromosomes are probabilistically
selected as parents based on their fitness. A selected pair may exchange genes to generate
two offspring. The crossover rate determines the probability that parents will exchange
genes. After crossover, the binary value of each bit may probabilistically be altered (from 1
to 0, or vice versa), i.e. mutated. The mutation rate determines the probability that genes will
undergo mutation. The increase in the fitness of the chromosomes starts to stagnate after a
number of generations. The stopping criterion determines when the evolution is terminated.
In this study, the GA evolution was terminated after a fixed number of iterations. The
appropriateness of this stopping criterion is discussed in section 4. After the termination,
the chromosome with the highest fitness value provided the set of selected features.
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Table 1 shows the values of each of these parameters, selected based on our previous
work. More detailed discussion of these operators and parameters can be found in the
literature (Sahineret al 1996c).

Table 1. GA parameters used in this study.

Crossover rate 0.9
Mutation rate 0.0025
Chromosome length 340
Number of chromosomes 200
Stopping criterion 200 iterations

2.6. Design of a high-sensitivity classifier

A widely accepted method for comparing the performance of two classifiers is to consider
their ROC curves. The areaAz under the ROC curve is a commonly used index for this
comparison. However, for applications where the performance at high sensitivity (or high
true-positive fraction) is important, for example breast lesion characterization in CAD, this
index may be inadequate. Jianget al (1996) explored this issue, and defined an ROC partial
area index that will be denoted asATPF0 in this paper.

The partial area indexATPF0 summarizes the average specificity above a sensitivity of
TPF0 (figure 6), and can be expressed as (Jianget al 1996)

ATPF0 = 1− 1

1− TPF0

∫ 1

TPF0

FPF(TPF) d(TPF) (1)

which is the ratio of the partial area under the actual ROC curve to the partial area of
the perfect ROC curve. The maximum value forATPF0 is thus 1. TheATPF0 value for a
classifier that operates purely on random guessing is (1−TPF0)/2, which is the area under
the chance diagonal normalized to 1− TPF0.

When the conventional binormal model is employed for the computation of the ROC
curve, the curve is completely defined by two parameters,a andb, which are determined
from the rating data using maximum likelihood estimation. The constantb represents the
estimated standard deviation of the actually negative cases, normalized by the estimated
standard deviation of the actually positive cases, and the constanta represents the estimated
difference between the means of actually positive and negative cases, normalized again
by the estimated standard deviation of the actually positive cases. Using the binormality
assumption, the partial area indexATPF0 can be expressed as (McClish 1989, Jianget al
1996)

ATPF0 = 1− 1

1− TPF0

∫ ∞
c0

8

(
u− a
b

)
φ(u) du (2)

where

φ(u) = 1√
2π

exp(−u2/2)

and

8(u) =
∫ u

−∞
φ(x) dx.
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Figure 6. The partial area indexATPF0 is defined as the ratio of the partial area under the ROC
curve above a given sensitivity (grey area) to the partial area of the perfect ROC curve (hatched
region) above the same sensitivity.

Our goal in this study was to train a GA to select features which would yield high
specificity in the high-sensitivity region of the ROC curve. Therefore, the fitness of a
chromosome was defined as a monotonic function ofATPF0, such that the maximization of
ATPF0 would maximize the fitness function

fitness=
(
ATPF0 − Amin

Amax− Amin

)n
(3)

where Amax and Amin were the maximum and minimum values ofATPF0 among all
chromosomes in a generation, andn was a power parameter whose effect on GA feature
selection was investigated, as discussed in section 3. From equation (3), it is seen that as
the power parameter becomes larger the difference in the fitness, and thus the probability
of being chosen as parents, between the chromosomes are more amplified. The choice ofn

is a tradeoff between the goal of promoting chromosomes with high fitness values and the
need to retain segments of good genes in other chromosomes.

For a given chromosome, the parametersa andb that are required for the computation
of ATPF0 were determined from the distribution of test scores using the LABROC program
of Metz et al (1998). The partial area indexATPF0 was then computed by numerically
integrating equation (2). The classifiers thus designed will be referred to as GA-based
high-sensitivity classifiers in the following discussions.

In this study, the significance of the difference inATPF0 of different classifiers was
determined using a recently developed statistical test (Jianget al 1996). The test is analogous
to statistical tests involving the areaAz under the entire ROC curve, and is implemented
using the covariance estimates ofa andb values for the two curves.

3. Results

To demonstrate the training of high-sensitivity classifiers using GA, we chose two levels
of sensitivity thresholds, TPF0 = 0.50 and TPF0 = 0.95 in equation (1). The classification
results of these classifiers were compared with those of LDAsfs. GA-based feature selection
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Table 2. The number of features, the areaAz under the ROC curve, the partial area above the
true positive fraction of 0.5 (A0.50), and that above 0.95 (A0.95) for various values ofFin and
Fout in the stepwise feature selection method.

Fin Fout Number of selected features Az A0.50 A0.95

3.8 2.7 9 0.84 0.71 0.22
2.6 2.4 13 0.85 0.72 0.27
2.2 2.0 14 0.86 0.73 0.25
1.8 1.6 26 0.89 0.80 0.38
1.4 1.2 41 0.92 0.83 0.47
1.0 1.0 49 0.92 0.83 0.46

Figure 7. The evolution of the number of selected features for a GA training session (n = 4,
TPF0 = 0.95).

was also performed with no emphasis on high sensitivity (TPF0 = 0). The classifier
designed with the features thus selected will be referred to as an ordinary GA-based classifier.
Its performance was compared with those of the GA-based high-sensitivity classifiers and
LDA sfs.

In LDA sfs, the optimal values of theFin andFout thresholds are not knowna priori. We
therefore varied these thresholds to obtain the feature subset with the best test performance.
Table 2 shows the number of selected features, the areaAz under the ROC curve, the
partial area above the true positive fraction of 0.5 (A0.50), and that above 0.95 (A0.95) as
theseF thresholds are varied. By comparing theAz values and the performance at the
high-sensitivity portion of the ROC curve, the combinationFin = 1.4, Fout = 1.2 was found
to provide the best feature subset.

High-sensitivity classifiers with TPF0 = 0.50 and TPF0 = 0.95 were trained with three
different values of the power parameter,n (n = 1, 2 and 4). Figure 7 shows the evolution
of the number of selected features, and figure 8 shows the total area under the ROC curve
(Az) and the partial area above the true positive fraction of 0.95 (A0.95) for a typical GA
training (n = 4, TPF0 = 0.95).

The ROC curve of the best LDAsfs classifier and those of GA-based classifiers
(TPF0 = 0.50 and TPF0 = 0.95) with n = 1, 2 and 4 are compared in figures 9–11



Genetic algorithm based high-sensitivity classifier 2865

Figure 8. The evolution of the areaAz and the partial areaA0.95 under the ROC curve for the
GA training session of figure 7 (n = 4, TPF0 = 0.95).

respectively. It is observed from figures 10 and 11 that forn = 2 or 4, the designed high-
sensitivity classifiers seem to be superior to the best LDAsfs classifier for large values of
true positives. Whenn = 1, the ROC curves of the GA-based high-sensitivity classifiers
are still higher than that of the LDAsfs classifier when TPF is very close to 1; however,
the difference between the curves is small. To quantify the improvement obtained by
the GA-based high-sensitivity classifier, we performed statistical significance tests (Jiang
et al 1996) on the partial area above a true-positive threshold of 0.95 (A0.95) as described
in the previous section. Withn = 4, the difference between the partial areas of the
GA-based high-sensitivity classifiers and LDAsfs above a true-positive threshold of 0.95 was
statistically significant with two-tailedp-levels of 0.006 and 0.02 for the classifiers trained
with TPF0 = 0.95 and TPF0 = 0.5 respectively. Forn = 2, the correspondingp-levels were
0.01 and 0.07 respectively. Forn = 1, the difference did not achieve statistical significance
(p = 0.14 for TPF0 = 0.95 andp = 0.49 for TPF0 = 0.5). The difference of the partial
area index over a true-positive threshold of 0.5 (A0.50) did not achieve statistical significance
when the high-sensitivity classifiers trained with TPF0 = 0.5 were compared with LDAsfs

for any of the power parameters studied (n = 1, 2 and 4).
The performance of the high-sensitivity classifiers and the ordinary GA-based classifiers

(TPF0 = 0) are also compared in figures 9–11. It is observed that the difference between
the high-sensitivity and the ordinary GA-based classifiers is less than the difference between
the high-sensitivity classifiers and the LDAsfs. With a two-tailed significance test, it was
found that the difference between the partial areas of the high-sensitivity and the ordinary
GA-based classifiers above a true-positive threshold of 0.95 (A0.95) did not achieve statistical
significance for any of the power parameter values studied (n = 1, 2 and 4) withp-levels
ranging between 0.06 and 0.5. Similarly, the difference between the ordinary GA-based
classifiers and LDAsfs did not achieve statistical significance for any of the power parameter
values studied. Table 3 summarizes theAz, A0.50 andA0.95 values, as well as the number
of features selected by each classifier.

Figures 12 and 13 show the distributions of the classifier outputs for the high-sensitivity
classifier (n = 4, TPF0 = 0.95) and the LDAsfs respectively. Using the LDAsfs, the
distribution of the malignant masses has a relatively long tail that overlaps with the
distribution of the benign masses. With the high-sensitivity classifier, this tail seems to
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Figure 9. The ROC curves of the LDAsfs, the ordinary GA-based classifier (TPF0 = 0), and the
GA-based high-sensitivity classifiers trained with TPF0 = 0.50 and TPF0 = 0.95 using power
parametern = 1: (a) the entire ROC curves, (b) enlargement of the curves for TPF> 0.8.

Figure 10. The ROC curves of the LDAsfs, the ordinary GA-based classifier (TPF0 = 0), and the
GA-based high-sensitivity classifiers trained with TPF0 = 0.50 and TPF0 = 0.95 using power
parametern = 2: (a) the entire ROC curves, (b) enlargement of the curves for TPF> 0.8.

be shortened, so that more benign masses may be correctly diagnosed without missing
malignancies. At 100% sensitivity, the specificity with the appropriate choice of the decision
threshold was 61% and 34% for the high-sensitivity classifier and the LDAsfs respectively.

4. Discussion

Figures 10 and 11 demonstrate that when the feature selection is performed with a properly
designed fitness function in the GA, the designed classifier can be more effective than
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Figure 11. The ROC curves of the LDAsfs, the ordinary GA-based classifier (TPF0 = 0), and the
GA-based high-sensitivity classifiers trained with TPF0 = 0.50 and TPF0 = 0.95 using power
parametern = 4: (a) the entire ROC curves, (b) enlargement of the curves for TPF> 0.8.

Table 3. The number of features, the areaAz under the ROC curve, the partial area above the
true positive fraction of 0.5 (A0.50), and that above 0.95 (A0.95) for the GA parameters studied.
For comparison purposes, the results with linear discriminant analysis are also included as the
last row.

Power TPF0 value for Number of
Parameter,n GA training selected features Az A0.50 A0.95

1 0 62 0.90± 0.02 0.81± 0.03 0.47± 0.07
1 0.5 61 0.89± 0.02 0.81± 0.03 0.51± 0.07
1 0.95 58 0.84± 0.02 0.76± 0.03 0.55± 0.05
2 0 60 0.93± 0.02 0.86± 0.03 0.51± 0.08
2 0.5 48 0.91± 0.02 0.85± 0.03 0.58± 0.07
2 0.95 50 0.88± 0.02 0.82± 0.03 0.63± 0.05
4 0 40 0.92± 0.02 0.85± 0.03 0.56± 0.07
4 0.5 39 0.91± 0.02 0.85± 0.03 0.62± 0.06
4 0.95 40 0.87± 0.02 0.81± 0.03 0.64± 0.05

Linear discriminant analysis 41 0.92± 0.02 0.83± 0.03 0.47± 0.07

LDA sfs in the high-sensitivity region of the ROC curve. From table 3 it is observed that
although theAz value for the properly trained high-sensitivity classifier (e.g. TPF0 = 0.5
or 0.95 andn = 2 or 4) may be less than that of the LDAsfs, the partial area indexA0.95 is
larger. The statistical analysis in this study showed that the difference between the properly
designed high-sensitivity classifiers and the LDAsfs at the high-sensitivity region of the ROC
curve can be significant.

Comparing figure 9 with figures 10 and 11, it is observed that the selection of the
power parametern in GA training may be important. The classifiers designed withn = 1
did not exhibit a major advantage over the LDAsfs, as also seen from table 3 and the
statistical significance tests. From equation (3), it is seen that as the power parameter
becomes larger, the difference in the fitness, and thus the probability of being chosen as
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Figure 12. The distribution of the classifier output for the high-sensitivity classifier withn = 4,
TPF0 = 0.95. By setting an appropriate threshold on these classifier scores, 61% of masses
could correctly be classified as benign without missing any malignancies in this study.

Figure 13. The distribution of the classifier output for LDAsfs. By setting an appropriate
threshold on these classifier scores, 34% of masses could be correctly classified as benign
without missing any malignancies in this study.

parents, between the chromosomes are more amplified. Therefore, a larger value ofn

favours the reproduction of better chromosomes in a generation. Although it is desirable
to favour the better chromosomes in any GA algorithm, too much emphasis on better
chromosomes might suppress the chance of retaining segments of good genes in other
chromosomes in the gene pool. This is best seen by lettingn tend to infinity, and observing
that only the best single chromosome will reproduce in this case, which reduces the GA
to a random search algorithm. In our application, from table 3, it is observed that, for all
three sensitivity thresholds (TPF0 = 0.95, 0.50 and 0), the classifier trained withn = 1 has
lower performance indices (A0.95, A0.50 andAz) than its counterpart trained withn = 2 or
n = 4. Although none of these differences reached statistical significance, the consistently
poorer performance of the classifiers trained withn = 1 indicates thatn = 1 may not be a
good choice for GA training.
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From figures 7 and 8 it is observed that the best fitness and the number of chromosomes
did not change between iterations 140 and 200 for the high-sensitivity classifier withn = 4
and TPF0 = 0.95. A similar trend was observed with the other values ofn and TPF0
investigated in this study. Therefore, 200 generations seems to be sufficient for the GA to
complete its evolution in this application. In figure 8, the bestAz value was attained around
the fiftieth generation, and theAz value did not change considerably afterwards. However,
the A0.95 value increased until around 140 generations. This meant that the classification
accuracy at high sensitivity continued to increase although theAz value did not change, i.e.
the shape of the ROC curve changed so that the specificity at the high-sensitivity region
of the ROC curve increased, while the specificity at the low-sensitivity region of the ROC
curve decreased.

Figures 9–11 and the statistical significance tests in section 3 show that although the
GA-based high-sensitivity classifiers perform better than the ordinary GA-based classifiers
at high sensitivity, the difference between the two classifiers is not statistically significant.
Comparison of the LDAsfs and the ordinary GA-based classifiers revealed that neither
the difference between theAz values, nor the difference between theA0.95 values were
statistically significant (p > 0.3). However, the difference between theA0.95 values of the
LDA sfs and the GA-based high-sensitivity classifiers trained with power parametern = 2
andn = 4 was statistically significant (two-tailedp-level<0.05), as described in section 3.
Thus, it was necessary to use a high-sensitivity classifier in order to obtain statistically
significant improvement over the LDAsfs.

The GA-based high-sensitivity classifiers (TPF0 = 0.95 and TPF0 = 0.5) and the
ordinary GA-based classifier (TPF0 = 0) were designed to maximize the partial ROC areas
above the chosen true-positive fraction thresholds. From table 3, it is observed that this
goal is achieved for the GA-based classifiers with TPF0 values of 0 and 0.95. For eachn,
the GA-based classifier with TPF0 = 0 (ordinary GA-based classifier) yielded the highest
Az value, and the GA-based classifier with TPF0 = 0.95 yielded the highestA0.95 value
among the classifiers. For the classifier with TPF0 = 0.5, theA0.50 value was larger than
or equal to that of the other GA-based classifiers forn = 1 andn = 4. However, for
n = 2, the ordinary GA-based classifier (TPF0 = 0) had the highestA0.50 value, although
the difference was not statistically significant (p > 0.3). This result is not inconsistent with
the GA principles or operation. Since the GA training is based on stochastic search, the
GA tends to evolve towards the optimal solution, as evidenced by the comparison of the
GA-based classifiers in table 3. However, the optimality of the solution is not guaranteed,
and one may encounter situations that the design goal was not totally achieved, as evidenced
by the fact that the ordinary GA-based classifier had the highestA0.50 value forn = 2.

Given the probabilistic nature of GA-based feature selection, it is difficult to predict the
conditions under which the GA may select a feature set that provides a better high-sensitivity
classifier than LDAsfs. Both our GA-based method and the stepwise feature selection
algorithm were designed primarily to select features for classifying classes that have
multivariate Gaussian distributions and equal covariance matrices. When these assumptions
are not satisfied, the accuracy of feature selection will deteriorate to a different degree for
both methods. One possible explanation for the relative success of the GA-based feature
selection might be that our data violate the assumptions of multivariate normality and the
equality of covariance matrices, and that the GA-based method is less sensitive to these
violations.

In this study, our focus was to develop a methodology for the design of high-sensitivity
classifiers for applications in CAD. For the specific application of discriminating malignant
and benign breast lesions, our data set was limited and the features selected by the GA
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may not be the optimal set of features for the general population. The same is true for the
LDA sfs. Considering that the data set contained only 255 masses, the number of features
selected both by the GA and the LDAsfs was large. As a result, if a classifier trained in this
study is applied without modification to the population at large, the classification accuracy
is likely to be poorer than that obtained in this paper. However, the methodology developed
in this study is general. When a sufficiently large data set becomes available, the GA-based
high-sensitivity feature selection algorithm can be reapplied, and a more robust feature set
can be determined. The number of training cases required for generalizable classifier design
and feature selection has been the subject of recent studies (Raudys and Jain 1991, Wagner
et al 1997, Chanet al 1997b), and is currently under investigation.

An important consideration concerning the use of GAs for optimization is the speed
of computation. Depending on the number of final features selected, the GA-based feature
selection implemented in this study (340 features, 200 chromosomes, 200 generations and
leave-one-case-out GA training) took between 24 and 60 h on an AlphaStation 500 (400 Mhz
Alpha chip), whereas the stepwise feature selection performed on a PC compatible computer
with a 90 MHz Pentium processor took less than 10 min. Therefore, GA-based feature
selection implemented in this study may not be practical for studies where the feature
selection has to be performed many times. The high-sensitivity classifier design method
developed in this study may be more appropriate if the speed of computation is of secondary
importance to the classification accuracy of the designed classifier. For example, the GA-
based high-sensitivity classifier can be trained only once when a final set of features is
desired for a large data set as discussed above.

5. Conclusion

We have developed a GA-based method to design a high-sensitivity classifier for CAD
applications. The usefulness of the method was demonstrated by the problem of classifying
masses on digitized mammograms. Texture features extracted from RBST images were used
to distinguish malignant and benign masses. The accuracy of the high-sensitivity classifier
was shown to be significantly higher than that of LDAsfs above a true-positive fraction of
0.95. By using an appropriate decision threshold on the high-sensitivity classifier scores,
61% of the benign masses could correctly be identified without missing any malignant
masses. The GA may therefore be a useful tool in the design of high-sensitivity classifiers
for different classification problems in CAD or other applications.
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