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Abstract. We report on the thermal conductivity of tin-doped bismuth between 50 mK and 
27 K. A quantitative interpretation of the data is presented. At the lowest temperatures the 
electronic thermal conductivity dominates, but above 0.1 K lattice waves carry most of the 
heat. Below 1 K phononsare scatteredmostly by crystal boundaries, while near the dielectric 
maximum point defects are important. Their scattering rate is directly proportional to the 
atomic concentration of the tin impurity. 

1. Introduction 

Bismuth is a typical semimetal with a very small free carrier density. The thermal 
conductivity of Bi, like its other transport properties, has been the subject of numerous 
studies over the past 50 years, see e.g. a review by Issi (1979). Recently, with the 
development of reliable and convenient cooling provided by dilution refrigerators, the 
measurements have been extended to temperatures below 1 K (Pratt and Uher 1978). 
The data provided new and important information on the scattering mechanisms of 
phonons and the relative contributions of free carriers and lattice waves to the total 
thermal conductivity. 

Owing to the low intrinsic carrier concentration, dopant species may be introduced 
into a Bi matrix, where they not only act as strong scattering centres for both the charge 
carriers and phonons, but also drastically modify the Fermi surface. Typical dopants are 
Sn and Te, the former acting as an acceptor, the latter donating free electrons. For an 
up-to-date review of the effect of doping on Bi see e.g. Heremans and Hansen (1983). 

In his recent studies of Sn-doped Bi polycrystals, Uher (1979) has extended the 
measurements of the resistivity and thermopower down to 50 mK and the data revealed 
several novel and unexpected features, in particular the onset of a superconducting 
transition below 60 mK and an enormous phonon drag contribution to the thermopower 
near 4 K. High thermopower values were also measured on Sn-doped Bi single crystals 
by Boxus et nl (1979). Along these lines, it was found interesting to carry out detailed 
thermal conductivity measurements on a series of Sn-doped bismuth samples below 1 K. 
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Figure 1. Experimental values for the temperature dependence of the thermal conductivity 
of polycrystalline (a )  and single crystal ( b )  samples of bismuth. The Sn concentrations, in 
atomic ppm, identify the various curves. 
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Our primary aim was to find out how the thermal conductivity is affected by doping. In 
this paper we report our findings and also attempt to interpret them quantitatively. 

2. Experimental 

The samples used in the measurements come from two different sources: The poly- 
crystalline samples (grain size 0.2 to 0.3 mm) are identical to those used by Uher and 
Opsal (1978) and Uher (1979) in the investigations of the resistivity and thermopower; 
the single crystals were prepared and characterised by Noothoven van Goor (1971) and 
some of their transport properties were studied by Boxus et a f  (1979, 1983) and by 
Heremans and Hansen (1983). Doping levels and other relevant parameters are given 
in table 1. The sample identification given in that table is common to all the previous 
work published on those samples. 

Table 1. The low-temperature electronic thermal conductivity of Sn-doped bismuth. The 
values for the electrical resistivity are those reported at 4.2 K by Noothoven van Goor (1971) 
for the single crystals, and by Uher (1979) for the polycrystals. The single crystals have their 
long axis oriented along the bisectrix direction. 

Sn 
Sample Structure (at. 5%) 

4 ~ 4 ~  
at 0.08 K (YG) 

Bi 72 single crystal 0.00184 
Bi 5728 single crystal 0.0728 
Bi polycrystal 0 
Bi +0.02 polycrystal 0.02 
Bi +0.05 polycrystal 0.05 
Bi +0.08 polycrystal 0.08 
Bi +0.12 polycrystal 0.12 
Bi +0.16 polycrystal 0.16 

5.43 2.08 
10.1 2.26 
40 0.3 

1.48 1.2 
6.40 3.79 
7.05 3.67 
8.56 3.40 
9.29 3.19 

0.117 
0.108 
0.813 
0.0203 
0.0644 
0.0665 
0.0718 
0.0765 

68 
43 
90 
32 
61 
68 
74 
78 

Measurements below 4 K were made in dilution refrigerators at the University of 
Michigan (polycrystalline samples) and at Grenoble (single crystals). In the former case, 
the temperature gradient was determined with the aid of two germanium sensors which 
were calibrated against the superconducting fixed-point standards as well as against a 
CMN thermometer. In the latter case, measurements were limited to below 1 K and 
carbon thermometers were calibrated against a CMN thermometer. The data at higher 
temperatures were obtained in a conventional helium-4 cryostat. Small metal film 
resistors served as heaters in most of the measurements. The experimental data are 
shown in figure 1 and it is clear that the overlap between the two temperature ranges is 
satisfactory. 

3. Theoretical models 

In general, the low-temperature thermal conductivity of solids consists of two inde- 
pendent terms,the conductivity associated with the transport of charge carriers, K,, and 
the conductivity arising from lattice KL. The total thermal conductivity is then 

K =  KE + KL. 

We shall discuss each contribution in turn. 
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3.1. Electronic thermal conductivity 

While most of the heat is carried by phonons in pure and doped bismuth between 2 and 
50 K, this is not necessarily so at very low temperatures, where the electronic thermal 
conductivity diminishes more slowly than the lattice conductivity. We attribute the 
bending of the K(T) curves observed at the lowest temperatures (see figure 1) to just 
this effect. In this temperature range elastic impurity scattering dominates and we 
assume that the Wiedemann-Franz law is obeyed: 

KE = LoT/Po (2)  
where Lo = 2.44 x V2 K-*is the free-electron Lorenz number, and pois the residual 
value of the resistivity given in table 1. The values of KE/Tas determined from equation 
(2) are also presented in table 1. By subtracting the electronic contribution from the 
total thermal conductivity, one obtains the lattice thermal conductivity which is shown 
in figures 2(a) and (b )  for the case of polycrystalline and single-crystal samples, respect- 
ively. It may be seen that the upward bending near 0.1 K has now nearly disappeared as 
expected. The fraction of the thermal conduction due to the electron transport, K E / K ,  
at 0.08 K (see table 1) shows that KE is often the most important contribution at low 
temperatures. The value of the lattice thermal conductivity, K,, which is then obtained 
as a difference between two large numbers, shows a progressively increasing uncertainty 
as the temperature decreases. 

T I K )  

Figure 2. The temperature dependence of the lattice thermal conductivity of the poly- 
crystalline ( a )  and single crystal (b)  samples of Bi. The points represent the ‘experimental’ 
values for KL obtained by subtracting the electronic thermal conductivity, K E  (table 1). from 
the experimental total thermal conductivity given in figure 1. The curves are the results of 
the model calculations using Callaway’s theory, equation (13), and the parameter values 
listed in table 2. 
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3.2. Lattice thermal conductivity 

It is reasonable to assume that the main influence of the doping impurity is to scatter the 
phonons; we shall neglect any influence it could have on the phonon spectrum itself, or 
on phonon-phonon interactions. Sosnowski (1981) reported that Sb doping does not 
much effect the acoustic phonon spectrum of bismuth. We also argue that due to the low 
free carrier density carriers per atom) even in the most highly doped samples, 
the phonon-carrier scattering is unlikely to play a significant role in comparison with 
phonon-impurity scattering. This particular point has recently been discussed by Boxus 
eta1 (1983). In calculating the value of KL we shall follow the method outlined by Berman 
(1976) and consider the mechanisms which lead to phonon scattering. 

3.2.1. Large-scale defect scattering. The relaxation frequency for phonon scattering on 
defects of much larger size than the phonon wavelength such as e.g. crystal boundaries 
is given by 

r;' = v /L  (3) 
where U is the phonon velocity and L is the average distance between such defects. In 
the pure polycrystalline sample L ought to be equal to the average size of the crystallites, 
provided the boundaries reflect the phonons diffusely. If low-energy acoustic phonons 
dominate the thermal transport, as is usually the case, rL is independent of the phonon 
frequency w .  

3.2.2. Point defect scattering. When the size of the impurity is small compared with the 
phonon wavelength, one uses the notion of 'point defects'. This is the case for isotopes, 
or, within certain limits, for substitutional impurity atoms. The latter are, indeed, usually 
surrounded by a strain field which renders the treatment of their influence on the thermal 
conductivity more delicate. As has already been suggested (Boxus er a1 1983), this may 
be an important scattering mechanism in doped bismuth. For a phonon of frequency w ,  
the scattering rate on point defects is 

ti' = PxJT4 (4) 

x = hw/kT.  ( 5 )  

where 

If we neglect the influence of strain fields around the point defect, the parameter P 
becomes 

P = ( k / h ) 4 (  A M / M )  2c,a3/4nv3 (6) 
(see Klemens 1955, 1969). In this equation, cp is the atomic concentration of the point 
defects; a3 is the atomic volume which for bismuth is 3.5 x m3; ( A M I M )  is the 
relative difference between the atomic mass of the substitutional atoms and the atomic 
mass of the host atoms. For tin impurity in bismuth A M / M  = 0.432. 

3.2.3. Dislocations. Another type of defect which can scatter phonons is dislocations 
which give a relaxation frequency (Berman 1976) 

tb' = DxT (7) 
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where the parameter D is linearly related to the density of dislocations, Nd (Klemens 
1955,1969) 

D = 0 .61(k /h )Ndb2y2 .  (8) 
b is the Burgers vector, which is taken equal to the interatomic distance of 4.5 A, and y 
is the Griineisen parameter equal to 1.9 at very low temperature (White 1972). 

3.2.4.  Phonon-phononprocesses. In discussing the intrinsic phonon-phonon scattering, 
we must distinguish between Umklapp and Normal processes. Umklapp processes lead 
to a phonon-phonon interaction frequency described by 

t;' = Ux2 P exp( - U ,  8,/z-) ( 9 )  
where 8 D  is the Debye temperature (120 K) and U and U, are adjustable parameters. 
Normal processes involve the interaction between two phonons of small enough momen- 
tumso that the resultant phonon remainswithin theBrillouinzone. According to Herring 
(1954a, b), the relaxation frequency for subthermal phonons in a rhombohedral crystal 
is described by t-' = A q 3 P ,  where q is the phonon momentum andA is a constant. For 
bismuth, Issi et a1 (1976) found a value of 39 x m3 s-' KP2. In our temperature 
range T < &)/lo, and we assume that this relaxation rate describes the normal phonon 
processes. Hence, 

ti1 = Nx3T5 (10) 
where N = 88.1 s-' K-5. 

3.2.5. The Callaway model. Since large-scale defect, point defect and dislocation scat- 
tering as well as phonon-phonon Umklapp processes are dissipative, the scattering rate 
for the resistive phonon processes is 

t i 1  = t;' + ti' + t6' + t;' . (11)  
The Normal processes favour the generation of higher-momentum phonons, but 

through the interaction in which the total momentum is preserved. However, these 
higher-momentum phonons in turn are more liable to undergo resistive processes. 
Callaway (1959) developed a treatment that we shall follow here. It is based on the 
definition of the relaxation time 7c given by 

zc' = TR1 + t&'. (12)  

KL = K1+ K2 (13a) 

Callaway's expression for the thermal conductivity may then be written as: 

where 

K - (') T3 jodr tC f(x) dx ' - 2Jc2v iE 
and 

K 2 = =  k ( k ) 3 T 3 ( / e ' r  h tcf(x) =N dx)2/(joe'r x,f(x) t N  tR dx) (13c) 

in which 

f(x) = x4ex/(ex - I)*. 
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Sound velocities for all phonon modes along all high-symmetry propagation directions 
have been measured by Eckstein et a1 (1960). In equation (13), we use an average over 
the three modes given by 

and also take the cube average over the propagation directions. The sound velocity at 
4.2 K is 1300 ms-I. It is to be noted that the slower transverse modes dominate in the 
average, + 

3.3. The fitting procedure 

Computer programs were written to fit the lattice thermal conductivity to Callaway's 
expression, equation (13), with various unknown parameters L ,  P ,  U or U, defined in 
equations(3)-(ll). Allexperimentalcurvesshow that the thermalconductivityincreases 
with temperature following a T" law, where n has a value between 2 and 3. There is a 
maximum in conductivity at a temperature between 3 and 5 K. In the low-temperature 
regime, it is mostly large-scale impurities and dislocations that dominate the scattering. 
Near the maximum, point-defect scattering is important. The decrease at high tem- 
peratures is mainly due to the influence of the Umklapp phonon-phonon processes, 
which are an intrinsic feature of the bismuth conduction. 

Because the various scattering mechanisms influence the thermal conductivity in 
different temperature regimes, we can avoid the use of a cumbersome and blind computer 
routine operating on all parameters simultaneously over the whole temperature range. 
We shall work in three steps: 

(i) The low-temperature lattice conductivity well below the maximum will be fitted 
by adapting L and D (large-scale impurity and dislocation scattering). 

(ii) The lattice thermal conductivity of the pure samples will then be used to yield 
values for the Umklapp parameters U and U,, which are assumed to be independent 
of the doping density. For this purpose we use the results of figure 2 for our pure 
polycrystalline Bi and the data of Kuznetsov et a1 (1969) on single crystals. 

(iii) Finally, we use the fitting routine to find the optimum value of the point defect 
parameter P for all samples. 

To determine the value of L and D, we approximate the Callaway expression (13) 
in the low-temperature regime by (Berman and Brock 1965): 

KL 2n2 k4  L ( 1 - 4 . 8 - D T ) ,  L 
T3  - 15 h3 U *  U 

From equation (15), a linear relation between KL/T3 and Tat  low temperatures may be 
assumed symptomatic of dislocation scattering. Unfortunately, the results of Kuznetsov 
et al on a bisectrix sample, do not extend to sufficiently low temperatures to reveal 
such a linear relation. We can only infer that KL/T3 probably saturates at a value of 
47 W m-l K-4 from which we deduce the value of L reported in table 2. The data for 
sample Bi 72 fall on a horizontal line which suggests the absence of dislocation scattering 

f McDonald and Anderson (1983) use a quadratic average over the sound velocities in a formula K = cul 
where c is the specific heat and 1 the phonon mean free path. Numerically, there is no significant difference 
between velocities obtained through quadratic or cubic averages. 
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Table 2. Values of the parameters used in fitting the thermal conductivity data. The values 
reported for P are three times those obtained by equation (6). 

Sample CP L D Nd P 
name (ppm) (mm) ( lo6 K-I) ( 10l2 m-2) (K-'s-') 

Bi (Kuznetsov) 1.92 
Bi 72 18.4 0.39 
Bi 5728 728 0.45 
Bi 0 0.39 
Bi +0.02 200 0.31 
Bi +0.05 500 0.25 
Bi +0.08 800 0.17 
Bi +0.12 1200 0.14 
Bi +0.16 1600 0.12 

<0.01 
1 k 0.5 
0.091 
0.37 
1.1 
1.6 
2.15 
2.5 

<0.02 
2 2 1  
0.16 
0.63 
1.9 
2.7 
3.7 
4.3 

3.9 
152 

0 
42 

105 
168 
25 1 
335 

~ ~~~ 

The fitted parameters are determined within lo%, except for Bi 5728, where D and Nd are 
within 50% as quoted. 

and yields a value of L .  Pure polycrystalline bismuth obeys equation (15) closely; The 
linear variation is apparent in doped polycrystals only at the lowest temperatures and 
the fit deteriorates progressively with increasing impurity concentration. However, in 
order to reproduce the smooth power law with an exponent between 2 and 3 displayed 
by the experimental curves in figure 2, the inclusion of a non-zero value of the parameter 
D is essential. The values of D given in table 2 were obtained by fitting equation (15) 
below 0.5 K. Exactly the same procedure was used for the single crystal Bi 5728. 

Having determined the parameters L and D using equation (15), we proceed to solve 
the full Callaway model, equation (13). We define an error function 

Kcalculated 
Err = (1- 

all exveimental Kexpe imen ta l  
points 

which is to be minimised by an appropriate choice of variables U, U, and P.  We first 
apply this procedure to the data for pure Bi, where U and U, are the only relevant 
parameters ( P  is taken to be zero as Bi is monoisotopic). The results are 4000 s-l KW2 
and 0.12 for U and U, respectively. These values of the Umklapp parameters are used 
in the subsequent analysis of the doped samples for which P is non-zero. 

It is worth noting that if we ascribe a 10% higher value for Uand U, it yields, according 
to the sample considered, a 1 to 2% change in the error function (equation (16)). This 
means that U and U, cannot be estimated to better than 10% and is due to the presence 
of the small hump above the maximum in the experimental data above 10 K which is not 
accounted for in equation (13). 

As regards the sensitivity of the coefficients to the constrained parameters, there is 
no influence of L or D on U ,  U,  or P ,  since they come into play at quite different 
temperature ranges. However, this is not the case for the mutual effect of U ,  U,  and P:  
a 10% change in Uor U, results in a 10% shift in the optimal value of P to fit the curves. 

4. Discussion 

The results of the calculations using the parameters collected in table 2 are shown in 
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figure 2 from which the quality of the fits can be appreciated. Overall these fits are quite 
reasonable and the agreement is particularly good for samples of low impurity content. 

The values of the point-defect parameter P may be estimated from equation (6) if 
we take the density of scattering centres to be the density of impurity atoms in the crystal, 
cp. The latter quantity is reported in table 2. The optimised values of P are about a factor 
of three larger than those calculated directly from equation (6). Henceforth, the value 
of P adopted is the calculated value multiplied by three. This discrepancy between the 
calculated and fitted values of P is not unusual (Klemens 1955) and may be due to the 
strain fields surrounding each impurity atom. Indeed, the dissimilarity of Bi and Sn 
atoms gives rise not only to the electronic doping effect but also to a considerable 
distortion of the bismuth lattice in the neighbourhood of the substitutional impurity. We 
note that the curve for the highly doped single-crystal 5728 cannot be well described by 
the simple model used here, especially near 10 K where there is a small depression. Such 
a dip could be related to resonant phonon scattering due to a pseudo-localised mode 
introduced by the Sn impurity. Such phenomena have been observed in doped alkali 
halides (see for example Baumann and Pohl1967). There is also a discrepancy between 
calculations and experiment near 1 K,  which is also present for the most highly doped 
polycrystalline samples. The experimental values are lower than the calculated ones, 
which suggests the existence of an additional scattering mechanism. In this context, we 
mention that clusters of metallic tin have been detected in these samples (Uher 1979, 
Heremans et a1 1979), and that they could be a source of phonon scattering, as are, for 
instance, MgFz precipitates in LiF (Neumaier 1969). Supporting this view is the fact that 
the values of L obtained for the doped single crystals (table 2) are much smaller than the 
mean diameter of the samples (2.7 mm for Bi 72, 4.5 mm for Bi J728), while for pure 
bismuth single crystals the low-temperature thermal conductivity is actually limited by 
size-effects (Boxus et a1 1981). In the pure and lightly doped polycrystals L is also 
comparable with the size of the crystallites, 0.2 to 0.3 mm (Uher 1979). However, in the 
highly doped polycrystals L is lowered to about 1 or 4 of this value. 

Finally, we have estimated the density of dislocations Nd for each sample, using 
equation (8) and the fitted values of D which are given in table 2. It is well known that 
values of Nd obtained in that way are systematically too large, and also that phonon 
scattering by vibrating dislocations could play a role (Berman 1976). However, the 
evolution of Nd with doping is significant: Nd clearly increases with Sn content, and the 
value for the single crystal Bi 5728 is close to that obtained for polycrystals of equivalent 
tin concentration. We suggest that these larger values of Nd could also be indicative of 
the presence of tin clusters in the highly doped samples. 

5. Conclusion 

We have extended the temperature range for the thermal conductivity studies on tin- 
doped bismuth down to 50 mK. Bismuth is a particularly suitable system to study the 
effect of doping because its intrinsic properties are well known and owing to its very low 
intrinsic carrier density, a substitutional impurity such as Sn affects not only phonon 
transport but also drastically alters the free carrier population. We have shown that the 
electronic thermal conductivity actually dominates the transport of heat at the lowest 
temperatures. We have analysed the lattice thermal conductivity using the Callaway’s 
model in conjunction with the point-defect and boundary scattering and the agreement 
with the experiment is satisfactory in most cases. We do, however, find a discrepancy 
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between the experimental and theoretical thermal conductivities in the most heavily 
doped samples. The discrepancy could be reconciled by invoking an additional scattering 
mechanism that we speculate might be associated with the tendency of Sn particles to 
form clusters in the Bi matrix. 
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