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QCD sum rules on the light cone and B → π form factors
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Abstract. The semileptonic decay B → π l̄ν is one of the most important reactions for the
determination of the CKM matrix element |Vub|. However, in order to extract |Vub| from data
one needs an accurate theoretical calculation of the hadronic matrix element describing the B to
π transition. QCD sum rules, based on operator product expansion on the light cone, provide a
reliable approach to achieve this aim. QCD corrections and higher twist contributions can be taken
systematically into account.

1. Motivation: CP violation and the CKM matrix

Within the standard model CP violation is parametrized by a complex phase in the CKM-matrix
VCKM. The various entries of VCKM are known with different accuracy: the best known matrix
elements areVud andVus: the first one is obtained from the comparison of super-allowed nuclear
β-decay with µ-decay, the latter one from the decay K → π l̄ν. Among the matrix elements
which are fairly well known are Vcd (obtained from single charm production in deep-inelastic
νN -scattering and from semileptonic decays of charmed mesons), Vcs (which can be obtained
from the decay D → K̄l̄ν) and Vcb. The latter one can be measured either inclusively, using
B → D transitions, or exclusively in the semileptonic B → D transition. Among the matrix
elements which are least well known are Vub, Vtd, Vts and Vtb. The matrix elements involving
the top quark may be obtained from Bd–B̄d mixing (Vtd), Bs–B̄s mixing (Vts) and single top
production (Vtb). The remaining one, Vub, can be obtained either from the lepton spectrum in
inclusive B → Xl̄ν decays or from exclusive semileptonic B-decays.

In order to extract the entries of the VCKM matrix from the experimental data one needs
certain input information from theory. In many cases the theoretical calculations have to
rely on non-perturbative methods for QCD. Among the techniques which have been used are:
chiral perturbation theory (for the extraction of Vus), heavy quark effective theory (for Vcb),
lattice calculations (for Vub, Vcs and Vtd), QCD sum rules (for Vub and Vcs ) as well as quark
models (for Vub and Vcs). Among these the first four enjoy the property that they are based on
first principles, whereas quark models are, as the name already indicates, phenomenological
models, whose systematic errors are difficult to quantify.

In this paper we will focus on the extraction of |Vub| from the exclusive semileptonic
decay B → π l̄ν, using QCD sum rules techniques. In the next section we explain the basic
principles underlying the sum rule technique. QCD sum rules are based on the operator product
expansion (OPE). We mention briefly the differences between a short-distance expansion and
an expansion on the light cone. In the last section we will focus on the sum rule for the decay
B → π l̄ν and give numerical results.
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2. The QCD sum rule technique

The derivation of a QCD sum rule [1] involves the following six steps.
Step 1: take a correlation function. For example, in order to calculate the B-meson decay

constant fB using QCD sum rules, one would start from the correlation function

�(q2) = i
∫

d4x eiqx〈0|T (ū(x)iγ5b(x), b̄(0)iγ5u(0))|0〉. (1)

Step 2: write a dispersion relation for �(q2):

�(q2) = 1

π

∫
ds

Im�(s)

s − q2
+ subtractions. (2)

Step 3: express the absorptive part of�(q2) in terms of hadronic quantities. In our example
above this would involve fB.

Step 4: calculate the correlation function in the asymptotic region using QCD and OPE.
Step 5: use quark–hadron duality to relate the hadronic representation from step 3 to the

absorptive part of the QCD calculation from step 4.
Step 6: the sum rule can be improved by applying a Borel transformation to both sides.
These steps provide a ‘cooking recipe’ for QCD sum rules. A few comments are in order

here. The QCD calculation in step 4 is based on the OPE. A nonlocal composite operator like
j (x)j (0) (in the example above we have j (x) = ū(x)iγ5b(x)) is expanded into a series of
well-defined local operators On:

j (x)j (0) =
∑
n

CnOn. (3)

This separates soft and hard physics: the Wilson coefficients Cn contain the information on
short-distance physics and can be calculated using perturbation theory. The matrix elements
of the local operators On parametrize the long-distance physics. They are universal non-
perturbative quantities. There are two versions of the operator product expansion: the short-
distance expansion and the expansion on the light cone. In the former one the various local
operators are classified by their dimensions, whereas in the latter one the classification goes
by twist (dimension minus spin).

The sum rule can be improved by applying the Borel operator to both the hadronic
representation and the QCD calculation. The Borel operator is given by

B̂ = lim
Q2→∞,n→∞,Q2/n=M2

1

(n− 1)!
(Q2)n

(
− d

dQ2

)n
. (4)

The Borel transformation gives rise to an exponential suppression of the higher resonances and
the continuum in the hadronic representation. The power corrections in the QCD calculations
are suppressed by factors of (1/M2)n. An upper limit on M2 is obtained by requiring that
the contributions from the higher resonances and the continuum should not be too large. A
lower limit on M2 is obtained by requiring that terms suppressed by powers of 1/M2 should
be subdominant. It is important to check that this defines a window, in which the final results
are insensitive to the variation of the Borel parameterM2.

3. B → πl̄ν and sum rules on the light cone

The relevant hadronic matrix element is parametrized by two form factors f + and f −:

〈π(q)|ūγµb|B(p + q)〉 = 2f +(p2)qµ + (f +(p2) + f −(p2))pµ. (5)
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Figure 1. The LCSR prediction [11] for the
B → π form factor f +

Bπ (p
2) (solid curve) in

comparison to lattice results [8]. The estimated
theoretical uncertainties are shown by dashed
curves.

If we neglect lepton masses only the form factor f + gives a contribution to the decay width.
In order to obtain f + from QCD sum rules we start from the correlation function

Fµ(p, q) = i
∫

d4x eipx〈π(q)|T (ū(x)γµb(x), b̄(0)imbγ5 d(0))|0〉

= F(p2, (p + q)2)qµ + F̃ (p2, (p + q)2)pµ. (6)

It can be shown [2] that a short-distance expansion is only useful in the soft-pion limit (q → 0).
A better approach is provided by the expansion around the light cone x2 = 0 with operators
of increasing twist. In our case the leading twist-2 contribution is given by

〈π(q)|ū(x)γµγ5 d(0)|0〉 = −iqµfπ

∫ 1

0
du eiuqxϕπ(u). (7)

ϕπ(u) is known as the twist-2 pion light-cone wavefunction. The correlation function F can
now be written as a convolution of the pion wavefunction with a hard-scattering amplitude
T (p2, (p + q)2, u):

F(p2, (p + q)2) = −fπ
∫ 1

0
duϕπ(u)T (p

2, (p + q)2, u). (8)

The hard-scattering amplitude T can be calculated within perturbation theory, whereas the
light-cone wavefunction contains the non-perturbative information. At next-to-leading order
(NLO) both the hard-scattering amplitude T and the wavefunction ϕπ depend on a factorization
scaleµ. The evolution of ϕπ with this scale can be calculated perturbatively [3]. The Brodsky–
Lepage evolution kernel for the pion wavefunction is analogous to the Altarelli–Parisi kernel
describing the evolution of parton densities. It turns out that it is convenient to express
the wavefunction in terms of Gegenbauer polynomials. To leading order these Gegenbauer
polynomials are eigenfunctions of the evolution kernel. However this is no longer true at NLO
and mixing effects have to be taken into account. At present, the twist-2 contributions have
been calculated to NLO [4–6], and twist 3 and twist 4 to leading order [7]. Figure 1 shows
the result for the B → π form factor obtained from the light-cone sum rule in comparison to
lattice results. The theoretical error is estimated from a variation of the Borel parameter, the
b-quark mass, the threshold parameter s0, the quark condensate density and the normalization
scale. Furthermore, our insufficient knowledge of the shape of the light-cone wavefunctions,
unknown higher-order perturbative corrections or higher twist effects contribute as well to the
theoretical error. Our final result is fitted to the parametrization [9]
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f +(p2) = f +(0)

(1 − p2

m2
B∗
)(1 − α p2

m2
B∗
)

(9)

with

f +(0) = 0.27 ± 0.05, α = 0.35 ± 0.01. (10)

The form factor f +(p2) enters the partial decay width

d�

dp2
= G2

F |Vub|2
24π3

(E2
π −m2

π )
3/2(f +(p2))2. (11)

Integration yields

�(B0 → π−e+νe) = (6.7 ± 2.8)|Vub|2 ps−1. (12)

Comparing this with the experimental value [10]

�(B0 → π−e+νe) = (1.15 ± 0.34)× 10−4 ps−1 (13)

one obtains [11]

|Vub| = 0.0041 ± 0.0005 ± 0.0006, (14)

where the first error corresponds to the current experimental uncertainty and the second error to
the estimated theoretical uncertainty. One may expect more precise data from the forecoming
experiments of Babar and Belle. On the theoretical side, an improved knowledge of the pion
light-cone wavefunction and perturbative corrections to twist 3 would reduce the theoretical
error.
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