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Abstract. Coupled nonlinear Schdinger equations, linked by cross modulation terms, arise in
both nonlinear optics and in Rossby waves in the atmosphere and ocean. Numerically, Akhmediev
and Ankiewicz and Haelterman and Sheppard discovered a class of soiltary waves which are
composed of a tall, narrow sech-shaped soliton in one mode, bound to a pair of short, wide sech-
shaped peaks in the other mode or polarization. Through the method of matched asymptotic
expansions, we derive analytical approximations to these solitary waves, and to their periodic
generalization, which have been hitherto accessible only through numerical computation.

AMS classification scheme numbers: 76B25, 76C20, 35B25

1. Introduction

The nonlinear Sclidinger (NLS) equation has been derived as a model for weakly nonlinear
wavepackets in a wide variety of physical systems by means of the perturbative method of
multiple scales. When there are resonances between different wave modes or for birefringent
fibres in nonlinear optics, the NLS equation must be replaced by a copaledf equations

which have the form

iA1, +a1A1 ., + (01]A12 +v12/A2[H A =0 @)
iAg, +apAg .y + (02| Ag|? +v21|A1])) A2 = 0 2

where A; and A, are the amplitudes of the wave envelope in the different modes (or
polarizations). We shall call this the CNLS (coupled-nonlinear 8dimger) system. The
coefficientsw; anda, are the so-called ‘dispersion coefficients;, ando, are the ‘Landau
constants’ describing the self-modulation of the wavepackets;@m@ohdv,; are the ‘coupling
constants’ of the cross-modulation between the two wavepackets.

Tan and Liu [19] and Tan [17] have derived this system for applications in geophysical
fluid dynamics. The CNLS has also been extensively studied in nonlinear optics where only a
partial list of references includes [1,10-13, 15, 20, 21, 23-28].
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We shall leave further discussion of the physics and of general time-dependent solutions
to the references. Our goal here is to understand solitary wave solutions of the form

A1 = explipnlait)u(x), Ay = exp(i fazt)v(x) (3)

whereu, 8 andu, v are assumed to breal. The time-dependent CNLS equations simplify to
a set of two coupled ordinary differential equations (ODESs) which we shall dub the steadily-
oscillating coupled-nonlinear Saainger (SOCNLS) equations:

o1 V12

Uy — pPu+ —ud+ =Zu?> =0 4)
o1 o1
02 V21

Ve — v+ =03+ =uPv =0. (5)
o2 o2

The SOCNLS system admits many branches of solutions. Our interest is a branch
independently discovered by Akhmediev and Ankiewicz [2] and Haelterman and Sheppard
[10]. The former called them ‘B-type’ solitons; the latter had no special name. We shall dub
these solutions ‘composite multiple-scale’ solitons because whgn 8, these consist of a
tall, narrow sech-like peak in which binds together two short, broad peaks inBecause,
for this species of solitary wave, both ODEs cannot be approximated by linear equations even
in the limit 8/u — 0, Akhmediev and Ankiewicz and Haelterman and Sheppard were unable
to find analytical approximations and were pessimistic that this would ever be possible.

In this paper, we show that by using the method of matched asymptotic expansions, it is
possible to obtain analytical approximations to such composite, multiple-scaled solitons in the
limit that the parameter

€e=p/u (6)

is small where is the ratio of the two frequencies at which the different componéntndA,
oscillate in time. These solitons and the ‘inner’ and ‘outer’ regions of the matched asymptotic
method are illustrated schematically in figure 1.

One important simplification is that wheng 1, v ~ O(e) and this component is only an
O(€?) perturbation of the first equation of the SOCNLS system. This implies that if we only
wish to work to lowest nontrivial order, it is sufficient to write

u~ 222 sectix) + O(e?) @)
o1
and solve aingle, uncoupled ODEor v alone. By introducing the new coordinate
d d
= —_— = —_— 8
yEpx o =g (8)
the new parameter
g =22 (9)
o1 a2

and the new unknown

02
= [ 10
w g2’ (10)

the single ODE fow becomes what we shall dub the ‘reduced problem’:

w,, — 2w + 2w + E sech(y)w = 0. (11)

Since the numerical studies by Akhmediev and Ankiewicz and Haelterman and Sheppard have
found only symmetric solutions, we shall restrict our attention to solutions which are symmetric
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Figure 1. A schematic of the composite solitary waves which are studied in this paper. A tall,
narrowu component (solid) is bound to a pair of short, wide peaks in tt@mponent (thick dashed
curve). The thin vertical dotted lines separate the inner region.

with respect toy = 0, which implies that the first derivative af at the origin is zero. The
reduced problem is then completely specified by adding the initial conditions:

w(0) = wo, wy,(0) = 0. (12)

The primary goal of our paper is to solve this ODE through matched asympotics to lowest
order. This will simultaneously generate approximations to the SOCNLS system to lowest
and first order. (At @?), v will modify « from the sech function in equation (7) and we
must explicitly attack the SOCNLS as a coupled system to approximate its solution, but such
second- and higher-order approximations are beyond the scope of this paper.)

Our analysis is formal; we do not prove th@t v) can be asymptotically approximated
by power series ir to all orders. We also do not prove that a solution exists. One of us
has written a monograph [7] on so-called ‘weakly nonlocal’ solitary waves, which flunk the
classical definition of a solitary wave because of terms that are exponentially smad| st
so lie beyond all orders in arrpower series. However, there is no evidence that the SOCNLS
solitary waves are ‘weakly nonlocal’. The highly accurate numerical solutions presented
below strongly suggest that our lowest-order approximation, which certainly is self-consistent
at lowest order, is telling a truthful story about the physics, whatever logarithemeriother
adventures may arise at higher order [9].

The matched asymptotic analysis will come in two varieties. First, the general solution to
the reduced problem is a three-parameter family where the parametérs@revg). We shall
show how this can be solved by using elliptic functions. Second, there is a two-dimensional
family of solutions which are solitary waves in the sense thay)| — 0 as|y| — oco. The
solitons require some procedural modifications from the general solution.
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2. An overview of matched asymptotics

For this problem, the heart of matched asymptotics is that in the inner region, the nonlinear
term is dropped but the sech-squared term is kept whereas in the outer region the sech-squared
term is omitted but the nonlinear term is retained.

Because secly) varies on an O(1) length scale, this will also be the length scale for
w(y) in the inner region. The?w term can therefore be neglected in the inner region. The
lowest-order inner approximation solves

w;'zvner,lowesr +3 Secﬁ(y)winner.lawest ~ o’ y < 1/6 (13)
To match to the outer approximation, which applies whgn~ O(1/¢), we need the ‘outer

limit of the inner approximation’, which is simply the limit of the inner solutiomyas> oc.

(This outer limitis a valid approximation to the reduced problem (11) in the intermediate range
1 « y « 1/e.) For largey, the lowest-order inner equation asymptotes to the differential
equationw;';””’l”"’“’ ~ 0, whose solution is &near function of y. It follows that the outer

limit at lowest order is
nerlowest ~ e {p,o + pr1y} y > 1/|log(e)| (14)
wherer is the order of the lowest order; bath= 1 andr = 2 will arise in the analysis below.

If w in the inner region is no larger than its maximum in the outer region, which will be
shown later to be @), then the first-order inner equation is

winner,first +3 Secﬁ(y)winner,firsl ~ 6Zwirmer,lowesl _ Z(winner,luwesl)3 (15)
yy '

For largey, the right-hand side is a cubic polynomialynand one can show by substituting

a polynomial with undetermined coefficients into the equation (where thé@gderm is

negligible) thatw™ <" /irs is a quintic polynomial in the outer limit. And so it goes: the outer

limit at arbitrary order is of the form

w

' 00 Kimax () )
w™ ~ NN ppedy, y» L (16)
j=1 k=0
This outer limit must match, order-by-order, to the inner limit of the outer approximationt.
In the outer region where > 1/|log(e)|, the sech(y) term is negligible. The outer
equation is

w;(;mer) _ e2yylouter) 4 2(w({mter))3 =0, Iy > 1. (17)
This can be simplified by introducing the new variables

E=ey [‘outer coordinate’] (18)

W =wo™ /e (29)
which eliminate all explicit dependence etto yield

Wee — W +2W3 = 0. (20)

We have omitted the label ‘lowest’ because the neglected term degpgsentiallyfast
with |y|. Without approximation, but rewritten in terms of the outer coordinate and unknown,
the reduced problem is

€2 €

=
=

€2

Wee — W +2W3 = = sech <§> W

~

exp<—2§> W, € —> 0, fixedé¢. (21)

T For expository simplicity, we consider an arbitrary-order solution of the reduced problem only to explain the
mechanics of matched asymptotics; to solve the coupled SOCNLS system to arbitary order, we would need a similar
expansion for the component, too.
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It follows that the term which is neglected in the outer approximation is exponentially small
in 1/¢ for any fixed value of the outer coordingte This implies that this term is ‘beyond all
orders’, thatis, as — 0, exp—constante) goes to zero faster than any finite powee ofrhis

in turn implies that this term cannot be consistently included in the order-by-order perturbation
analysis at any finite order [3,7, 14, 16]. Thus, the outer equatiéiiis- W + 2W3 = 0 not
merely tolowestorder but taall orders.

In the next section, we show that the exact outer solution is an elliptic function. In so far
as the matching is concerned, however, the exact outer solution is irrelevant. Only the inner
limit of the outer solution is needed for matching. This is obtained by expanding the outer
solution as a power series érfor fixed & and then taking the limit as — 0, which allows a
Taylor series irt as well:

o0 [e ]
W~ 3N gl EK E <l (22)
J=1K=0

One might suppose that because the outer approximation is an elliptic function to all orders,
one could sefy;x = 0 for all J # 1. However, there is a subtlety. The matching conditions
at various orders i will alter the amplitude or the phase of the outer approximation, even
though it is always an elliptic function.

The matching principle, described particularly well in Van Dyke’s monograph [22], is that
the inner limit of the outer approximation must match the outer limit of the inner approximation.
This requires

Pjk = 4j—k k- (23)
The inner and outer approximations can be blended into a composite approximation which
is uniformly valid over ally by writing

wcomposite ~ winner + wouter — outer Iimit(winner) (24)

where the inner and outer approximations are taken to comparable order so that the outer limit
of the inner approximation, which is the third term, may be equally well computed as the
inner limit of the outer approximation. Because the third term is the inner limit of the outer
approximation, the second and third terms cancel in the inner region wh&HRsi7¢ ~ qinner,
Similarly, in the outer region, the first and third terms cancel so that the composite solution
equals the outer approximation whére- O(1) or larger.

Although our study will be henceforth restricted to lowest order, there are still two cases
that must be discussed separately.

First caseyq different from zero while lower-order terms énare zero.

In other words, the constant in ttfepower series at @) is nonzero. The matching
conditions are

P10 = 410 and P11 = qo1. (25)

Sincego: = 0 if the outer solution is @), we have a contradiction unlegg; = 0. This
implies

inner

w™" ~ e{p1o+ Oy}. (26)

Put in words, the first-order inner approximation must asymptote to a constant, not to a linear
function of y. In general, this is possible only when the paramgtex equal to:(n + 1) where
n is a non-negative integer, or whehis within O(¢) of such a value. This is precisely the
case when the outer approximation is a solitary wave.

Second casejip = 0 andgy1 # 0 or in other words, the outer solution has a ‘near-zero’
até =0.
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We describe this requirement as ‘near-zero’ because it is not necessary that the outer
approximation vanish to all orders&t= 0, but only that it have a root within @) of &£ = 0.
When these conditions are met, the asymptote of the lowest-order inner approximation is free
to be a general linear function of In this case, the outer approximation is the elliptic cn for
values of the elliptic modulus less than one, which implies Wiaibes not decay exponentially
as|y| — 0 so that the nonlinear wave is periodic rather than a solitary wave.

3. Exact solution of the outer equation

3.1. Theorem
The solution to the cnoidal subproblem can be summarized as the following theorem.

Theorem 1 (outer approximation (scaled)).DefineW (Y; x) as the solution to the following
problem:

Wyy — W +2W3 =0 (27)
subject to the initial conditions

Wy (0) = g, w0 =0. (28)
The solution is

W = k(1 +4xH)Y4en((1 + 4¢DHY4Y — K k) (29)

wherecn(u; k) is the usual ellipticcn function which is periodic i with period4K where
K (k) is the complete elliptic integral andis the elliptic modulus, which is given in terms of
the initial conditiony by

1 1 1
k= [+ ——. 30
2 2. /1+4x2 (30)

This solution is periodic i with period

P = 4K(k)—(1 oL (1)
Theorem 2 (outer approximation (unscaled)).The solution to

wyy — 2w + 2w =0, (32)
subject to the initial conditions

w(0) =0, w,(0) = €%y, (33)
is

w = eW(ey; x) (34)

whereW (¢; x) is the elliptic function defined in the previous theorem.

The first theorem is proved by specializing section D.2.2 of [7] to a unit coefficient of the
undifferentiated term. This gives the ‘dispersion relation’ for the cn function

P? = 16K 2 (k){2k? — 1} (35)
where?P is the spatial period of the cn functioK, is the elliptic integral, and is the elliptic
modulus. The elliptic function itself is

K K
W = 4k— cn (4—5 —K; k) . (36)
P P
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The derivative identity [7]
dcn
du

is easily converted to differentiation with respecttand simplified using the known special

values sii—K; k) = —1 and dri—K; k) = +/1 — k2. Matching the derivative to its specified
valuey gives a quadratic equationisd which can be solved explicitly for the elliptic modulus

k in terms ofy.

The second theorem follows through the trivial rescaling of unknowns and the coordinate

already given in equations (18)—(20).

Note that the outer equation is given by equation (32) to all orders, so the elliptic function
is the outer solution to within an error which is exponentially small ja.1

= —sndn (37)

4. Inner approximation: general theory

It is convenient to introduce a normalized form for the inner equation via

winner,lowest =" (y; E) (38)
where( solves

Q,, + Eseck(»)Q =0 (39)
plus the initial conditions

QO =1 and Q,(0) =0. (40)

The exponent and the constanb will be determined later by matching. The advantage of
introducing the new unknow? is that the2-problem is completely specified and can therefore
be analysed independent of the matching.

The change of coordinate

z = tanh(y) (42)

together with the identities/dly = (1— z?) d/dz and sech(y) = 1— z? convert equation (39)
into the Legendre equation

({(1-79)Q, —2zQ,}+v(v+1)Q =0 (42)

where we have introduced a new parametgnot be confused with the cross-modulation
coefficientsv,1, v12 in the CNLS system) by the equation

E=v(v+1l. (43)
The general solution is
aP,(z) +bQ,(2) (44)

whereP, and Q, are the usual associated Legendre functions of zero order (zero superscript
in the usual notation) and where the constardasdb are determined by the initial conditions.
The subscript need not be an integer, but when it is, tAgz) are the ordinary Legendre
polynomials.

For the special case af a non-negative integer, the Legendre equation can be solved
explicitly:

Q(y,E=0=1 (45)
Q(y,E=2)=1- ytanh)y) (46)
Q(y, E =6) = —2 +3sech(y) (47)
Qy. & = n(n+1)) = P,(tanh(y))/ P, (0), n = even integer (48)

0, (tanhy))/0,(0), n = odd integer.
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For nonintegen, however, the conversion to the Legendre equation is useful mostly to show
that a search for a simple, closed-form analytic solution is futile.

It follows for generalZ, as needed whew (or equivalentlyv) is periodic rather than
exponentially decaying with increasing values of the spatial coordinate, the inner problem
must be solvediumericallyas done in the next section. For solitary waves, however, we are
in the happy situation that the inner problem can be soamalytically through expansions
which are given in section 7.

5. Solving the inner problem for general=: numerical method

As noted in the previous section, it is not possible to solve the inner problem for arbitrary
E in simple closed form. In this section, we describe a very accurate numerical method
that succeeds where analysis fails. The spectral algorithm comptit&s at all pointsy,
which is essential if we wish to graph the composite matched asymptotic approximation for
all values of the spatial coordinate as done below. However, only two pieces of information
from this numerical solution enter into the matching conditions with the outer approximation:
the coefficients of the constant and the term which is linear in the largey asymptotic
approximation of the inner solutiof2 (y). The rational Chebyshev pseudospectral method
with one or two special basis functions is very useful for our purposes because these two
coefficients-needed-for-matching are computed directly as basis coefficients in the spectral
representation.

The solution is expanded as

N-2
Q(y) = ) a;{cos2jt(y)) — 1} +ay_1 +ay log(2 coshy)) (49)
j=1
where
t = arcco(y/L). (50)

The map parametdr is a user-choosable constant; a little experimentation showed tha2

was a good choice for aN and allE < 25. The change of coordinate is such that the Fourier
cosine series in(y) becomes a series of rational functionginBecause? is symmetric with

respect toy = 0, only cosine functions of even degree are needed. Mihebasis function
asymptotes to a linear function of (plus terms exponentially small iry|) asy — oo so

thatay is equal to the constant;; needed for matching. The rational basis functions are
chosen to be the difference between the cosines and one so that each basis function, except the
(N — D)st, vanishes dg| — oo. Thereforeay 1, the coefficient of the trivial basis function,

the constant one, is equal to the constagatin the outer limit of the inner approximation.

The rational Chebyshev pseudospectral method is described in [5, 8]. The role of the
cotangent change-of-coordinate in transforming logarithmic endpoint singularities in the
coordinatez into weakly singular or nonsingular behaviouryins discussed in [4]. Special
basis functions are analysed in [6]. In our calculations, we employed only a single special
basis function, lo¢2 cosl(y)). (The constant one is actually one of the rational Chebyshev
functions.) As explained in [6], the Legendre equation, when writtephas not only a leading
singularity proportional to lod — z%) (= —2log(cosh(y))) but also weaker singularities
proportional to(1 — z2)* log(1 — z?) for all positive integers. The rate of convergence can
be improved by adding additional basis functions proportional to these weaker singularities.
However, we found that a modest number of Chebyshev functins @0) and one special
basis function was sufficient.
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In the pseudospectral algorithm, a residual function is defined by substituting the spectral
series, with symbolic coefficients, into the differential equation. One then imposes the
condition that(0) = 1 and also that the residual should be zeragvat- 1 collocation
points

}’.i=LCOt<ﬂ§>, j=1....(N-1. (51)

TheseN conditions are equivalent to the matrix equatidfe = f wherea is a column vector
containing the unknown spectral coefficientds a column vector of zeros except for tgh
(initial-condition-specifying) row wherg’y = 1 and the elements d¥/ are, denoting the
basis functions by, (v),

| einOn+EsecRg; ). i=12...,(N-1
Y] 9,00, i=N.

By using this pseudospectral scheme, itis easy to solve the Legendre equation and directly
determine the constant and linear term in the ldsg@symptotics. Inverting a 40 40 matrix
is not much of a task even for a personal computer. Figure 2 shows the results for the outer
limit of the inner approximation:

(52)

Constant of Inner Approx.

Slope of Inner Approx.
1.5 w
CO 7

1.5

1¢

5

0.5¢

O,
0.5r

10 0 10

o
mo
mo -

Figure 2. The outer limit of2(y; E) is a linear function ofy, ¢o + ¢1y. This figure shows the
constant; (left) and the coefficient of, ¢1, (right). These were computed numerically using a
rational Chebyshev basis supplemented with two special basis functions. Because the dependence
of the inner approximation on the paramete@ndw (0) is trivial (simple proportionalities), it is
possible to express the inner approximation in terms of a rescaled fusztidrose outer limit is

a function ofy and E only.

6. Asymptotic matching, part I: general case (periodic waves)

The general three-parameter family of solutions is specified by giving valuég fet w(0)).
However, to match to the outer solution, it turns out thag0) must be Qe?) in general
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(although it is Q) for the special case when the outer solution is a soliton). We therefore
write

w(0) = 2w (53)

wherew ~ O(1). Recalling that2(y) has been normalized to unit valueyat= 0, it follows
that

winner,lowest(y) — a)ezQ(y). (54)

For arbitraryg, the Legendre equation can be solved numerically to determine the outer
limit of the inner approximation as

winnerlowest 6260{{0 + 21y}, y>1 (55)

where the linear polynomial in braces is the asymptot of; E). The coefficientgy and¢s,

which are independent of but functions of the paramet&, must be computed for a given

E by using the rational Chebyshev pseudospectral method described in the previous section
(see figure 2). Comparison with the symbolic power series, equation (16), shows that these
coefficients can be written in terms of earlier symbps as

P20 = wlo(E), P21 = w(1(E). (56)
Matching to the terms of the double power serieséirand € which is the inner
approximation of the outer limit gives

P10 = 410; P20 = 420; P21 = q11. (57)
Sincepyp = 0, the first matching condition implies that, = 0, too. However, we must have
g11 # 0 so that it can match tp,;, which is nonzero in general. Put in words, this means that
the Qle) terms in the inner limit of the outer approximation must be proportiong] that is,
to a linear polynomial with a zero constant. In other words, the outer solution must have a root
to lowest order in the sense that the outer solutich-at0 must be @) smaller than its first
derivative with respect t¢ at the origin.

The outer equation has solutions that can be expressed in terms of either the dn function
or the cn function, but the dn function has no real-valued zeros, so the outer solution must
always be the cn function. It is possible that the origin does not exactly coincide with the root
of the outer solution; in order thgty, = 0 andgi1 # 0, it is sufficient that the root be within
O(e) of ¢ = 0. We can therefore write the outer solution, using the theorems of section 3, as

worter — Ek(l + 4X2)1/4 Cn((l + 4X2)1/4(§' — ES) — K; k) (58)

where¢ = ey is the slow outer variable defined previously. The phase shiftO(1), which
implies thatw (¢ = 0) ~ O(e?), and not as large as(©).

Strictly speaking, there ate/oouter approximations, one applicable left of the origin, and
the other for positivey. Becausev(y) is symmetric, however, the left outer approximation is
just the mirror image of the right outer approximation given analytically by equation (58):

wouler,left (y) = wouter,right(_y) Vy (59)

Consequently, it is sufficient to discuss the outer approximatiory fer 0 and to match the

inner and outer approximations for positiveonly. The symmetry ensures that the inner

approximation will then also automatically match the outer approximation for negative
Equation (33) shows that

we (0) = e + O(e?). (60)
This implies that the linear coefficient of the inner limit of the outer solution is
q11 = X- (61)
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The matching conditiop,; = ¢g1; and equation (56) gives
x = w1 (E). (62)
Put in words, the slopg of the elliptic function at = 0, which completely determines the
outer solution (except for the phase skdiftwhich is higher order), is the product of(0) /¢
multiplied by the linear coefficierth (E) of Q(y; E).
A one-term Taylor approximation of the outer solution gives

w()uler(s — O) ~ —GSwgmer(O)

~ —€2Sy
~ —e2Swiy(B). (63)
Thus,
q20 = —Sw¢1(E). (64)
Recalling thatp,g = wo(E) and the matching constraipby = g2 gives
S = —60(8)/81(E). (65)

Thus, we can determine the phase shift from the lowest-order inner approximation only. The
coefficients;y and¢; of the inner approximation are graphed in figure 2.

In the limit w(0) — 0, the elliptic modulug tends to one and the elliptic functions have
but a single limiting peak so that the solutions are solitary waves. Unfortunately, the elliptic
integral K — oo so that the peaks are infinitely far from the origin in this limit. To obtain
solitary wave solutions with peaks at a finite distance frore 0, we need to modify our
assumptions about the parameters as done in the next section.

x10°

3 ‘ ‘ 0.04 —
Exact & /
2.5 1 0.03
Outer
2,
0.02¢
1.5/ 1
Y 0.017
1 [ //
// O
0.5r,”
ol -0.01 |
05+ {1 -0.02
-1 L L .
0 2 4 6 0 100 200
y y

Figure 3. Two views of a solution whose outer solution is periodic rather than solitary 4
andw(0) = —€2, i.e.,w = —1. Left: comparison of outer solution (dashed straight line) with

the exact solution (solid). Right: same as left except that both the horizontal and vertical scale
have been greatly expanded and the dashed line is the inner approximation. Because the solution
is symmetric with respectto = 0, i.e.,w(—y) = w(y) for all y, only y > 0 is illustrated.

Figure 3 shows a typical nonsoliton exampledcs 4—10. The length scales of the inner and
outer regions are so disparate thatitis necessary to show each in a different panel. The leftgraph
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shows the breakdown of the outer approximation, which varies so slowly that it appears simply
a straightline in the inner region. The right panel shows that the inner approximation, although
a good approximation to the periodic elliptic function over a large range @ventually fails
because it asymptotes to a straight line whereas the true solution oscillates slowly. with
Figure 4 shows the corresponding errors and the overlap region where both the inner and outer
expansions are accurate, and can be matched to each other.

(¢]

10 . .
Errors in Inner and Quter Approximations
; Overlap

0 :

0% :

3 : E
10 : : —
0 : 5 C10 15
| y |
- Outer
Both

Figure 4. Same case as the previous figure, illustrating the errors of the inner and outer
approximations versug. The errors have been scaled by dividingbg0). The arrows at the
bottom point to the limits of the validity of the inner or outer approximations. These two expansions
have an overlap region, bounded by the vertical dotted lines, Wia¢heexpansions are accurate,
which allows the two approximations to be asymptotically matched. The outer approximation
neglects only the terr& sectf(y)w and is accurate fdly| > 1/|log(e)|. The lowest-order inner
approximation neglects e?w + 2w® and is accurate fay| < 1/e.

7. Analytic series expansions for the inner problem for= close to an integer

WhenE is within O(e) of one of the special integet where an exact solution is possible, an
analytical solution in powers ot is possible. Conveniently, this is precisely what is needed

to match to an outer solution that is a soliton, and conversely, the solitary wave can match to
the inner approximation only whe® is near one of the analytically solube Thus, unlike
thegeneralcase for arbitrang where the second componanér w of the waves is periodic

in space, it is not necessary to employ numerical methods to complete asymptotic matching
for solitary waves.
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7.1. Smallg approximations

For small E, one can apply regular perturbation theory in powersZof A symbolic
manipulation language likeaple is quite effective for performing the algebra if the Legendre
equation is first written in terms of the coordinateMaple is much better at manipulating
powers and logarithms than in simplifying and combining the hyperbolic functions of the
original coordinatey. The result is

2 1
(31 &) ~ 1+ 2(- logicost(y) + 2 { - +log(eostiy) + 5llog(eostiy)2] . (66)

Asymptotically, agy| — oo,
Q ~ {1+Elog(2) + E%(—log(2) + 2 10g?(2))} + y{—E + (1 — l0og(2)) E?}. (67)

7.2. E near six

The linear term in the outer limit is zero only wh&h= n(n + 1) wheren is aneveninteger so
that the exact solution is an ordinary Legendre function. To match to an outer solution that is
a solitary wave, it is necessary that the linear term vanish to lowest order as will be explained
below. Therefore, the next interesting valueséfter zero isE = 6.

Set

E =6—5ke (68)

for some constant which is O(1). This definition in effect changes the two independent
parameters of a branch of solitary waves froB ¢) to (1, €). Expand the solution to the
inner equation, equation (39), as

Q(yie) = Q0() +eQP +2QP () + - (69)
subject to the initial condition® (0) = 1, 2,(0) = 0. The exact solution foE = 6 gives
QO = —2 +3sech(y). (70)

To solve the first-order equation, it is convenient to switch o tanh(y). One can easily
verify through direct substitution that the solutiofi§” = A{2z%— £ log(1—z%)+3z2log(1—
z?)} which when expressed in terms of the original coordinate is

QD = x{2tantf(y) + log(coshy)) — 3tantf(y) log(coshy))}. (72)
For largey, we find
Q~ —=2+ex2(1+109(2)) + er(—2y). (72)

8. Asymptotic matching, part Il: solitons

To approximate solitary waves, it is necessary that the outer solution should be a solitary wave:
w (&; €) = esechE — S). (73)

(Strictly speaking, this is the outer approximation for- 0; the approximation left of the

origin is obtained by invoking the symmetry of the exact solution and its outer approximation:

w(y) = w(—y) for all y.) Itis only necessary to explicitty match for > 0 because the

symmetry ensures that the inner and outer approximation will also match for negative
Expanding the outer approximation as a power seriésgives

woer (s’ 6) oy Secl’(S) + ¢ SeCf'(S) tanf(S)S + O(EZ) (74)
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It follows that
q10 = sech(S), q11 = sechS) tanh(S). (75)

The matching conditions equation (510 = g10, P20 = g20 and p1 = ¢11 raise a
difficulty: the match of;;o requires a nonzero@®) constant in the outer limit, byt ; matches
to a linear-iny term which is Qe¢) smaller. For generak€, however, the outer limit of the
inner approximation has constant and lineas:iterms of equal magnitude.

The resolution of this conundrum is that solitary waves are restricted (for sufficiently
small€) to neighbourhoods of thosg where the linear-in: terms of the outer limit of the
inner approximation areera This occurs wherE = 0, 6, 20,42, ..., 2n(2n + 1), where
n is an integer, that is, whenevér is such that the inner problem can be solved exactly in
terms of an ordinary Legendre polynomial in the coordinatetanh(y). We will analyse the
neighbourhoods oE = 0 andE = 6 in turn.

8.1. Smalle

Define

@
Il

A€ (76)

wherea is O(1). This change shifts fror8 to A as an independent parameter.
The inner approximation is

winner,lowesr — cQ (y’ G). (77)

Note that in contrast to the previous section, the inner approximatioeisr@her than Q?).
The smallE approximations given in equation (67) are

Q ~ {1 +2relog(2)} + y{—2re}, (78)
which implies that coefficients of the outer limit of the inner approximation are

Pio= w, p11=0, p20 = wAl0g(2), P21 = —wA. (79)

The matching conditiopio = ¢g10 gives

w = sechS). (80)
The matching conditiogi; = p2; gives

tanh(S) = — (81)
which implies that forg, ¢ « 1

S = —arctanh()) = — arctan)‘<3> . (82)
€

The shiftS is real only when
A <1& |E| <e. (83)

Thus, solitary waves exist (in the limit of smal) only in a fan-shaped region in the-E

plane radiating from the origin plus similar fans radiating from points oritfaxis whereg

is equal to one of the other discrete special values where the inner approximation is a Legendre
polynomial in tanlgy).
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8.2. E near six
The procedure is very similar to that far <« 1. Define a new parametgrby
E =6 — 5ke. (84)

Using the largey asymptotics of the inner approximation f& ~ 6, equation (72), the
coefficients of the outer limit of""¢"/owest are

P10 = —2w, p11=0, P20 = wr2(1 +log(2)), p21 = —2\o. (85)
The matching conditiopi9 = ¢10 gives

w = —3 sechsS). (86)
The matching conditiop,; = g1 gives

S = arctanlfr) & A = tanhS). (87)

The constraintr| < 1 so that arctanf) is real-valued implies that solitons are confined,
to the extent that the perturbation theory is accurate, within a sector off@plane bounded
by the straight line€ = 6 + 5e.

9. Solitons and matching: numerical illustrations and discussion

The easiest numerical way to calculate solitary waves is to speaifyl the shift of the soliton
peak,S. One can then numerically integrate from large positive or negatit@vards the
origin, initializing with the shifted solitary wave, and then varyiBguntil w,(0) = 0. (Note

that a smooth function which is symmetric with respect to the origin always has a zero first
derivative there.)

The perturbation theory predicts that the contours of constant Shiftll be straight
lines in thee—E plane. Figure 5 shows some numerically-computed contours. The curve for
S = 0, which is the most curved of those illustrated, is well-fit over the interval [0, 1]
by E(e; S = 0) ~ 6 + 11¢2, which shows that the difference from theory is due to terms of
higher order ire.

WhenS = 0, the resulting structure might be dubbed a ‘punctured solitary wave’. The
solutionw(y) is an ordinary solitonw ~ € secley), everywhere outside the inner region.
There, instead of rising smoothly to a peakuat= ¢, the sech(y) term forcesw to curve
sharply downward so that it becomes negative and has a minimum rather than a maximum at
the origin.

Figure 6 illustrates a typical case. The composite perturbative expansioh£00 is
the dotted line. Almost all the error can be removed by simply shifting the outer solution;
the composite-expansion-with-shift is also plotted, but resembles the numerical solution so
closely that it cannot be seen as a separate curve.

Figure 7 shows the same value 8f but with ¢ reduced by a factor of four from the
previous illustration. The 40:1 ratio between the scale,afhich supplies the seétierm in
the differential equation fow, and the @1/¢) length scale ofv for largey, requires the use
of two graphs with different scales (left, top and bottom). The upper right graph shows that
the error in perturbation theory is very small for sufficiently sraall

When the shiftS is positive, then the outer solution acquires the two-humped structure
illustrated in figure 8. The region of rapid variation at the origin glues together two copies
of an ordinary NLS, sech-type solitary wave. Without the cross-modulation term, i.e. the
secH(y) termin the reduced problem, a pair of NLS solitary waves cannot form a bound state.
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Soliton Outer Approximation

Sz ‘
0 0.05 0.1 0.15 0.2
€

5.5

Figure 5. When the outer solution is a solitary wave with its peak shiftedSbiyp the outer
coordinatet, the perturbation theory predicts that solutions with a gigenill be found only on

the straight lineE = 6 — 5¢ tanh(S). The solid curves, which were numerically computed, show
that the contours of constaSitcurve ase increases, consistent with the increasing importance of
higher-order terms. The dashed lines mark the perturbative (not numerical) limiting lines; matched
asymptotics predicts that solitary waves are found only within the triangle-shaped sector bounded
by these lines, and similar sectors radiating from other discrete points GhdRis.

(Note that for the nonlinear Sabdinger equation, the number of peaks is always either one or
infinity, never a finite integer in between.)

The figure also clarifies another point that is worth reiterating. Analytically, the complete
outer approximation is

+
WO () = esechey +8), y<0 (88)
esecliey — S), y > 0.

If the outer approximation has a honzero slopeg as 0, then the function displayed in (88)
will have a discontinuous slope at= 0 as shown by the V-shaped dashed curve in figure 8.
The exact solutionw(y) is smooth and analytic because the outer approximation fails in the
inner region where the extra séc¢h) term turnsw rapidly from a negative slope just left of
the origin to a positive slope of equal magnitude.

When S is negative, the peak of the outer solution is actually on the other side of the
origin. Whens is sufficiently large and negative, the outer approximation may be simplified
to

w™ ~ {2e exp(—|S|)} exp(—ely)), S«0. (89)
The maximum of the outer approximation is given by the constant in braces. When this is
small compared with one, the nonlinear terms become negligible in the outer region. The
approximation of neglecting the nonlinear terms foryalh the reduced problem far has
been dubbed the ‘father—daughter’ approximation becausecthmponent (‘daughter’) is very
small in amplitude compared with the tall, sech-shaped peak in twmponent (‘father’).
As reviewed in [18], this ‘father—daughter’ approximation applies when

E=@n+e)(2n+1+e)~2n2n+1)+(4n+ e (90)
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e=0.1 E=6 S=0.225

0.1

0.05

-0.05
-50 0 50

y

Figure 6. A ‘punctured solitary wave’. The solid curve is the exact solution. The lowest-order
composite expansion with the shift= 0.225 is graphically indistinguishable from the numerical
solution except ap = 0 where the minimum in the perturbative approximation is about 10% too
deep. The dotted curve is the perturbative approximatioss fer0O; this does have a visible error,
butthis error can be almost completely removed merely by shifting the maxima of the sech-functions
which are the outer approximation fo= +S/e¢ with S = 0.225.

The case: = 1 gives
ER~R6+5, [father—daughter linear approximation’] (91)

which is simply the boundary line for solitons as predicted by the composite theory. The
father—daughter approximation applies in the neighbourhood of th&liae—oco (figure 5).

The everywhere-linear-differential-equation foapproximation is thus, for small merely a
limiting case of the matched asymptotics theory.

10. Explicit composite solution

In this section, we collect our scattered approximations in one place. Our coupled boundary-
value problem is the SOCNLS equations:

Uy — ou+ 2u3 + 2uv2 =0 (92)

o1 o1

Vv

Uy — BP0+ 223422, o (93)

(0% (6%}

To zeroth and first order, the approximationas, for both periodic waves and solitary waves,
u~ IZEM sechux) + O(e?). (94)
o1

The rather complicated solution fors most easily described by introducing the new coordinate
and unknown

[ o2
y = ux, w= mv (95)
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w: Exact & Asymptotic X 107 Error
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Figure 7. Same as figure 65 = 6) but fore reduced t%. The two graphs on the left both show

the solitary wave compared with the asymptotic approximation, but on different scales bath for
andy. The trough ap = O is so narrow for smak that it is invisible when graphed on the length
scale of the outer solution, as shown in the upper left panel. The graph on the right illustrates
the error: at worst, the difference between the composite expansion and exact solution is 28 times
smaller (i.e. @1/¢) smaller) than the maximum af.

e=0.1 E=5.5377 S=2

0.1

0.08

0.06

0.04

0.02

-50 0 50
y

Figure 8. Solid curve: a two-humped solitary wave fer= 1—10 and & = 5.5377. The outer
approximation is shown as the dashed curve, which is distinguishable from the exact solution only
in a narrow region around the origin. The outer approximation is a sech-function with a peak at
y = S§/e plus its mirror image wher§ = 2.
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and the new parameter

E=2——. (96)
o1 02
The composite approximation far(y) is
wcomposite ~ winner + wouter — outer Iimit(winner). (97)

Periodic waves. In this caseE can be arbitrary. The inner approximatie”™<" must be
computed numerically by the spectral algorithm described earlier. The numerical solution
determines two functions which vary only with the paramefeand are independent of
everything elsego(E) and¢1(E). The outer approximation is then an elliptic function which
is

w™' = ek(1+4x*) Y en((L + 4% (ely + Lo(E)/C1(B)) — K3 k) (98)
where

X = w61 (E) (99)
and the elliptic modulus is

1 1 1
k= |-+ c— 100
2 2*/1+4X2 ( )

with K (k) as the usual complete elliptic integral. The periodic waves are a three-parameter
family where the parameters a(&€, ¢, w) wherew = w(0)/e? and whereE and e are
coefficients of the differential equation that cannot be eliminated by rescaling.

Solitary waves, case |E| < €.

w™er ~ ¢ secharctanhiZ/¢)) [1 + E{—log(coshy))}

2
+52 {—y? +log(cosh(y)) + %[Iog(cosr(y))]z} } (101)
w¢" ~ e secHey + arctantiE/¢)} (102)
outer limit(w™") ~ € secHarctanii{Z/¢)}{1 + Elog(2) — yE}. (103)

Solitary waves, case IIE — 6] < 5e.

. 1 6—E
W ~ —5€ sech{arctank( 5 )} [ — 2+ 3sech(y)

€

— = {2tant(y) + log(cosh(y)) — 3tantf(y) Iog(cosr(y))}} (104)

6—E
worer ~ ¢ Sech{ey - arCtanl‘< 5S¢ ) } (105)

R 1 6—E
outer limit(w""*") ~ ——=¢e sechyarctan
2 5¢

><{—2+<6_55)2(1+|og(2))—2(6_53>y}. (106)

The solitary waves are a collection of two-parameter families which exist only within
a sector that radiates from the point= 0, E = 2m(2m + 1) wherem is a non-negative
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integer; then = 0 andm = 1 families are displayed above. The parameters can be taken as
(&, €), provided the values lie within the sectot=t < ¢ for the lowest family, for example.
Alternatively, one may specifyand the shiftS of the outer solution, which is more convenient
for specifying numerical solutions. Forthe lowestbrarth; — arctanl{E/¢); for the solitary
waves wWithE ~ 6, S = arctanl{(6 — E)/5¢) and similarly for other branches.

11. Summary

In this work, we have shown that one branch of solitary waves of the CNLS system can be
approximated analytically using the method of matched asymptotic expansions. Previous
authors who found this branch numerically, such as [2, 10], were pessimistic that such
approximations would ever be found because the solitary wave is intrinsically nonlinear for
large|y| and cannot be approximated uniformly in space by an everywhere-linear differential
equation. Matched asympotics expansions are untroubled by the nonlinearity of the outer
approximation because the outer equation is analytically soluble in elliptic functions or the
hyperbolic secant function.

Previous numerical studies [25] suggest that these solitary waves are unstable. However,
a thorough stability study has not yet been performed.

One virtue of this work is that the method of matched asymptotic expansions is very
general. We conjecture that it should be applicable to other solitary wave problems where the
solitons have multiple spatial scales. (We confess that we have not yet identified further targets
for the applications of matched asymptotics.)

However, Haelterman and Sheppard [10] have shown that there are additional solution
branches with more maxima and minima than in the solitons discussed here. It seems likely
that matched asymptotics would be fruitful for these branches, too.

Another significance of our perturbative approximations is that one general strategy for
numerical computation of solitary waves is to discretize the differential equation and apply
a Newton iteration. The continuation method can supply the required starting point for
the iteration: as some parameter such as the frequencyer&idancreased in small steps,
the solution for one value of can be used as the first guess for a slightly lakgerin
this way, one can trace a complete branch of solutions. The only problem is that some
other approximation must be used to initialize the continuation method itself. The matched
asymptotics approximation for smallcan supply such a starting point.

The mostinteresting generalization of our work is to apply matched asymptotics to predict
new species of solitary waves for other wave systems. Another generalization is to look for
unsymmetricolitary waves of the CNLS system.
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