
Modelling Simul. Mater. Sci. Eng.4 (1996) 261–279. Printed in the UK

A three-dimensional model for the probabilistic
intergranular failure of polycrystalline arrays

D G Harlow†, H-M Lu‡, J A Hittinger§, T J Delph† and R P Wei†
† Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive
West, Bethlehem, PA 18015-3085, USA
‡ Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown,
WV 26506-6101, USA
§ Department of Mechanical and Aerospace Engineering, University of Michigan, Ann Arbor,
MI, USA

Received 6 November 1995, accepted for publication 18 February 1996

Abstract. A three-dimensional grain model, in which the grains are represented by regular
truncated octahedra, has been developed to study probabilistic time-dependent intergranular
failure in polycrystalline arrays. In this model, grain boundary facets are assumed to fail
randomly in time, as a function of the facet normal stress. A simple approximate method for
calculating the load shed by failed facets and a reasonable choice of failure criterion complete
the model. This leads to a conceptually simple, but computationally complex, model capable of
handling assemblages consisting of relatively large numbers (> 5000) of grains. The predicted
scatter in the times-to-failure and the variation in number of failed facets with time are in quite
reasonable agreement with available experimental data.

1. Introduction

Experimental evidence has consistently indicated that time-dependent intergranular failure
processes, typically at elevated temperatures, are characterized by some degree of
randomness. This is reflected not only in the scatter in the time-to-failure data for uniaxial
stress creep tests [1–4], but also in the randomness present in measures of internal damage
such as intergranular creep cavitation [5]. Accordingly, there have been a number of
recent efforts to construct microscopic models of intergranular failure which contain one
or more random features, e.g. [6–11]. As has been the case with the vast majority of
microscopic models, most of these efforts have been confined to a consideration of simple
bicrystal structures. There have, however, been recent efforts to consider more realistic grain
structures; e.g. the work of Riesch–Oppermann and Brückner–Foit [10], who considered the
growth of creep cavitation in an irregular, two-dimensional rigid grain structure, and that
of van der Giessen and Tvergaard [11], who investigated a similar problem in an irregular,
creeping assemblage of grains, with random cavity nucleation.

It is known, however, that intergranular failure processes in three dimensions possess
a higher degree of complexity than can be adequately represented by models involving
simple one-, or even two-dimensional grain structures. Anderson and Rice [12], who
investigated the growth of constrained intergranular cavitation in a regular three-dimensional
grain structure, found significant quantitative differences between the results of their work
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and previous work involving two-dimensional grain structures [13, 14]. Accordingly, the
purpose of this paper is to consider a model of three-dimensional intergranular failure
containing one or more random features.

2. Description of the model

2.1. Grain model

One of the most significant difficulties in simulating three-dimensional intergranular failure
is the modelling of the grain structure. A common method is to model grains as the
random division of space into subsets, i.e. to represent the grain structure by a random
tessellation of two- or three-dimensional space. This approach can yield results that, at
least in two dimensions, have a striking resemblance to actual grain structures observed on
polished surfaces. In two dimensions, such structures can be computationally generated by
one of many algorithms, e.g. the Voronoi (Dirichlet) tessellation [15–20] or the Johnson–
Mehl model [15, 18]. There exist three-dimensional versions of these random, two-
dimensional tessellations [15, 18], but the associated algorithms are often quite difficult
to implement [19].

In a well annealed metal, the grains are all roughly of the same shape and size. This
suggests that a homogeneous crystalline material can be reasonably well represented by a
three-dimensional, regular tessellation of identical convex polyhedra. There are only two
regular or semi-regular polyhedra that can completely fill space in a regular tessellation: the
cube and the fourteen-sided truncated octahedron, sometimes also known as the Wigner–
Seitz cell. Of these two choices, the truncated octahedron, shown in figure 1, better
represents actual multifaceted grains. Consequently, it has been used in previous studies
involving three-dimensional grain structures, e.g. [12, 21]. For the present study, this
polyhedron was also chosen to represent the grains.
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Z

Figure 1. Fourteen-sided truncated octahedron.

Numerically, the truncated octahedron may be specified by eighteen independent values,
assuming a constant effective diameter. Three values are needed to represent the coordinate
triple of the centroid. The remaining fifteen values are pointers, which designate the grain
itself and its fourteen neighbours. Using this system of representation, it is easy to generate
numerically grain assemblages of any size, limited only by available computer memory. In
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Figure 2. Cubic matrix of 1729(103 + 93) grains, and its orientation with respect to a set of
Cartesian coordinate axes.

the present work, a perfectly packed cubic matrix of 1729 grains (103 + 93) was utilized for
most studies, along with a limited series of simulations on matrices of smaller and larger
sizes. Figure 2 shows a typical assemblage of 1729 grains.

2.2. Grain boundary failure model

At high temperatures, a dominant mechanism for intergranular failure in polycrystalline
materials is cavitation. The growth and coalescence of these cavities lead to the formation
of microcracks, which then grow to such a size as to result in eventual failure. Because
detailed simulations of the growth of large numbers of intergranular cavities is beyond
present computational capabilities, at least in three dimensions, a simplified model for grain
boundary failure will be considered instead. The basic assumption of the model is that
grain boundary facets fail instantaneously at random times, presumably in response to the
evolution of grain boundary damage, to form facet-sized cavities, or microcracks. This
assumption has some support from models of constrained creep cavitation [22], which
indicate that cavitated grain boundary facets tend to shed load, and to behave as facet-sized
microcracks, at creep strain rates typical of engineering applications.

Most models for the growth of creep cavitation assume that the grain boundary normal
stress is the single stress component which influences the cavity growth and that the effects
of shearing stresses are negligible. Nixet al [23] have discussed the importance of the
facet normal stress in the creep rupture process. A similar assumption will be made here.
Furthermore, any effects of grain boundary sliding or grain deformability upon the facet
normal stresses will be ignored. The simple loading shown in figure 2, which consists of
a constant uniaxial stress of magnitudeσe applied in they-direction normal to the square
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faces of the truncated octahedra will be considered. For this loading condition only the
horizontal and oblique facets will experience normal stresses.

One of the key elements in the model is the cumulative distribution function (CDF)
for the time-to-failure of a grain boundary facet. Ideally, this should be estimated from
a mechanistically based model for the evolution of cavity growth, in conjunction with
experimental data. This, however, represents a difficult undertaking, and the experimental
data which would support such a model are, by-and-large, lacking. Failing this, a form for
the CDF will be assumed which has some degree of experimental support. The CDF for
the time-to-failure of a facet is taken to be

F(t) = 1 − exp

[
− 9

( ∫ t

0
κ(σ (s)) ds

)]
t > 0 (1)

whereσ(•) is interpreted as the normal stress history acting on the facet over the entire life
of the facet,κ(•) is the breakdown rule which describes the accumulation of damage, and
9(•) is the hazard function which describes the reliability behaviour. Bothκ(•) and9(•)

must be increasing, unbounded, and continuous functions. Furthermore,9(0) = 0. The
stressσ(•) is arbitrary, and, in the present study, will be piecewise constant with time.

The CDF given by (1) is quite general and has a wide range of applications. In fact, it
can be considered to be the underlying CDF for an inhomogeneous Poisson process [24].
Coleman [25] was one of the first to use it in engineering applications, and many authors
have subsequently made use of it in various forms. Phoenix [26] has given a good survey
of the development and applicability of (1). Frequently,9(•) is assumed to be the Weibull
hazard function given by

9(x) = xα x > 0 α > 0 (2)

with values ofα typically lying between 0.25 and 5.00. The most popular breakdown rule
is the power-law form:

κ(x) =
(

x

γ

)ρ

x > 0 γ > 0 ρ > 0 (3)

where ρ ranges from 1 to 80 in applications. In analysing the results of creep rupture
experiments with copper bicrystals, Farriset al [3] showed that the CDF for the time-to-
failure for a single grain boundary could be well approximated by (1) with the Weibull
hazard function (2) and the power-law breakdown rule (3). It thus seems reasonable to
adopt this form for the present study. Hence, specifically, the CDF (1) for grain boundary
facet time-to-failure will be

F(t) = 1 − exp

{
−

[
t

(
σ

γ

)ρ]α}
. (4)

Farris et al [3] measured values ofρ slightly in excess of one for grain boundary
failure in copper bicrystals. It appears, however, that considerably higher values hold in
polycrystalline materials which obey the Monkman–Grant relation. The parameterα is a
measure of the statistical scatter in the grain boundary failure times.

In order to simplify the ensuing calculations in the model for polycrystalline materials,
a transformation used previously by Phoenix and Tierney [27] is introduced. LetZw, w = h
(horizontal) or o (oblique), be a random variable (RV) associated with each facet, which
has the standard exponential CDF, i.e.

FZw
(z) = 1 − exp{−z} z > 0. (5)
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Let Tw, w = h or o, be the RV for the transformed time-to-failure of a facet, defined in
terms of the RVZw by

9

( ∫ Tw

0
κ(σw(s)) ds

)
= Zw. (6)

Note that9 is an increasing function ofTw. Hence, using standard transformations

FTw
(t) = Pr{Tw 6 t} = Pr

{
9

( ∫ Tw

0
κ(σw(s)) ds

)
6 9

( ∫ t

0
κ(σw(s)) ds

)}
= Pr

{
Zw 6 9

( ∫ t

0
κ(σw(s)) ds

)}
= FZw

(
9

( ∫ t

0
κ(σw(s)) ds

))
= 1 − exp

[
− 9

( ∫ t

0
κ(σw(s)) ds

)]
= FTf

(t) (7)

by (1). This implies that the use of independent and identically distributed (IID) standard
exponential RVsZw yields a probability model equivalent to (1) for facet time-to-failure.
The advantage of this transformation is that, while the transformed times-to-failureTw are
highly statistically dependent due to the local interactions between failed and unfailed facets,
the standard representative RVsZw are completely independent.

As will be described in detail in the next section, the failure of adjacent facets results in
increases in load upon a given facet. Leti1, i2, . . . , ij designate failed facets which cause
an increase in load on faceti. As a consequence of the fact that the facet stresses are
piecewise constant in time, the adjusted failure time for a facet resulting from successive
increases in loads from adjacent failed facets may be obtained from (6), and is given by

Tw(i|i1, i2, . . . , ij ) = Tij +
[
9−1(Zi) −

j∑
a=1

(Tia − Tia−1)κ(σia )

]
[κ(σij+1)]

−1 (8)

whereTia is the time-to-failure for facetia which directly affects the time-to-failure of faceti,
Ti0 is identically zero, andσia is the normal stress acting on faceti during the period between
the failure of facetia−1 and that of facetia. Note that the term

∑j

a=1(Tia − Tia−1)κ(σia ) can
be considered to represent the state of damage on faceti at timeTij .

2.3. Load-sharing rule

In order to implement the probability model, the normal stress history for each grain
boundary facet is required. In general, the normal stress on a facet will increase as a
consequence of the failure of neighbouring facets. Prior to any facet failures and in the
absence of grain boundary sliding, the normal stress across each facet will be just the
component of the applied uniaxial stress field normal to the grain boundary facet, i.e.
σw = σe cos2 φw, w = h or o, whereφw is the angle between the facet normal and the
y-axis. For the particular geometry and loading condition of this problem,φh = 0 and
φo = arccos(

√
3/3) which implies thatσh = σe andσo = σe/3. However, as facets begin

to fail randomly, the stress distribution inside the assemblage becomes so complicated as to
make detailed calculations extremely difficult. Hence, a simplified stress redistribution rule
is proposed, which is quite similar in spirit to the load-sharing rules used in random failure
models for fibrous composite materials, e.g. [28–30].

It is clear that the load shed from a failed grain boundary facet will be redistributed
over some distance from the failed facet. However, it seems reasonable to believe that the
bulk of the redistributed load will be carried by the facets bordering the failure area. In the
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interest of simplicity, the entire effects of load redistribution are assumed to be confined
to the unfailed facets immediately adjacent to the failure area. The phrasefailure area is
used here to describe both an isolated failed facet and a contiguous region of failed facets.
Based on this, the following load redistribution rules will be assumed:

(1) The load parallel to the loading axis carried by each failed grain boundary facet
will be distributed equally, with certain exceptions, to its adjacent facet area. Since a larger
facet can carry a larger load, the load redistributed to each adjacent facet will be

1Pij = Pi

(
Aij∑
j Aij

)
(9)

wherePi is the load originally carried by the failed faceti, ij designates thej unfailed facets
adjacent to faceti which share the loadPi , andAij is the projected area of the adjacent
facet ij on the plane normal to the loading axis. If any of the adjacent facets have already
failed, the load that would have been shared by that facet will be further redistributed to its
adjacent facets.

(2) Exceptions to the load redistribution rule described above arise from the experimental
observation that the preferred direction of intergranular crack propagation is normal to the
loading axis. Hence, cracks do not tend to propagate in the direction of the loading axis and,
more generally, do not tend to double back on themselves, i.e. do not propagate through an
angle of greater than±90◦ from a plane normal to the loading axis. In order to incorporate
these observations into the load-sharing rule described above, loads are not redistributed to
facets parallel to the loading axis, or to facets which, if they were to fail, would result in a
reversal of the direction of crack propagation.

As a consequence of the fact that the remote stress is constant in time, the facet stresses
are piecewise-constant functions of time. Jumps in facet stress occur when adjacent facets
fail, with the magnitude of the jump being given by the load redistribution rules above.
Implicit in these rules is the assumption that the facet stresses are not affected by deformation
processes or by grain boundary sliding.

Y

1* & 3

2

4* & 6
5

a

11*
 &
12

14*
  &
15

7

8

9* & 10

b

13

Grain 1

Grain 2

Grain 3

* indicate facets are invisible

View from (1, 0, 1) direction.

Figure 3. Simple example consisting of three grains to illustrate load-sharing rules.

These load redistribution rules are quite simple, but their computational implementation
can be unexpectedly complicated. In order to appreciate this fact, consider the simple three-
grain assemblage shown in figure 3, which is considered to be part of a larger assemblage
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subjected to a remote tensile stressσe acting in they-direction. The initial vertical load
on all facets (facets 1–10,a, b) is σeAi , whereAi is the projected area of faceti on the
x–z plane. If the horizontal faceta fails first, the vertical loadσeAa shed from this facet is
equally distributed to the area contained in its adjacent oblique facets 1–3,b, which belong
to grain 1, and facets 4–7, which belong to grain 2. Thus, the vertical load on these facets
becomes

Pi(1) = σeAi + σeAa

8
where i = 1–3, b and 4–7. Here, the notationPi(k) denotes the vertical load on faceti

immediately after the occurrence of thekth facet failure. Consequently, the indexk
represents the time sequence of facet failures in the body. The vertical load on non-adjacent
facets, such as facets 8, 9 or 10, remains unchanged. If facetb, which is common to grains 1
and 3, subsequently fails, the loadPb(1) will be equally redistributed over the area of the
facets adjacent tob, i.e. facets 1,a, 3 (grain 1) and facets 9, 8, 10 (grain 3). Note that, as
a consequence of the second of the load-sharing rules, this load is not redistributed to the
oblique facets 7 and 13 or to the vertical facets 11, 12, 14, and 15, all of which are adjacent
to facet 6. From (8), the load to be redistributed will be

1P b
i = Pb(1)

(
1

4rA + 2

)
i = a, 8

1P b
i = Pb(1)

(
rA

4rA + 2

)
i = 1, 3, 9, 10

whererA is the ratio of the component of the area of the oblique facet normal to the loading
axis to that of the horizontal facet, i.e.rA = Ao/Ah. For the present study,rA = 1.5. The
notation1P b

i denotes the initial adjustment to the load on faceti due to the failure of facetb.
However, faceta has already failed, and cannot carry the load1P b

a . Consequently, it is
necessary to further distribute1P b

a to the facets which are adjacent to faceta, i.e. facets 1–7,
b. The load to be distributed to these facets will be

1P a
i = 1

8
1P b

a = 1

8

[
Pb(1)

(
1

4rA + 2

)]
i = 1–7, b.

However, because facetb has already failed, the load1P a
b /8, in turn, must be redistributed

to the facets adjacent tob, i.e. facets 1, a, 3, 9, 8, 10. Proceeding in this fashion leads
directly to a recursive calculation for the vertical load on facets 1–10, after both faceta and
b have failed. For the present simple example, this takes the form of a geometric series.
For example, for facets 1 and 3, withr = 1

8(1/(4rA + 2)):

Pi(2) = Pi(1) + 1P b
i + r1P b

i + r21P b
i + r31P b

i + 1P a
i

+ r1P a
i + r21P a

i + r31P a
i + · · ·

= Pi(1) + (1P b
i + 1P a

i )

∞∑
n=0

rn

= Pi(1) + (1P b
i + 1P a

i )/(1 − r).

Summing the series for the remaining facets, the following expression is obtained

Pi(2) = Pi(1) + 1Pi(2)

where

1Pi(2) =


(1P a

i + 1P b
i )/(1 − r) i = 1, 3

1P a
i /(1 − r) i = 2, 4, 5, 6, 7

1P b
i /(1 − r) i = 8, 9, 10.
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It can be easily shown that the same load distribution will be obtained if the order of facet
failure is reversed. Thus, the load-sharing scheme is dependent only on the geometrical
position of the failed facets and not upon failure sequence.

Although it was possible to obtain closed-form expressions for the recursive expressions
in this simple example, it can be quite difficult in more general situations. Hence, in
numerical calculations, it was found necessary to redistribute the loads recursively until
further redistributions resulted in a negligible change in facet stress.

The load-sharing rules proposed here undoubtedly result in an oversimplified estimate
of the actual stress distribution. However, they at least roughly capture most of the relevant
features of the load redistribution, and, in any case, a more accurate representation would
be likely to increase the computational effort beyond the bounds of feasibility.

2.4. Failure criterion

A crucial part of the model is the failure criterion for the grain assemblage, for which there
exist a number of possible choices. The one which will receive primary attention here,
and which seems particularly reasonable within the context of the model, defines failure
as the occurrence of a region consisting of a critical number of contiguous failed facets.
Such a criterion assumes that, once a flaw of critical size forms, final failure ensues so
rapidly that essentially all of the time up to final failure is taken up in forming the flaw.
After some degree of numerical experimentation with an assemblage of 1729 grains and a
representative set of parameters in the random facet failure model, the minimum number of
contiguous failed facets to represent a flaw of critical size was taken to be 150. To be more
precise is quite difficult because of the rather complicated three-dimensional geometrical
pattern of contiguous failed facets which can evolve. For flaw sizes containing at least
this number of failed facets, it was found that the subsequent flaw size began to increase
relatively rapidly, adding one or more failed facets on each time step. This value for the
critical flaw size is, of course, to some extent arbitrary, and may depend to a degree upon
the model parameters. However, it leads to reasonable agreement with experimental data,
as will be discussed later.

It is worth noting that the use of this criterion could lead to failure as a result of
a large flaw oblique to the loading axis. Although such failures are occasionally seen
experimentally, the majority of failures seem to result from flaws normal to the loading
axis. If one wishes to restrict failure to planes normal to the loading axis, an alternative
failure criterion would be to define failure to be the occurrence of a critical number of failed
facets within a 1- to 2-layer cross section of the grain assemblage normal to the loading
axis. In this criterion, the number of failed facets, which occupy the same cross-sectional
area within layers, are counted just once. Comparisons will be made between these two
criteria.

Consideration was also given to adopting a failure criterion in which failure would be
considered to have occurred when the grain assemblage had fractured into two separate
pieces. Although this criterion has the advantage of being very straightforward, it was
found to be computationally infeasible, owing to both the excessively long computation
times required and the complicated three-dimensional topological considerations involved
in determining when separation into two pieces had actually occurred. For example, a
flaw running the width of the assemblage, which, in a two-dimensional array, would lead
to failure under this criterion, would not do so in the present three-dimensional situation
unless the entire thickness of the specimen was likewise failed. The determination of failure
according to the ‘two pieces’ criterion is a difficult computational task.
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3. Simulation

Because of the complexity of the model described above, Monte Carlo simulation techniques
were used to estimate its statistical behaviour. For each simulation, a random time-to-failure
was assigned to each interior grain facet, using the CDF (5) for the standard exponential
RVs and the transformation given in (6). Time was then advanced to the minimum facet
time-to-failure, and the facet with this failure time was considered to have failed. Next, a
search was conducted for all the facets adjacent to the failed facet, and the load supported
by the failed facet redistributed to these facets, according to the rules described previously.
The failure times for these facets were recalculated using (8). If the newly failed facet
was adjacent to a previously failed facet, then the recursive load redistribution calculations
outlined previously were carried out until the redistributed loads converged to within a
specified tolerance. Finally, the assemblage was checked for overall failure, according to
the prescribed failure criterion. If failure of the assemblage was not found to occur, then
time was advanced to the next smallest facet failure time for the remaining intact facets,
and the process was continued until the failure criterion was satisfied. To illustrate this
rather complex procedure, an example is given in the appendix which captures most of the
algorithm.

Because a sizeable amount of information is required to describe a large assemblage
of grains, there are obvious memory constraints on the simulations. Not as obvious are
execution time constraints, which proved to be the principal computational limitation,
rather than memory. As facets fail, propagate and coalesce, there are more and more
neighbouring facets to which the load can be redistributed. Typically, there was a fairly
rapid initial period of individual facet failures until a sizeable contiguous flaw developed.
This flaw then dominated the subsequent failure process, the increased normal stress on
facets neighbouring the flaw being sufficiently large that, with few exceptions, they were
the only facets to fail. As the size of the dominant flaw increased, there was a corresponding
increase in the computational effort required to check for failure of adjacent facets, and to
redistribute the stresses accordingly. Towards the end of each simulation, the computational
time required to advance the failure process became quite large.

4. Results

For each set of the parametersα andρ chosen, 100 simulations were conducted as described
in the previous section. The existence of a contiguous region composed of a critical number
of failed facets was chosen as the failure criterion. For each set of parameters, the CDFs
for the time-to-failure and the percentage of failed internal facets as a function of time
were calculated. The fraction of failed facets were then later averaged over each of the
simulations, as a function of time normalized by time-to-failure, to obtain an overall estimate.

Values of α = 0.25, 0.5 and 1 were assumed, which correspond, respectively, to
coefficients of statistical variation (CVs) of 831%, 224% and 100% in the facet failure
times. In addition, the ratioγ /σe was taken to be unity, whereσe is the remote applied
stress.

Although the parameterρ strictly controls the sensitivity of the grain boundary failure
time to the facet normal stress, it must bear some approximate relation to the exponent
in the power-law dependence normally observed between applied stress and failure time
in time-dependent, intergranular failure in polycrystalline materials. Most metals, and
some ceramics, have values of this exponent in the range 5–12. Moreover, there exists
a fairly wide range of ceramics which have creep exponents in the range 1–3, e.g. [31–34].
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Assuming that these materials obey the Monkman-Grant relation, as is the case with a good
many, if not most, ceramic materials [35], a similar power-law dependence of stress upon
failure time can be expected. Hence, values ofρ = 1, 5, 10 and 15 are assumed.
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Figure 4. Simulated CDFs for normalized time-to-failure asρ varies, whileα is fixed.

Figure 4 shows the computed CDFs for the probability of failure versus the normalized
time-to-failure tf /β0, whereβ0 = (σe/γ )ρ = 1, plotted on Weibull probability paper, for
a matrix of 1729 grains. Figure 4 shows the parametric effect asρ varies whileα is
fixed at 0.5. Because the simulated data are nearly linear on Weibull paper, it is clear
that the failure times are well approximated by a Weibull CDF. The median normalized
times-to-failure are approximately 0.22, 1.81, 36.20 and 379.89 forρ = 1, 5, 10 and 15,
respectively. Clearly, the power-law breakdown exponentρ has a significant effect on the
time-to-failure. The CVs in the failure times are approximately 12%, 13%, 17% and 32%
for ρ = 1, 5, 10 and 15, respectively, which is far less than the CV of 224% for the failure
time of an isolated grain boundary forα = 0.5. As ρ increases, the CV also increases,
albeit somewhat slowly. It should be noted that whenρ = 15, the Weibull CDF becomes
a questionable approximation to the actual CDF. Asρ increases, the scatter increases, and
the Weibull approximation for the CDF for the time-to-failure is even less appropriate.

Figure 5 is similar to figure 4, except that hereρ is held constant while the Weibull
shape parameterα is allowed to vary. The median of the normalized times-to-failure are
approximately 0.14, 1.81 and 9.69 forα = 0.25, 0.50 and 1.00, respectively. The CVs
in the failure times are approximately 24%, 13% and 7% forα = 0.25, 0.50 and 1.00,
respectively. Thus, asα decreases, so that the underlying scatter increases, the scatter in
the times-to-failure also increases. Again, the CDFs are greatly influenced by the underlying
shape parameterα.

Figure 6 shows a plot of the fraction of failed internal grain boundary facets, as
a function of time nondimensionalized by the time-to-failure, averaged over all of the
appropriate simulations. It is clear that higher values ofρ lead to the failure of a fairly
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Figure 5. Simulated CDFs for normalized time-to-failure asα varies, whileρ is fixed.

large number of facets early in the lifetime of the specimen, while the lower values ofρ

yield a relatively steady progression of facet failures throughout the lifetime of the specimen.
This phenomenon results from the fact that higher values ofρ lead to an increased sensitivity
of facet failure times to grain boundary normal stress. Hence, facets normal to the applied
stress, which have the higher initial stress, tend to fail prior to the oblique facets. This
is evident in the nearly horizontal nature of the curve forρ = 15. After the normal
stress on the oblique facets becomes sufficiently large due to the failure of surrounding
normal facets, the oblique facets begin to make a substantial contribution to the failure
process. In contrast, whenρ is small, the damage progresses by the intermittent failure
of both horizontal and oblique facets on a roughly equal basis. As an illustration of this
phenomenon, the percentage of failed facets which are horizontal for one representative set
of simulations is 31%, 60%, 74% and 90% forρ = 1, 5, 10 and 15, respectively. The
influence ofα for fixed ρ was relatively minor, with the averaged fraction of failed facets
being primarily dominated by the power-law exponentρ.

As was noted earlier, the critical flaw criterion is not the only possible failure criterion
that one might consider. Another is that failure may be deemed to have occurred when
a cross-sectional area normal to the loading axis becomes sufficiently weakened. Such a
criterion effectively prevents failure due to an oblique flaw. Specifically, the matrix is
assumed to have failed when the total number of failed facets within any 1- to 2-layer cross
section exceeds 150, with no restriction that the failed facets be contiguous. Note that,
for the matrix of 1729 grains, the maximum number of facets in a layer is 581, excluding
duplications. This criterion differs from the critical flaw criterion used previously, in that
no critical flaw size is assumed. Moreover, with this criterion failure is restricted to planes
normal to the loading axis, which is not the case with the critical flaw criterion. These two
criteria approximately represent the extremes of the range of types of failure which have
been observed experimentally, i.e. failure surfaces range from very irregular to essentially
planar. Therefore, depending on the application, either of the criteria may be suitable.
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Figure 6. Ratio of failed grain boundary facets to total number of interior facetsvs. fraction of
total life.

Separate simulations using this failure criterion were conducted. The CDFs for the
resulting times-to-failure using this criterion essentially have the same appearance as those
shown in figures 4 and 5. Nevertheless, the parameters of the CDFs are quite different. For
ρ = 1, 5, 10 and 15, the median normalized times-to-failure are approximately 0.05, 0.31,
0.92 and 1.14, respectively, with the corresponding CVs being approximately 12%, 11%,
13% and 13%. Likewise, forα = 0.25, 0.50 and 1.00, the medians are approximately 0.01,
0.31 and 0.97, respectively, with corresponding CVs of 22%, 11% and 7%. The times-to-
failure are much smaller for this criterion than for the previous criterion. When 150 facets
had failed in some 1- to 2-layer cross section, the maximum number of contiguous failed
facets was typically less than 10. The fraction of failed facets as a function of time is not
very sensitive to the value ofρ for this failure criterion. In fact, allowing for the lack of
accuracy from the simulations, plots oft/tf against average fraction of failed facets for
different values ofρ are nearly identical. The influence ofα is roughly the same for both
criteria. The primary conclusion to be drawn from this comparison is that, not surprisingly,
the failure behaviour is quite sensitive to the particular failure criterion employed. Thus,
great care must be given to the selection of a realistic failure criterion.

The results discussed so far have been obtained using a perfectly-packed cubic array of
1729 (103 + 93) grains. Naturally, the question of size effect arises. In order to investigate
this question, separate sets of simulations have been conducted with arrays containing
189 (53 + 43) grains, 559 (73 + 63) grains and 6119 (153 + 143) grains, forρ = 5 and
α = 0.25, 0.50 and 1.00. Figure 7 is a plot of matrix size versus the 63.21 percentile for
the times-to-failure (the time by which 63.21% of the assemblages will have failed). At
least for this range of sizes, the size effect may be estimated by a power-law relation of the
form

tf = cN−1/β
m

whereNm is the total number of grains in the matrix,c is an appropriate scaling constant
and β is the shape parameter which may be estimated from the slope of the lines on
figure 7. It is interesting to note that the power-law size-effect scaling is typical of
weakest-link behaviour in which the underlying CDF is a two-parameter Weibull CDF [36].
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Figure 7. Size effect on 63.21 percentile of times-to-failure, failure defined by 150 contiguous
failed facets.

Thus, it may be reasonable to approximate the central tendency of the time-to-failure by a
Weibull CDF.

The weakest-link scaling for the central tendency of the time-to-failure suggests that
the material may act in a weakest-link manner over the entire CDF; such behaviour has
been observed for composite materials [29, 37]. LetW(t) be a nondegenerate CDF which
is characteristic of the underlying probability structure of the material failure time. For
composite materials, the equivalent CDF toW(t) has been shown to be the limit distribution
of a stochastically ordered sequence of CDFs. No such analysis exists for the current
three-dimensional structure; however, the weakest-link assumption can be evaluated by
considering the simulated CDFs from the four different sizes of arrays. LetGNm(t) be the
CDF for the time-to-failureTNm of an array ofNm total grains. The weakest-link assumption
is given by

GNm(t) = Pr{TNm 6 t} = 1 − [1 − W(t)]Nm (10)

or by

W(t) = 1 − [1 − GNm(t)]1/Nm (11)

which is the reverse weakest-link scaling. Weibull probability paper is well suited to
observing the behaviour of (10) or (11) because the standard Weibull transformation [37]
implies that

ln[− ln(1 − GNm(t))] = ln(Nm) + ln[− ln(1 − W(t))]. (12)

If W(t) were known, thenGNm(t) could be easily determined for any sizeNm. In fact,
W(t) andGNm(t) are simply related by shifting the vertical scale on the Weibull probability
graph by ln(Nm). Unfortunately,W(t) is not known, andGNm(t) has been estimated only
through simulations. Even so, rewriting (12),

ln[− ln(1 − W(t))] = − ln(Nm) + ln[− ln(1 − GNm(t))]
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implies thatW(t), in turn, could be determined by suitably shifting the scale forGNm(t), if
(10) or (11) is indeed applicable. Figure 8 shows the simulated CDFs for the four different
sizes of arrays after the appropriate vertical scale shift. The similarity of the simulated
values is striking. Each solid line is an estimation ofW(t) fit through the rescaled simulated
values. The general trend is quite similar to that observed for composite materials [29].
However, this observation is purely empirical, and currently there is no way to describeW(t)

analytically. In reality,W(t) is a complicated function of the three-dimensional geometry
and load-sharing rule, the underlying probabilistic nature of the facets, and the assumed
mechanism for facet failure. On the other hand, lacking any other means of extrapolation,
the empirical estimations forW(t) may be quite reasonable for large arrays.
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Figure 8. Weakest-link scaling of simulated CDFs and an estimate for the characteristic CDF
W(t).

5. Discussion

A probabilistic model has been developed for time-dependent intergranular failure in three-
dimensional polycrystalline arrays, a failure mode typically associated with materials in
elevated-temperature service. The basic assumption of the model is that failure is governed
by the grain boundary facet normal stress, and that the time-to-failure of each individual
facet is a random function of this quantity. A simple approximate method for calculating
the load shed by failed facets and a reasonable choice of failure criterion complete the
model. Despite the simplicity of the ingredients, the result is a computationally complex
model whose statistical behaviour can only be inferred through simulation techniques.

The most prominent of the predictions of the model is the scatter in the predicted times-
to-failure. Calculated coefficients of variation for the failure times range from 7% up to
32%. To compare these values with experimental observation, one may refer to the relatively
small amount of replicated time-dependent failure data for metals and ceramics, e.g. [1, 4].
A set of replicated creep rupture data for AISI type 316 stainless steel at 593◦C [1], for
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example, exhibits coefficients of variations for the failure times of the order of 25–55%. A
more recent and extensive data set for hot isostatically pressed silicon nitride [4] indicates
much higher coefficients of variation, which range from 67% to 205%, depending upon
the temperature and the stress level. Allowing for the fact that at least a fraction of the
observed scatter must have resulted from random variations in experimental conditions, e.g.
[3, 38], the predictions of the model appear to be in reasonable agreement with the type
316 stainless steel data, although indicating less scatter than that observed in the silicon
nitride data. It is worth noting, however, that the inclusion of additional random features
in the model, such as randomly-shaped grains, would be likely to increase the degree of
scatter predicted by the model.

The average fraction of the failed facets as computed here is essentially identical to
the Ac damage parameter proposed by Cane and Townsend [39] and Shamas [40], apart
from the fact thatAc is typically measured on planar sections, while the quantity calculated
here is derived from a full three-dimensional calculation. It is also closely related to the
ρ damage parameter of Riedel [41]. For values ofρ in the range 1–5, the predicted
variation of the average fraction of failed facets with time, as shown in figure 6, bears a
reasonable resemblance, both in a qualitative and a qualitative sense, to experimental data
due to Shamas for the variation ofAc versus time quoted by Riedel [41]. Of particular
interest is the fact that the Shamas data indicate failure at a value ofAc of approximately
0.4, while the failure criterion adopted for the present model typically results in failure
at a value of approximately 0.2, regardless of the value of the parameterρ (except for
very highρ values). Riedel [41] has estimated that anAc value of 0.2 corresponds to the
expenditure of 75–90% of the specimen lifetime. Thus, it is concluded that the critical flaw
failure criterion adopted here results in predicted failure times that are somewhat below
experimentally observed values, but not unreasonably so.

It is interesting to note that the model predicts the existence of a marked size effect upon
times-to-failure. For the range of sizes considered, the failure times scale with size in a
manner similar to that predicted by weakest-link failure models. However, the characteristic
CDF, which depends on the three-dimensional geometry and failure mechanism, the material
parameters, and the damage evolution, is entirely empirically estimated. Clearly more effort
is warranted, if this observation is to be widely applicable.

Unfortunately, there does not appear to be an equivalent study using, for example, a
regular hexagonal grain structure in two dimensions, with which the present work can be
directly compared. Thus, it is difficult to make a direct assessment of the effects of three-
dimensionality in the present model. However, it is suspected that these effects are more
likely to be quantitative than qualitative, and that, for example, the basic form of the failure
time distribution would be altered little in a two-dimensional model. Nevertheless, fairly
substantial differences in computed values may be expected. This supposition remains
to be verified. On the other hand, this three-dimensional model introduces additional
degrees of freedom in the growth of damage which cannot be captured in two-dimensional
models. The load-sharing rule is necessarily more complex, and the failure criterion is
not as straightforward as in a two-dimensional model. Again, these effects require further
investigation.

Undoubtedly, the part of the proposed model most amenable to improvement is the
approximate model adopted for the redistribution of the load shed from failed grain boundary
facets to adjacent, unfailed facets. Here a simple load-sharing rule, similar to that used
in the analysis of random fibre failures in composite materials, e.g. [28–30], has been
used, and any possible effects of grain boundary sliding or grain deformability have been
ignored. Thus, only the rough features of what must be in reality a very complicated
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process can be modelled. Unfortunately, more detailed descriptions of three-dimensional
grain boundary facet stresses, such as those given by Anderson and Rice [12], and more
recently by Rodin [42], still seem to be well beyond the bounds of analytic or computational
feasibility for the complex, nonsymmetric situation considered here. In this regard, one may
cite the recent results of van der Geissen and Tvergaard [11], who carried out detailed
numerical studies of an irregular deforming grain structure with random intergranular
cavitation. However, the system considered by these authors was limited to a 5× 6 two-
dimensional structure. In contrast, the simplifications introduced in the present model allow
one to consider systems consisting of thousands of three-dimensional grains. Moreover, the
predictions of the model seem to be, in most cases, in reasonable accord with available
experimental data. This leads one to believe that the simple model proposed here captures
most of the gross trends exhibited by this complex phenomenon.
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Appendix

Attention is focused upon the string of horizontal and oblique facets shown in figure A1, in
the sequence h-o-h-o-h and numbered from left to right. Until the first facet fails, each facet
supports a constant loadPi(0) given by Pi(0) = σeAi , whereσe is the remote stress and
Ai is the horizontal projection of the area of faceti. With the assumed loading orientation
that is shown in figure 2, we have thatσh = σe andσo = σe/3. The simulation algorithm
proceeds as follows:

1

2

3

4

5

Y

View from (1, 0, 1) direction.

Figure A1. Five contiguous facets to demonstrate simulation procedure.

(1) Simulate the standard random exponential variablesZw associated with these facets.
Let ui be a random number selected from the uniform CDF on the unit interval. Then
Zi = − ln(1 − ui). Assume that this process yields the five valuesZ1 = 1.37, Z2 =
0.97, Z3 = 1.93, Z4 = 1.03 andZ5 = 3.58.

(2) The key to the simulation is the solution for the appropriate time-to-failure in terms
of the simulated standard exponential RVs and the hazard function as given in (6). The
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primary equation is

(Zi)
(1/α) =

∫ Tw(i|i1,...,ij )

0

(
σw(s)

γ

)ρ

ds

whereTw(i|i1, i2, . . . , ij ), w = h (horizontal) or o (oblique), is the time-to-failure of faceti,
given that facetsi1, i2, . . . , ij , which lead to an increase in load on faceti, have failed.
Prior to the first facet failure, the above equation can be solved to obtain

Tw(i) = (Zi)
(1/α)

(
γ

σw

)ρ

=


(Zi)

(1/α)

(
γ

σe

)ρ

w = h

(Zi)
(1/α)

(
γ

σe/3

)ρ

w = o.

The first time-to-failureT1 is the minimum of all of the computed times above, i.e.

T1 = min
16i6N

(Tw(i))

whereN is the total number of facets. In order to complete the numerical example, assume
that α = 1/3 and ρ = 2.0. Recall that the time can be nondimensionalized by setting
(σe/γ )ρ = 1, and this is used throughout this example. Thus, for the sequence of five
horizontal and oblique facets,Th(1) = 2.57, To(2) = 8.21, Th(3) = 7.19, To(4) = 9.83, and
Th(5) = 45.88. Hence,T1 = 2.57, and it occurs at facet 1, which is horizontal.

(3) Facet 1 is now assumed to have failed at timeT1, and the load carried by this facet
is redistributed to the eight adjacent oblique facets. Recall thatAo/Ah = 1.5. Thus, the
vertical load on facet 2 becomes

P2(1) = P2(0) + P1(0)

(
Ao

8Ao

)
= σe

(
Ao + Ah

8

)
= 13

12
σeAo

and the normal stress on facet 2 becomes

σ2(1) = 1

3

(
P2(1)

Ao

)
= 13

12
σo = 13

36
σe.

Note that the normal stress on facets 3, 4 and 5 remains the same, since they are not adjacent
to any failed facet.

(4) The next step is to recompute the time-to-failure for those facets which experience
an increase in load. This computation must take into account both the magnitude of the
load increase and the times at which these increases occurred. For those facets which
do not experience an increase in load, the times-to-failure remain the same as previously
computed. However, the time-to-failure for the facets that experience an increase in load
must be reduced appropriately. Thus, the solution from step (2) becomes, from equation (8),

Tw(i|i1) = T1 +
(

Z
1/α

i − T1

(
σi(0)

γ

)ρ) (
γ

σi(1)

)ρ

.

For the present example, the new time-to-failureTo(2|1) may be found by computing

To(2|1) = 2.57+ (0.973 − 2.57(1/3)2)(36/13)2 = 7.38.

The second time-to-failureT2 is the minimum of all of the facet failure times, including both
those which have experienced increases in load and those that have not. HenceT2 = 7.19
from facet 3 in the example.

(5) The new stress distribution is computed again as in step (3) after facet 3 has failed
at T2, and the process is repeated. The vertical loads on the three remaining facets are

P2(2) = P2(1) + P3(1)

(
Ao

8Ao

)
= σe

(
Ao + Ah

4

)
= 7

6
σeAo
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P4(2) = P4(1) + P3(1)

(
Ao

8Ao

)
= σe

(
Ao + Ah

8

)
= 13

12
σeAo

P5(2) = P5(1) = σeAh

and the corresponding normal stresses are

σ2(2) = 7

6
σo = 7

18
σe σ4(2) = 13

12
σo = 13

36
σe σ5(2) = σh = σe.

The adjusted time-to-failure for facet 2 is found from (8) as

To(2|1, 3) = T2 +
[
Z

1/α

2 − T1

(
σ2(0)

γ

)ρ

− (T2 − T1)

(
σ2(1)

γ

)ρ] (
γ

σ2(2)

)ρ

= 7.19+ [0.973 − 2.57(1/3)2 − (7.19− 2.57)(36/13)2](18/7)2

= 7.35

Likewise,

T0(4|3) = 7.19+ (1.033 − 7.19(1/3)2)(36/13)2 = 9.44.

The third time-to-failureT3 is the minimum of{7.35, 9.44, 45.88}, which corresponds to
facet 2. Again, there is load redistribution after facet 2 has failed atT3, and the failure times
are recomputed for those facets with the increased loads. The increase in vertical load on
facet 4 is given by

P4(3) = P4(2) + 1P4(3)

and a recursive process of load redistribution, similar to that described previously, yields

1P4(3) = 1P 3
4 /(1 − 2r)

where1P 3
4 = rP2(2) and nowr = 1

8(Ah/(4Ao + 2Ah)) = 1
64. Thus, the normal stress on

facet 4 becomes

σ4(3) = 13

12
σo + σo

(
7
6

) (
1
64

)
1 − 2

(
1
64

) = 205

186
σo = 205

558
σe

while the stress on facet 5 remains the same. The adjusted time-to-failure for facet 4 is
given by

To(4|3, 2) = T3 +
[
Z

1/α

4 − T2

(
σ4(0)

γ

)ρ

− (T3 − T2)

(
σ4(2)

γ

)ρ] (
γ

σ4(3)

)ρ

= 7.35+ [1.033 − 7.19(1/3)2 − (7.35− 7.19)(13/36)2](558/205)2

= 9.37.

Observe thatσ4(1) does not appear in the above equation. This is because facet 1, which
was the first to fail, does not cause any further increase in the load on facet 4.
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