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Abstract .  We estimate the number and locations of bioelectric sources in a hor- 
izontally layered volume conductor. By modelling the extracellular medium as an 
equivalent filter, the location estimation problem becomes one of estimating param- 
eters of this equivalent filter, given cursory knowledge of the functional form of the 
desired sources. The new procedure (1) is computationally efficient, (2) accurately 
models noise effects on the location estimates, and (3) automatically regularises noisy 
data. Numerical results are presented, and the Cramer-bo bound for depth esti- 
mation is derived. 

1. Introduction 

The location estimation problem for bioelectric sources can be formulated as follows. 
Given some knowledge of the functional form of two-dimensional bioelectric sources at  
unknown locations in a horizontally layered volume conductor with known structure, 
and measurements of the resulting extracellular field in a plane parallel to the sources, 
determine the number and locations of any sources present. 

This problem is of interest in cardiology. Healthy cardiac muscle consists of mul- 
tiple active layers. After a myocardial infarction many of the layers are dead. The 
problem of determining which, if any, layers are still active can be formulated as such 
a location estimation problem. 

Di Persio and Barr [l] presented a solution to  a related one-dimensional inverse 
problem. By utilising a template matching algorithm, they were able to estimate 
the location of an action potential along a strand. Oostendorp and Oosterom [2] 
treated the general problem of multiple dipole sources in an arbitrary inhomogeneous 
medium, but this formulation requires a boundary element integral, resulting in a 
huge nonlinear least squares problem. And the Gabor-Nelson equations [3] can only 
be used to find a single dipole inside a homogeneous volume conductor; our formulation 
permits multiple sources in inhomogenous (layered) media. 

The new method proposed here uses the medium filter formulation of [4,5] to 
transform the location estimation problem into one of estimating the parameters of an 
unknown filter. We formulate this as a composite multiple-hypothesis testing problem, 
which can be solved using an extension of well known procedures in communication 
theory [6]. This provides numerically efficient solutions of arbitrary source estimation 
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problems, easily handling cases of both single and multiple sources with arbitrary 
locations and orientations. 

In [4,5] the solution to  the two-dimensional volume conductor forward and inverse 
source estimation problems was facilitated by modelling the extracellular media as 
an equivalent filter. The problem treated there was as follows. Given the location of 
a bioelectrical source, the structure of the extracellular medium, and potential mea- 
surements at  the surface of the medium, compute the functional form of the unknown 
source. Note that in this paper we consider a different problem: given the functional 
form of the bioelectrical source, the structure of the extracellular medium, and poten- 
tial measurements at the surface of the medium, compute the location of the unknown 
source. 

Bioelectrical sources have been modelled as current source densities, as in [7], 
transmembrane potentials, as in [8], and as evoked extracellular potentials, as in [4,5]. 
These formulations can be related to each other. Evoked extracellular potentials and 
transmembrane potentials have been related to current source densities by, among 
others, the authors of [9,10]. Linearity of the medium implies that a given source 
type corresponds to  a unique source of each other type, to  within an additive constant 

This paper uses extracellular potentials in its presentation; current source densities 
or transmembrane potential source representations can also be used. The only differ- 
ence is that  the medium filter is different for each source type (see the appendices); 
the medium filters for transmembrane potentials and current densities are obtained 
from the medium filter for extracellular potentials by multiplication by an additional 
function (see appendices B and C). 

Several numerical examples of the algorithm, using extracellular potentials as 
source functions in a homogeneous media, are also provided. Estimation of loca- 
tions and orientations of single and multiple active layers are considered separately. 
The Cramer-Rao bound for depth estimation of a single active layer is derived and 
discussed. 

PI. 

2. Problem formulation 

2.1. Assumptions 

We make the following assumptions, following [5]: 

1. The tissue acts as a synctium, so that individual cell contributions to the source 
functions need not be considered separately. This equivalent cell assumption has been 
used by many authors [7,8,11]. 

2. The extracellular medium is linear and consists of horizontal, anisotropic, elec- 
trically passive layers with known conductivities and thicknesses. 

3. The problem is quasistatic, implying that the medium has negligible reactance 
and propagation delay. Thus all potentials are computed at  an instant in time. The 
quasistatic assumption ensures that each sample will be independent of the other 
samples [12]. 

4. All sources can be modelled as two-dimensionally distributed potentials lying 
in the plane of the layers of the medium. The spatial extent and average amplitude 
of each source is known; otherwise the sources are unknown. 
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All of the above assumptions are physiologically reasonable [lo], except for the a 
priori knowledge of the extent and average value of each source. This information is 
needed so that the unknown sources can be matched filtered (see below). However, the 
effects of the intervening medium must be included. In order to  do this, the medium 
is modelled as an equivalent filter. 

Throughout this paper S ( I ,  y ,  d, y‘, z’) is the two-dimensional source potential. 
s(z, y) is a known two-dimensional function; (z’, y‘, z’) is its unknown translation 
from the origin. 4 ( x ,  y, x’, y’, z ’ )  represents the observed potential at the surface z = 0 
of the volume conductor due to s(z, y, x‘, y‘, z’) ,  and r ( x ,  y ,  d, y’, z’) is 4(z, y, z’, y’, 2’) 
plus white Gaussian noise. Fourier transforms of these quantities are denoted using 
capital letters, e.g., 

2.2. Eflect of source depth 

In [4,5] it is shown that the observed potential +(z, y, d, y’, 2’) is related to the source 
potential s ( x ,  y ,  d, y’, z’) by 

1 
- - - / / s(k,, k,, d, y’, z ’ ) H ( k , ,  k,, z’)e-ikzxe-ikyY dk, dk,. 

The medium filter H ( k , ,  k , , z ’ )  represents the filtering action of the medium; 
H ( k , ,  k, , z ’ )  for homogeneous and layered media are specified in the appendix. Note 
that the depth z’ of the source must be known to evaluate the medium filter; hence 
z’ affects the observed potential +(z, y, d, y’, z’) through H ( k , ,  ky,z’) .  

2.3.  Effect of source lateral location 

The effect of lateral position (x’, y’) of the source is as follows. In the spatial frequency 
domain, shifting the source function in x by an amount x‘ becomes multiplication by 
e-jk,x’ , and similarly for y. If the source were actually located at  the surface of the 
volume conductor, so that z’ = 0, then the relation between the known function s(z, y) 
and the actual source potential s(z, y, x‘, y’, 0) in the wavenumber domain would be 

Combining the effects of depth z’ and lateral location (d, y’) of the source on the 
Fourier transform of the observed potential @(kc, k,, d, y’, 2’) yields 

which relates the observed potential @( k,, k, , d, y‘, z’) to the known functional form 
S(k,, k,) of the source. The problem is now to estimate the unknown location param- 
eters (d, y’, 2’). 
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3. Estimation of the location of a single source 

Equation (4) shows that the filtering interpretation of the volume conductor has trans- 
formed the location estimation problem into a signal parameter estimation problem. 
The solution to  these types of problems has been extensively studied and is well un- 
derstood. In general, the maximum likelihood estimate of a parameter vector A in 
a signal s ( t ,  A)  given noisy observations r ( t )  of s ( t ,  A) plus additive white Gaussian 
noise of strength N o / 2  is found by maximising 

over the vector space spanned by A [6]. In the present problem, Parseval’s theorem 
transforms the spatial integrations over z and y into wavenumber integrations over I C ,  
and IC,, so that equation (5) becomes 

which is to  be maximised over the location vector (z’, y’, t’). Note that in the second 
term the magnitude of the translation term is unity, so that it may be omitted; also, 
the strength N0/2 of the observation noise is irrelevant. Here R(lc,, IC,) is the Fourier 
transform of noisy observations of the potential at the surface of the volume conductor; 
in the noiseless case R(t,, IC,) = @(IC,,  IC,, z’, y’, t’). 

4. Estimation of the number and locations of multiple sources 

To extend the results of the previous section to the case of multiple sources at vari- 
ous possible known depths, the parameter estimation algorithm must be augmented 
with a composite multiple-hypothesis test [6]. This is a case of significant interest in 
cardiology (see section 1). 

4.1. Assumptions 

To formulate the problem, we assume the following. 

1. Sources can only exist at  certain known depths ti, with unknown location 
(xi, yi) at each depth. If a source exists at depth ti, the ith layer is said to be ‘active’. 
Sources may exist at some or all of the possible depths ti. 

2.  If a source exists at  a particular depth, its orientation is known (the method 
can be extended to sources with unknown orientation; see section 5). 

3. The a priori probability that the ith layer is active is 0.5. This implies that 
the number of active layers will be a binomial distribution with mean N / 2 ,  which 
is reasonable; without this assumption the problem involves much more computation 
(though it can still be solved). The event that the ith layer is active is independent 
of the event that the j t h  layer is active. 
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4. The goal is to minimise the probability of error in choosing the active layers, 
while computing the maximum likelihood estimates of the locations of the source in 
each active layer. 

Now the problem can be formulated as a composite multiple-hypothesis minimum- 
error probability test, with each hypothesis corresponding to a particular combination 
of active depths. This means that for each hypothesis, the locations of the sources are 
estimated, and then the most likely hypothesis given the estimates is chosen. If there 
are N possible active layers, then there are 2N hypotheses. 

4.2. Likelihood function for multiple sources 

Equation (6) is based on the use of equation (2) to  compute the observed potential 
due to a single source. Since the medium is assumed to  be linear, superposition can 
be used to  extend equation (2) to multiple sources. Then the observed potential 
+(t,y) at the surface of the volume conductor due to N active layers (i.e. N sources 
{Si(k,,ky, 21, y;, zi), i = 1,.  . . , N} at depths {zi, i = 1, .  . . N}) is given by: 

where N is the number of sources and ( $ 2 ,  yi, zi) is the location of the ith source. 
Note that 4(z, y) depends implicitly on {(xi, yl, za) ,  i = 1,. . . , N}; however, we do not 
explicitly indicate this dependence. 

Let Hil, iz , . .  ,i” i j = 0 or 1, represent the hypothesis that the layers corresponding 
to i j  = 1 are active. By assumption 3 these hypotheses will be equally likely a priori. 
Let {(xi, y i ,  zj), i j  = 1) be the locations of the active sources, and let R(k,, ky) be the 
Fourier transform of noisy observations of +(z, 9) .  Then the log-likelihood function for 
minimum-error probability detection with equal a priori probabilities can be found 
by inserting the right-hand side of equation (7) into equation (6). The result is: 

For each of the 2N sets of { i l ,  . . . , i N } ,  this is maximised over {(xj, ~ ) ,  i j  = 1) (recall 
that the depths zi are all known a priori). Then the maximum of the resulting 2N 
numbers is found; the corresponding hypothesis Hil,il,,,,,iN denotes which layers are 
active. The previously computed locations {(xi, y;), i j  = 1) for that hypothesis then 
denote the locations of the source in each active layer. 
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5. Estimation of source orientations 

Given knowledge of the functional form (and implicitly the orientation) of bioelec- 
tric sources at unknown locations, their presence and locations can be estimated as 
above. This can be extended to estimation of additional parameters for the sources; 
for example, their functional forms can be parametrised, and the unknown parameters 
estimated as was the location above. In this section we extend the above results to 
include orientation of the source as an additional parameter to be estimated. 

We consider the single-source case first, so that we have a single source at  unknown 
location (d, y’, z ’ )  at an unknown orientation B .  Since the two-dimensional Fourier 
transform of a rotation in the spatial domain is an identical rotation in the frequency 
domain, the Fourier transform @(IC,, IC,, z’, y’, r’, 0) of the observed potential is: 

@(IC, , IC, ,~’ ,~‘ ,  z’,e> = ~ ( ~ ~ , , ~ , , ~ ’ ) e - ’ ~ : , ’ e - ~ ~ ~ y ’ ~ ( k l , k k )  (9) 

IC: = IC, cos B + IC, sin B 

where [IC:, IC;] is [IC,, ICy] rotated by angle 8, so that 

IC: = -IC, sin B + IC, cos 8.  (10) 

Note that H(IC,, IC,, z ’ )  is invariant under rotation (see appendix A). Substituting this 
into equation (6) results in 

l n N R ( L  ‘“J, (4 Y’, z’ ,  q1 
= 

Jm No -m 
R(k,,  IC,)S(IC, cos B + IC, sin 0, -IC, sin 6 + IC, cos e )  

H(k, ,  IC,, z/)e-ix‘(k,cosB+kysin8)-iy’(k,cos8-k, s i n e )  dk dk 
X Y  

- /I /I IS2(IC, cos B + k, sin 0, - I C ,  sin B + IC, cos 6)1 
No - 

x H2(k,,IC,,z’)dkxdky. (11) 

which is maximised over (z’, y’, z ’ ,  6). Note that in the second term the magnitude of 
the translation term is unity, so that it may be omitted. Also note that this method 
can be extended in a straightforward manner to the case of multiple active sources, 
as in section 4.2 .  

6. Numerical results 

To evaluate the new technique, several numerical simulations were performed. The 
‘measurements’ were simulated using the medium filter formulation of [4,5], using the 
test cardiac action potentials of [4,5],  which is a two-dimensional version of the test 
action potential given in [ll]. These action potentials are of larger spatial extent than 
could be observed at a single instant; the method of sequential sampling, discussed in 
[4,5],  allows the entire action potential to be observed. This technique works unless 
the samples are taken along a line exactly parallel to  the direction of propagation of 
the action potential; as long as there is a non-zero component along the sampling line 
the technique works. 
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The following example problems were simulated. 

1. Estimation of location of a single action potential with known orientation. 
2. Estimation of number and locations of active layers. 
3. Estimation of location and orientation of a single action potential. 

All measurements were made in homogeneous tissue with isotropic conductivity. 
The simulated measurements included additive white Gaussian noise, at  signal-to- 
noise ratios of 20, 10, 6 ,  3 and 0 dB. All integrals were evaluated using the trapezoidal 
rule. The 2D Fourier transforms were computed using a 256 x 256 discrete Fourier 
transform, zero-padded to  prevent aliasing. 

In the matched filter expressions, the following crude estimate of the functional 
form of the unknown sources was used: 

Here rect(s,, sy , VRMS) is a two-dimensional rectangulw pulse of spatial extent s, by 
sy, and amplitude VRMs. Even though this function represents a gross approxima- 
tion to the functional form of the unknown sources, it proved to be quite effective. 
This fortunate result can be explained by noting that the matched filter expressions 
weight the lower spatial frequencies of the measurements more heavily than the higher 
spatial frequencies, since the higher frequencies are more severely attenuated by the 
volume conductor (and are therefore more severely corrupted by noise). Since the 
primary differences between this model and the actual source potentials are restricted 
to  relatively high spatial frequencies, a more accurate model would provide limited 
improvement. 

Example 1. The form of the action potential is shown in figure 1. This potential was 
shifted by an unknown translation; only its spatial extent s, = 20 cm, sy = 2 cm, the 
RMS voltage VRMs = -50 mV, and the fact that there was only one action potential, 
were known to the algorithm. Results are given in table 1. 

Figure 1. The two-dimensional test function used as a source potential for all the 
simulated experiments. The region 0 < y < 2 cm is representative of the extra- 
cellular potential induced by activated cardiac muscle. The region 2 cm < y < 4 cm 
represents inactive tissue. 
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Table 1. 

20 2.0, 4.0, 5.0 2.0, 4.0, 5.0 
10 2.0, 4.0, 5.0 2.0, 4.0, 5.2 

3 2.0, 4.0, 5.0 2.6, 3.2, 6.1 
0 2.0, 4.0, 5.0 3.4, 2.4, 7.3 

6 2.0, 4.0, 5.0 2.1, 3.8, 5.4 

Note that performance degrades with increasing noise, as expected. The threshold 
is at  a signal-to-noise ratio of about 4 dB; performance degrades rapidly below this 
point. 

We now discuss the Cramer-Rao lower bound for the variance of any unbiased 
estimator i for the depth z of the source. We assume additive white Gaussian noise 
with strength N ,  and a homogeneous medium. Using equation (2) ,  and the homoge- 
neous medium filter from appendix A, the Cramer-Rao bound is easily shown to be 
(see 161) 

where i is the estimate of depth z ,  k = (kz + k;)’/’ is the radial wavenumber, and 
S ( k ,  4 )  is the Fourier transform of the source potential in polar coordinates. 

The Cramer-Rao bound for depth illustrates several interesting points. 

1. As depth z increases, the weighting factor e-2kz decreases exponentially. Al- 
though this factor is inside the integral, this accounts for the presence of a performance 
threshold, and the rapid degradation of performance beyond it. 

2 .  The low-wavenumber components of the source potential are important, due 
to the factor of e-2kz , which attenuates high-wavenumber components of the source 
potential. This can also be seen in the likelihood function (6), in which the data are 
weighted by the medium filter H = e-kz.  This is reasonable, since these components 
are strongly attenuated by the medium, so that they are weaker relative to the noise. 

3.  However, very low-wavenumber components in the source potential are not 
helpful, due to  the factor of I C 3 ,  which attenuates very low-wavenumber components. 
This is reasonable since the medium has little effect on these components, so that they 
are less useful in estimating the depth z .  

Of course, mean-square error in depth estimation is not necessarily an appropriate 
measure of performance. Also, the Cramer-Rao bound is heavily dependent on the 
source potential characteristics. For these reasons, we believe a numerical comparison 
of the above results with the Cramer-Rao bound is not appropriate. 

Example 2. Action potentials of the form shown in figure 1 were located at two of 
five possible depths. The possible depths were 1, 2 ,  3,  5 and 8 mm below the surface; 
the actual active layers were 3 and 5 mm below the surface. For a signal-to-noise ratio 
of greater than SNR = 3,  the algorithm correctly picked out the two active layers; the 
unknown lateral locations of the two active layers were estimated as shown in table 2.  

Again the location estimation performance degrades with increasing noise, al- 
though the active layers were correctly determined in all cases with a signal-to-noise 
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Table 2. 

Actual (z’, y’) (cm, cm) Estimated (z’, y‘) (cm, cm) 

SNR 3 m m  layer 5 mm layer 3 mm layer 5 mm layer 

20 2.0, 4.0 1.0, 3.0 2.0, 4.0 1.0, 3.0 
10 2.0, 4.0 1.0, 3.0 2.2, 4.1 1.2, 3.1 
6 2.0, 4.0 1.0, 3.0 2.4, 4.3 1.5, 3.4 
3 2.0, 4.0 1.0, 3.0 3.0, 5.4 2.1, 4.3 

ratio of greater than SNR = 3. For SNR = 0,  the algorithm incorrectly picked out two 
additional active layers, specifically, the 1 and 2 mm layers. This makes evaluation 
for negative signal-to-noise ratios difficult. 

Example 9. 
action potential. Results are shown in table 3.  

Here example 1 was augmented with an unknown orientation of the 

Table 3. 

SNR Actual (z’, y’, z’, 8) 
(cm, cm, mm, deg) 

Estimated (z’, y’, z ’ ,  8) 
(cm, cm, mm, deg) 

20 2.0, 4.0, 5.0, 45 2.0, 4.0, 5.0, 45 
10 2.0, 4.0, 5.0, 45 2.2, 4.3, 5.2, 45 
6 2.0, 4.0, 5.0, 45 2.4, 3.7, 5.5, 56 
3 2.0, 4.0, 5.0, 45 2.9, 3.4, 5.9, 63 
0 2.0, 4.0, 5.0, 45 3.4, 3.3, 6.2, 63 

Note that the necessity of estimating an additional parameter degrades the location 
estimates from those of example 1. 

7. Conclusions 

An algorithm for the estimation of the number and locations of bioelectric sources in a 
horizontally layered volume conductor was presented. By modelling the extracellular 
medium as an equivalent filter, the location estimation problem was transformed into 
one of estimating parameters of this equivalent filter, given cursory knowledge of the 
functional form of the desired sources. The algorithm was shown to be effective even 
using a crude rectangular pulse estimate of the functional forms of the bioelectric 
sources; hence these functional forms need not be known a priori. The algorithm 
implements the matched filter in the spatial frequency domain; the data processing 
consists of a 2D Fourier transform. 

In principle, this approach could be extended to the computation of additional 
source potential parameters other than location and orientation. Unknown orientation 
could be added to the multiple active layer problem; source parameters such as rise 
time can also be estimated. However, performance is degraded as the number of 
parameters to be estimated increases (compare examples 1 and 3) .  The a priori 
probabilities of various layers being active can be assigned arbitrarily. This results in 
a straightforward generalisation of equation ( G )  (see [6]); however, this increases the 
computation substantially. 
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Appendix A 

The medium filters for extracellular potentials are as follows [4,5]. 

Homogeneous media 

For a homogeneous medium, the medium filter H(IC,, IC,, z )  is given by 

as in [4]. 
This is the solution of Laplace’s equation that satisfies the boundary conditions 

of agreeing with a specified source function on the plane t = 0 and decaying to  zero 
at  infinity. The two-dimensional Fourier transform of the potential observed at  the 
surface of a volume conductor due to a source at  depth z’ is then 

where S(k,, I C y )  is the two-dimensional Fourier transform of the source potential. 
Note that H ( k , ,  IC,,  t) is a low-pass spatial filter whose attenuation increases ex- 

ponentially with increasing distance and/or spatial frequency. Hence the effect of the 
volume conductor is to  attenuate and smooth the source potential, so that the higher 
spatial frequency components of the source potential are most severely corrupted by 
measurement noise. Consequently, regularisation in the form of low-pass filtering of 
the solution of the inverse problem of determining the source potential from the ob- 
served potential is required. 

La ye red media 

For layered media, the medium filter H(lc,, IC,,t) is given by 

where A, and Bn are functions of spatial frequency and are different in each layer of 
different conductivity. Using continuity of normal current density and voltage at each 
interface between layers, the An and B, in adjoining layers are related by [5] 

where U, and t, are the conductivity and thickness, respectively, of the nth layer. 
Conductivity discontinuities also result in attenuation of high spatial frequency com- 
ponents (smoothing) of the source potential. This is in addition to that induced by 
each layer itself. 

These filters relate the extracellular potential at the surface of an active structure 
to the extracellular potential in the surrounding medium. 
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Appendix B 

The medium filters relating transmembrane potentials to surface evoked extracellular 
potentials are as follows. 

We make the following assumptions as in [9,13]. 

1. The membrane is thin relative to  the dimensions of the equivalent cell and the 

2. The extracellular potential is the result of an impressed current density, normal 

3. The normal current density across the membrane is continous. 

The potentials on the inner and outer surface of the membrane are induced and 
related by the impressed current density. Therefore expressions for the medium filters 
for the regions both above and below the membrane are required. 

At the conducting boundary the normal current density is continous. Hence for a 
membrane at  z = a 

external media. 

to  the membrane. 

where Qi is the potential in the medium below the membrane, Go is the potential 
in the medium above the membrane, ui is the conductivity immediately below the 
membrane, and U, is the conductivity immediately above the membrane. 

Let Qsi be the potential at  the inner surface of the membrane, Q,, be the potential 
at the outer surface of the membrane, Hi be the medium filter for the region below the 
membrane, and H ,  be the medium filter for the region above the membrane. Note that 
Qi = HiQSi and Go = H,Qs,, and that Qsi and Q,, are not functions of depth z (the 
depth dependence is contained in Hi and H,). Then the interface current continuity 
relation (Bl )  can be rewritten as 

Then the transmembrane potential, defined as Qmem(k,, k y )  = Qsi(kz ,  k y ) - Q s o ( k z ,  kg), 
is related to  the potentid at the outer surface of the membrane by 

(B3) - - @mern('z, 'y)Hmem('z, 'y). 

Thus if bioelectric sources are modelled as transmembrane potentials, rather 
than extracellular potentials, H ( k , ,  ky, z )  from appendix A should be multiplied by 
Hmem(kz, ky ) throughout. 

Appendix C 

The medium filters relating current source densities to surface evoked extracellular 
potentials are as follows. 
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Using the assumptions of the previous appendix, the impressed current density in 
the membrane is related to  the potential in the extracellular medium by: 

where Ji is the impressed current density, assumed to be normal to the membrane. 

membrane by the extracellular medium filter from appendix A, this becomes 
Since the extracellular potential is related to the potential at the surface of the 

so that the filter relating the potential at the surface of the membrane to the impressed 
current density is 

Thus if bioelectric sources are modelled as current source densities, rather than extra- 
cellular potentials, H(lc,, IC,, z )  from appendix A should be multiplied by HCur,(k,, ") 
throughout. 
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