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Abstract. Numerical results of implementing a two-dimensional layer stripping algorithm
to solve the two-dimensional Schrodinger equation inverse potential problem are pre-
sented and discussed. This is the first exact (all multiple scattering and diffraction effects
are included) numerical solution of a multi-dimensional Schrédinger equation inverse
potential problem, excluding optimization-based approaches. The results are as follows:
(1) the layer stripping algorithm successfully reconstructed the potential from scattering
data measured on a plane (as it would be in many applications); (2) the algorithm avoids
multiple scattering errors present in Bomn approximation reconstructions; and (3) the al-
gorithm is insensitive to small amounts of noise in the scattering data. Simplifications
of layer stripping and invariant imbedding algorithms under the Born approximation are
also discussed.

1. Introduction

The inverse scattering problem for the Schrodinger equation in two dimensions with
a time-independent, local, non-circularly symmetric potential has many applications.
Two of these applications are as follows: (1) reconstruction of a three-dimensional
(3D) acoustic medium with density and wave speed varying in two dimensions (2D),
from surface measurements of the steady-state medium displacement response to
a harmonic line source [1}]; and (2) reconstruction of a 3D electrical medium with
resistivity varying in 2D from surface measurements of the potential resulting from a
line DC current source [2]. Both of these applications are quickly reviewed below in
section 2.1. :

Two major approaches for obtaining exact solutions of the 2D Schrodinger equa-
tion inverse potential problem have been proposed. The first is the 2D version of
the Gel'fand-Levitan and Marchenko integral equation methods [3]. The other is
the 2D version of the layer stripping differential methods [4]. Here ‘exact’ means
that all diffraction and multiple scattering effects are included in the mathematical
solution; errors in the solution will arise solely due to purely numerical effects such as
discretization and roundoff. Hence all methods based on the Born (single-scattering)
approximation are excluded here, since such methods, and their modifications, do not
take into account al/ multiple scattering effects. In section 2.4 we discuss how the
Born approximation applies to the algorithm of [4]. No numerical implementation of
the methods of either [3] or [4] has previously been reported.
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This paper presents the results of the first numerical implementation of the 2D
version of the layer-stripping algorithm of [4]. It is thus the first exact (as defined
above) numerical solution of a multi-dimensional Schrddinger equation inverse po-
tential problem. Note that optimization-based approaches minimize (or maximize)
some criterion; thus they are not in the spirit of the approach considered here. Al-
though only reconstruction of the Schrédinger scattering potential is considered here,
direct application to specific inverse scattering problems, as in [1] and [2], would be
possible.

This paper is organized as follows. In section 2 the 2D Schrddinger equation in-
verse potential problem is formulated, two applications are noted, the layer stripping
algorithm of [4] is reviewed, details of its numerical implementation are discussed,
and its simplification under the Born approximation is discussed. In section 3 the
invariant imbedding algorithm of [5] used to generate the scattering data is reviewed,
and details of its numerical implementation are discussed. We also discuss its simpli-
fication under the Born approximation, and show analytically that the Born-simplified
layer stripping algorithm successfully inverts the Born-simplificd invariant imbedding
algorithm scattering data. Although the latter result is new, it is intended primarily
to give some feel for the algorithms of [4] and [5]

Section 4 summarizes the numerical results, and presents some iliustrative ex-
amples. Issues illustrated include: (1) errors in reconstructed potentials using the
Born approximation, which are eliminated using the ‘exact’ layer stripping algorithm;
(2) effects on reconstructed potentials of various amounts of noise in the data; (3)
effects on reconstructed potentials of regularization of transverse derivatives in the
layer stripping algorithm; and (4) effects of choosing various discretization lengths in
the layer stripping algorithm. Section 5 concludes with a summary.

2. Two-dimensional layer stripping algorithm

2.1. Problem formulation and applications

The 2D inverse scattering problem considered in this paper is as follows. The problem
is defined in 2D (i, z) space, where z is lateral position and z is depth, increas-
ing downward from the surface z = 0. The wavefield p(z,z,k) satisfies the 20
Schrédinger equation

2 2
\%5-!-'0‘622 +k2—V(a:,z)) plz,z,k}=0 (2.1

where the potential V(z,z) is real-valued, smooth, and has support in z in the
interval 0 < 2 < L. It is also assumed that V(z, z) does not induce bound states; a
sufficient condition for this is for V(z, 2) to be non-negative.

The medium is probed by an impulsive plane wave e~'**, which passes through
the surface z = 0 at time ¢ = 0 and induces scattering by V(«,z) for ¢t > 0. The
scattering data consists of measurements of the wavefield p(z, z*, k) and its gradient
8p(x, z*, k) /8z for some 2* in the homogeneous half-space > > 0. For convenience,
we assume measurements are taken at the surface z* = 0, as they would be in the
applications to follow. The inverse scattering experiment is illustrated in figure 1.

We now quickly review wo applications of this problem. First, consider the prob-
lem of reconstructing a 3D inhomogeneous acoustic medium whose density p(z, z)
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Figure 1. The 2D inverse scattering problem.

and wave speed c(z,z) are smooth functions of depth z and lateral position z.
The medium is bounded by a free (pressure-release) surface z = 0. The density
pp and wave speed ¢, for z < 0 and z — oo are known. The medium is probed
with cylindrical harmonic waves, at two frequencies w,; and w,, from a harmonic line
source extending along the x-axis, and the sinusoidal steady-state vertical acceleration
a(z,y,z = 0;w,;) of the medium at the free surface z = 0 is measured, The goal
is to reconstruct p(x,z) and c(x,z) from the measurements a{z,y,z = 0;w,;),
r=1,2.

This problem can be formulated as a 20 Schrodinger equation inverse potential
problem by Fourier transforming the basic acoustic equations with respect o time and
the other lateral variable y. Details are given in both {1] and [4]. Here we merely note
that in the Schrodinger equation (2.1) the wavefield p(x, z, k) is pressure divided by
ez, 2)12, the wavenumber &% = w#/c? — k;, and the potential V(z, z;w;) is

2 2
Viz,z;w;) = (%) (1 - ;:“(—:nc,—oz-)_?) + p(z, 2)M29% p(e, 2)" /7). 2.2)
It is clear that performing this experiment for two different frequencies w;,i = 1,2
will allow p(z,z) and c(z,z) to be computed from (2.2). The wavefield is zero at
the free surface z = 0; its gradient is the medium acceleration p(x,0)2a(x,y,2 =
05wy}, i=1,2.

The second application is the inverse resistivity problem of reconstructing a 3p
inhomogeneous electrical medium whose resistivity p(x, z) is a smooth function of
z and z over a bounded region. The medium is probed with current from a line DC
current source extending along the z-axis, and the electrical potential v{z,y,2 = 0)
induced on the surface » = 0, assumed to be a perfect insulator, is measured. The
goal is to recomstruct the resistivity p(z, z) from the measurements of electrical
potential v(x,y,z = 0). Note that for both applications, the response to a /ine
source may be found by superposition of the responses due to point sources along
the z-axis.

This problem can be formulated as a 2p Schrodinger equation inverse potential
problem by Fourier transforming Ohm’s and Kirchoff’s current laws with respect to
the other lateral variable y. Details are given in [5]. Here we merely note that in
the Schrodinger equation (2.1) the wavefield p(=z, z, &) is now the inverse Laplace
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transform of the Fourier transform of electrical potential divided by p(zx,z)1/2 and
the scattering potential V(z,z) = p(=, 2)/2V¥(p(x, 2)~1/2),

2.2, The 2D layer stripping algorithm

The layer stripping algorithm for solving the 2D Schrodinger equation inverse potential
problem is derived as follows [4]. Taking the inverse Fourier transform of (2.1} with
respect to k yields

o a2 52 .
(55 + i~ 3 = Vios2) ) il 5,0) = 0 @3)

where
B [ R ikt
plz,z,t) = — p(z,z,k)e™ dk. 2.4
2w J_ oo
Equation (2.3) can be written as the coupled system
a a9y . T
(5-;+-8—t) plx,2,1) = §(x,=z,1) (2.5a)

(%_%) iz, z,1) = (V(ac,z)—(—;i) plz, z,1) (2.5b)

22
From causality and the form of (2.52), p(z,z,t) and §(z, z,t) have the forms

ple,z,1) =6(t—z)+ plx,z,t)1(t — z) (2.6a)
gz, z,t) = glz,z,)1{t - 2) (2.6b)

where p and § are the smooth parts of p and §, respectively, and 1( ) is the unit
step or Heaviside function.

Inserting (2.6) in (2.5) and equating coefficients of &(t — =) (propagation of
singularities argument) yields

(a?z——}-%) e, z,t)=g{z,z.1) (2.7a)
2

(53; - _g_t) (2, 201) = (V(J:,z) - %—2) Bz, 2, 1) 2.7)

Viz,z)=-2§(z,z,i= z*). (2.7c)

Equations (2.7) constitute the basic 2D layer stripping equations: starting with mea-
sured P(x,0,¢) and §(z,0,t} (the gradient of the wavefield is required for the
latter), propagate (2.7) recursively in increasing depth =z, reconstructing V' (z,z) as
the algorithm proceeds. The coupled equations (2.72) and (2.7b) include afl multiple
scattering and diffraction effects, since they are equivaient to the Schrodinger equa-
tion (2.1) in the time domain. The potential may be reconstructed using (2.7c) since
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(2.7) is implemented at the wave front ¢t = z; by time causality there has been no
time for multiple scattering to occur yet.
Some advantages of using layer stripping algorithms are as follows.

(i) Only backscattered data from one direction of probing is required. Integral equa-
tion methods [3] require the scattering amplitude, which is the far-field response
in all directions to an incident impulsive plane wave in each possible direction. In
the applications noted above, this is unrealistic; it also runs the risk of inconsistent
data,

(ii) The amount of computation required is much less than the amount required to
solve the integral equations of [3). The layer stripping algorithm can be viewed
as a fast algorithm solution of these integral equations which exploits the Hankel
structure in the kernel of the generalized Marchenko integral equation of [3].

(iii) Al muliiple scattering and diffraction effects are included, unlike methods such as
distorted-wave Born approximation which only account for some of these effects.

Two disadvantages of layer stripping algorithms are as follows.

(i) It is not clear how to incorporate the effects of bound states (roughly, square-
integrable solutions to the Schrdédinger equation with negative energy); unlike the
approach of [3].

(ii) The lateral derivative 8%/0x? in (2.7b) can be expected to induce numerical
instability.

23. Numerical implementation of the 2D layer stripping algorithm

The second disadvantage can be removed as follows. Take the Fourier transform of
(2.7) with respect to z. The result is

o a
(E-I-b_t) plz,t, k) = g(z,t, k) (2.8a)
6 _29 t k)= k? t, k Viz, k k 2.8
-52_5 Q(zs y ,r)_ mp(za , ::)+ (Z! :)*p(z’t’ 1:) ( )
Viz,k,) = -2q(2,t = 2%, k,) (2.8¢)

where * denotes convolution in k,

[=+]

p(z,t, k) = ] Bz, z,)e"*==qs 2.9

— o0

and q(z,t,k_) and V(z,k_) are defined similarly.

The multiplication by &2 in (2.80) will induce numerical instability. This may
be avoided by replacing the multiplication by &2 in (2.80) with multiplication by the
clipped filter

K2 if k| < K

. (2.10)
0 otherwise

H(k,) = {

for some cutoff wavenumber K. This is reminiscent of the clipped filter used in the
filtered back-projection procedure for inverting the Radon transform. In practice, the
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discontinuities in (2.10) at {k_| = K would be replaced by a smooth window to zero;
a Hanning (raised cosine) window was used in the numerical simulations presented
later,

We now discretize depth z = nA and time t = jA to integer multiples of
some discretization length A. Since the wave speed in (2.1) is unity, depth and time
have the same A. Lateral position z would also use the same A; but wavenumber
k, = kA, must use for A, haif the reciprocal of the total lateral extent of interest;
e.g. if the potential has finite support —L_/2 <« < L_ /2 in @, L, would be the
lateral extent of interest. Note that A and A, have reciprocal units.

Using forward difference approximations to the partial derivatives then yields

p((n+ DA, (G + 1A kAL = p(nA, A, kAL) + g(nA,jAkA)A  (211a)
A(n+1)A,(5~ DAKA) = q(nd, jA, kD) + H(kAP(nA, jA,kA)A

+ O V(k—m)A)p(na, jA, mA)AA, (2.11h)

m=—o

V{(n+ 1A, kAL) = —2¢((n+ 1A, (n+ 1)A,kA,). (2.11c)

Equations (2.11) constitute the numerical implementation of the 2D layer stripping
algorithm. The update patterns are illustrated in figure 2; note that by time causality
p(z,t, k) and g(=z,1,k,) arc zcro for ¢t < 2.

b
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Figure 2. Update patterns for (@) p(z,t, kz) and () q{z,t, kz).

1
0 Z,

Cheney [6] has shown that the modification (2.10}) stabilizes the layer stripping
algorithm (2.11), in the following sense. Define the norm

o0

|f (kg t)|dk,. (2.12)

£k Ol = sup |

Input two different sets of bounded initial data p,(k_,0,t), g;(k,;,0,1),1 = 1,2 ipto
the discretized algorithm (2.11), resulting in two different reconstructed potentials
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V,-(km,z), i=1,2. Let ||p;(k,,0,t)]| < K’ and Hg;(k,,0,1)]| < K' for some K.
Then for z = nA we have

S;clp["/l(’cwz)—vz(sz)]

‘-<- Ifl(z)”pl(kx’ 03 t)_p2(kma 01 t)||+I(2(z)||QI(kx?01 t)_Q2(k:caOa t)”
(2.13)
where K (z)and K,(z) are polynomials in n, A, K, and K.

The discretized system (2.11) can be implemented as is. However, its spectra)
propertics are worth examining. It might seem as though we can regard the dis-
cretized functions p(nA, jA, kA), etc, as merely sampled versions of the continuous
functions p(z,t,k,), etc, provided the latter are bandlimited and sampling is per-
formed above the Nyquist rate. However, the nonlinear product in (2.70) becomes
the convolution in k_ in (2.85) and (2.11); the wavenumbers become mixed. Indeed,
even if the inverse potential problem is regularized by assuming that V(z,k,) is
bandlimited in z and zero for |k | > K for some K, it is clear that p(z,t,k.),
etc. will nor have similar properties, Imposing a bandlimited condition at each re-
cursion will lead to errors, since the missing high wavenumbers will cause errors at
low wavenumbers due to the wavenumber mixing. This leads to the question of what
the discretized p(nd,jA, kA ), etc mean, and how the convolutions in k, should
be performed. It should be noted that similar questions arise in integral equation
methods.

One possible interpretation is to perform a periodic extension in & of all quantities
in (2.11). The period in k should be 1/A.; I in (2.10) should then be half this.
It is clear by induction that if all quantities at depth nA are periodic in k, then all
quantities at depth (n + 1)A will also be periodic in k. This has two advantages: (1)
the infinite linear convolution becomes a finite cyclic convolution; and (2) the discrete
Fourier transform may be used to perform all Fourier transforms. Since periodicity
in one Foutier domain is equivalent to discreteness in the other Fourier domain, the
problem has effectively been discretized laterally as well as vertically: the quantites
propagated in (2.11) are not samples of a bandlimited function, but actual discrete
values. As A, — 0, the situation approaches the continuous problem.

2.4. Born approximation to the layer stripping algorithm

It is worth noting how the Born approximation applies to the layer stripping equations
(2.7). The Born approximation is a linearization of the inverse potential problem;
the idea is to render the potential to be linearly related to the scattering data. This
has been discussed in detail elsewhere; here we merely scale the potential by a small
parameter ¢, expand p(x, z,t), etc. in a Taylor series in ¢, and discard all terms of
order ¢2 or smaller. The result is elimination of the product in (2.76); since this is
the one nonlinearity in (2.7) its elimination is not surprising. Combining the modified
(2.7a) and (2.7b) and keeping (2.7c) results in

8zt ' 8z2 8t
V(z,2)=-24(z,z,t = z%). (2.14b)

(62 i 82)@(@-,2,1):0 (2.14a)
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We recognize (2.14a) as the migration operator relating the wavefield at the surface
z = 0 to the waveficld on the plane parallel to the surface at depth 2, and (2.14b)
as the imaging operator (gradient) applied to the migrated wavefield. Taking two
Fourier transforms of (2.14a) with respect to ¢ and = and using (2.4) and (2.9) yields

32
(5o + B = KD)) dkeszs ) =0 @ks2,b) = Fu Ty (02, 0)
@.15)

a differential equation which has the solution
qky, 2, k) = Glk,,0,k)e VE -kiz (2.16)

The operation of the Born approximation to the layer stripping equations is now clear:
(1) migrate the wavefield from the surface to depth z; and (2) image the wavefield at
depth z to obtain the scattering potential. Note that imaging the potential requires
taking the gradient of the wavefield; this is why g, not p, is used. Note also that
multiple scattering, which is inherently nonlinear, is neglected in (2.14) and (2.16).
The coupling induced by the product term in (2.7) accounts precisely for all multiple
scattering. More details about the Born approximation and its relation to layer
stripping and integral equation methods is available in [4] and {7].

From the Schrédinger equation (2.1), it is apparent that for large wavenumbers
, the potential V{z,z) will be rclatively small, and that multiplc scattering will be
less significant. Indeed, in the limit & — oo the Born approximation becomes exact,
in that multiple scattering effects become negligible. However, inversion based solely
on asymptotically large & is clearly unstable; ‘exact’ inverse scattering methods use
low-wavenumber data as well as high-wavenumber data to stabilize the reconstruction.
Also, it is clear that multiple scattering is more significant for small k (V(=x,z) is
relatively large), so lack of high-wavenumber data makes the use of ‘exact’ methods
even more imperative.

3. Forward problem algorithm

3.1. Invariant imbedding algorithm

The invariani imbedding algorithm of [5] was used 10 generate the scatiering data,
to be input into the layer stripping algorithm. We briefly review this algorithm
here, following the notation of [5] for convenience. Let k& be wavenumber, as in the
Schrédinger equation (2.1), ¢ = k, (lateral wavenumber), k(gq) = \/k? — g2 (vertical
wavenumber, as in (2.16)}, and p be lateral wavenumber of the incident plane wave
(ultimately we are interested in p = 0). Then further define h(z,q) = V(z,k,)
(scattering potential) and w({z,q) = H(k,,z, k) (waveficld; see (2.15)). A slight
problem with the notation of [5] is that the dependence of u(z,¢) and R(«c,q,p) on
k is not explicit.

Finally, define R(c, q,p) as the near-ficld planar refiection response, in direction
q, of the portion of the medium below depth ¢, to an impulse §( g—p)e~"*(9)2 /k(p),
in direction p (recall directions are specified by wavenumbers). Two inverse Fourier
transforms taking k — ¢ and ¢ = k, — x, as in (2.15), transform 6(g — p)e~F(9)*
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into the impulsive plane wave &(t — z cos 6 — xsin 0), where @ is the angle of inci-
dence (measured from the vertical) defined by p = ksin 6. Hence k(p) R(0,q,0),
computed for each & and then inverse Fourier transformed as in (2.4), is precisely
the reflection response to an impulsive plane wave normally incident on the medium.

We sketch through the derivation of the invariant imbedding equations to show the

similarities and differences to layer stripping. A Fourier transform of the Schrodinger
equation (2.1) taking = — ¢ = &, yields (recall h(z,q} = V{z,k;))

(%-}-k?(q)_h(z,q)*) u(z,q) =0 (3.1)

where » denotes convolution in ¢ and k%(q) = &% — ¢% Defining

1 u 1 1 Ou 1
v(z,q) = §(U(Z’Q)+EW) w(z,q) = 5 (u(z,q)—gm) (3.2)

it can be shown [5, p 93] that v( z, ¢) and w( z, ¢) satisfy the coupled system (compare
with (2.8))

d {v] _ ik{g)v—{hx(v+w))/(2ik(qg))
iz [w] = [—ik(q)w+ (R (v + w))/(2ik(0)) 33)

where all variables are functions of (z, q).

Now imbed the system (3.3) as follows. Let A(z,c,q,p) and B(z,c,q,p) satisfy
(3.3), initialized with A(z = ¢,¢,q,p) = 6(q—p)/k(p)and B(z = L,c,q,p) =0
(the latter is a radiation condition; recall V(z, z) has support in 0 < z < L). Then

v(z,q) = kA(z,0,q,p) w(z,q) = kB(z,0,q,p) (3.4)

A(c,c,q,p) = 6(q— p}/k(p) R(e,q,p) = B(e,¢,q,p).
Furthermore, 8 A/8c¢ and 8 B/dc also satisfy (3.3), but with initial conditions

A A 8B

_a?(cacs q, p) —_ _E(cach: p) E(L,C, q, P) =0. (35)
By superposition, the solution to (3.3) with these initial conditions is [5, p 95]

DA 1y BA , ,

== =— — d .

e 2 6 P) fA(z,c,q,q)k(q )5o(ecdsp)dd (36a)

oB A

——(z,¢,9,p) = —-/B(z,c,q,q’)k(q’)——(c,c,q','p)dq’- (3.60)

dc Oz

We also have from the last of (3.4)

dR dB dB aB
-Ez(c,q,p) = E(c,c,q,p) = E(c,c,q,p) + E(c,c,qap)- 3.7
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Finally, setting z = ¢ in (3.3), substituting into (3.6), and substituting again into
(3.7) gives the following invariant imbedding equation for R{c,q,p):

i%(c, g,p) = (k+ k(q))R(c,q,p) + h(c,qg - p)/(2k(q)k)
+ / j R(c,q,d)h(c,q' — ¢")R(c,q", p)/2 dq'dg”

+ [(h’(csq - ql)R(ca q, p)/k(q) + R(ec,q, q')h(c, q - P)/k‘)/?. dg'
R(L,q,p)=0. (3.8)

This is formaula (11a) in [5, p 97)

Note that (3.8) is computed recursively in decreasing c, starting at ¢ = L and
ending at ¢ = 0. This must be done for each p, ¢, and k (recall that R{c,q,p)
also depends on k; this dependence is not shown explicitly in (3.8) since none of the
integrations are over k). Having computed R(0, q,p) for all k, i.e. having computed
R(0, g, p, k), the inverse Fourier transform (2.4) of kR(0,q,0,k) is precisely the
reflection response to an impulsive plane wave normally incident on the medium.
This is the scattering data used as input to the layer stripping algorithm.

3.2, Numerical implementation of invariant imbedding algorithm

Despite its apparcnt complcxity, (3.8) can be implemented numerically in a siraigii-
forward manner by discretization similar to that used to obtain (2.11) from (2.8).
Since (3.8) is already in the wavenumber domain, and the scattering potential A(z, g)
is known exactly, no computational instability issues arise. The integrals may be eval-
uated using the trapezoidal rule, and a backward difference approximation to d B/dc
used to propagate (3.8} in decreasing ¢ from ¢ = L t0 ¢ = 0.

Once again we assume a periodicity of 1/A in the values of all functions of
wavenumbers; this corresponds to the discretized functions being actual discrete val-
ucs, rather than sampled values of bandlimited continuous functions. The infinite
integrals in (3.6) and (3.8) become cyclic integrals (computed only over one period),
so their evaluation is straightforward. The multiplication by k + k(q) in (3.8) is
windowed to zero for values greater than 1/(2A), as in (2.10), and then periodically
extended.

Note that it is not possible t0 compute the reflection response for k = 0 or
k(q) = 0, due to the divisions by these in (3.8). The former can be assumed to be
zero, since a non-zero DC reflection response would represent permanent displacement
resulting from the impulsive plane wave! The latter corresponds to incidence at 90
degrees, which would not create a backscattered field in the 42 direction. Hence
omitting these does not present a problem.

3.3. Bom approximation to invariant imbedding algorithm

The invariant imbedding equation (3.8) is suggestive of a 2D version of the Riccati
equation familiar in 1D scattering in layered media. The two integral terms correspond
to the square term in the ID Riccati equation. To aid in understanding (3.8), we now
apply the Born approximation to (3.8), and show that the Born approximation to
the layer stripping algorithm (2.14b) and (2.16) reconstructs the potential from the
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reflection response generated by the Born approximation to the invariant imbedding
equation (3.8).

As in section 2.4, we scale the potential by a small parameter ¢, expand the
wavefield and reflection response in a Taylor series in ¢, and discard all terms of
order «* or smaller. The result is elimination of the two integrals of products terms
in (3.8}, leaving

igg(c,q,p) = (k+ k(q))R(c,q,p) + hlc,q— p)/(2k(q)k) R(L,q,p) =0.

d
(3.9)

Since there is no longer coupling between R(e, q, p) of different p, we canset p =0
(normal incidence) and solve the differential equation (3.9), vielding

ER(z,q.k) = —ie=ik(@Hh): / VELD ke gy @310)
L 2k(q)
The factor of & multiplying R(=z,q, %) is present because k(p)R(z,q,p,k) is the
Fourier transform of the reflection response to an impulse, as discussed in the second
paragraph of section 3.1. Since p = 0 here, we have k(0) = k, so kR(z, g, k) is the
frequency-domain reflection response to a planar impulse.

Equation (3.10) has a very clear interpretation: to form the reflection response
at depth 2z in the Born approximation, assume the incident impulsive plane wave
penctrates without being scattered to each depth z’, and is then scattered by the
potential V'(2', ¢) at that depth. Then use the migration operator e*(9)* (o migrate
cach scattered field back to depth =z independently (neglecting all coupling), and
superpose the scattered fields due to each V(z',q). At the surface z = O this is
clear, but it applies to any depth =.

Note that g(k,,z,%) in (2.16) in the time domain is causal for all z (see fig-
ure 2(b)) while a time delay/advance e~***' must be included in (3.10). Also note that
V(z',q) in (3.10) is scaled by —i/(2k(q)); the reason for this will become apparent
in (3.13) below.

Now consider the Born approximation to the layer stripping algorithm (2.14b) and
(2.16) applied to (3.10). Taking the Fourier transform (2.4) of (2.8a) and using (2.16)
gives

a . _ o . 5. i z
g(z,q,k) = (-(,§+1k) bz, q, k) = (a—z-+1k) R(z,q,k)c* @7 (311)

Inserting (3.10) into (3.11) shows that the Born-approximated layer stripping algo-
rithm computes

d(z,q,k) = =i/ (2k(q)V (2, g)e™?* (3.12)

from the Born-approximated scattering data. Using (2.14b) shows that the Born-
approximated layer stripping algorithm computes

PREICIE
—ik(q)

$O that it does indeed correctly compute the scattering potential V(z,q) in the Born
approximation.

- 2‘7:1\-,_—1—1{(?(;:9 q,k‘)}t=z = V(za(I)fi:-]ut{ } _ = V(ZSQ) (3.13)
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4. Numerical results

4.1. Initialization

The algorithm described in section 3 was used to generate the backscattered reflection
response kR(0, ¢, k) to an impulsive plane wave for several different scattering po-
tentials V'(«, z). The inverse Fourier transform (2.4) 8 R(0, q,t)/t of kR(0, q, k)
was then used to initialize the discrete layer stripping algorithm of section 2, with
(recall g = k)

POLE) = RO9=k ) a(0,1,k,) = 22 1(0,q = k. ). @1

The latter initial condition comes from (2.72) and the fact that R(z,q,t) =
R(0,q,t + z) in the homogencous overlying half-space =z < 0, since R(0,q,t)
is a backscattered (i.e. upward-traveling) wave. Note that the sample applications of
section 2 would require different initial conditions.

4.2. Forward problem versus inverse problem algorithms

The invariant imbedding algorithm was used to generate the forward data so that
the layer stripping inverse problem algorithm would not simply run the computations
of the forward problem algorithin backwards. Alitwugh the wo aigorithms must of
course be mathematically equivalent, since they are both ‘exact’, they are derived
from different mathematical principles.

Some specific differences between the forward problem (invariant imbedding)
algorithm (FPA) and the inverse problem (layer stripping) algorithm (IPA) are as
follows.

(i} The Fpa propagates the reflection coeflicient at depth R{c,q,p,k). The 1PA
propagates the field and field gradient p(=z,t,k,) and g(z2,¢, k). Note that R 3
q/p, since R is the ratio of downgoing and upgoing waves, not field quantities.

(ii) The Fpa operates in the k& (frequency) domain, while the [PA operates in the ¢
(time) domain.

(iii) The Fpa computes R(c,q, p, k) for all c, q, p, &, while the 1PA i8 initialized using
kR(0,q,0,k), a slice of the FPa function. Note in the FPA (3.8) the integrals
over ¢’ and the differences ¢’ — ¢”; these clearly have no counterpart in the 1Pa.

(iv)The Fpa propagates (3.8), which can be viewed as a 2D generalization of the
Riccati equation familiar in 1D inverse scattering. The IPA propagates the coupled
system (2.8); note that this differs from the coupled system (3.3) used to derive
(3.8).

(v) While both algorithms are discretized in depth, the FBP results did not vary
significantly with mesh size, so this should not be an issu¢, The IBP results also
did not vary significantly with mesh size, and gave good results at several different
resolutions (see below).

These differences make it clear that errors are not cancelling out algebraically be-
tween the FPA and the IPA, ie., the IPA is not effectively running the FPA computations
backwards.
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4.3. Summary of resuils

The numerical performance of the layer stripping algorithm was studied under a
varicty of conditions. The results may be summarized as follows.

(i) The layer stripping algorithm successfully recomstructed the potential in the ab-
sence of noise. The only difficulty was due to the smoothing of the transverse
derivative, which slightly smoothed very sharp variations in the lateral direction.

(ii) The layer stripping algorithm continued to work well when a small amount of
Gaussian random noise was added to the reflection response. The reconstructed
potential was slightly degraded, of course, but the amount of degradation seemed
to vary smoothly with the amount of noise—a slight increase in noise level did
not vastly degrade the reconstructed potential.

(iii) The layer stripping algorithm reconstructions were superior to those using the
Born approximation (as specified in section 2.4 above), in that the Born approx-
imdtion treated multiple scattering events as additional single scattering events,
resulting in errors in the reconstructed potential, particularly for large z. This
effect was more pronounced when the potential had numerically large values;
for small potentials V(nA,kA)A « 1 the Born approximation worked quite
well. This was as expected; multiple scattering involves products of potentials,
and multiplying small values results in even smaller values.

(iv)The performance of the algorithm seemed to vary little with the size of the
discretization length A, provided that the same A was used in the discretized in-
variant imbedding algorithm. This suggests there may be a close relation between
the discretized versions of these algorithms. Coarse grid reconstructions secmed
to be merely undersampled versions of the fine grid reconstructions; the basic
features of the reconstructions were identical.

We illustrate these points with some numerical examples below. It should be
noted that the following is only a representative and illustrative sample of our results;
the above conclusions are not based merely on the results below. Unless otherwise
specified, all examples used A = 1/32, L = L, = 1/2, and A, = 1. The 3D
plots are depicting 2D functions V' (z, z); they do not represent objects buried in a
homogeneous surrounding medium.

4.4. Comparison with the Bom approximation

The potential V'(, z) is shown in figure 3(a). Note that this is a smooth, rounded
potential having compact support in both = and z.

The reconstructed potential using the Born approximation is shown in figure 3(b).
Although figure 3(b) superficially seems to be identical to figure 3(a), study carefully
the deepest part of the reconstructed V'(x,z2). The original V (=, z) is zero for
z > 24/32, while the Born-reconstructed V'(z, z) does not become zero until z >
26/32; it has a ‘tail’. This ‘tail’ is caused by multiple scattering that is interpreted
under the Born approximation as primary scattering due to an additional non-zero
portion of the scattering potential; actually, there is no such portion.

The reconstructed potential using the layer stripping algorithm is shown in fig-
ure 3(c). This reconstruction has no ‘tail’; the multiple scattering that produces it has
been accounted for in the algorithm and eliminated. The reconstruction is almost
perfect.

A different potential is shown in figure 4(a). Note that this potential function is
constant over a central ‘plateaw’, and then drops off rapidly to zero.



658 A E Yagle and P Raadhakrishnan

'
Sy

Ca2oTalh
el
e sy el
Qs

tf/
<5 e
GOty

2 1L
g s
o tatatetarein” of
S
SRS LT AL T I

a g ew '.. A0,
’o:¢ L, (N7

Figure 3. (a) Original potential function. () Born
approximation reconstruction. Note the ‘ail’ at
the right. (c) Layer stripping algorithm recon-
© E struction,

The reconstructed potential using the Born approximation is shown in figure 4(b).
Note again the presence of a ‘tail’ at its deepest part, while there is no ‘tail’ at its
shallowest part, since multiple scattering has not vet had &me to occur in this part
of the time-domain impulse response (the lack of symmetry in z is apparent if one
looks at the figure as a whole). Also note the problems in reconstructing the lateral
edges of the potential function; the central ‘plateau’ is much smaller than it should
be.

The reconstructed potential using the layer stripping algorithm is shown in fig-
ure 4{c). Again the ‘tail’ caused by multiple scattering has been eliminated. However,
the shallowest and decpest edges of the ‘plateau’ have been rounded off slightly. Since
this is symmetric between the shallowest and deepest parts, it is not due to multiple
scattering. We attribute it to smoothing in the transverse derivative,

4.5. Effects of additive noise

The potential V(z, 2} used in figure 3 was scaled as shown in figure 5(a), and
Gaussian random noise was added to the reflection response R(0, g, k). The signal-
to-noise ratio, computed as the square root of the sum of the squares of the discrete
signal values divided by the square root of the sum of the squarcs of the discrete
noise values, was found to be 36 dB for one run and 18 dB for another (to get power
SNR these values should be doubled). Note that any powers of A and numbers of
points being averaged will cancel in this ratio.
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Figure 4. (a) Original potential function. () Born
approximation reconstruction. Note the ‘tail’ at the
right. (¢) Layer stripping algorithm reconstruction.

The reconstructions at 36 dB are virtually perfect; in fact, the reconstructions
shown in figure 3 are actually these reconstructions. The reconstructions at 18 dB
are shown in figure 5(b) using the Born approximation and figure 5(c) using the layer
stripping algorithm. Note that even in these noisy reconstructions the ‘tail’ is still a
significant feature in the Born approximation reconstruction, while the layer stripping
reconstruction has correctly removed the ‘tail’,

To see the degradation of the layer stripping algorithm in the presence of increas-
ing amounts of noise added to the reflection response, study figure 6. Figure 6(a)
shows the original potential function, which is the same as figure 4(a). Figure 6(b)
shows a noisy reconstruction of the potential function shown in figure 6(a), and in fig-
ure 6(c) the signal-to-noise ratio has been reduced by a factor of four. The increasing
degradation of the reconstruction is obvious, but the layer stripping algorithm does
not fall apart even in large amounts of additive noise.

A similar study is carried out for a different potential function in figure 7. Fig-
ure 7(a) shows the original potential function, and figures 7(b) and 7(c) correspond to
figures 6(b) and 6(c). The only notable feature of the layer stripping reconstructions is
the slight (one pixel wide) ‘shelf” induced by the smoothed transverse derivative (this
is discussed in more detail below); otherwise, the reconstructed potential smoothly
degrades with increasing noise.

Note the presence of the sharp ridge along the line z = 0 in figures 6 and 7. This
ridge is due to the non-zero mean of the noise being added to R(0,q,k). When
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Figure 5, (2) Original potential function. (b} Noisy
Born approximation reconstruction. Note the ‘tail
at the night. (¢} Noisy layer stripping algorithm
lc} 30 reconstruction.

V(x,z) is computed by taking the inverse Fourier transform (2.9), this non-zero
mean, a constant in the Fourier wavenumber k& domain, becomes an impulse in the
spatial z domain. This impulse is the ridge.

4.6. Discussion of numerical stability with noise

The smooth degradation of the reconstructed potential with increasing noise lev-
els might seem surprising, since the inverse scattering problem is known to be ill-
conditioned. The reason for this is that multiple scattering has a relatively smail
{compared to single scatieriiig) effect, so that thc Born approximation result will be
approximately the same as the layer stripping result. The Born approximation is lin-
car, so that any noise added to the reflection response will produce an addition to the
reconstructed potential whose strength is directly proportional to the noise strength
(halving the noise will halve the addition); hence the Born-reconstructed potential
will degrade smoothly, and it is not surprising that the reconstructed potential from
layer stripping also degrades smoothly.

This heuristic argument should not be taken too far; in the 1D case, it is well
known that large noise levels can cause severe problems in layer stripping algorithms,
and indeed in any ‘exact’ method. The reason for this is nor numerical instability,
as is commonly believed; the 1D layer stripping algorithm is identical to the Schur
algorithm (see [8]), which is known (o be numerically stable.

The reason that 1D layer stripping algorithms can give unstable results when they
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Figure 6 (4) Original potential function. (b) Noisy
layer stripping algorithm reconstruction. (c) Noisier
layer stripping algorithm reconstruction.

are applied to noisy reflection data is as follows. It is well known that the free-
surface reflection response of a 1D layered medium to an impulsive plane wave below
the surface is one side of the autocorrelation of its transmission response; hence
it must be positive semi-definite. Noise added to the reflection response can make
the two-sided response (the reflection response added to its time reversal) become
non-positive semi-definite, in which case it is no longer the reflection response to any
layered medium. The problem is now ill-posed, in the sense of having no solution; it
is not surprising that the layer stripping algorithms become unstable.

However, small amounts of additive noise will not cause the reflection response
to become non-positive semi-definite; as long as this is true, the layer stripping
algorithms will behave well numerically. Our results in this paper suggest that a a
similar situation is present in the 2D inverse scattering problem considered here; this
is a topic of current research.

4.7. Smoothed reconstructions due to smoothed transverse derivative

The smoothing in the transverse derivative incurred by using the clipped filter (2.10)
causes a slight but noticeable smoothing of V(z,z) along the =z direction. This
was manifested in the reconstructions in figure 7 by the ‘shelf’ that appeared at the
ends of the reconstructed potential function. Another example of this is illustrated
in figure 8. Figure 8(a) shows the original potential function, which was produced
by taking the potential function of figure 7(a) and adding random noise to it. The
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Figure 7. (@) Original potential function. (b) Noisy
layer stripping algorithm reconstruction. (c) Noisier
layer stripping algorithm reconstruction.

Figure 8. (g) Original ‘noisy’ potential function. (b) Layer stripping algorithm recon-
struction.

idea here is that in real life potential functions will not have simple analytic forms;
they will be complicated functions. Hence figure 8(a) is closer to a realistic potential
function.

The reconstructed potential from the layer stripping algorithm is shown in fig-
ure 8(b). Note again the one-pixel-wide ‘shelf” at each of the two flat ends of the
potential function. We attribute this to the smoothing of the transverse derivative in
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the layer stripping algorithm; unable to reconstruct the sharp jump from zero, the
algorithm provides a laterally smoothed reconstruction in which the reconstructed
potential takes two smaller lateral jumps instead of a single large jump. Note that
the ‘shelf’ is half the height of the jump in z at each depth 2.

Also note in figure 8(b) that the ‘noisy’ part of the potential in figure 8(a) has been
noticeably smoothed. This again seems to be due to the smoothing in the transverse
derivative; note that the reconstructed potential is ‘rougher’ in the z direction (for
which there is no smoothing) than in the z direction (in which there is smoothing).
This smoothing effect should be taken into consideration in potentials reconstructed
using layer stripping algorithms.

= M~ o
= -]

Figure 9. (@) Original potential function using
A = 1/16. (b) Born approximation reconstruc-
tion. Note poor reconstruction of the ‘plateau’.
(¢) Layer stripping algorithm reconstruction.

4.8. Effect of discretization length A

The above numerical runs all used A = 1/32. Results for a larger A = 1/16 are
shown in figure 9. Figure 9(az) shows the original potential, which is an undersam-
pled version of the potential in figure 4(a). The reconstructed potential using the
Born approximation is shown in figure 9(b). Note how poorly the Born approxima-
tion reconstructs the central ‘plateau’ of the potential function. The reconstructed
potential using the layer stripping algorithm is shown in figure 9(c). Although the
central ‘plateau’ is reconstructed quite well, the potential function as a whole is spread
out one pixel in each direction. This shows that while the invariant imbedding and
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layer stripping algorithms are clearly closely connected, the discretized layer stripping
algorithm is not merely running the invariant imbedding algorithm backwards.

Results for a smaller A = 1/64 are shown in figure 10. Figure 10(a) shows
the original potential, which is a more finely sampled version of the potential in
figure 4(a). The reconstructed potential using the layer stripping algorithm is shown in
figure 10(p). The reconstruction is almost perfect—even the lateral smoothing caused
by the smoothed transverse derivative is not apparent. This is due to the fact that
although A, = 1, the maximum value of k, is now 32 instead of 16; the smoothing
starts at a much higher wavenumber. A very close comparison of figures 10(a) and
10(b) show that the reconstruction is not quite perfect; the reconstructed potential is
still spread out one pixel in each direction. But this effect is virtually negligible on
this scale.

o~ -

o =W
o =MW~

Figure 10. (4) Original potential function using A = 1/64. (b) Layer stripping algorithm
reconstruction.
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Figure 11. (a) Original potential function using A = 1/64. (b) Noisy layer stripping
algorithm reconstruction.

One final example combines a smaller A, additive noise in the reflection response,
and smoothed reconstruction. Figure 11(a) shows the original potential, which is a
more finely sampled version of the potential in figure 7(2). Random noise was added
to the reflection data, at a signal-to-noise ratio of 15.7 dB. The reconstructed potential
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using the layer stripping algorithm is shown in figure 11(b). All the features discussed
in section 4.3 are again present in figure 1i(p). These include the ‘shelf’, still one
pixel wide, the ridge along the line z = 0, and the main shape of the potential
function still visible in the noise. This shows that these effects occur at different
discretization lengths, and indeed may be endemic to layer stripping reconstructions
with noise for any 4.

5. Conclusion

The numerical performance of the 2D layer stripping algorithm of [4] has been studied
for the first time. This represents the first numerical implementation of an ‘exact’
non-iterative inverse scattering algorithm that includes the effects of all multiple
scattering and diffraction effects. The forward scattering data were generated using
the invariant imbedding algorithm of [5]. The results indicated that layer stripping
is a viable technique for solving 2D Schrddinger equation inverse potential problems,
for which two applications were briefly reviewed.

Two particularly important results were that: (1) the ‘exact’ reconstructions using
the layer stripping algorithm are a noticeable improvement over the Born approxima-
tion reconstructions; and (2} small amounts of additive noise in the reflection response
do not cause numerical instability in the layer stripping algorithm. The results were
illustrated using several numerical examples. It was also shown for the first time that
the Born approximation to the layer stripping algorithm reconstructs the scattering
potential from the reflection response generated by the Born approximation to the
invariant imbedding algorithm of [5].
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