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Abstract. The unknown depth of bioclectrical sources confined o a horizontal plane
in a horizontally layered volume conductor is estimated from noisy measurements of
electrical potential on another, parallel plane {e.g. the surface). The Cramer-Rao bound
is computed and discussed. Numerical simulations suggest the maximum likelihood depth
estimate is asymptotically efficient.

We consider the following volume conductor source location estimation problem.
Given knowledge of the functional form of a two-dimensional planar bioelectrical
source at an unknown depth in a horizontally layered volume conductor with known
structure, and measurcments of the resulting extracellular field on a plane paralle] to
the source, determine the depth of the planar source.

This location estimation problem can be applied to problems frequently
encountered in cardiology research. Healthy cardiac muscle consists of multiple,
electrically-active layers. Following myocardial infarction, many of these layers are
dead. The problem of determining the depth of any layer still active (i.e. alive) from
measurements at or near the surface of the pericardium can be formulated as the
above location estimation problem.

Although the surface of the heart is obviously not a plane, the brush electrode
used to perform electric field measurements and the scale of the problem itselfl are
both so small (of the order of millimetres) that regarding the heart as locally planar is
reasonable. The planar heart approximation has been used in the past for the volume
conductor forward problem at small distances, as well as in the interpretation and
simulation of tissue bath experiments in which the planar assumption is rigorously
met [1-5]. Di Persio and Barr {6] solved the one-dimensional version of the above
problem by using a template-matching algorithm to estimate the location of an action
potential along a strand.

We make the following assumptions, common in many volume conductor studies:

1. The extraceliular medium is linear and consists of homogeneous layers paraliel
to the plane z = 0 of measurements. The assumption of a layered medium
is appropriate and useful for the proposed application of this algorithm: the
determination of the location of potential sources in hearts damaged by patchy
infarction, i.e. epicardial tissue with several discrete active layers separated by
regions of fibrous growth.
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2. The source is modelled as a two-dimensional distributed potential s(z, y, 2') lying
in a plane z = 2’ parallel to the plane of measurements. Our goal is to estimate
z'.

3. The problem is quasistatic, i.c. the medium has negligible reactance and
propagation delay. Thus all potentials are computed at an instant in time. The
quasistatic assumption ensures that each sample will be independent of the other
samples [7].

Our data consist of noisy measurements r(x,y,z'}) of the surface potential
#z,y,2")
r(z,y,2") = d(z,y,2") + n(z,¥) e))

where n{x,y) is a zero-mean white Gaussian noise field. Fourier transforms
of these quantities are denoted using capital letters, eg S(k.,k,,z") =
fx_’krfy_.ky{s(ﬂ'),y, z’)}.

The surface potential ¢(x,y,z") is related to the source potential s(x,y,z’)
by (8]

¢z, y,2") = F_Fy)

kr—z’ ky—y

1 : :
= (—2—7;72-//S(Icz,ky,z')H(km,ky,z’)e“k*“’e“‘kvy dk,dk, 2

{S(kx:kyvz’)H(ka:sky’zr)}

where the medium filter H(k_, k,, z'} represents the effect of the volume conductor
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H(ky, k,,2'y = e VFthy 3)
for a layered medium, H(k, k,,z') may be computed in a layer-recursive
manner [8]. Note that the depth 2’ of the source affects the surface potential

¢(x,y,z') through H(k,, k,, z').
Using Parseval’s theorem, the likelihood function may be written as

]n A[R(kx,ky)a(ﬂ:)yﬁzl)]=Ni] / R(kx,ky)s(kx’ky)ﬁ(kxaky,zl)dkxdky
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The maximum likelihood estimate £ of depth 2’ is found by maximizing (4} over the
depth z’. Note that the strength N /2 of the observation noise field is irrelevant.

The Cramer—Rao bound is a lower bound on the variance of any unbiased
estimator a of parameter A in the nonlinear estimation problem

r(t) = s(t, A} + n(1) 0gtgT (5)

where n(t) is zero-mean white noise of strength N/2 and s(i, A) is a nonlinear
function of parameter A. The variance of d is bounded by [9]

N

2]T[8s(t,A)/8A]2dt'
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Applying the two-dimensional version of (5} and (6) to the present problem yields

=912 ([

where 2 is the estimate of depth 2/, k = (k2 + kz)‘/ 2 is radial wavenumber, and
S(k, ¢) is the Fourier transform of the source potentlal in polar coordinates.
For an infinite homogeneous volume conductor, inserting (3) in (7) yields

’ 2 -1
aH(k ¢" )S(k @) kdd)dk) N

-1
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The Cramer—Rao bound (8) illustrates several interesting points:

1. As depth 2’ increases, the weighting factor e~2*" decrecases exponentially.
Although this factor is inside the integral, this accounts for the presence of a
performance threshold, and the rapid degradation of performance beyond it.

2. Low-wavenumber components of the source potential are important, due to the
factor of e~2%2" which attenuates high-wavenumber components of the source
potential. This is reasonable, since these components are strongly attenuated by
the medium.

3. Very low-wavenumber components in the source potential are not helpful, since
they are attenuated by the factor k. This is reasonable: the medium has little
effect on these components, so they are less useful in estimating =z’

Several numerical simulations were performed to compare the performance of the
maximum-likelihood estimator (4) to the Cramer—Rao lower bound (8). The medium
filter was used to solve the forward problem and generate the surface potential
@(x,y, z"). The source potential was a rectangular function in the frequency domain.
Since only a small portion of the wavenumber spectrum of the source significantly
affects either the bound or the estimator, both are robust to uncertainties in the form
of the source. Numerical simulations not included here show that approximating the
source by a constant function having the same spatial support as the source, and with
amplitude equal to the RMs value of the source, also gives good performance in the
depth estimation algorithm.

To test the performance of the maximum likelihood estimator with respect
to the Cramer-Rao bound, depth estimates were made with 50 different two-
dimensional noise fields and several signal-to-noise ratios. Each noise field was
Gaussian with unit variance; at each signal-to-noise ratio the noise fields were scaled
to the required variance. The source potential was uniform with amplitude 50 for
=15 € k;,k, < +15, and zero otherwise; this allowed simple evaluation of the
Cramer—Rao bound given above. .

The mean square error in estimating depth z’ was approximated by the average of
the squared errors for each run. A graph of the Cramer—Rao bound and experimental
variance is shown in figure 1, which shows that until the signal-to-noise ratio becomes
very negatively large, the performance of the estimator attains the Cramer-Rao
bound. Thus for these signal-to-noise ratios and this source, the nonlinear depth
estimator is asymptotically efficient. This is no surprise, for reasons discussed in [9).

In conclusion we summarize our results. The Cramer-Rao bound on the mean
square error in estimating the depth of a plane of bioelectrical sources has been
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Figure 1. A graph of the Cramer-Rao bound (dotted curve) and experimaenial variance
(full curve). To approximate the variance in the estimation of z, each # was assumed to
be generated by an ergodic process, thus aliowing the variance to be approximated as
the average of the squared errors of each run. Noie that uniil the signal-to-noise ratio
becomes quile large, the performance of the algorithm compares almost exactly with the
Cramer—Rao bound. Thus for these signal-to-noise ratios, the nonlinear depth estimalor
can be considered efficient.

=——— — —gdeiived; and- expiiciily—evaiuaicd for an iniiniic homogencous voiume conducior.

The

maximum likelihood estimator for the unknown depth was also determined.

Both results used the two-dimensional medium filter to provide simple cxpressions.
Numerical simulations showed that the estimator achieves the bound for surprisingly
high noise levels, The form of the Cramer-Rao bound makes these results reasonable.
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