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Abstract. We analyse the convergence of a class of discrete predictor—corrector methods for the
sequential regularization of first-kind Volterra integral equations. In contrast to classical methods
such as Tikhonov regularization, this class of methods preserves the \olterra (causal) structure of
the original problem. The result is a discretized regularization method for which the number of
arithmetic operations i©(N?) (wheren is the dimension of the approximating space) in contrast

to standard Tikhonov regularization which requie@gv?) operations.

In addition, the method considered here is defined using functional regularization parameters
so that the possibility for more or less smoothing at different points in the domain of the solution
is allowed. We establish a convergence theory for these methods and present relevant numerical
examples, illustrating how one functional regularization parameter may be adaptively selected as
part of the sequential regularization process. This work generalizes earlier results by the first author
to the case of a penalized predictor—corrector formulation, functional regularization parameters,
and nonconvolution Volterra equations.

1. Introduction

We consider the following inverse problem. Given a suitable functipfind i satisfying the
first-kind Volterra integral equation

Au(r) = f(1), (1.1)
fora.e.r € [0, 1], whereA is the bounded linear operator @3(0, 1) defined by

Au(t) ::/ k(t, s)u(s)ds, a.e.t € [0, 1]. (1.2)
0

Problems based on (1.1) are ill-posed due to lack of continuous dependence on data
f € L?(0, 1), with the severity of ill-posedness related to properties of the kernetor
example, ifk € CY([0, 1] x [0, 1]) satisfiesk(z, 1) # O for all t € [0, 1], it is well known
that under this condition differentiation of (1.1) with respect {or sufficiently smoothyf’)
leads to a well-posed second-kind Volterra equation with solutions depending continuously
on the (new) datg” € L2(0, 1). We will say that the operatod is ‘one-smoothing’ in this
case. However, even if the ‘true’ data functighis smooth, the usual situation is that we
only have available a nonsmooth perturbatiorfofThus, in the case of problems with one-
smoothing operatord, the ‘degree’ of ill-posedness of (1.1) is that associated with first-order
differentiation of noisy data.

More generally, if the kernelk is such that 3"k/d¢" is continuous with
@Ykt (t, 1) # 0, (3%k/dt*)(t,t) = 0,fort = 0,...,v — 2 (v > 2 integer) and
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0 < r < 1, then it takes differentiations of equation (1.1) (for sufficiently smoofh to

obtain a well-posed second-kind equation, with solutions depending continuougty okive

will say that the operatad is ‘v-smoothing’ in this case, and ‘infinitely smoothing’ in the case

of smoothk with (3%k/3t%)(t,t) =0,for0< ¢t < landalle =0, 1, 2, .... Of course, not all
equations of the form (1.1) fall into one of these classes of problems; however, these terms will
be useful in discussing below the severity of ill-posedness associated with particular Volterra
equations.

Equations of the form (1.1) arise in a number of applications. For example, the inverse
heat conduction problem (or sideways heat equation) [2] is based on such a model with
infinitely smoothing operatord, while the differentiation problem [12] is associated with
a one-smoothing operatot. In both of these examples the operatbihas a convolution
kernel; however numerous nonconvolution kernels may also be found in applications (see,
e.g., a recent example from capillary viscometry in [26]).

A regularization method must be used to solve (1.1), and certainly the classical method
of Tikhonov regularization is a simple and effective approach. However, a disadvantage
of this method when applied to Volterra problems is that it replaces the original ‘causal’
problem (1.1) with a ‘full-domain’ regularized problerad* A + al)u = A* f, where A* is
the adjoint operator associated withanda > 0 is the Tikhonov regularization parameter.

By a ‘full-domain’ problem we mean that, instead of using only valueg @i the interval

[0, 7] to recoveri on the same interval, Tikhonov regularization requires that data values
from [z, 1] also be used, destroying the causal nature of the original problem and leading to
inefficient solution of Volterra problems. This is true for all regularization methods based on
the computation of (suitably defineg) (A*.A) [12] for the reason that, although the original
operatorA in (1.2) is nonanticipatory (causal), the adjoiit is an anticipatory operator.

In addition to destroying the causal nature of Volterra problems, classical methods such
as Tikhonov regularization tend to oversmooth solutions. Other regularization approaches,
such as the technique of bounded variation regularization [1,5, 8, 15, 16, 35] and the idea of
regularization for curve representations [27], have been developed to handle the problem of
oversmoothing. Although quite promising, such methods do not retain the causal nature of
the Volterra problem and, in addition, require either the formulation of a nondifferentiable or
nonlinear optimization problem.

The goal of this paper is to establish convergence results for a discrete regularization
method for the solution of (1.1), a method which retains the causal nature of the original
problem and also has the potential for avoiding excessive oversmoothing. This approach
falls into a broad class of ‘local regularization’ methods for Volterra equations [17]. In
addition to retaining both the causal and linear structure of Volterra problems, it also has the
advantage of being formulated as a differentiable optimization technique in local regions of the
solution. Numerical implementation of this local regularization method leads to a sequential
algorithm which exhibits certain ‘predictor—corrector’ characteristics. Indeed, at each step in
the sequential algorithm, solutions are held rigid for a short time into the future, yielding a
locally regularized ‘prediction’ of the desired solution. Then, in a ‘correction’ step, the local
solution is truncated in order to avoid oversmoothing and to improve accuracy. The resultis a
method that is easily implemented numerically and which, due to its sequential nature, has the
capability of providing very fast solutions. In fact, as we will see in section 2.1, the method we
consider requires onlg)(N?) arithmetic operations while standard Tikhonov regularization
requiresO(N?3) operations. In the case @fa convolution kernel the local regularization
method is still more efficient, although the difference in cost (to highest ord®y) iis less
dramatic; in this case the local method také%/2 multiplications while standard Tikhonov
regularization requires/®?/2 multiplications.
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The method we present here is a generalization of previous work [18], where we now
considerfunctional regularization parameters, a sequence of penalized local regularization
problems (with functional penalty parameter= n(¢)), and an extension to the case of
nonconvolution kernel&. We note that the extension of [18] to the case of functional
regularization parameters required nontrivial theoretical changes. In this paper we additionally
formulate a sequential discrepancy principle for the adaptive selection of the penalty
parameteys.

It is worth noting that, although computational costs tend to be smaller with a method
which preserves the original Volterra structure of the problem, there is generally additional
cost in terms of the assumptions which must be made in order to prove convergence of the
method. Classical (nhoncausal) methods based on the opetatbare generally associated
with well-developed convergence theories for even infinitely smoothing problems because
such theories may be advanced using the special spectral propettied .o he same cannot
be said, in general, of ‘Volterra-preserving’ methods because they are based on the operator
A alone and do not make use of the noncausal operditar. Thus, theoretical results for
such methods are generally limited by the assumption that the underlying equation is only
moderately ill-posed [17]. It is worth noting that this is often only a theoretical limitation, as a
given \olterra-preserving method may work quite well in practice for even severely ill-posed
problems.

Among methods which retain the Volterra/causal nature of the original problem we
mention the following. Lavrefgv’'s classical method, or the small parameter method, is
associated with a well-developed convergence theory for one-smoothing ope#af@ts
(see [9, 24, 25, 37] to list only a few of the references in this area). The method works quite
well if i2(0) is known precisely, but suffers from boundary layer effects (requiring solution
methods for stiff singularly perturbed equations} D) is not exactly known [17]. A related
method has been developed to include generstihoothing problems [37], but in this case
precise knowledge is required @fand higher-order derivatives dfat: = 0 in order to avoid
the boundary layer effects.

Other Volterra-preserving methods include Lavfevis m-times iterated method [29, 30],
Richardson iteration [32, 38, 39], and certain implicit iterative methods [28, 30-32]. The
regularized convergence theory for these methods, in the case of noisy data, appears to
be limited to only very moderately ill-posed problems (such as the classical Abel integral
equation, which is generally considered ‘half-smoothing’); we are not aware of successful
application of these methods (in practice) to more severely ill-posed problems. See [17] for
an expanded discussion of these methods and underlying theoretical assumptions, and for
additional references on these and other methods (e.g., mollification methods).

The method that is the focus of this paper is no different from those mentioned above in
that our theoretical convergence proofs are limited to only moderately ill-posed problems. We
presenta convergence theory for the case of one-smoothing problems, and make the assumption
throughout thak € C3, k(z, 1) # 0 fort € [0, 1]. (Without loss of generality we will assume
k@,t) = 1,1t € [0, 1].) However, despite the fact that the theoretical development presented
here is based on such an assumption, our method is a generalization of a numerical technique
developed ¥ J V Beck which has been used successfully for over 30 years for the severely
ill-posed (infinitely smoothing) inverse heat conduction problem [2]. In section 2.4 we also
illustrate the effectiveness of the method when applied to a two-smoothing example. Indeed,
practical application seems to indicate that the method applies to a wide variety of ill-posed
\olterra problems, with both finitely and infinitely smoothing operatdrs

The paper is organized as follows. In section 2 we describe implementation and
convergence results for a predictor—corrector regularization algorithm that is a special case of
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the more general class of discrete local regularization methods to be considered in this paper.
In this section we also illustrate, via humerical examples, the effectiveness of the method
and of a strategy for adaptively selecting the penalty parameter. In section 3 we formulate
the hypotheses and more general structure in which convergence is to be examined, stating
convergence results in section 4. Finally, proofs of these results are presented in section 5.

2. Discrete predictor—corrector regularization methods

2.1. A sequential collocation-based discretization

We will motivate the discrete local regularization method to be considered in this paper by
first examining a collocation-based discretization of (1.1). To this endylet 1,2, ... be
fixed and divide [01] into N subintervals{_1,%],i = 1,..., N, each of widthh = 1/N.

We seek constants,i = 1, ..., N, so that the step function
N
wi(t) =Y eixi (1), t€[0,1], (2.1)
i=1
satisfies (1.1) at the collocation points-¢;, j = 1,..., N. Thatis,
J
A<Zc,~x,<>(tj) = f(t)), j=1...,N. (2.2)
i=1
In the abovey; is the usual characteristic function on the interaly, ;] fori = 2, ..., N,

while x; is the characteristic function on the interval {fJ. Because the operatot is
of Volterra type, equation (2.2) is a triangular system of equations for which the solution
is determined sequentially provided the diagonal entries are nonzero (guaranteed under
reasonable assumptions on the ke#)el

It is useful at this point to mention an equivalent formulation of the same procedure,
which we state as follows. Assuming, ..., c;1 have already been found, determine the
h-dependent constanf satisfying

cj =arg Q&nJ i(©), (2.3)

j—1 2
Ji(c) = (-A(Zci)(i + CX_j)(fj) - f(fj)) . (2.4)
i=1

Although the procedure (2.2), equivalently (2.3), (2.4), for determining an approximate
solution of (1.1) is a well-posed problem (because it is finite dimensional), it is not well
conditioned and can lead to poor approximations. The idea for a regularized improvement of
this simple algorithm may be traced back to a numerical method develgpéd/Beck in
the 1960s for the inverse heat conduction problem. This particular approach was generalized
in [6,18-20, 22] and examined in those references from the point of view of stability and
convergence. (Other relevant treatments of Beck’s method may be found, for example,
in [33,34].) Here we extend these ideas even further by considering a similar method but
now with a functional ‘local regularization parameter’For example, giveh = 1/N, define
anh-dependent regularization functien= r (¢) by

N

r(t) =Y rixi(o), t €0, 1], (2.5)
i=1

ri = y;h, forinteger y; > 0, i=1...,N. (2.6)
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The idea behind the new method is to seghkf the form (2.1) as before butinstead to determine
the coefficients in (2.1) in the following manner. Assuming..., c;_1 have already been
found, thejth step in the process is to determirjesuch that

¢j = arg mﬂi@an,,(c), (2.7)
Vi j—1 j+s 2

Jirle)=y" (A(Zc,-x,- +ey m)(%) - f(r,»ﬂ)) : (2.8)
s=0 i=1 l=j

Thus the constant; determined via (2.7), (2.8) is the best constant-valued solution (in a least-
squares sense) over the interval|, ¢; +r(¢;)] = [tj_1, t; +y;h]. This process of temporarily
holding the solution rigid over a small future interval leads to a regularized ‘prediction’ of
the optimal solution:;, (-) = u,(-; r) on the interval{;_1, t; + r(¢;)]. We ‘correct’ this over-
regularized solution by only retaining this solution on the interyak| #;] (i.e., the predicted
value ofu;, on [t;, t; + r(¢;)] is not retained) at th¢th step of the process. We note that in the
case ofy; =0,j =1,...,N, we haver(r) = 0,¢ € [0, 1], and the algorithm (2.7), (2.8)
reduces to the discrete algorithm (2.3), (2.4) for the original (unregularized) problem.

We can generalize these ideas even further by considering a penalized version of the
process described in (2.7), (2.8). Suppose, for example;d@pendent functiop = w1 (z) is
given by

N
u(t) = wixi®). tel0.1], wi=>0, i=1,...,N. (2.9)
i=1

We now findu;, of the form (2.1) where the coefficients in this expression are determined
as follows. Assuming thats, ..., c;—1 have already been found, the idea is to determine
such that

cj =arg mﬂi@njj,,,,t (c), (2.10)
ce
Tjru(©) 1= T;,(c) + pjc?, (2.11)

with J; . given by (2.8) forj = 1,..., N. Thus the parametgr; = u(¢;) > 0 serves to
penalize large values of the constant being determined ijtthetep of the numerical process.
Obviously, inthe case gi; =0, j =1,..., N, the process reduces to (2.7), (2.8).

The jth coefficientc; found by each of the above algorithms may be written explicitly.
Indeed, making the definition of thiedependent quantity,,,,,,

1
Appy = -AXm(tn) = / k(tn’ tu—1 7t S) dsv
0

for1 <m < n < N, itfollows thatJ; ., (c) may be written as

Jirpu(€) = |Ibjc — djlf5 + pjc? (2.12)
where|| - ||; denotes the usual Euclidean normii*1. Here theh-dependent quantities;
andd; are given byb; := (b}, ..., b;ﬁl)T, with

4

béj) = Z Ajrp1,jri-1s t=1...,y;+1 (2.13)

i=1

and thetth entry ind; € R”*is given by

j—1

(dj)e = f(tj+e-1) — ZCiAj+e—1,i, t=1...,y;+1 (2.14)
i1
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Thus the scalar; which solves the penalized algorithm (2.10), (2.11) is given by
cj = (Ibjl5+up bl d;. (2.15)

where||bj||f > ||bj||§ > 0 under reasonable assumptions on the kekriste, e.g., the
assumptions in section 3.2). By making specific choices of the paramgtarsly; in (2.15)
(wherey;+1isthe vector dimension &f, d; in (2.15)), one may also recover the solutionto

the remaining two algorithms considered above. In particular, the chpjces) anduw; =0

in (2.15) prescribe the solutiaty of the original collocation algorithm (2.3), (2.4) while the
choicesy; > 0, u; = 0, determine:; as the solution of the unpenalized predictor—corrector
algorithm (2.7), (2.8).

The operation count for the algorithm in the case of nonconvolution k&iisels follows.
The biggest expense is the computationdgf but the cost is lowered by noting that, for
j= 2,...,N,thetth entry(dj)l of dj may be Writter(dj)( = (dj,]_)ﬁ.l — Cj,]_AHj,l’j,]_,
for ¢ = 1,...,y; + 1. The computation ofd;), requires no multiplications foj = 1,
while for j = 2,..., N, one multiplication is required for ea¢h Thus the worst-case cost
of computing alld; is "% ,(ymax+ N — j + 1) = N?/2 + (Ymax — 1/2)N — Ymax, Where
VYmax = MaXi<i < Vi-

The computation of; in (2.15) requires & ; + 1) + 1 additional multiplications for each
N, bringing the total algorithm count 82 /2 + (3ymax+ 5/2) N — ymax Multiplications. Since
Ymax IS generally taken to be much smaller thnn practice, this estimate compares quite
favourably with standard Tikhonov regularization which requipgs/) multiplications in the
nonconvolution case [22].

In the case of a convolution kernél¢, s) = « (¢t — s), it can be shown that the algorithm
presented here requird® /2 +(2ymax+ 3/2) N + 1 multiplications, which compares favourably
with the multiplication count of £N?2 (to highest order) for standard Tikhonov regularization
as applied to the convolution case [11]. Our local regularization method is less expensive (to
highest order) than standard Tikhonov regularization for the convolution problem provided
Ymax < 2N — 1 (again, in numerical examples it is seen that an appropriate valug,is
generally much less tham, even for severely ill-posed problems).

2.2. Convergence of the discrete predictor—corrector regularization method

Since the local regularization algorithm (2.10), (2.11) involves solving optimization problems
over small future intervals, the theory we develop will require that we either seek a regularized
approximation ta: on an interval of the form [0L — ¢], for ¢ > 0 small, or else slightly extend

the domain of definition of the original problem. We take the latter route here and make the
following standing hypothesis:

let 7T > 1 and assumé € C*([0, T] x [0, T]) with k(z, 1) = 1for0< ¢t < T.

In sections 3-5, we will generalize the local regularization algorithm given above and
develop an associated convergence theory. Because this generalization is somewhat technical,
it is worth stating here the results of these sections as they apply to the more practical
algorithm given in section 2.1 above. The result demonstrates convergence of the regularized
approximation scheme in the case where true gataused, as well as in the more usual case
where only a perturbatiofi’ of f is available. Convergence of the approximations will be in

the following sense.

Definition 2.1. We say that:;,(-) converges ta(-) uniformly at collocation points a& — 0
if for eache > 0 there existdd = H(¢) > 0 for which|u,(f;) — u(t;)| < € for eachy; = Ih,
[=1,...,1/h, wheneved < h < H(e).
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Because convergence occurs/as— 0, we will need sequence@;) and (u,) of
regularization parameters, selected satisfying certain conditions in the limit-a$.

Theorem 2.1.Assumef : [0, T] — R is a bounded Borel measurable function for which the
unique solutiork of (1.1) corresponding tg isin C[0, T]. Foreachh = 1/N,N =1,2, ...,
let the regularization parameters and w;, be given by (2.5) and (2.9), respectively, i.e.,

N N
@)=Y rix@®, @ i=Y i@,  te[0,1],
i=1 i=1

where we assume
rni =y (t)h, i = L(t)h?, i=1...,N,

for all h sufficiently small. Herey is piecewise continuous and integer valued, with
y(t*) > y@) —1,t € [0,1], and ¢ : [0,1] —~ (0O, 00) bounded. Then the solution
up = ZiNzl cjx;j(-) of (2.10), (2.11) (where, and i, are used in place of and ) converges
to z uniformly at collocation points;, j =1,..., N, ash — O.

In addition, let§ > 0 and f? be bounded Borel measurable wiflf — %l < 8. If
h = h(9) is selected so that

§/h%(8) < M, h(s) — 0, as § > 0,
thenu} = Zf"zl cjx; of (2.10), (2.11) (defined additionally using in place of /) converges
to u(-) uniformly at collocation points;, j =1, ..., N(8), asé§ — 0. This convergence is at
the best possible rate with respecttahat is,

ul (1)) — (1)) < K8Y2+0(5), i=1...,N®)

asé — 0, whereK > 0Qis independent of ands.

The implications of the theorem (the proof of which follows immediately from
theorem 4.2) are that the penalty regularization parametey may bet-varying provided it
is not too large (relative th?) and, in factu, may be zero. In addition, the local regularization
parameter;, may also vary with, provided it too is not excessively large (relativeifoand
provided it does not decrease too rapidly &screases. We note that there are no limitations
on increases in,.

2.3. Sequential selection of the penalty paramater

As is true with all regularization methods, proper selection of the regularization parameter(s)
is an important issue. For simplicity we will assume that= 1/N is given and that the
regularization functiorr is fixed and given by (2.5), (2.6). We note that a principle for
the sequential selection efhas been considered in numerical examples for the inverse heat
conduction problem in [3], but we will not address selection of this parameter here. Our main
interest in this section concerns the selection of the regularization paragmeter(r) of the
form (2.9) in the regularization algorithm (2.10), (2.11), in the case of perturbedfdattie
will give an explicit formula forw ; = u(¢;) at thejth step in the sequential process.

Letj > 1. Then ifc‘}, R c‘;_l have already been found, we determine thel¢pendent
constant)cﬁ from (2.10), (2.12), where now the perturbed dafawill be used in place off .
That is,

¢} =arg Egg@nj ?on0), (2.16)

I3, .(0) = lIbjec — d3 |5 + pujc?, (2.17)
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with b; € R*! defined via (2.13) and thih entry ind’ € R”/** given by
j—1
(d)e = f(tjn-1) = Y Ajwri,
i=1
for¢ =1,...,y;+1. Foragivenvalue qi; = u(z;) > 0, the solutior = ¢’ (i) of (2.16),
(2.17) is then given by

S(y) = (Ibs115 + )~ t(b] dY), (2.18)

where||b; ||f +uj = |b; ||§ > 0, whenA j; # 0 (which occurs under the standing assumptions
on the kernek given in section 2.2).

In order to determine an appropriate valuegf = w(¢;) at the jth step, we apply a
Morozov discrepancy principle. To this end wedgt > 1 be fixed and assume that we know
8; for which

I} —d;ll; <9; (2.19)
(whered; is given by (2.14)), where we assume that the signal-to-noise assumption,
C;8% < |1 d3115, (2.20)

is satisfied at thgth step. Then a discrete Morozov discrepancy principle determines the
selection ofu; at this step via

Fi(uj) = C;83, (2.21)
whereF; represents thgth discrete discrepancy function. That is, foe 0,
Fi(w) = [Ibjct(v) = 2|12 = ||(Ib])3 +v)"*b;b] & — d3 3. (2.22)

The uniqueu ; determined by this process is given by the following theorem.

Theorem 2.2.Leth = 1/N > 0 and letr be given by (2.5), (2.6). Fof > 1, assume that
¢}, ..., ¢)_; have already been determined. Thesyisatisfies (2.19), (2.20) for fixed; > 1,

an application of the discrete Morozov discrepancy principle (2.21) determines a unique
at the jth step given by

0, if C;6%< Dy, (2.23)
ni = _ . .
] oi(oj +[bjd ) (|d}|F — C;6H 71, if C;j62>D;.
HereD; > Oando; € R, o; > 0, are given respectively by
D; = |lb; 1|72 Ib; 1515115 — (b d)?), (2.24)

oj = ((b] d’)? — b;II5(Id5 |15 — C;89)Y?

in the case on(Sj? > Dj;. Using this value of:;, the solutioncﬁ at the jth step is then given
by (2.18).

Proof. It is not difficult to show thatF;(0) = D; and thatFJ’. > 0 on (0, ). Thus
there is a uniquex; > O satisfying thejth discrete discrepancy equation (2.21) for all
C;8% € (D, I1d311%).

Let C;67 > D,. We note from (2.24) that this condition is equivalent(td d’)* —
||b||§(||d§.||§ - C,-SJZ.) > 0, from which it follows thato; is real valued and positive. In
addition, it is easy to see from the definitioncgfthat|b] d’| > o, so thatlb] d}| # 0.

Rewriting F; (v) in (2.22), we have

Fi(v) = 12 (@) [ d3 |5 — 2r(v)(b] d2)* + [1b; 15(b] d2)?) (2.25)
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wherer (v) = ||b||f +v > Oforv > 0 sinceA;; # 0. We seel; > 0 which uniquely solves
Fj(v) = C;8%, or, equivalentlyp satisfying

0= 2W)(ld} 11§ = C;6%) — 2 () (b d)? + [1b;15(b; d5)*.

Solving this equation fot (v) we obtain explicit values gi; = t(v) — ||b; ||§, ie.,

W= (q,? + /(bJTdﬁ.)%]?) (3115 —c;8H 7 (2.26)

However,o; < |b]d’|implies,/(b] d})%07 > o7, so that there is only one non-negatjvg
in (2.26) above. This is the unique; found by a discrete Morozov discrepancy principle at
the jth sequential step. The remainder of the theorem follows easily. O

2.4. Numerical implementation

We consider an example in which the true solutibthas a discontinuous derivative. In
figures 1-4, this solution is represented by a dashed curve. Approximate solutions are computed
usingN =40 (h = 410) and in these figures are represented by solid curves joining midpoints
of piecewise constant approximations by line segments. The opefai®given by (1.2)

where the kernet is given byk(t, s) =t — s, for 0 < s < t < 1. The dataf? used in the
regularization process is a (uniformly distributed) random perturbatigh-ef.4i;, where f°

differs from f with approximately 3% relative error.

As a baseline for comparison, we show in figure 1 the results of standard Tikhonov
regularization as applied to this example, using various choices of the Tikhonov parameter
«a. We show results for the same example in figure 2 where now the local regularization
(‘predictor—corrector’) ideas of this paper are used to find approximate solutions. In each
graph in this figure, a constant valuero& 2k is used, while different values of the penalty
parametey. are selected. In the first three graphs in figurg & constant valued (taking the
valuesy = 0.0, 15 x 1078, and 25 x 1075, respectively); in the final graph in that figure,
ana priori selection of a functional parameter= u(¢) is made, with values of. in this
case varying from 10 at the beginning of the interval to 1®at the end of the interval. (See
figure 3 for an even better choice of varialpléor this problem.) Further improvements in the
results are obtained if is also allowed to vary with, however the advantages of variable
have been illustrated in numerical examples elsewhere (see [23] for an example similar to that
considered here and [36] for other numerical results). For this reason, we keaptant and
focus here instead on results obtained through the use of a variable penalty pagameter

It is worth making a comparison between the first graph in figure 1 (standard Tikhonov
regularization withe = 0, i.e., the solution to the discrete equations (2.3), (2.4)) and the
first graph in figure 2 (local regularization with = 0). The latter graph shows an improved
approximate solution, but this is because the choige=sf2/ offers some regularization even
whenu = 0.

In figure 3 we illustrate an application of a sequential discrepancy principle to gelgct
As given intheorem 2.2, we have an explicit representation foe w.(¢;) given an estimate of
§; atthejth step in the sequential process. Itis our experience that useful results require a fairly
reasonable estimate bbththe data error component and the propagated error component (the
latter being more difficult to estimate) which compriges We note that this is in contrast to
initial findings for the method of sequential Tikhonov regularization (in which alocal, reduced-
dimension Tikhonov regularization problem is solved at ttiestep). Indeed, numerical tests
for this particular method seem to indicate that one need only provide an estimate of the average
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Figure 1. Results from Tikhonov regularization for variowsalues.

data error (ignoring the effect of propagated error) in order to sequentially determine a variable
Tikhonov-like parameter which works well in practice [21].

For the results in figure 3 we use = §;(1 +v;), wherej; is theexacterror (exact data
error, plus exact propagated error) at jtiestep in the sequential process, apt a uniformly
distributed random variable scaled to obtain 50%, 10%, 5% and 0%, respectively, maximum
relative error in;. In each example we ugg; =1, j = 1,..., N, in the formula (2.23) for
wi, j =1,...,N. Infigure 4, we repeat the graph of the approximate solution found using
0% relative error ir5;. In the second graph in figure 4, we graph théhat was determined
by the sequential discrepancy principle. In the third graph in this figure, we rescalettie
for 1 so that the detail on the first half of the interval can be clearly seen. It is interesting to
note that decreases in values of predigiszbrrespond to locations of larger/steeper values of
the true solution (at which points less regularization is required). In addition, the sequentially
determinedk increases greatly toward the end of the interval, when propagated error is having
the largest effect.
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Figure 2. Results using the ‘local regularization’ method with various choicgs(of (mu).
50% max relative error 10% max relative error
1.25 1.25
1 1
I\
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Figure 3. Results obtained using the sequential computatien(of(as prescribed by theorem 2.2).
In the above graphs, the maximum relative errors refer to the computation 8f theeded in
theorem 2.2.
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Figure 4. Sequential selection @f(¢) (mu).

3. Generalized discrete predictor—corrector methods

3.1. An equivalent representation of the predictor—corrector algorithm

Assuming we are given, u of the form (2.5), (2.6) and (2.9) respectively, it is useful to view
the penalized predictor—corrector algorithm (2.10), (2.11) in a slightly different context. Recall
that (2.15) gives an explicit solution of this algorithm at jtile step. Rewriting (2.15) we have

v+l ) j—1 yi+l )
> by ( YA ,-M_l.,») +(Ibj 12+ mp)e; = b ftjee1) (3.)
=1 =1

i=1
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where, using (2.1),

.7_1 tji—1
ZCiAjMfl,i = / k(tjro—1, $)up(s) ds
i=1 0

and
0 &<
2 J J
cillbjlF =c; ) by Ajrerj+e; Y b Y Ajwejrica
=1 =1 i=2
vl
= Zbéj)/ k(tj+e—1, $)up(s) ds
=1 tj-1

v+l

, fe—1
+uy, (1) Zbﬁ'”/o k(tjee-1,5 +1;) ds.
=1

Thus (3.1) becomes

yitl

/ ' (Z bkt + 1,1, S)> up(s) ds
0

=1

yj+1 . i1
+[Zbéj)/ k(t; +fe—1,S+fj)dS+Mj]uh(f,j)
=1 0

i+l

= Zbéj)f(fj +1-1),
(=1
or
/O/ k(tj,s:r, Wuy(s)ds +[a(t;; r, ) + p@t)]un(t)) = (s 7, h), (3.2)

forj=1,..., N, where fort € [0, 1],

5 r(t)
k(t,s;r, h) 2=/ k(t+p,s)dn(p;1), (3.3)
0
r@) rp
a(t;r, h) ::f / k(t+p,s +t)dsdn (p; 1), (3.4)
0 0
. ()
f;r h) :=/ f(t+p)dn (o). (3.5)
0
Here, for each € [0, 1], n(-; ¢) is an(r, h)-dependent Borel measure on {Qr)] defined via
() K@)
/O g(p)dn (p; 1) ==Y si()gte-1), (3.6)
=1
for g a Borel function on [0r (¢)], where theh-dependent functionk ands, are given by
K@) :=r@t)/h+1, (3.7)
17
so(1) 1= f k(t +ty_1,t+ (s — h))ds, e=1,...,K(@. (3.8)
0

The equivalence of (3.1) and (3.2) results from the factthat) = b, forj = 1,..., N, and
thus f;“ g(p) dn (05 1;) = VbW e(ty_y), j =1,..., N. We summarize our findings in
the following lemma.
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Lemma 3.1. Letr andu be given by (2.5), (2.6) and (2.9), respectively. The problem of finding
c; solving the penalized predictor—corrector algorithm (2.10), (2.11) foe 1,..., N, is
equivalent to the problem of seeking of the form (2.1) which solves the Volterra equation

/ k(t,s;r, hu(s)ds + [a(t; r, h) + w()]u() = f(t; r, h), (3.9
0

precisely at collocation points=1¢;, j = 1,..., N. The quantities, «, and f are defined
in (3.3), (3.4) and (3.5), respectively, ands given by (3.6).

Under our standing assumptionsigthe coefficient ofi (¢) in (3.9) is nonzero and relevant
quantities in that equation are square integrable; thus the above lemma gives that the predictor—
corrector algorithm is a collocation-based discretization of a well-posed second-kind Volterra
equation. This is in contrast to the unregularized algorithm (2.3), (2.4), which results from a
collocation-based discretization of the original ill-posed first-kind Volterra equation (1.1).

The selection of) above can be generalized, as can the choicesnfl. We do this in
the next section, and make rigorous the assumptions needed in the more general framework.
Theoretical convergence arguments will also be constructed in this setting, with convergence
results given in sections 4, 5.

3.2. Definitions and hypotheses

For a generalization of the method presented in section 2, wié fetl andk be given as in
section 2.2, letF, || - || ) denote a normed linear space of functions defined off J0and
let the subspacé), of F denote the admissible space of data functions, where it is assumed
thatallg € Fp are Borel functions. We assume that the datiefined in (1.1) belongs &,
and is such that (1.1) has a unique solutioa C'[0, T]. The perturbationf?® of f will be
assumed to be such that € 75, wheref? is close tof in an appropriate sense.

For a functional local regularization parametef more general form than that considered
in the last section, we assume I", where

I':={r:[0,1] — R : r piecewise continuoysmin r(t) > 0, maxt +r(t) < T}.
1€[0,1] t€l0,1]

Forr € T, we will use the notationmin := Min;po,17 7 () > 0 and||r ||« := Maxeo,17 7 (#) <
T. Corresponding to- € I' andh > 0 we make the following definition of a family
N = N(r, h) of measures which are compatible witland# in a specific sense.

Definition 3.1. Givenr € T andh > 0, we say that the one-parameter family =
{n(;1),t €[0, 1]} is an (r, h)-suitable family of measure§ for eachr € [0, 1], n(-; ¢) is
a finite, positive Borel measure defined[0nr ()] satisfying

r(t)
/ pdn(p;t) >0, t €[0,1], (3.10)
0

and for which

r ()
f(t+p)dn(p; 1) is well defined for allf € Fp, t € [0, 1]. (3.11)
0

We note that, in general, the family" depends on both and, as well as the selection
of F. We give two examples ofr, h)-suitable AV below. In each case we will define
n(-, t) on [0, ||Ir|l] for ¢ € [0, 1], where it will be understood th%’(’) glp)dn(p;t) =

7 lloo

o &P xprm(e)dn(p;t), t € [0,1], where xpo,«) is the characteristic function on
[0, r()].

Our first example is a generalization of the family of measures defined via (3.6)—(3.8).
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Example 3.1.Leth = 1/N andr € T be given, and supposg, C F:={f:[0,T] - R:
I fll7 == SUPcp. ) | f )] < oo}. DefineN = {n(-, 1), € [0, 1]} where for each € [0, 1],

Il K
fo g(p)dn (p; 1) 1=y se(g(xr)
=1

for bounded Borel-measurabdeon [0, |7 || «], Wwhere the(r, h)-dependent parameteks, s,
74, Satisfy 0< K < oo, K integer; 0< s,(¢) < |Is¢llo < 00,2 €[0,1],¢=1,...,K; and
0Lt <2< <1k < |Irlloo, With 7, € (O, rmin] for somet. It then follows that\V is an
(r, h)-suitable family of measures.

Example 3.2.Leth, r, Fp, F, andg be asin example 3.1, and assume thatthke)-dependent
function w satisfies O< w < w(p,t) < @ < oo, a.a.(p,t) € [0, |Irlle] x [0, T]. Then if
N ={n(; 1), €[0, 1]}, where for each < [0, 1],

7 lloo 7 loo
/ g(p)dn (p; 1) :=/ g(pw(p,1)dp, (3.12)
0 0
it follows that is an(r, h)-suitable family of measures.

Given noisy dataf?, the discrete regularization proble® (which generalizes the
problem described in section 2 and in lemma 3.1) is given in the following definition.

Definition 3.2. Let f® € Fp andu : [0,1] — [0, c0) be specified. Giveh = 1/N
andr € T, let NV = {n(;1),t € [0, 1]} denote an(r, h)-suitable family of measures. We
define thediscrete regularization problerdenoted by = P} (r; u; N), to be the problem
of determiningu = u(-; r; n; N), a step function of the form (2.1), which satisfies the
regularization equation

/ k(z,s;r, hu(s)ds +[a(t; r, h) + w(@®]u(t) = F2(;r, h), (3.13)
0

exactly at collocation points = ¢;, j = 1,...,N. We will also use the notation
Py = Pu(r; u; N) to designate the same problem as above, but witheplaced by the
true dataf.

In the above definitior anda are given by (3.3) and (3.4), respectively, whiiéis defined
by (3.5) with f° used in place of . Well-posedness of the discrete regularization prolkim
is guaranteed by the following theorem.

Theorem 3.1.Let f° € Fp andpu : [0, 1] — [0, co) be specified. Giveh = 1/N and
re’l,letN = {n(;1),t €0, 1]} denote ar(r, h)-suitable family of measures. Theri i
and h are sufficiently small, there is a unique solutioh = uS (-; r; u; N) of the discrete
regularization problen®P; = P. (r; u; N).

Proof. Substituting (2.1) into (3.13) and evaluating gtwe have
J Lo ~
Zci/ k(tj,s;r hyds +[a(;; r, h) + u@)le; = fo@tr h), j=1,...N,
i=1 fi1
(3.14)

a lower-triangular linear system in the veciet, ..., cy) ", with diagonal elements in the
governing matrix given by

tj tj r(t)
/1 k(tj,s;r, h)ds +a(t;;r, h) + u(t)) =/ / k(t; +p,s)dn(p;t;)ds
ti—1 ti-1 0

J

rt;) prp
[ [k o v dsdn i)+,
0 0
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for j = 1,...,N. However, we have assumed thate C! has been normalized so
thatk(r,t) = 1 forr € [0, 1], so it follows that fork and |r| . sufficiently small, the
integrands in the first two terms on the right above are positive, bounded below by some
k = k(r,h) > 0. Thus, forj = 1,...,N, [ Tkt + p,s)dn (o) ds = 0,

andfor(’f')fo" k(t; + p,s +1t;)dsdn(o; ;) > kfor(’f)pdn (p; t;) > 0, where we have used
the assumption (3.10) om(-, 7). Therefore, the lower-triangular matrix system determined
by (3.14) has a unique solutign, ..., cy) . O

In the next section we focus on the problem of convergence for discrete approximations
of equation (3.13). Before doing so, it is worth noting that if no discretization is performed,
then equation (3.13) may alternatively be used to deficertinuousegularization method.

This idea is pursued in [23] and there one may find conditions guaranteeing well-posedness of
the continuous regularization problem associated with (3.13), along with convergence results
depending on choices of the functional regularization parameters-(-; §) and . (-; 8) as

8 — 0. The theory in [23] serves to generalize the continuous regularization ideas in [19]
to nonconvolution kernels and, more importantly, to the case of a variable regularization
parameter.

4. Convergence results

Throughout this section we will assunfee Fp, k, andi satisfy the assumptions made at
the beginning of section 3.2. Lét= 1/N for N = 1, 2,.... We are interested here in the
limiting behaviour as: — 0 of solutionsu;, of the discrete regularization probleR), given

e asequencé,) C I of functional local regularization parameters;

e a sequencéN},), where eachV, = {n,(-,1),t € [0, 1]} is an(ry,, h)-suitable family of
measures; and,

e a sequenceéu;) of functional penalty parameters, with, () > 0,¢ € [0, 1].

In theorem 5.1 and corollary 5.1, we will state convergence results under fairly general
conditions on the above quantities. We will also examine convergengg (the solution

of problem?P}) to &, given f® € Fp, | f(1) — f°(t)| < 8, ¢ € [0, T], and under conditions
relatingh to § asé — 0.

Before turning to the main convergence theorem (for which the statement of results
becomes somewhat technical), we first describe a couple of useful special cases of these
findings. The first special case requires one of the following conditions on local regularization
parameters; (-), given a positive constamt, :

(1a) The parameterg € I" are constant functions given by
rp(t) = Cph, t €[0,1],

where O< C;, < M, < oo for all 4 sufficiently small;
(1b) The parameters, € I' are functions satisfying

rh(t) < Mrh7 t 6 [0’ 1]7
for all 1 sufficiently small, wheré/, < 1.

When condition (1a) holds we will need the following condition on the familigef measures:
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(2a) For somes > 0 and eachh > 0, there exists a finite, positive-independent) Borel
measurey, on [0, ] for which (3.10) and (3.11) hold, and such that, fer= 0, 1 and
M5 1) €Ny

(1)

(1)
[ o dnin = arauwin [ die). e
0 0
where||w,, (-; 1) |l = O(h) ash — 0.
Finally, we require the following condition on the penalty regularization paramgiers

(3) For someM,, > 0, the penalty parameteys, satisfy

rp(t)
0< ma(t) < hZMM/ dny (p3 1), 1 €[0,1],
0
for all & sufficiently small.

We note that condition (3) relates the sizeuqfto 4, r;,, andn,,, and allows for the possibility
ofu, =0forallh =1/N,N =1, 2,.... More general conditions qm, are allowed, as can
be seen in section 5.

Remark 4.1. Condition (2a) om, requires that the measures be approximatétglependent

(in some sense) for all small. Although technical, this condition is satisfied by the families

of measures most commonly used in practice. Indeed, the discrete measure defined via (3.6)—
(3.8) (which is the measure associated with the predictor—corrector algorithms of section 2)
can be seen to satisfy this condition provided we make the natural assumption (which is more
general than (1a)) that, € T is of the formr,(t) = y (t)h, wherey is a fixed non-negative
integer-valued function on [@]. (We note that we may equivalently assume, as in section 2,
thatr, € I is of the formr, (¢) = Z,Nzll/(fi)h xi () since onlyr,,(¢;), j = 1,..., N, will be
required in constructing the solution Bf.) In this case, using a Taylor expansionigrthe
functionss, = s,(t), £ =1,..., K = |7l * 1, in (3.8) satisfy

se(t) = / '[k(l‘, 1) +te_1D1k(81, £2) + (s — h) D2k(81, £2)] ds,
0

wheres; = (1, s, h, £), so thats, (1) = Lh(1 +5,(t, b)), £ =1,..., K, With [|$,(-, h)|lec =

O(h) ash — 0. Thus, the ‘approximateindependence’ of the quantity(-) in n, is sufficient

to argue that condition (2a) above holds for the associated family of measures. It is also not
difficult to see how other families of measures (such as those in examples 3.1, 3.2) may be
constructed in order to easily satisfy condition (2a) above.

The next theorem follows immediately from theorem 5.1 and corollary 5.1, both of which
are proven in the next section.

Theorem4.1.For h = 1/N, N = 1,2,..., assume the parametersy < I satisfy
either conditions (1a) (in which case the,, #)-suitable families\,, of measures satisfy
condition (2a)) or (1b), and that the parameters satisfy condition (3). Then the solution
up () = uy(-; ry; nu; up) Of the discretization probler®, converges tai(-) uniformly at
collocation points;, j =1,..., N,ash — 0.

If, in addition, f® € F), satisfied f(t) — f2(t)| < 8,t € [0, T], andh = h(8) is selected
so that

8/ h2@) <M
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andh(8) — 0ass — 0, then the solutiom} (-) = uj (-; ry; n; i) of discretization problem

Py converges tai(-) uniformly at collocation points;, j = 1,..., N(§), as§ — 0. This
convergence is at the best possible rate with respedttiaat is,
lufy (1) — d (1) < K872 +0(9), j=1...,N©®

ass — 0, whereK > Ois independent of ands.

We note that whem, is specified to satisfy condition (1a) in theorem 4.1, this theorem
generalizes the results in [18] to a penalized (iie.# 0) predictor—corrector method, to
nonconvolution kernelg, and to the case of more general measures.

The above result is fairly limited for truly variable in that condition (1b) implies that
rp(t) < hforallt € [0, 1]. In practical numerical calculations, we are interested in usjag
insection2.1andremark 4.1, eg.pfthe formr, (t) = y (¢)h, wherey (¢) is integer-valued for
t € [0, 1]; such achoice allows us to coordinate the lemgth,) of the jth future regularization
interval with the discretization stepsize. However, condition (1b) requires P(t) < 1,

t € [0, 1], thus ruling out integer-valuegd. However, in fact we can allow integer-valugd
under an additional condition on the measujgsa property which is satisfied by measures of
practical interest in computations. We give a definition prescribing ghisondition’ below,
and note that the condition is of greatest interest when 1 is an integer.

Definition 4.1. Leth =1/N, N =1, 2,.... Suppose we are given a sequeqge C I" with
lrn(@®)] < M,h,t €0, 1], for someM, > 0, and assume that for eaéhwe have an associated
(rp, h)-suitable familyN, = {n,(-; 1), ¢t € [0, 1]} of measures. Fop > 0, we say thai\V},)
satisfies go-condition with respect tdr),) if there isb; € (0, 1/p), C1 > 0, so that, for allk
sufficiently small,

(1)
p dnpy (ps 1)
fom— = by (1) + c1(t; h), t €[0,1], (4.1)
Jo' dny (o3 1)
where
len(t; )] < Cui, t€[0,1].
We consider in examples 4.1 and 4.2 below some measures standardly used in
computations, and demonstrate that these classes of measures gatisiydition withp = 1

for reasonable choices ¢f;). However, before giving these examples, we state a theorem
which shows how we may relax conditions 61) when thep-condition is satisfied byn,,).

Theorem 4.2. Suppose that the sequereg) C I is given, with

r(t) =y (t)h, 0 < Ymin < ¥ (1) < M,, (4.2)
for someymin, M,, and allz € [0, 1]. Suppose further that there is a corresponding sequence
(N, of families of measures, ea¢h,, h)-suitable, which satisfies p-condition with respect
to (ry) for somep > 0. Then if
vy Zy@) —p, t€[0.1], (4.3)
and if penalty parameterg,, satisfy condition (3), then the conclusion of the first part of
theorem 4.1 holds.
If, in addition, f° € F), satisfieq f(t) — f2(t)| < 8,t € [0, T], andh = h(5) is selected
so that
§/h?(8) < M

andh(8) — 0ass — 0, then the conclusions of the second part of theorem 4.1 hold.
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The significance of this theorem (the proof of which appears in section 5) is clearly seen
whenp > 1 is an integer. In this case condition (4.3) allowgo be integer valued with
‘decreasing jumps’ of at mogt, and no limit on ‘increasing jumps’ (other than the fact that
y must remain finite on [0L]). In other words, as increases, one may increase the level of
regularization quickly, but one must decrease it more deliberately.

Below we give some examples of standard measures satisfyoanditions forp = 1,
and a final example where thecondition may be satisfied using arbitraryz 2.

Example 4.1.Let (r,) C T be given satisfying (4.2), with piecewise continuous, integer-
valuedy, and, for eachr;, h), let N, = {n,(; 1), ¢ € [0, 1]} wheren,, is given by (3.6)—

(3.8) (which is the standard measure associated with the predictor—corrector scheme described
in section 2, and a special case of example 3.1). From remark 4.1 we haug(that
Lh(1+0O(h)),t €[0,1],fore =1,..., K. Thus,

rp(t) d ot y(1)+1 y(H)+1 -1
—forhmp (03 1) = ( Z se((€ — 1)h)>< Z sz)

Jo' A (o5 1)

=1 =1
y(H)+1 y()+1 \ —1
=h( +O(h))< Z 0 — 1)) < Z e)
=1 =1

= ($hy @) +Oh?).
It follows that (\},) satisfies (4.1) wittb, = 2 and thus withp = 1.

Example 4.2.Let Fp andg be as in example 3.1, lét;,) C T with ||r;]lc < M, h, and
supposeVN, = {n,(:; 1), t € [0, 1]}, wheren, is defined (similar to example 3.2) for each
h=1/N,N=12...,by

ll7nllo 17 lloo
A g(p) dny, (o3 1) 1='/0 g(p)wn(p, 1) dp. (4.4)

Here we assumey, (p, 1) = &(p)(1 +wo(p, t; b)) for fixedd € CY0,T], 0 < & < d(p),
p € [0, T], and for||lwo(-, -; h)|lec = O(h). Then(N,) satisfies gp-condition withp = 1.
Indeed, for allr € [0, 1], a Taylor expansion ab(p) aboutp = 0 gives

rp(t) ~ ru(t)
n ’ d O d
Jo' pwn(p, 1) pzw()fo P9 1 +om)

Jo' ¥ onp,ydp @(0) f5 dp
= 3 (t) + O(h?)

ash — 0. Thus (4.1) is satisfied withy = % and(\,) satisfies go-condition withp = 1.

Example 4.3.Let p > 2 be arbitrary. Following the ideas of the last example (with the
samefp, g, and(r,)), we may construct familied/, of measures satisfying p-condition

for this prescribed if we definen, via (4.4) using instead an unboundgdhere given by
o(p) = p~™ ™D p e (0,1], form > p — 2. Then it is not difficult to show that (4.1) holds
withby = 1/(m +2) < 1/p.

5. Proofs of convergence

The proofs of theorems 4.1 and 4.2 follow from the results below and will be presented at the
end of this section. Our main convergence theorem, a rather technical result, is given first.



392 P K Lamm an T L Scofield

Theorem 5.1. Suppose € Fp, k, andi satisfy the conditions at the beginning of section 3.2,
and lete,, M,, and M, be fixed positive scalars. Foreadh=1,2,..., leth = 1/N and
suppose we are givery € I' and an(ry, h)-suitable familyN, = {n,(:; 1), ¢ € [0, 1]} of
measures for which

rn(t) < M, h, t €[0,1], (5.1)
and
Jo % pdns (ps 1) Jg" p i (o3 1))
B fy ™ dn o3ty B f i (o3 1)
for all N sufficiently large. Then i, : [0, 1] — [0, co) is selected satisfying

+1>e,, j=0,...,N—1, (5.2)

1 w1, (0)

O ) oy, (5.3)
h (fo”(o) dns (p; 0)) :

1 o (tj+1) ()

= <M, j=0,...,N—1, (5.4)

Sy (o3 t00) o d (03 17)
for all & sufficiently small, and iz(0) = 0, the solutionu,(:) = u,(:; ry; s N) of
the discretization problen®, converges tai(-) uniformly at collocation points = ¢;,
j=1,...,N,ash — 0.

If, in addition, f® € F), satisfied f(t) — f2()| < 8,t € [0, T], andh = h(8) is selected
so that
§/h?(8) <M

andh(8) — 0ass — 0, then the solutiom; (-) = u? (-; r; ; Ny Of discretization problem
P converges tai(-) uniformly at collocation points;, j = 1,..., N(§), as§ — 0. This
convergence is at the best possible rate with respedtttaat is,

luy (1) — (1) < C8Y2+0(8), j=1....N®
ass — 0, whereC > Qis independent of ands.

Proof. LetN = 1,2,...,andh = 1/N. Letd(t) := f%(t) — f(¢), ¢t € [0,1]. Since the
sequenceg;,) and(u;,) are indexed by the discretization paramateve will simplify notation
throughout the proof by writing(r; k) := «(t; r, h), fo(t;h) = fo(t:rm, h), t € [0,1],
andk(z, s; h) 1= k(t, s; ry, h), for 0 < s < r < 1. In addition, it will be useful to define, for
t €10, 1],

vp(#) = (a(t; h) + puy (1)) /ao(t; h),
ru(t)
am(t; h) :=/O p" dny (p, 1),

for m = 0,1. Clearly,ap(t; h) > ai(t; h)/|rnlle > O foralls € [0,1], h = 1/N,
N =1,2,.... We will also make the definitions
ko(t, 55 h) = k(t, 55 h)/ao(t; h), @) = (1) /ao(t; h)

with similar definitions forfy, do, andi.
Using these definitions, (3.14) may be written, after a divisiondty;; /) as

(5.5)

J i ru(tj)
» c[/ ko(tj,s;h)dswh(tj)c,:/ F3@; +p)dny (p: 1)), (5.6)
0

i=1 ti—1

forj=1,...,N.
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We will use a differencing technique similar to that used in [18] to analyse convergence.
To this end, we replacgin equation (5.6) by +1 (forj = 0, ..., N — 1) and subtracting (5.6)
from the resulting equation we obtain

tj+1 o
v (Ej+1)Cj+1 +/ ko(tj+1, 83 h)cjr1xj+a(s) ds
t

J

rp(tj+1)
= / [fo(tj+1+ p) +do(tj+1 + p)]dny (05 tj+1)
0
ru(t;)
—/0 [fotj + p) +do(t; + p)]dny (05 t;) + v (t))c;

- Z [/Eo(rj+1, 53 h) — ko(tj, 5 )]ei xi(s) ds, (5.7)

forj=l,...,N—1.
For givenh = 1/N andr,, the true solutior of (1.1) satisfies

t rp(t)
/ k(t,s; h)i(s) ds +/ /p k(t+p,s+0[ia(s +1) — ()] ds dny, (o; 1)
0 0 0

(1)

Hoe(t; h) + pp (D]ia (1) = A f+p)ydn, (p; 1)+ (0)i(t), (5.8)

for all t € [0,1]. We evaluate (5.8) at = ¢; and divide through by:o(¢;; #), and then
subtract the resulting equation from the one arising from evaluatior=at;.; and division
by ao(tj+1; h). Then, subtracting (5.7) from the resulting equationzjrthe result is (for
j=1...,N=-1)

v (D[ (tj41) — cjea] + [ : ko(tj+1, 83 W[ (s) — cjeaxj+1(s)] ds
= v (t))[u(t)) - ¢l + mn(tjrD)ino(tj+1) — pp (t)io(t;)
ru(t;)

r;,(f/+1)
—/ do(tj+1 + p) dny (03 tj+1) +/ do(t; + p) dny, (p; tj)
0 0

J i .
—Z [ko(tjs1, 55 h) — ko(t, 53 W][it(s) — cixi ()] ds

li-1

rh(f,+1) u(s +t: — ul(t;
/ / Kltjer+ pos + 1) D T 00 G g
ao(tj+1; h)

() s+t i(t
/ / Kty +p, s+ 1) "D D g (). (5.9)
O(tjs h)
Using a Taylor expansion we can write, foe (¢;, tj+1]andj =0,..., N — 1,
() — cjsaxjsa(t) = h[Bjsa+ b1t — tjrD)it’ (2+2(1))], (5.10)

for somez;.1(t) betweens andt;41, and where8;.; = h1(ii(t;4s1) — cj+1). Using this
expansion and dividing through tiy (5.9) becomes

1
Bis1=W;()B; —h Z Vi — S E;(8,h) — Z;(h, (5.11)

i=1
forj=1,...,N — 1, where

tj+1 -
D;(h) = vu(tj+1) +/ ko(tj+1, 5 h) ds, (5.12)
t

j
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W;(h) == vu(t;)/D;j(h), (5.13)
7y (tj+1)

Ej@é,h) = Dj(h)[/o do(tj1+ p) dny (05 2j+1)

ri(tj)

—/0 do(t; + p) dny, (p; Tj):|, (5.14)
Vii(h) = hD;) " [ [Rotjan, 53 h) — Fo(t, 53 W] ds, (5.15)
Zj(h) := (hD;(h))"*R;(h), (5.16)
rn(tjv1) P (s +tiv1) — i(tis1)

Rj(h) = /(; / k(tjr1+p,s +1j+1) a;(;ﬂ; 3 1 4s dnp, (5 tj+1)

rp(t;) u(l‘] +S) u([]) ]

/ / k(tj+p,s+t)———= a0t ) ds dny, (03 ;)

+Z / TRo(tje. 53 ) — Rolty. 5 W] (s — 1)ii'(z1(s)) ds

+ / kot 53 1) (s — 140 (202(s)) d
—pn (tj+)uo(tj+1) + o (2))io(t;)), (5.17)

fori=1,...,j, j=1,...,N—1.
Similarly, if we evaluate (5.6) at = 1 and (5.8) at = #; (dividing through the resulting
equation byug(t1; k)) and then subtract the two equations, we get
1
—Eo(8, h) — Zo(h), (5.18)

Pr=—1

whereDy(h) and Zy(h) are defined by (5.12) and (5.16), respectively (using 0 in each)
and where

ry(t1)
Eo(8. ) i= hDy () /O do(tz + p) dy (p. 1), (5.19)
rp(t1) p 1
Ro(h) = f f k(1 + py s + 0)[iGs + 1) — ii(r)lag ™(ra: h) ds dny (o, 12)
0 0

+/(; ko(ty, 55 1) (s — t1)id (za(s)) ds — p, (t1)ito(t1)- (5.20)

Now suppose we can show that there are positive constgnise, andz, all independent of
h for which

W;h) < w, Vii(h) <wv, (5.22)
fori=1,...,j,j=1,...,N—1,andw € (0, 1), and

E;j(8,h) <€, Zjh) <z (5.22)
for j =0,..., N—1. Thenapplying the arguments found in [18], it follows tha{ < B, for
j=1..., N whereB is independent oV andh; the bound is obtained using the assumption

of a uniform bound o018/ #2(8). Thus, using (5.10)(t;) — ud (1))l = la(t;) — cj| < Bh(3)
so thatju(r;) — uj(t;)| > 0ass — 0,forj =1,..., N.

Itremains only to show that the bounds in (5.21), (5.22) hold. We first dhgiw) > O for
all h sufficiently small and obtain estimatesDrol(h) forj =0, ..., N—1andh sufficiently
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small. To this end we note that the quantity(z;+1; 1) D, (h) is the(j + 1)st diagonal entry
in the matrix system in (3.14) fof = 0, ..., N — 1. Thus from the proof of theorem 3.1,
Dj(h) > Ofor j =0,..., N—1 and allr sufficiently small. In addition, after a change of
integration variable,

i+l t1 pra(tj+)
/ k(tj+1,s; h)ds =/ / k(tjsa + p,t; +5) dny (03 tj+1) ds
t 0 0

f1 pra(tjvg)
= /(; /0 [k(tj, tj) + (p +h)D1k(&j, ¢;) + s Dok (&}, £j)]1dny (05 tj+1) ds

for suitable; = &;(p,s),¢; = ¢j(p,s),j=0,...,N —1. Thus

Lji+1
[ Rty sy 6 = hanttess L+ g0 ) (5.23)
Ij
whereforj =0, ..., N—1,|g(tj+1; h)| < |lklly,00h (M, +2). Thus for allk sufficiently small,
/tj_fﬂlé(tjﬂ, s; h)ds > hao(tj+1; h)/2 > 0,forj =0,...,N —1,and

D (h) < 2/h, j=0,....,N—1 (5.24)

Using this estimate onD].‘l(h), we return to the computation of the bounds in (5.21),
(5.22) and see that '

i (tj+1) ri(tj)
|E,<6,h)|<2h-1(h8aol(r,-+1;h) fo dni (05 1j41) + hdag (13 ) fo dnh(p;t,)),

so that|E;(8, h)| < 46 for j =1,..., N — 1, and likewise the same bound is obtained for
|Eo(8, h)|. Thus we obtain the needed bound forin (5.22) withe = 4.
In considering the bound fdr; ; (k) in (5.21), we note that

» ru(t;)
k(tj, s h) =/O [k(t;,s) + pD1k(t; + &, (), )] dny; (p: 1))

ru(t;)
=ao(tj; hk(t;,s) + / pD1k(t; + &1, (p), s)dny (3 1)), (5.25)
0

forj=1,..., N,and suitablé; ; (o). Thus, fori =1,...,j, j=1...,N -1,

t
/ |ko(tj+1, 55 h) — ko(t;, 53 h)| ds < [[k|l1.00 (1 + 2M,)1°.
ti—1
From this estimate and (5.24), it follows that; ; (h)| < 2|lkll10(1+2M,),i =1,...,j,
j=1,..., N —1,sothatthe bound fdr; ; in (5.21) is established.

Turning toZ; (h), we see from (5.16) and (5.24) that we need only show that each of the
terms inR;(h) is O(?),j=0,...,N—1,ash — 0. We have that the first term iR; (h),
j=1,...,N—1, satisfies

ru(tjs1) P
agt(tjs1; h) / / k(tjis1+p,s +tj20) (s + tj41) — i(tj+1)) ds dny (05 £j+1)
0 0

i (tj+1)
< loo 1005 (135 )7 (1141) / p i (9 1540)
0
< elloo il oo M2H.

The first term ofRo (%) is bounded similarly, as is the second term in the expressioR @),
j=1,...,N—-1.
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The above estimates for boundiig; (#) may be used to show that
J i .
| Tko(tjer s:h) — ko(tj, 53 W] (s — )it (2i(5)) ds| < [liill1.00lIk]|1.00(1 + 2M,) N 1®
i=1Yli-1
so that the summation term Ry (h) is OM?),j=1,...,N—1. Thefourth term iR ; (h) for
these same values g¢fis handled similarly, as is the second term in the expressioR§0r).
Using the conditions (5.3), (5.4) @u,(¢;), the remaining terms from; (1), j = 1,..., N—1,
are estimated as follows. First we note thatfoe 1,..., N — 1,

j—1
w(tp)ag (s h) =Y Amn(tien)ag  (tiss; ] — | (t)ag (@ B} + a (to)ag  (to; 1))
i=0

N—-1
< ) mn(teDag v h) — pa(tag (4 h) | + |a(to)ag *(to: )|
i=0

< NW*M, +hM, (5.26)
so that
| (00t 1) — pn ()ito(t)| < Nitlloo Myh? + 2M ,h?|it | 1,00, (5.27)

where we have added and subtracted a term of the ﬁ)(mpl)uh(tj)agl(tj; h). Since
i(0) = 0, the final term in the expression f&g () can be written as

ag H(ty; ) | ()it (1) = | (t)ito(t1) — 144 (0)iio(0))| (5.28)
and is handled similarly. Thus the bound in (5.22) is obtained.
Finally, we have thaW; (h) = (1 +K;(h))",for j =1,..., N — 1, where

Kj (h) = Uhl(lj)(l)h(l‘j+1) — vy (l‘j) + aal(tjﬂ; h) / ];(tj+1, s; h) dS)
1]

1 a(tjs; ) + up(tjse) oty h) + up(t;
= 1)h (tj) . - .

ao(tj+1; h) ao(t;; h)
where we have used (5.23). Thus

_ altj1; h) a(ti;h)
K (h) = hv (@, J — / +3(tas h) + 1 +g(tius h
j() vV, (j)<hl10(tj+1;h) hao(l‘j;h) g(j+l ) g(/+1 )>

) bRl + gty h)]) ,

where |3(tj.; B 1= B wu(tjeD)ag  (tje1s h) — wi(tpag *(tjs h)| < Myh, for j =
1,..., N —1. In addition,

r(t;))  pp
a(ty; h) = fo /O [1+pDik(;, ¢j) +sD2k(&;, &) ds dny, (p; 1)),
for&; = £;(p,s), &; = ¢j(p,s), SO thatw(t;; h)(hao(t;; h)™* = ax(t;; h)(hao(t;; b))~ +
g(t;; h), wherelg(t;, h)| < '§‘||k||1,OOM,2h, forj=1,...,N—1. Thus,forj =1,...,N—1,
K;(h) = hv, Y(t)[an(tje1; h)(hao(tjs1; 1) ™ — ax(t;; ) (hao(t;; b)) ™t + 1+ O(h)]
> hvy (1)(e,/2)
> hllIklloorn (1)) + i (t))ag *(tj; ] e, /2),

for all 4 sufficiently small, where we have used assumption (5.2). Then, using (5.1) and (5.26),
we have thak ;(h) > K for j =1,..., N — 1 (for all & sufficiently small), where

K =& Q|kllM, +4M,)" > 0. (5.29)
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ThusW;(h) = 1/(1+K;(h)) <wforj=1,...,N — 1, wherew = 1/(1+K) € (0, 1).
Thus the bound in (5.21) holds and the proof of the theorem is complete. O

We may relax the conditioir(0) = 0 in the statement of theorem 5.1 under stricter
restrictions onu than those given in (5.3) and (5.4). The proof of the following corollary
is identical to the proof of theorem 5.1 except for fairly obvious changes in the estimates in
equations (5.26)—(5.28), and (5.29).

Corollary 5.1. Suppose € Fp, k, andi satisfy the conditions at the beginning of section 3.2,
and lets,, M,, and M, be fixed positive scalars. Foreadh=1,2,...,leth = 1/N and
suppose we are given, € I' and an (r;, h)-suitable familyN,, = {n,(,1),t € [0, 1]}

of measures for which (5.1) and (5.2) are satisfied for Allisufficiently large. Then if
wn - [0, 1] = [0, co) is selected satisfying

1 wr(tj) ;
ﬁ([”’([/)— gMM, _]:0,...,N, (530)

o dn(p,t))
for all 1 sufficiently small, the conclusions of theorem 5.1 still hold.

We conclude with the proofs of theorems 4.1 and 4.2 from section 3.

Proof of theorem 4.1. The proof follows from corollary 5.1. The only estimate that is not
immediate is that condition (1b) in the statement of theorem 4.1 implies the inequality in (5.2).
Indeed

S pdn (ot Jo'" p dna (03 1)
B[P dy (o3 tje1) b f3 ) di (03 1))
so thats, = —M, + 1 > 0 under the assumptions of the theorem. O

+1>0-M,+1

Proof of theorem 4.2. The proof follows from corollary 5.1 provided we show that

condition (5.2) holds. In fact, under the conditions of theorem 4.2,

f(;‘"(t‘f+1);0d77h (5 tj+1) Orh(t’) p dny (o5 )

B fy O o o3 i) B 3 dn (03 1)
> bily (tj+1) — v (1)) + Pl

wherecé,(h) = O(h), and the inequality is valid for alt sufficiently small, usingp =
1/by — (1/b1 — p)/2 > p. Thus ify satisfies (4.3), condition (5.2) holds with > 0. a

+1="b1(y(tj+1) — y(t;) +1/by + C2(h)/b1)

6. Conclusions

We have considered a local regularization method for the solution of ill-posed Volterra
problems, focusing in particular on discrete realizations of the method. We have provided
theoretical results guaranteeing convergence of the discretized method, and have examined the
role played by functional regularization parameterand ;. Further, we have developed

a sequential discrepancy principle to select the penalty paramgtes w;(¢), presenting
numerical examples to illustrate the effectiveness of this adaptive procedure.

We should mention that several parts of the analysis and practical use of this sequential
discrepancy principle have not been presented here. Current study involves the development of
a convergence theory guaranteeing that this selectipp lefads to a convergent approximation
method a& — 0 and the level of the noise decreases to zero. In addition, we are investigating
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models of propagated error in order to make best use of the results in theorem 2.2. Finally, the
results in [20] give hope that we may be able to extend our theoretical resubsnmothing
problems (most likely for small-integes), under additional assumptions on the problems.
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