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Abstract. We analyse the convergence of a class of discrete predictor–corrector methods for the
sequential regularization of first-kind Volterra integral equations. In contrast to classical methods
such as Tikhonov regularization, this class of methods preserves the Volterra (causal) structure of
the original problem. The result is a discretized regularization method for which the number of
arithmetic operations isO(N2) (whereN is the dimension of the approximating space) in contrast
to standard Tikhonov regularization which requiresO(N3) operations.

In addition, the method considered here is defined using functional regularization parameters
so that the possibility for more or less smoothing at different points in the domain of the solution
is allowed. We establish a convergence theory for these methods and present relevant numerical
examples, illustrating how one functional regularization parameter may be adaptively selected as
part of the sequential regularization process. This work generalizes earlier results by the first author
to the case of a penalized predictor–corrector formulation, functional regularization parameters,
and nonconvolution Volterra equations.

1. Introduction

We consider the following inverse problem. Given a suitable functionf , find ū satisfying the
first-kind Volterra integral equation

Au(t) = f (t), (1.1)

for a.e.t ∈ [0, 1], whereA is the bounded linear operator onL2(0, 1) defined by

Au(t) :=
∫ t

0
k(t, s)u(s)ds, a.e.t ∈ [0, 1]. (1.2)

Problems based on (1.1) are ill-posed due to lack of continuous dependence on data
f ∈ L2(0, 1), with the severity of ill-posedness related to properties of the kernelk. For
example, ifk ∈ C1([0, 1] × [0, 1]) satisfiesk(t, t) 6= 0 for all t ∈ [0, 1], it is well known
that under this condition differentiation of (1.1) with respect tot (for sufficiently smoothf )
leads to a well-posed second-kind Volterra equation with solutions depending continuously
on the (new) dataf ′ ∈ L2(0, 1). We will say that the operatorA is ‘one-smoothing’ in this
case. However, even if the ‘true’ data functionf is smooth, the usual situation is that we
only have available a nonsmooth perturbation off . Thus, in the case of problems with one-
smoothing operatorsA, the ‘degree’ of ill-posedness of (1.1) is that associated with first-order
differentiation of noisy data.

More generally, if the kernelk is such that ∂νk/∂tν is continuous with
(∂ν−1k/∂tν−1)(t, t) 6= 0, (∂`k/∂t`)(t, t) = 0, for ` = 0, . . . , ν − 2 (ν > 2 integer) and
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0 6 t 6 1, then it takesν differentiations of equation (1.1) (for sufficiently smoothf ) to
obtain a well-posed second-kind equation, with solutions depending continuously onf (ν). We
will say that the operatorA is ‘ν-smoothing’ in this case, and ‘infinitely smoothing’ in the case
of smoothk with (∂`k/∂t`)(t, t) = 0, for 06 t 6 1 and all̀ = 0, 1, 2, . . . . Of course, not all
equations of the form (1.1) fall into one of these classes of problems; however, these terms will
be useful in discussing below the severity of ill-posedness associated with particular Volterra
equations.

Equations of the form (1.1) arise in a number of applications. For example, the inverse
heat conduction problem (or sideways heat equation) [2] is based on such a model with
infinitely smoothing operatorA, while the differentiation problem [12] is associated with
a one-smoothing operatorA. In both of these examples the operatorA has a convolution
kernel; however numerous nonconvolution kernels may also be found in applications (see,
e.g., a recent example from capillary viscometry in [26]).

A regularization method must be used to solve (1.1), and certainly the classical method
of Tikhonov regularization is a simple and effective approach. However, a disadvantage
of this method when applied to Volterra problems is that it replaces the original ‘causal’
problem (1.1) with a ‘full-domain’ regularized problem,(A?A + αI)u = A?f , whereA? is
the adjoint operator associated withA andα > 0 is the Tikhonov regularization parameter.
By a ‘full-domain’ problem we mean that, instead of using only values off on the interval
[0, t ] to recoverū on the same interval, Tikhonov regularization requires that data values
from [t, 1] also be used, destroying the causal nature of the original problem and leading to
inefficient solution of Volterra problems. This is true for all regularization methods based on
the computation of (suitably defined)gα(A?A) [12] for the reason that, although the original
operatorA in (1.2) is nonanticipatory (causal), the adjointA? is an anticipatory operator.

In addition to destroying the causal nature of Volterra problems, classical methods such
as Tikhonov regularization tend to oversmooth solutions. Other regularization approaches,
such as the technique of bounded variation regularization [1, 5, 8, 15, 16, 35] and the idea of
regularization for curve representations [27], have been developed to handle the problem of
oversmoothing. Although quite promising, such methods do not retain the causal nature of
the Volterra problem and, in addition, require either the formulation of a nondifferentiable or
nonlinear optimization problem.

The goal of this paper is to establish convergence results for a discrete regularization
method for the solution of (1.1), a method which retains the causal nature of the original
problem and also has the potential for avoiding excessive oversmoothing. This approach
falls into a broad class of ‘local regularization’ methods for Volterra equations [17]. In
addition to retaining both the causal and linear structure of Volterra problems, it also has the
advantage of being formulated as a differentiable optimization technique in local regions of the
solution. Numerical implementation of this local regularization method leads to a sequential
algorithm which exhibits certain ‘predictor–corrector’ characteristics. Indeed, at each step in
the sequential algorithm, solutions are held rigid for a short time into the future, yielding a
locally regularized ‘prediction’ of the desired solution. Then, in a ‘correction’ step, the local
solution is truncated in order to avoid oversmoothing and to improve accuracy. The result is a
method that is easily implemented numerically and which, due to its sequential nature, has the
capability of providing very fast solutions. In fact, as we will see in section 2.1, the method we
consider requires onlyO(N2) arithmetic operations while standard Tikhonov regularization
requiresO(N3) operations. In the case ofk a convolution kernel the local regularization
method is still more efficient, although the difference in cost (to highest order inN ) is less
dramatic; in this case the local method takesN2/2 multiplications while standard Tikhonov
regularization requires 9N2/2 multiplications.
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The method we present here is a generalization of previous work [18], where we now
considerfunctional regularization parameters, a sequence of penalized local regularization
problems (with functional penalty parameterµ = µ(t)), and an extension to the case of
nonconvolution kernelsk. We note that the extension of [18] to the case of functional
regularization parameters required nontrivial theoretical changes. In this paper we additionally
formulate a sequential discrepancy principle for the adaptive selection of the penalty
parameterµ.

It is worth noting that, although computational costs tend to be smaller with a method
which preserves the original Volterra structure of the problem, there is generally additional
cost in terms of the assumptions which must be made in order to prove convergence of the
method. Classical (noncausal) methods based on the operatorA?A are generally associated
with well-developed convergence theories for even infinitely smoothing problems because
such theories may be advanced using the special spectral properties ofA?A. The same cannot
be said, in general, of ‘Volterra-preserving’ methods because they are based on the operator
A alone and do not make use of the noncausal operatorA?A. Thus, theoretical results for
such methods are generally limited by the assumption that the underlying equation is only
moderately ill-posed [17]. It is worth noting that this is often only a theoretical limitation, as a
given Volterra-preserving method may work quite well in practice for even severely ill-posed
problems.

Among methods which retain the Volterra/causal nature of the original problem we
mention the following. Lavrent′ev’s classical method, or the small parameter method, is
associated with a well-developed convergence theory for one-smoothing operatorsA [7]
(see [9, 24, 25, 37] to list only a few of the references in this area). The method works quite
well if ū(0) is known precisely, but suffers from boundary layer effects (requiring solution
methods for stiff singularly perturbed equations) ifū(0) is not exactly known [17]. A related
method has been developed to include generalν-smoothing problems [37], but in this case
precise knowledge is required ofū and higher-order derivatives ofū at t = 0 in order to avoid
the boundary layer effects.

Other Volterra-preserving methods include Lavrent′ev’sm-times iterated method [29,30],
Richardson iteration [32, 38, 39], and certain implicit iterative methods [28, 30–32]. The
regularized convergence theory for these methods, in the case of noisy data, appears to
be limited to only very moderately ill-posed problems (such as the classical Abel integral
equation, which is generally considered ‘half-smoothing’); we are not aware of successful
application of these methods (in practice) to more severely ill-posed problems. See [17] for
an expanded discussion of these methods and underlying theoretical assumptions, and for
additional references on these and other methods (e.g., mollification methods).

The method that is the focus of this paper is no different from those mentioned above in
that our theoretical convergence proofs are limited to only moderately ill-posed problems. We
present a convergence theory for the case of one-smoothing problems, and make the assumption
throughout thatk ∈ C1, k(t, t) 6= 0 for t ∈ [0, 1]. (Without loss of generality we will assume
k(t, t) = 1, t ∈ [0, 1].) However, despite the fact that the theoretical development presented
here is based on such an assumption, our method is a generalization of a numerical technique
developed by J V Beck which has been used successfully for over 30 years for the severely
ill-posed (infinitely smoothing) inverse heat conduction problem [2]. In section 2.4 we also
illustrate the effectiveness of the method when applied to a two-smoothing example. Indeed,
practical application seems to indicate that the method applies to a wide variety of ill-posed
Volterra problems, with both finitely and infinitely smoothing operatorsA.

The paper is organized as follows. In section 2 we describe implementation and
convergence results for a predictor–corrector regularization algorithm that is a special case of
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the more general class of discrete local regularization methods to be considered in this paper.
In this section we also illustrate, via numerical examples, the effectiveness of the method
and of a strategy for adaptively selecting the penalty parameter. In section 3 we formulate
the hypotheses and more general structure in which convergence is to be examined, stating
convergence results in section 4. Finally, proofs of these results are presented in section 5.

2. Discrete predictor–corrector regularization methods

2.1. A sequential collocation-based discretization

We will motivate the discrete local regularization method to be considered in this paper by
first examining a collocation-based discretization of (1.1). To this end, letN = 1, 2, . . . be
fixed and divide [0, 1] into N subintervals [ti−1, ti ], i = 1, . . . , N , each of widthh = 1/N .
We seek constantsci , i = 1, . . . , N , so that the step function

uh(t) :=
N∑
i=1

ciχi(t), t ∈ [0, 1], (2.1)

satisfies (1.1) at the collocation pointst = tj , j = 1, . . . , N . That is,

A
( j∑
i=1

ciχi

)
(tj ) = f (tj ), j = 1, . . . , N. (2.2)

In the above,χi is the usual characteristic function on the interval(ti−1, ti ] for i = 2, . . . , N ,
while χ1 is the characteristic function on the interval [0, t1]. Because the operatorA is
of Volterra type, equation (2.2) is a triangular system of equations for which the solution
is determined sequentially provided the diagonal entries are nonzero (guaranteed under
reasonable assumptions on the kernelk).

It is useful at this point to mention an equivalent formulation of the same procedure,
which we state as follows. Assumingc1, . . . , cj−1 have already been found, determine the
h-dependent constantcj satisfying

cj = arg min
c∈R

Jj (c), (2.3)

Jj (c) :=
(
A
( j−1∑
i=1

ciχi + cχj

)
(tj )− f (tj )

)2

. (2.4)

Although the procedure (2.2), equivalently (2.3), (2.4), for determining an approximate
solution of (1.1) is a well-posed problem (because it is finite dimensional), it is not well
conditioned and can lead to poor approximations. The idea for a regularized improvement of
this simple algorithm may be traced back to a numerical method developed by J V Beck in
the 1960s for the inverse heat conduction problem. This particular approach was generalized
in [6, 18–20, 22] and examined in those references from the point of view of stability and
convergence. (Other relevant treatments of Beck’s method may be found, for example,
in [33, 34].) Here we extend these ideas even further by considering a similar method but
now with a functional ‘local regularization parameter’r. For example, givenh = 1/N , define
anh-dependent regularization functionr = r(t) by

r(t) :=
N∑
i=1

riχi(t), t ∈ [0, 1], (2.5)

ri := γih, for integer γi > 0, i = 1, . . . , N. (2.6)
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The idea behind the new method is to seekuh of the form (2.1) as before but instead to determine
the coefficients in (2.1) in the following manner. Assumingc1, . . . , cj−1 have already been
found, thej th step in the process is to determinecj such that

cj = arg min
c∈R

Jj,r (c), (2.7)

Jj,r (c) :=
γj∑
s=0

(
A
( j−1∑
i=1

ciχi + c
j+s∑
`=j

χ`

)
(tj+s)− f (tj+s)

)2

. (2.8)

Thus the constantcj determined via (2.7), (2.8) is the best constant-valued solution (in a least-
squares sense) over the interval [tj−1, tj +r(tj )] = [tj−1, tj +γjh]. This process of temporarily
holding the solution rigid over a small future interval leads to a regularized ‘prediction’ of
the optimal solutionuh(·) = uh(·; r) on the interval [tj−1, tj + r(tj )]. We ‘correct’ this over-
regularized solution by only retaining this solution on the interval [tj−1, tj ] (i.e., the predicted
value ofuh on [tj , tj + r(tj )] is not retained) at thej th step of the process. We note that in the
case ofγj = 0, j = 1, . . . , N , we haver(t) = 0, t ∈ [0, 1], and the algorithm (2.7), (2.8)
reduces to the discrete algorithm (2.3), (2.4) for the original (unregularized) problem.

We can generalize these ideas even further by considering a penalized version of the
process described in (2.7), (2.8). Suppose, for example, anh-dependent functionµ = µ(t) is
given by

µ(t) :=
N∑
i=1

µiχi(t), t ∈ [0, 1], µi > 0, i = 1, . . . , N. (2.9)

We now finduh of the form (2.1) where the coefficientscj in this expression are determined
as follows. Assuming thatc1, . . . , cj−1 have already been found, the idea is to determinecj
such that

cj = arg min
c∈R

Jj,r,µ(c), (2.10)

Jj,r,µ(c) := Jj,r (c) +µjc
2, (2.11)

with Jj,r given by (2.8) forj = 1, . . . , N . Thus the parameterµj = µ(tj ) > 0 serves to
penalize large values of the constant being determined in thej th step of the numerical process.
Obviously, in the case ofµj = 0, j = 1, . . . , N , the process reduces to (2.7), (2.8).

Thej th coefficientcj found by each of the above algorithms may be written explicitly.
Indeed, making the definition of theh-dependent quantity1nm,

1nm := Aχm(tn) =
∫ t1

0
k(tn, tm−1 + s) ds,

for 16 m 6 n 6 N , it follows thatJj,r,µ(c) may be written as

Jj,r,µ(c) = ‖bj c − dj‖2j +µjc
2 (2.12)

where‖ · ‖j denotes the usual Euclidean norm inRγj+1. Here theh-dependent quantitiesbj
anddj are given bybj := (b(j)1 , . . . , b

(j)

γj+1)
>, with

b
(j)

` :=
∑̀
i=1

1j+`−1,j+i−1, ` = 1, . . . , γj + 1, (2.13)

and thè th entry indj ∈ Rγj+1 is given by

(dj )` = f (tj+`−1)−
j−1∑
i=1

ci1j+`−1,i , ` = 1, . . . , γj + 1. (2.14)



378 P K Lamm and T L Scofield

Thus the scalarcj which solves the penalized algorithm (2.10), (2.11) is given by

cj = (‖bj‖2j +µj)
−1b>j dj , (2.15)

where‖bj‖2j + µj > ‖bj‖2j > 0 under reasonable assumptions on the kernelk (see, e.g., the
assumptions in section 3.2). By making specific choices of the parametersµj andγj in (2.15)
(whereγj+1 is the vector dimension ofbj ,dj in (2.15)), one may also recover the solutionscj to
the remaining two algorithms considered above. In particular, the choicesγj = 0 andµj = 0
in (2.15) prescribe the solutioncj of the original collocation algorithm (2.3), (2.4) while the
choicesγj > 0,µj = 0, determinecj as the solution of the unpenalized predictor–corrector
algorithm (2.7), (2.8).

The operation count for the algorithm in the case of nonconvolution kernelk is as follows.
The biggest expense is the computation ofdj , but the cost is lowered by noting that, for
j = 2, . . . , N , the`th entry(dj )` of dj may be written(dj )` = (dj−1)`+1− cj−11`+j−1, j−1,
for ` = 1, . . . , γj + 1. The computation of(dj )` requires no multiplications forj = 1,
while for j = 2, . . . , N , one multiplication is required for each̀. Thus the worst-case cost
of computing alldj is

∑N
j=2(γmax + N − j + 1) = N2/2 + (γmax− 1/2)N − γmax, where

γmax= max16i6N γi .
The computation ofcj in (2.15) requires 2(γj + 1) + 1 additional multiplications for each

N , bringing the total algorithm count toN2/2 +(3γmax+ 5/2)N − γmax multiplications. Since
γmax is generally taken to be much smaller thanN in practice, this estimate compares quite
favourably with standard Tikhonov regularization which requiresO(N3)multiplications in the
nonconvolution case [22].

In the case of a convolution kernel,k(t, s) = κ(t − s), it can be shown that the algorithm
presented here requiresN2/2+(2γmax+3/2)N +1 multiplications, which compares favourably
with the multiplication count of 4.5N2 (to highest order) for standard Tikhonov regularization
as applied to the convolution case [11]. Our local regularization method is less expensive (to
highest order) than standard Tikhonov regularization for the convolution problem provided
γmax 6 2N − 1 (again, in numerical examples it is seen that an appropriate value ofγmax is
generally much less thanN , even for severely ill-posed problems).

2.2. Convergence of the discrete predictor–corrector regularization method

Since the local regularization algorithm (2.10), (2.11) involves solving optimization problems
over small future intervals, the theory we develop will require that we either seek a regularized
approximation tōu on an interval of the form [0, 1−ε], for ε > 0 small, or else slightly extend
the domain of definition of the original problem. We take the latter route here and make the
following standing hypothesis:

let T > 1 and assumek ∈ C1([0, T ] × [0, T ]) with k(t, t) = 1 for 06 t 6 T .

In sections 3–5, we will generalize the local regularization algorithm given above and
develop an associated convergence theory. Because this generalization is somewhat technical,
it is worth stating here the results of these sections as they apply to the more practical
algorithm given in section 2.1 above. The result demonstrates convergence of the regularized
approximation scheme in the case where true dataf is used, as well as in the more usual case
where only a perturbationf δ of f is available. Convergence of the approximations will be in
the following sense.

Definition 2.1. We say thatuh(·) converges tou(·) uniformly at collocation points ash→ 0
if for eachε > 0 there existsH = H(ε) > 0 for which |uh(tl)− u(tl)| < ε for eachtl = lh,
l = 1, . . . ,1/h, whenever0< h 6 H(ε).



Discrete predictor–corrector regularization methods 379

Because convergence occurs ash → 0, we will need sequences(rh) and (µh) of
regularization parameters, selected satisfying certain conditions in the limit ash→ 0.

Theorem 2.1.Assumef : [0, T ] → R is a bounded Borel measurable function for which the
unique solution̄uof (1.1) corresponding tof is inC1[0, T ]. For eachh = 1/N ,N = 1, 2, . . . ,
let the regularization parametersrh andµh be given by (2.5) and (2.9), respectively, i.e.,

rh(t) :=
N∑
i=1

rh,iχi(t), µh(t) :=
N∑
i=1

µh,iχi(t), t ∈ [0, 1],

where we assume

rh,i = γ (ti)h, µh,i = `(ti)h2, i = 1, . . . , N,

for all h sufficiently small. Hereγ is piecewise continuous and integer valued, with
γ (t+) > γ (t−) − 1, t ∈ [0, 1], and ` : [0, 1] 7→ (0,∞) bounded. Then the solution
uh =

∑N
i=1 cjχj (·) of (2.10), (2.11) (whererh andµh are used in place ofr andµ) converges

to ū uniformly at collocation pointstj , j = 1, . . . , N , ash→ 0.
In addition, letδ > 0 andf δ be bounded Borel measurable with‖f − f δ‖∞ 6 δ. If

h = h(δ) is selected so that

δ/h2(δ) 6 M, h(δ)→ 0, as δ→ 0,

thenuδh =
∑N

i=1 cjχj of (2.10), (2.11) (defined additionally usingf δ in place off ) converges
to ū(·) uniformly at collocation pointstj , j = 1, . . . , N(δ), asδ→ 0. This convergence is at
the best possible rate with respect toδ, that is,

|uδh(tj )− ū(tj )| 6 Kδ1/2 +O(δ), j = 1, . . . , N(δ)

asδ→ 0, whereK > 0 is independent ofh andδ.

The implications of the theorem (the proof of which follows immediately from
theorem 4.2) are that the penalty regularization parameterµh(·) may bet-varying provided it
is not too large (relative toh2) and, in fact,µh may be zero. In addition, the local regularization
parameterrh may also vary witht , provided it too is not excessively large (relative toh) and
provided it does not decrease too rapidly ast increases. We note that there are no limitations
on increases inrh.

2.3. Sequential selection of the penalty parameterµ

As is true with all regularization methods, proper selection of the regularization parameter(s)
is an important issue. For simplicity we will assume thath = 1/N is given and that the
regularization functionr is fixed and given by (2.5), (2.6). We note that a principle for
the sequential selection ofr has been considered in numerical examples for the inverse heat
conduction problem in [3], but we will not address selection of this parameter here. Our main
interest in this section concerns the selection of the regularization parameterµ = µ(t) of the
form (2.9) in the regularization algorithm (2.10), (2.11), in the case of perturbed dataf δ. We
will give an explicit formula forµj = µ(tj ) at thej th step in the sequential process.

Let j > 1. Then ifcδ1, . . . , c
δ
j−1 have already been found, we determine the (h-dependent

constant)cδj from (2.10), (2.12), where now the perturbed dataf δ will be used in place off .
That is,

cδj = arg min
c∈R

J δj,r,µ(c), (2.16)

J δj,r,µ(c) := ‖bj c − dδj‖2j +µjc
2, (2.17)
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with bj ∈ Rγj+1 defined via (2.13) and thèth entry indδj ∈ Rγj+1 given by

(dδj )` = f δ(tj+`−1)−
j−1∑
i=1

cδi 1j+`−1,i ,

for ` = 1, . . . , γj +1. For a given value ofµj = µ(tj ) > 0, the solutioncδj = cδj (µj ) of (2.16),
(2.17) is then given by

cδj (µj ) = (‖bj‖2j +µj)
−1(b>j d

δ
j ), (2.18)

where‖bj‖2j +µj > ‖bj‖2j > 0, when1jj 6= 0 (which occurs under the standing assumptions
on the kernelk given in section 2.2).

In order to determine an appropriate value ofµj = µ(tj ) at thej th step, we apply a
Morozov discrepancy principle. To this end we letCj > 1 be fixed and assume that we know
δj for which

‖dδj − dj‖j 6 δj (2.19)

(wheredj is given by (2.14)), where we assume that the signal-to-noise assumption,

Cjδ
2
j < ‖dδj‖2j , (2.20)

is satisfied at thej th step. Then a discrete Morozov discrepancy principle determines the
selection ofµj at this step via

Fj (µj ) = Cjδ2
j , (2.21)

whereFj represents thej th discrete discrepancy function. That is, forν > 0,

Fj (ν) = ‖bj cδj (ν)− dδj‖2j = ‖(‖b‖2j + ν)−1bjb
>
j d

δ
j − dδj‖2j . (2.22)

The uniqueµj determined by this process is given by the following theorem.

Theorem 2.2.Let h = 1/N > 0 and letr be given by (2.5), (2.6). Forj > 1, assume that
cδ1, . . . , c

δ
j−1 have already been determined. Then ifδj satisfies (2.19), (2.20) for fixedCj > 1,

an application of the discrete Morozov discrepancy principle (2.21) determines a uniqueµj
at thej th step given by

µj =
{

0, if Cjδ
2
j 6 Dj ,

σj (σj + |b>j dδj |)(‖dδj‖2j − Cjδ2
j )
−1, if Cjδ

2
j > Dj .

(2.23)

HereDj > 0 andσj ∈ R, σj > 0, are given respectively by

Dj := ‖bj‖−2
j (‖bj‖2j‖dδj‖2j − (b>j dδj )2),

σj := ((b>j dδj )2 − ‖bj‖2j (‖dδj‖2j − Cjδ2
j ))

1/2 (2.24)

in the case ofCjδ2
j > Dj . Using this value ofµj , the solutioncδj at thej th step is then given

by (2.18).

Proof. It is not difficult to show thatFj (0) = Dj and thatF ′j > 0 on (0,∞). Thus
there is a uniqueµj > 0 satisfying thej th discrete discrepancy equation (2.21) for all
Cjδ

2
j ∈ (Dj , ‖dδj‖2j ).
Let Cjδ2

j > Dj . We note from (2.24) that this condition is equivalent to(b>j d
δ
j )

2 −
‖b‖2j (‖dδj‖2j − Cjδ2

j ) > 0, from which it follows thatσj is real valued and positive. In
addition, it is easy to see from the definition ofσj that|b>j dδj | > σj so that|b>j dδj | 6= 0.

RewritingFj (ν) in (2.22), we have

Fj (ν) = τ−2(ν)(τ 2(ν)‖dδj‖2j − 2τ(ν)(b>j d
δ
j )

2 + ‖bj‖2j (b>j dδj )2) (2.25)
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whereτ(ν) = ‖b‖2j + ν > 0 for ν > 0 since1jj 6= 0. We seekµj > 0 which uniquely solves
Fj (ν) = Cjδ2

j , or, equivalently,ν satisfying

0= τ 2(ν)(‖dδj‖2j − Cjδ2
j )− 2τ(ν)(b>j d

δ
j )

2 + ‖bj‖2j (b>j dδj )2.
Solving this equation forτ(ν) we obtain explicit values ofµj = τ(ν)− ‖bj‖2j , i.e.,

µj =
(
σ 2
j ±

√
(b>j d

δ
j )

2σ 2
j

)
(‖dδj‖2j − Cjδ2

j )
−1. (2.26)

However,σj < |b>j dδj | implies
√
(b>j d

δ
j )

2σ 2
j > σ 2

j , so that there is only one non-negativeµj
in (2.26) above. This is the uniqueµj found by a discrete Morozov discrepancy principle at
thej th sequential step. The remainder of the theorem follows easily. �

2.4. Numerical implementation

We consider an example in which the true solutionū has a discontinuous derivative. In
figures 1–4, this solution is represented by a dashed curve. Approximate solutions are computed
usingN = 40 (h = 1

40) and in these figures are represented by solid curves joining midpoints
of piecewise constant approximations by line segments. The operatorA is given by (1.2)
where the kernelk is given byk(t, s) = t − s, for 0 6 s 6 t 6 1. The dataf δ used in the
regularization process is a (uniformly distributed) random perturbation off = Aū, wheref δ

differs fromf with approximately 3% relative error.
As a baseline for comparison, we show in figure 1 the results of standard Tikhonov

regularization as applied to this example, using various choices of the Tikhonov parameter
α. We show results for the same example in figure 2 where now the local regularization
(‘predictor–corrector’) ideas of this paper are used to find approximate solutions. In each
graph in this figure, a constant value ofr ≡ 2h is used, while different values of the penalty
parameterµ are selected. In the first three graphs in figure 2,µ is constant valued (taking the
valuesµ ≡ 0.0, 1.5× 10−6, and 2.5× 10−6, respectively); in the final graph in that figure,
an a priori selection of a functional parameterµ = µ(t) is made, with values ofµ in this
case varying from 10−8 at the beginning of the interval to 10−4 at the end of the interval. (See
figure 3 for an even better choice of variableµ for this problem.) Further improvements in the
results are obtained ifr is also allowed to vary witht , however the advantages of variabler
have been illustrated in numerical examples elsewhere (see [23] for an example similar to that
considered here and [36] for other numerical results). For this reason, we keepr constant and
focus here instead on results obtained through the use of a variable penalty parameterµ.

It is worth making a comparison between the first graph in figure 1 (standard Tikhonov
regularization withα = 0, i.e., the solution to the discrete equations (2.3), (2.4)) and the
first graph in figure 2 (local regularization withµ ≡ 0). The latter graph shows an improved
approximate solution, but this is because the choice ofr ≡ 2h offers some regularization even
whenµ ≡ 0.

In figure 3 we illustrate an application of a sequential discrepancy principle to selectµ(t).
As given in theorem 2.2, we have an explicit representation forµj ≡ µ(tj ) given an estimate of
δj at thej th step in the sequential process. It is our experience that useful results require a fairly
reasonable estimate ofboththe data error component and the propagated error component (the
latter being more difficult to estimate) which comprisesδj . We note that this is in contrast to
initial findings for the method of sequential Tikhonov regularization (in which a local, reduced-
dimension Tikhonov regularization problem is solved at thej th step). Indeed, numerical tests
for this particular method seem to indicate that one need only provide an estimate of the average
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Figure 1. Results from Tikhonov regularization for variousα values.

data error (ignoring the effect of propagated error) in order to sequentially determine a variable
Tikhonov-like parameter which works well in practice [21].

For the results in figure 3 we useδj = δ̄j (1 + νj ), whereδ̄j is theexacterror (exact data
error, plus exact propagated error) at thej th step in the sequential process, andνj is a uniformly
distributed random variable scaled to obtain 50%, 10%, 5% and 0%, respectively, maximum
relative error inδj . In each example we useCj = 1, j = 1, . . . , N , in the formula (2.23) for
µj , j = 1, . . . , N . In figure 4, we repeat the graph of the approximate solution found using
0% relative error inδj . In the second graph in figure 4, we graph theµ that was determined
by the sequential discrepancy principle. In the third graph in this figure, we rescale they-axis
for µ so that the detail on the first half of the interval can be clearly seen. It is interesting to
note that decreases in values of predictedµ correspond to locations of larger/steeper values of
the true solution (at which points less regularization is required). In addition, the sequentially
determinedµ increases greatly toward the end of the interval, when propagated error is having
the largest effect.
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Figure 2. Results using the ‘local regularization’ method with various choices ofµ(t) (mu).

Figure 3. Results obtained using the sequential computation ofµ(t) (as prescribed by theorem 2.2).
In the above graphs, the maximum relative errors refer to the computation of theδj needed in
theorem 2.2.
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Figure 4. Sequential selection ofµ(t) (mu).

3. Generalized discrete predictor–corrector methods

3.1. An equivalent representation of the predictor–corrector algorithm

Assuming we are givenr, µ of the form (2.5), (2.6) and (2.9) respectively, it is useful to view
the penalized predictor–corrector algorithm (2.10), (2.11) in a slightly different context. Recall
that (2.15) gives an explicit solution of this algorithm at thej th step. Rewriting (2.15) we have

γj+1∑
`=1

b
(j)

`

( j−1∑
i=1

ci1j+`−1,i

)
+ (‖bj‖2j +µj)cj =

γj+1∑
`=1

b
(j)

` f (tj+`−1) (3.1)
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where, using (2.1),

j−1∑
i=1

ci1j+`−1,i =
∫ tj−1

0
k(tj+`−1, s)uh(s) ds

and

cj‖bj‖2j = cj
γj+1∑
`=1

b
(j)

` 1j+`−1,j + cj

γj+1∑
`=1

b
(j)

`

∑̀
i=2

1j+`−1,j+i−1

=
γj+1∑
`=1

b
(j)

`

∫ tj

tj−1

k(tj+`−1, s)uh(s) ds

+uh(tj )
γj+1∑
`=1

b
(j)

`

∫ t`−1

0
k(tj+`−1, s + tj ) ds.

Thus (3.1) becomes∫ tj

0

( γj+1∑
`=1

b
(j)

` k(tj + t`−1, s)

)
uh(s) ds

+

[ γj+1∑
`=1

b
(j)

`

∫ t`−1

0
k(tj + t`−1, s + tj ) ds +µj

]
uh(tj )

=
γj+1∑
`=1

b
(j)

` f (tj + t`−1),

or ∫ tj

0
k̃(tj , s; r, h)uh(s) ds + [α(tj ; r, h) +µ(tj )]uh(tj ) = f̃ (tj ; r, h), (3.2)

for j = 1, . . . , N , where fort ∈ [0, 1],

k̃(t, s; r, h) :=
∫ r(t)

0
k(t + ρ, s)dη (ρ; t), (3.3)

α(t; r, h) :=
∫ r(t)

0

∫ ρ

0
k(t + ρ, s + t) ds dη (ρ; t), (3.4)

f̃ (t; r, h) :=
∫ r(t)

0
f (t + ρ) dη (ρ; t). (3.5)

Here, for eacht ∈ [0, 1], η(·; t) is an(r, h)-dependent Borel measure on [0, r(t)] defined via∫ r(t)

0
g(ρ) dη (ρ; t) :=

K(t)∑
`=1

s`(t)g(t`−1), (3.6)

for g a Borel function on [0, r(t)], where theh-dependent functionsK ands` are given by

K(t) := r(t)/h + 1, (3.7)

s`(t) :=
∫ t`

0
k(t + t`−1, t + (s − h)) ds, ` = 1, . . . , K(t). (3.8)

The equivalence of (3.1) and (3.2) results from the fact thats`(tj ) = b(j)` , for j = 1, . . . , N , and

thus
∫ r(tj )

0 g(ρ) dη (ρ; tj ) =
∑γj+1

`=1 b
(j)

` g(t`−1), j = 1, . . . , N . We summarize our findings in
the following lemma.
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Lemma 3.1. Letr andµ be given by (2.5), (2.6) and (2.9), respectively. The problem of finding
cj solving the penalized predictor–corrector algorithm (2.10), (2.11) forj = 1, . . . , N , is
equivalent to the problem of seekinguh of the form (2.1) which solves the Volterra equation∫ t

0
k̃(t, s; r, h)u(s)ds + [α(t; r, h) +µ(t)]u(t) = f̃ (t; r, h), (3.9)

precisely at collocation pointst = tj , j = 1, . . . , N . The quantities̃k, α, and f̃ are defined
in (3.3), (3.4) and (3.5), respectively, andη is given by (3.6).

Under our standing assumptions onk, the coefficient ofu(t) in (3.9) is nonzero and relevant
quantities in that equation are square integrable; thus the above lemma gives that the predictor–
corrector algorithm is a collocation-based discretization of a well-posed second-kind Volterra
equation. This is in contrast to the unregularized algorithm (2.3), (2.4), which results from a
collocation-based discretization of the original ill-posed first-kind Volterra equation (1.1).

The selection ofη above can be generalized, as can the choices ofr andµ. We do this in
the next section, and make rigorous the assumptions needed in the more general framework.
Theoretical convergence arguments will also be constructed in this setting, with convergence
results given in sections 4, 5.

3.2. Definitions and hypotheses

For a generalization of the method presented in section 2, we letT > 1 andk be given as in
section 2.2, let(F, ‖ · ‖F ) denote a normed linear space of functions defined on [0, T ], and
let the subspaceFD of F denote the admissible space of data functions, where it is assumed
that allg ∈ FD are Borel functions. We assume that the dataf defined in (1.1) belongs toFD
and is such that (1.1) has a unique solutionū ∈ C1[0, T ]. The perturbationf δ of f will be
assumed to be such thatf δ ∈ FD, wheref δ is close tof in an appropriate sense.

For a functional local regularization parameterr of more general form than that considered
in the last section, we assumer ∈ 0, where

0 := {r : [0, 1]→ R : r piecewise continuous, min
t∈[0,1]

r(t) > 0, max
t∈[0,1]

t + r(t) 6 T }.
For r ∈ 0, we will use the notationrmin := mint∈[0,1] r(t) > 0 and‖r‖∞ := maxt∈[0,1] r(t) 6
T . Corresponding tor ∈ 0 and h > 0 we make the following definition of a family
N = N (r, h) of measures which are compatible withr andh in a specific sense.

Definition 3.1. Given r ∈ 0 and h > 0, we say that the one-parameter familyN =
{η(·; t), t ∈ [0, 1]} is an (r, h)-suitable family of measuresif, for each t ∈ [0, 1], η(·; t) is
a finite, positive Borel measure defined on[0, r(t)] satisfying∫ r(t)

0
ρ dη (ρ; t) > 0, t ∈ [0, 1], (3.10)

and for which∫ r(t)

0
f (t + ρ) dη (ρ; t) is well defined for allf ∈ FD, t ∈ [0, 1]. (3.11)

We note that, in general, the familyN depends on bothr andh, as well as the selection
of F . We give two examples of(r, h)-suitableN below. In each case we will define
η(·, t) on [0, ‖r‖∞] for t ∈ [0, 1], where it will be understood that

∫ r(t)
0 g(ρ) dη (ρ; t) :=∫ ‖r‖∞

0 g(ρ)χ[0,r(t)](ρ) dη (ρ; t), t ∈ [0, 1], whereχ[0,r(t)] is the characteristic function on
[0, r(t)].

Our first example is a generalization of the family of measures defined via (3.6)–(3.8).



Discrete predictor–corrector regularization methods 387

Example 3.1.Let h = 1/N andr ∈ 0 be given, and supposeFD ⊆ F := {f : [0, T ] → R :
‖f ‖F := supt∈[0,T ] |f (t)| <∞}. DefineN = {η(·, t), t ∈ [0, 1]} where for eacht ∈ [0, 1],∫ ‖r‖∞

0
g(ρ) dη (ρ; t) :=

K∑
`=1

s`(t)g(τ`)

for bounded Borel-measurableg on [0, ‖r‖∞], where the(r, h)-dependent parametersK, s`,
τ`, satisfy 0< K < ∞, K integer; 0< s`(t) 6 ‖s`‖∞ < ∞, t ∈ [0, 1], ` = 1, . . . , K; and
0 6 τ1 < τ2 < · · · < τK 6 ‖r‖∞, with τ` ∈ (0, rmin] for some`. It then follows thatN is an
(r, h)-suitable family of measures.

Example 3.2.Leth, r,FD,F , andg be as in example 3.1, and assume that the(r, h)-dependent
functionω satisfies 0< ω 6 ω(ρ, t) 6 ω̄ < ∞, a.a.(ρ, t) ∈ [0, ‖r‖∞] × [0, T ]. Then if
N = {η(·; t), t ∈ [0, 1]}, where for eacht ∈ [0, 1],∫ ‖r‖∞

0
g(ρ) dη (ρ; t) :=

∫ ‖r‖∞
0

g(ρ)ω(ρ, t)dρ, (3.12)

it follows thatN is an(r, h)-suitable family of measures.

Given noisy dataf δ, the discrete regularization problemPδh (which generalizes the
problem described in section 2 and in lemma 3.1) is given in the following definition.

Definition 3.2. Let f δ ∈ FD and µ : [0, 1] → [0,∞) be specified. Givenh = 1/N
and r ∈ 0, let N = {η(·; t), t ∈ [0, 1]} denote an(r, h)-suitable family of measures. We
define thediscrete regularization problem, denoted byPδh ≡ Pδh(r;µ;N ), to be the problem
of determininguδh = uδh(·; r;µ;N ), a step function of the form (2.1), which satisfies the
regularization equation∫ t

0
k̃(t, s; r, h)u(s)ds + [α(t; r, h) +µ(t)]u(t) = f̃ δ(t; r, h), (3.13)

exactly at collocation pointst = tj , j = 1, . . . , N . We will also use the notation
Ph ≡ Ph(r;µ;N ) to designate the same problem as above, but withf δ replaced by the
true dataf .

In the above definition,̃k andα are given by (3.3) and (3.4), respectively, whilef̃ δ is defined
by (3.5) withf δ used in place off . Well-posedness of the discrete regularization problemPδh
is guaranteed by the following theorem.

Theorem 3.1.Let f δ ∈ FD andµ : [0, 1] → [0,∞) be specified. Givenh = 1/N and
r ∈ 0, letN = {η(·; t), t ∈ [0, 1]} denote an(r, h)-suitable family of measures. Then if‖r‖∞
and h are sufficiently small, there is a unique solutionuδh = uδh(·; r;µ;N ) of the discrete
regularization problemPδh = Pδh(r;µ;N ).

Proof. Substituting (2.1) into (3.13) and evaluating attj , we have
j∑
i=1

ci

∫ ti

ti−1

k̃(tj , s; r, h)ds + [α(tj ; r, h) +µ(tj )]cj = f̃ δ(tj ; r, h), j = 1, . . . N,

(3.14)

a lower-triangular linear system in the vector(c1, . . . , cN)
>, with diagonal elements in the

governing matrix given by∫ tj

tj−1

k̃(tj , s; r, h)ds + α(tj ; r, h) +µ(tj ) =
∫ tj

tj−1

∫ r(tj )

0
k(tj + ρ, s)dη (ρ; tj ) ds

+
∫ r(tj )

0

∫ ρ

0
k(tj + ρ, s + tj ) ds dη (ρ; tj ) +µ(tj ),
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for j = 1, . . . , N . However, we have assumed thatk ∈ C1 has been normalized so
that k(t, t) = 1 for t ∈ [0, 1], so it follows that forh and ‖r‖∞ sufficiently small, the
integrands in the first two terms on the right above are positive, bounded below by some
k = k(r, h) > 0. Thus, forj = 1, . . . , N ,

∫ tj
tj−1

∫ r(tj )
0 k(tj + ρ, s)dη (ρ; tj ) ds > 0,

and
∫ r(tj )

0

∫ ρ
0 k(tj + ρ, s + tj ) ds dη (ρ; tj ) > k

∫ r(tj )
0 ρ dη (ρ; tj ) > 0, where we have used

the assumption (3.10) onη(·, t). Therefore, the lower-triangular matrix system determined
by (3.14) has a unique solution(c1, . . . , cN)

>. �

In the next section we focus on the problem of convergence for discrete approximations
of equation (3.13). Before doing so, it is worth noting that if no discretization is performed,
then equation (3.13) may alternatively be used to define acontinuousregularization method.
This idea is pursued in [23] and there one may find conditions guaranteeing well-posedness of
the continuous regularization problem associated with (3.13), along with convergence results
depending on choices of the functional regularization parametersr = r(·; δ) andµ(·; δ) as
δ → 0. The theory in [23] serves to generalize the continuous regularization ideas in [19]
to nonconvolution kernels and, more importantly, to the case of a variable regularization
parameterr.

4. Convergence results

Throughout this section we will assumef ∈ FD, k, andū satisfy the assumptions made at
the beginning of section 3.2. Leth = 1/N for N = 1, 2, . . . . We are interested here in the
limiting behaviour ash→ 0 of solutionsuh of the discrete regularization problemPh, given

• a sequence(rh) ⊂ 0 of functional local regularization parameters;
• a sequence(Nh), where eachNh = {ηh(·, t), t ∈ [0, 1]} is an(rh, h)-suitable family of

measures; and,
• a sequence(µh) of functional penalty parameters, withµh(t) > 0, t ∈ [0, 1].

In theorem 5.1 and corollary 5.1, we will state convergence results under fairly general
conditions on the above quantities. We will also examine convergence ofuδh (the solution
of problemPδh) to ū, givenf δ ∈ FD, |f (t) − f δ(t)| 6 δ, t ∈ [0, T ], and under conditions
relatingh to δ asδ→ 0.

Before turning to the main convergence theorem (for which the statement of results
becomes somewhat technical), we first describe a couple of useful special cases of these
findings. The first special case requires one of the following conditions on local regularization
parametersrh(·), given a positive constantMr :

(1a) The parametersrh ∈ 0 are constant functions given by

rh(t) = Chh, t ∈ [0, 1],

where 0< Ch 6 Mr <∞ for all h sufficiently small;
(1b) The parametersrh ∈ 0 are functions satisfying

rh(t) 6 Mrh, t ∈ [0, 1],

for all h sufficiently small, whereMr < 1.

When condition (1a) holds we will need the following condition on the familiesNh of measures:
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(2a) For someε > 0 and eachh > 0, there exists a finite, positive (t-independent) Borel
measurēηh on [0, ε] for which (3.10) and (3.11) hold, and such that, form = 0, 1 and
ηh(·; t) ∈ Nh∫ rh(t)

0
ρm dηh (ρ; t) = (1 + w̄m(t;h))

∫ rh(t)

0
ρm dη̄h (ρ), t ∈ [0, 1],

where‖w̄m(·;h)‖∞ = O(h) ash→ 0.

Finally, we require the following condition on the penalty regularization parametersµh:

(3) For someMµ > 0, the penalty parametersµh satisfy

06 µh(t) 6 h2Mµ

∫ rh(t)

0
dηh (ρ; t), t ∈ [0, 1],

for all h sufficiently small.

We note that condition (3) relates the size ofµh to h, rh, andηh, and allows for the possibility
of µh ≡ 0 for allh = 1/N ,N = 1, 2, . . . . More general conditions onµh are allowed, as can
be seen in section 5.

Remark 4.1. Condition (2a) onηh requires that the measures be approximatelyt-independent
(in some sense) for allh small. Although technical, this condition is satisfied by the families
of measures most commonly used in practice. Indeed, the discrete measure defined via (3.6)–
(3.8) (which is the measure associated with the predictor–corrector algorithms of section 2)
can be seen to satisfy this condition provided we make the natural assumption (which is more
general than (1a)) thatrh ∈ 0 is of the formrh(t) = γ (t)h, whereγ is a fixed non-negative
integer-valued function on [0, 1]. (We note that we may equivalently assume, as in section 2,
thatrh ∈ 0 is of the formrh(t) =

∑N
i=1 γ (ti)h χi(t) since onlyrh(tj ), j = 1, . . . , N , will be

required in constructing the solution ofPδh.) In this case, using a Taylor expansion onk, the
functionss` = s`(t), ` = 1, . . . , K = ‖γ ‖∞ + 1, in (3.8) satisfy

s`(t) =
∫ t`

0
[k(t, t) + t`−1D1k(ζ1, ζ2) + (s − h)D2k(ζ1, ζ2)] ds,

whereζi = ζi(t, s, h, `), so thats`(t) = `h(1 + ŝ`(t, h)), ` = 1, . . . , K, with ‖ŝ`(·, h)‖∞ =
O(h) ash→ 0. Thus, the ‘approximatet-independence’ of the quantitys`(·) in ηh is sufficient
to argue that condition (2a) above holds for the associated family of measures. It is also not
difficult to see how other families of measures (such as those in examples 3.1, 3.2) may be
constructed in order to easily satisfy condition (2a) above.

The next theorem follows immediately from theorem 5.1 and corollary 5.1, both of which
are proven in the next section.

Theorem 4.1.For h = 1/N , N = 1, 2, . . . , assume the parametersrh ∈ 0 satisfy
either conditions (1a) (in which case the(rh, h)-suitable familiesNh of measures satisfy
condition (2a)) or (1b), and that the parametersµh satisfy condition (3). Then the solution
uh(·) = uh(·; rh; ηh;µh) of the discretization problemPh converges toū(·) uniformly at
collocation pointstj , j = 1, . . . , N , ash→ 0.

If, in addition,f δ ∈ FD satisfies|f (t)− f δ(t)| 6 δ, t ∈ [0, T ], andh = h(δ) is selected
so that

δ/h2(δ) 6 M
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andh(δ)→ 0 asδ→ 0, then the solutionuδh(·) = uδh(·; rh; ηh;µh) of discretization problem
Pδh converges tōu(·) uniformly at collocation pointstj , j = 1, . . . , N(δ), as δ → 0. This
convergence is at the best possible rate with respect toδ, that is,

|uδh(tj )− ū(tj )| 6 Kδ1/2 +O(δ), j = 1, . . . , N(δ)

asδ→ 0, whereK > 0 is independent ofh andδ.

We note that whenrh is specified to satisfy condition (1a) in theorem 4.1, this theorem
generalizes the results in [18] to a penalized (i.e.,µ 6= 0) predictor–corrector method, to
nonconvolution kernelsk, and to the case of more general measures.

The above result is fairly limited for truly variablerh in that condition (1b) implies that
rh(t) < h for all t ∈ [0, 1]. In practical numerical calculations, we are interested in usingrh as
in section 2.1 and remark 4.1, e.g.,rh of the formrh(t) = γ (t)h, whereγ (t) is integer-valued for
t ∈ [0, 1]; such a choice allows us to coordinate the lengthrh(tj ) of thej th future regularization
interval with the discretization stepsize. However, condition (1b) requires 0< γ (t) < 1,
t ∈ [0, 1], thus ruling out integer-valuedγ . However, in fact we can allow integer-valuedγ
under an additional condition on the measuresηh, a property which is satisfied by measures of
practical interest in computations. We give a definition prescribing this ‘p-condition’ below,
and note that the condition is of greatest interest whenp > 1 is an integer.

Definition 4.1. Leth = 1/N ,N = 1, 2, . . . . Suppose we are given a sequence(rh) ⊂ 0 with
|rh(t)| 6 Mrh, t ∈ [0, 1], for someMr > 0, and assume that for eachhwe have an associated
(rh, h)-suitable familyNh = {ηh(·; t), t ∈ [0, 1]} of measures. Forp > 0, we say that(Nh)
satisfies ap-condition with respect to(rh) if there isb1 ∈ (0, 1/p), C1 > 0, so that, for allh
sufficiently small,∫ rh(t)

0 ρ dηh (ρ; t)∫ rh(t)
0 dηh (ρ; t)

= b1rh(t) + c1(t;h), t ∈ [0, 1], (4.1)

where

|c1(t;h)| 6 C1h
2, t ∈ [0, 1].

We consider in examples 4.1 and 4.2 below some measures standardly used in
computations, and demonstrate that these classes of measures satisfy ap-condition withp = 1
for reasonable choices of(rh). However, before giving these examples, we state a theorem
which shows how we may relax conditions on(rh) when thep-condition is satisfied by(ηh).

Theorem 4.2.Suppose that the sequence(rh) ⊂ 0 is given, with

rh(t) = γ (t)h, 0< γmin 6 γ (t) 6 Mr, (4.2)

for someγmin,Mr , and all t ∈ [0, 1]. Suppose further that there is a corresponding sequence
(Nh) of families of measures, each(rh, h)-suitable, which satisfies ap-condition with respect
to (rh) for somep > 0. Then if

γ (t+) > γ (t−)− p, t ∈ [0, 1], (4.3)

and if penalty parametersµh satisfy condition (3), then the conclusion of the first part of
theorem 4.1 holds.

If, in addition,f δ ∈ FD satisfies|f (t)− f δ(t)| 6 δ, t ∈ [0, T ], andh = h(δ) is selected
so that

δ/h2(δ) 6 M
andh(δ)→ 0 asδ→ 0, then the conclusions of the second part of theorem 4.1 hold.
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The significance of this theorem (the proof of which appears in section 5) is clearly seen
whenp > 1 is an integer. In this case condition (4.3) allowsγ to be integer valued with
‘decreasing jumps’ of at mostp, and no limit on ‘increasing jumps’ (other than the fact that
γ must remain finite on [0, 1]). In other words, ast increases, one may increase the level of
regularization quickly, but one must decrease it more deliberately.

Below we give some examples of standard measures satisfyingp-conditions forp = 1,
and a final example where thep-condition may be satisfied using arbitraryp > 2.

Example 4.1.Let (rh) ⊂ 0 be given satisfying (4.2), with piecewise continuous, integer-
valuedγ , and, for each(rh, h), let Nh = {ηh(·; t), t ∈ [0, 1]} whereηh is given by (3.6)–
(3.8) (which is the standard measure associated with the predictor–corrector scheme described
in section 2, and a special case of example 3.1). From remark 4.1 we have thats`(t) =
`h(1 +O(h)), t ∈ [0, 1], for ` = 1, . . . , K. Thus,∫ rh(t)

0 ρ dηh (ρ; t)∫ rh(t)
0 dηh (ρ; t)

=
(γ (t)+1∑

`=1

s`((`− 1)h)

)(γ (t)+1∑
`=1

s`

)−1

= h(1 +O(h))
(γ (t)+1∑

`=1

`(`− 1)

)(γ (t)+1∑
`=1

`

)−1

= ( 2
3)hγ (t) +O(h2).

It follows that(Nh) satisfies (4.1) withb1 = 2
3 and thus withp = 1.

Example 4.2.Let FD andg be as in example 3.1, let(rh) ⊂ 0 with ‖rh‖∞ 6 Mrh, and
supposeNh = {ηh(·; t), t ∈ [0, 1]}, whereηh is defined (similar to example 3.2) for each
h = 1/N ,N = 1, 2, . . . , by∫ ‖rh‖∞

0
g(ρ) dηh (ρ; t) :=

∫ ‖rh‖∞
0

g(ρ)ωh(ρ, t)dρ. (4.4)

Here we assumeωh(ρ, t) = ω̂(ρ)(1 +ω0(ρ, t;h)) for fixed ω̂ ∈ C1[0, T ], 0 < ω̂ 6 ω̂(ρ),
ρ ∈ [0, T ], and for‖ω0(·, ·;h)‖∞ = O(h). Then(Nh) satisfies ap-condition withp = 1.
Indeed, for allt ∈ [0, 1], a Taylor expansion of̂ω(ρ) aboutρ = 0 gives∫ rh(t)

0 ρωh(ρ, t)dρ∫ rh(t)
0 ωh(ρ, t)dρ

= ω̂(0)
∫ rh(t)

0 ρ dρ

ω̂(0)
∫ rh(t)

0 dρ
(1 +O(h))

= ( 1
2)rh(t) +O(h2)

ash→ 0. Thus (4.1) is satisfied withb1 = 1
2, and(Nh) satisfies ap-condition withp = 1.

Example 4.3.Let p > 2 be arbitrary. Following the ideas of the last example (with the
sameFD, g, and(rh)), we may construct familiesNh of measures satisfying ap-condition
for this prescribedp if we defineηh via (4.4) using instead an unboundedω̂, here given by
ω̂(ρ) = ρ−m/(m+1), ρ ∈ (0, 1], form > p − 2. Then it is not difficult to show that (4.1) holds
with b1 = 1/(m + 2) < 1/p.

5. Proofs of convergence

The proofs of theorems 4.1 and 4.2 follow from the results below and will be presented at the
end of this section. Our main convergence theorem, a rather technical result, is given first.
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Theorem 5.1.Supposef ∈ FD, k, andū satisfy the conditions at the beginning of section 3.2,
and letεr , Mr , andMµ be fixed positive scalars. For eachN = 1, 2, . . . , let h = 1/N and
suppose we are givenrh ∈ 0 and an(rh, h)-suitable familyNh = {ηh(·; t), t ∈ [0, 1]} of
measures for which

rh(t) 6 Mrh, t ∈ [0, 1], (5.1)

and∫ rh(tj+1)

0 ρ dηh (ρ; tj+1)

h
∫ rh(tj+1)

0 dηh (ρ; tj+1)
−
∫ rh(tj )

0 ρ dηh (ρ; tj )
h
∫ rh(tj )

0 dηh (ρ; tj )
+ 1> εr , j = 0, . . . , N − 1, (5.2)

for all N sufficiently large. Then ifµh : [0, 1] 7→ [0,∞) is selected satisfying

1

h

(
µh(0)∫ rh(0)

0 dηh (ρ; 0)

)
6 Mµ, (5.3)

1

h2

∣∣∣∣∣ µh(tj+1)∫ rh(tj+1)

0 dηh (ρ; tj+1)
− µh(tj )∫ rh(tj )

0 dηh (ρ; tj )

∣∣∣∣∣ 6 Mµ, j = 0, . . . , N − 1, (5.4)

for all h sufficiently small, and if̄u(0) = 0, the solutionuh(·) = uh(·; rh;µh;Nh) of
the discretization problemPh converges toū(·) uniformly at collocation pointst = tj ,
j = 1, . . . , N , ash→ 0.

If, in addition,f δ ∈ FD satisfies|f (t)− f δ(t)| 6 δ, t ∈ [0, T ], andh = h(δ) is selected
so that

δ/h2(δ) 6 M
andh(δ)→ 0 asδ→ 0, then the solutionuδh(·) = uδh(·; rh;µh;Nh) of discretization problem
Pδh converges tōu(·) uniformly at collocation pointstj , j = 1, . . . , N(δ), as δ → 0. This
convergence is at the best possible rate with respect toδ, that is,

|uδh(tj )− ū(tj )| 6 Cδ1/2 +O(δ), j = 1, . . . , N(δ)

asδ→ 0, whereC > 0 is independent ofh andδ.

Proof. Let N = 1, 2, . . . , andh = 1/N . Let d(t) := f δ(t) − f (t), t ∈ [0, 1]. Since the
sequences(rh)and(µh)are indexed by the discretization parameterh, we will simplify notation
throughout the proof by writingα(t;h) := α(t; rh, h), f̃ δ(t;h) := f̃ δ(t; rh, h), t ∈ [0, 1],
andk̃(t, s;h) := k̃(t, s; rh, h), for 06 s 6 t 6 1. In addition, it will be useful to define, for
t ∈ [0, 1],

νh(t) := (α(t;h) +µh(t))/a0(t;h),
am(t;h) :=

∫ rh(t)

0
ρm dηh (ρ, t),

(5.5)

for m = 0, 1. Clearly, a0(t;h) > a1(t;h)/‖rh‖∞ > 0 for all t ∈ [0, 1], h = 1/N ,
N = 1, 2, . . . . We will also make the definitions

k̃0(t, s;h) := k̃(t, s;h)/a0(t;h), f δ0 (t) := f δ(t)/a0(t;h)
with similar definitions forf0, d0, andū0.

Using these definitions, (3.14) may be written, after a division bya0(tj ;h) as

j∑
i=1

ci

∫ ti

ti−1

k̃0(tj , s;h) ds + νh(tj )cj =
∫ rh(tj )

0
f δ0 (tj + ρ) dηh (ρ; tj ), (5.6)

for j = 1, . . . , N .
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We will use a differencing technique similar to that used in [18] to analyse convergence.
To this end, we replacej in equation (5.6) byj +1 (forj = 0, . . . , N−1) and subtracting (5.6)
from the resulting equation we obtain

νh(tj+1)cj+1 +
∫ tj+1

tj

k̃0(tj+1, s;h)cj+1χj+1(s) ds

=
∫ rh(tj+1)

0
[f0(tj+1 + ρ) + d0(tj+1 + ρ)] dηh (ρ; tj+1)

−
∫ rh(tj )

0
[f0(tj + ρ) + d0(tj + ρ)] dηh (ρ; tj ) + νh(tj )cj

−
j∑
i=1

∫ ti

ti−1

[k̃0(tj+1, s;h)− k̃0(tj , s;h)]ciχi(s) ds, (5.7)

for j = 1, . . . , N − 1.
For givenh = 1/N andrh, the true solution̄u of (1.1) satisfies∫ t

0
k̃(t, s;h)ū(s) ds +

∫ rh(t)

0

∫ ρ

0
k(t + ρ, s + t)[ū(s + t)− ū(t)] ds dηh (ρ; t)

+[α(t;h) +µh(t)]ū(t) =
∫ rh(t)

0
f (t + ρ) dηh (ρ; t) +µh(t)ū(t), (5.8)

for all t ∈ [0, 1]. We evaluate (5.8) att = tj and divide through bya0(tj ;h), and then
subtract the resulting equation from the one arising from evaluation att = tj+1 and division
by a0(tj+1;h). Then, subtracting (5.7) from the resulting equation inū, the result is (for
j = 1, . . . , N−1)

νh(tj+1)[ū(tj+1)− cj+1] +
∫ tj+1

tj

k̃0(tj+1, s;h)[ū(s)− cj+1χj+1(s)] ds

= νh(tj )[ū(tj )− cj ] + µh(tj+1)ū0(tj+1)− µh(tj )ū0(tj )

−
∫ rh(tj+1)

0
d0(tj+1 + ρ) dηh (ρ; tj+1) +

∫ rh(tj )

0
d0(tj + ρ) dηh (ρ; tj )

−
j∑
i=1

∫ ti

ti−1

[k̃0(tj+1, s;h)− k̃0(tj , s;h)][ ū(s)− ciχi(s)] ds

−
∫ rh(tj+1)

0

∫ ρ

0
k(tj+1 + ρ, s + tj+1)

ū(s + tj+1)− ū(tj+1)

a0(tj+1;h) ds dηh (ρ; tj+1)

+
∫ rh(tj )

0

∫ ρ

0
k(tj + ρ, s + tj )

ū(s + tj )− ū(tj )
a0(tj ;h) ds dηh (ρ; tj ). (5.9)

Using a Taylor expansion we can write, fort ∈ (tj , tj+1] andj = 0, . . . , N − 1,

ū(t)− cj+1χj+1(t) = h[βj+1 + h−1(t − tj+1)ū
′(zj+1(t))], (5.10)

for somezj+1(t) betweent and tj+1, and whereβj+1 := h−1(ū(tj+1) − cj+1). Using this
expansion and dividing through byh, (5.9) becomes

βj+1 = Wj(h)βj − h
j∑
i=1

Vj,i(h)βi − 1

h2
Ej(δ, h)− Zj(h), (5.11)

for j = 1, . . . , N − 1, where

Dj(h) := νh(tj+1) +
∫ tj+1

tj

k̃0(tj+1, s;h) ds, (5.12)



394 P K Lamm and T L Scofield

Wj(h) := νh(tj )/Dj (h), (5.13)

Ej(δ, h) := h

Dj(h)

[ ∫ rh(tj+1)

0
d0(tj+1 + ρ) dηh (ρ; tj+1)

−
∫ rh(tj )

0
d0(tj + ρ) dηh (ρ; tj )

]
, (5.14)

Vj,i(h) := (hDj (h))
−1
∫ ti

ti−1

[k̃0(tj+1, s;h)− k̃0(tj , s;h)] ds, (5.15)

Zj(h) := (hDj (h))
−1Rj(h), (5.16)

Rj(h) :=
∫ rh(tj+1)

0

∫ ρ

0
k(tj+1 + ρ, s + tj+1)

ū(s + tj+1)− ū(tj+1)

a0(tj+1;h) ds dηh (ρ; tj+1)

−
∫ rh(tj )

0

∫ ρ

0
k(tj + ρ, s + tj )

ū(tj + s)− ū(tj )
a0(tj ;h) ds dηh (ρ; tj )

+
j∑
i=1

∫ ti

ti−1

[k̃0(tj+1, s;h)− k̃0(tj , s;h)](s − ti)ū′(zi(s)) ds

+
∫ tj+1

tj

k̃0(tj+1, s;h)(s − tj+1)ū
′(zj+1(s)) ds

−µh(tj+1)ū0(tj+1) +µh(tj )ū0(tj ), (5.17)

for i = 1, . . . , j , j = 1, . . . , N − 1.
Similarly, if we evaluate (5.6) atj = 1 and (5.8) att = t1 (dividing through the resulting

equation bya0(t1;h)) and then subtract the two equations, we get

β1 = − 1

h2
E0(δ, h)− Z0(h), (5.18)

whereD0(h) andZ0(h) are defined by (5.12) and (5.16), respectively (usingj = 0 in each)
and where

E0(δ, h) := hD−1
0 (h)

∫ rh(t1)

0
d0(t1 + ρ) dηh (ρ, t1), (5.19)

R0(h) :=
∫ rh(t1)

0

∫ ρ

0
k(t1 + ρ, s + t1)[ū(s + t1)− ū(t1)]a−1

0 (t1;h) ds dηh (ρ, t1)

+
∫ t1

0
k̃0(t1, s;h)(s − t1)ū′(z1(s)) ds − µh(t1)ū0(t1). (5.20)

Now suppose we can show that there are positive constantsw, v, ε, andz, all independent of
h for which

Wj(h) 6 w, Vj,i(h) 6 v, (5.21)

for i = 1, . . . , j , j = 1, . . . , N − 1, andw ∈ (0, 1), and

Ej(δ, h) 6 ε δ, Zj (h) 6 z, (5.22)

for j = 0, . . . , N−1. Then applying the arguments found in [18], it follows that|βj | 6 B, for
j = 1, . . . , N , whereB is independent ofN andh; the bound is obtained using the assumption
of a uniform bound onδ/h2(δ). Thus, using (5.10),|ū(tj )− uδh(tj )| = |ū(tj )− cj | 6 Bh(δ)
so that|ū(tj )− uδh(tj )| → 0 asδ→ 0, for j = 1, . . . , N .

It remains only to show that the bounds in (5.21), (5.22) hold. We first showDj(h) > 0 for
all h sufficiently small and obtain estimates onD−1

j (h) for j = 0, . . . , N−1 andh sufficiently
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small. To this end we note that the quantitya0(tj+1;h)Dj (h) is the(j + 1)st diagonal entry
in the matrix system in (3.14) forj = 0, . . . , N − 1. Thus from the proof of theorem 3.1,
Dj(h) > 0 for j = 0, . . . , N−1 and allh sufficiently small. In addition, after a change of
integration variable,∫ tj+1

tj

k̃(tj+1, s;h) ds =
∫ t1

0

∫ rh(tj+1)

0
k(tj+1 + ρ, tj + s) dηh (ρ; tj+1) ds

=
∫ t1

0

∫ rh(tj+1)

0
[k(tj , tj ) + (ρ + h)D1k(ξj , ζj ) + sD2k(ξj , ζj )] dηh (ρ; tj+1) ds

for suitableξj = ξj (ρ, s), ζj = ζj (ρ, s), j = 0, . . . , N − 1. Thus∫ tj+1

tj

k̃(tj+1, s;h) ds = ha0(tj+1;h)[1 + g(tj+1;h)], (5.23)

where forj = 0, . . . , N−1, |g(tj+1;h)| 6 ‖k‖1,∞h(Mr +2). Thus for allh sufficiently small,∫ tj+1

tj
k̃(tj+1, s;h) ds > ha0(tj+1;h)/2> 0, for j = 0, . . . , N − 1, and

D−1
j (h) 6 2/h, j = 0, . . . , N − 1. (5.24)

Using this estimate onD−1
j (h), we return to the computation of the bounds in (5.21),

(5.22) and see that

|Ej(δ, h)| 6 2h−1

(
hδa−1

0 (tj+1;h)
∫ rh(tj+1)

0
dηh (ρ; tj+1) + hδa−1

0 (tj ;h)
∫ rh(tj )

0
dηh (ρ; tj )

)
,

so that|Ej(δ, h)| 6 4δ for j = 1, . . . , N − 1, and likewise the same bound is obtained for
|E0(δ, h)|. Thus we obtain the needed bound forEj in (5.22) withε = 4.

In considering the bound forVj,i(h) in (5.21), we note that

k̃(tj , s;h) =
∫ rh(tj )

0
[k(tj , s) + ρD1k(tj + ξs,tj (ρ), s)] dηh (ρ; tj )

= a0(tj ;h)k(tj , s) +
∫ rh(tj )

0
ρD1k(tj + ξs,tj (ρ), s)dηh (ρ; tj ), (5.25)

for j = 1, . . . , N , and suitableξs,tj (ρ). Thus, fori = 1, . . . , j , j = 1, . . . , N − 1,∫ ti

ti−1

|k̃0(tj+1, s;h)− k̃0(tj , s;h)| ds 6 ‖k‖1,∞(1 + 2Mr)h
2.

From this estimate and (5.24), it follows that|Vj,i(h)| 6 2‖k‖1,∞(1 + 2Mr), i = 1, . . . , j ,
j = 1, . . . , N − 1, so that the bound forVj,i in (5.21) is established.

Turning toZj(h), we see from (5.16) and (5.24) that we need only show that each of the
terms inRj(h) isO(h2), j = 0, . . . , N−1, ash→ 0. We have that the first term inRj(h),
j = 1, . . . , N − 1, satisfies

a−1
0 (tj+1;h)

∣∣∣∣ ∫ rh(tj+1)

0

∫ ρ

0
k(tj+1 + ρ, s + tj+1)(ū(s + tj+1)− ū(tj+1)) ds dηh (ρ; tj+1)

∣∣∣∣
6 ‖k‖∞‖ū‖1,∞a−1

0 (tj+1;h)rh(tj+1)

∫ rh(tj+1)

0
ρ dηh (ρ; tj+1)

6 ‖k‖∞‖ū‖1,∞M2
r h

2.

The first term ofR0(h) is bounded similarly, as is the second term in the expression forRj(h),
j = 1, . . . , N − 1.
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The above estimates for boundingVj,i(h) may be used to show that∣∣∣∣ j∑
i=1

∫ ti

ti−1

[k̃0(tj+1, s;h)− k̃0(tj , s;h)](s − ti)ū′(zi(s)) ds

∣∣∣∣ 6 ‖ū‖1,∞‖k‖1,∞(1 + 2Mr)Nh
3

so that the summation term inRj(h) isO(h2), j = 1, . . . , N−1. The fourth term inRj(h) for
these same values ofj is handled similarly, as is the second term in the expression forR0(h).
Using the conditions (5.3), (5.4) onµh(tj ), the remaining terms fromRj(h), j = 1, . . . , N−1,
are estimated as follows. First we note that forj = 1, . . . , N − 1,

µh(tj )a
−1
0 (tj ;h) =

j−1∑
i=0

{|µh(ti+1)a
−1
0 (ti+1;h)| − |µh(ti)a−1

0 (ti;h)|} + |µh(t0)a−1
0 (t0;h)|

6
N−1∑
i=0

|µh(ti+1)a
−1
0 (ti+1;h)− µh(ti)a−1

0 (ti;h)| + |µh(t0)a−1
0 (t0;h)|

6 Nh2Mµ + hMµ (5.26)

so that

|µh(tj+1)ū0(tj+1)− µh(tj )ū0(tj )| 6 ‖ū‖∞Mµh
2 + 2Mµh

2‖ū‖1,∞, (5.27)

where we have added and subtracted a term of the formū(tj+1)µh(tj )a
−1
0 (tj ;h). Since

ū(0) = 0, the final term in the expression forR0(h) can be written as

a−1
0 (t1;h)|µh(t1)ū(t1)| = |µh(t1)ū0(t1)− µh(0)ū0(0)| (5.28)

and is handled similarly. Thus the bound in (5.22) is obtained.
Finally, we have thatWj(h) = (1 +Kj(h))−1, for j = 1, . . . , N − 1, where

Kj(h) := ν−1
h (tj )

(
νh(tj+1)− νh(tj ) + a−1

0 (tj+1;h)
∫ tj+1

tj

k̃(tj+1, s;h) ds

)
= ν−1

h (tj )

(
α(tj+1;h) +µh(tj+1)

a0(tj+1;h) − α(tj ;h) +µh(tj )

a0(tj ;h) + h[1 + g(tj+1;h)]
)
,

where we have used (5.23). Thus

Kj(h) = hν−1
h (tj )

(
α(tj+1;h)
ha0(tj+1;h) −

α(tj ;h)
ha0(tj ;h) + ĝ(tj+1;h) + 1 +g(tj+1;h)

)
where |ĝ(tj+1;h)| := h−1|µh(tj+1)a

−1
0 (tj+1;h) − µh(tj )a

−1
0 (tj ;h)| 6 Mµh, for j =

1, . . . , N − 1. In addition,

α(tj ;h) =
∫ rh(tj )

0

∫ ρ

0
[1 + ρD1k(ξj , ζj ) + sD2k(ξj , ζj )] ds dηh (ρ; tj ),

for ξj = ξj (ρ, s), ζj = ζj (ρ, s), so thatα(tj ;h)(ha0(tj ;h))−1 = a1(tj ;h)(ha0(tj ;h))−1 +
g̃(tj ;h), where|g̃(tj , h)| 6 3

2‖k‖1,∞M2
r h, for j = 1, . . . , N−1. Thus, forj = 1, . . . , N−1,

Kj(h) = hν−1
h (tj )[a1(tj+1;h)(ha0(tj+1;h))−1− a1(tj ;h)(ha0(tj ;h))−1 + 1 +O(h)]
> hν−1

h (tj )(εr/2)

> h[‖k‖∞rh(tj ) +µh(tj )a
−1
0 (tj ;h)]−1(εr/2),

for all h sufficiently small, where we have used assumption (5.2). Then, using (5.1) and (5.26),
we have thatKj(h) > K for j = 1, . . . , N − 1 (for all h sufficiently small), where

K := εr(2‖k‖∞Mr + 4Mµ)
−1 > 0. (5.29)
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ThusWj(h) = 1/(1 +Kj(h)) 6 w for j = 1, . . . , N − 1, wherew = 1/(1 +K) ∈ (0, 1).
Thus the bound in (5.21) holds and the proof of the theorem is complete. �

We may relax the condition̄u(0) = 0 in the statement of theorem 5.1 under stricter
restrictions onµ than those given in (5.3) and (5.4). The proof of the following corollary
is identical to the proof of theorem 5.1 except for fairly obvious changes in the estimates in
equations (5.26)–(5.28), and (5.29).

Corollary 5.1. Supposef ∈ FD, k, andū satisfy the conditions at the beginning of section 3.2,
and letεr , Mr , andMµ be fixed positive scalars. For eachN = 1, 2, . . . , let h = 1/N and
suppose we are givenrh ∈ 0 and an (rh, h)-suitable familyNh = {ηh(·, t), t ∈ [0, 1]}
of measures for which (5.1) and (5.2) are satisfied for allN sufficiently large. Then if
µh : [0, 1] 7→ [0,∞) is selected satisfying

1

h2

(
µh(tj )∫ rh(tj )

0 dηh (ρ, tj )

)
6 Mµ, j = 0, . . . , N, (5.30)

for all h sufficiently small, the conclusions of theorem 5.1 still hold.

We conclude with the proofs of theorems 4.1 and 4.2 from section 3.

Proof of theorem 4.1. The proof follows from corollary 5.1. The only estimate that is not
immediate is that condition (1b) in the statement of theorem 4.1 implies the inequality in (5.2).
Indeed ∫ rh(tj+1)

0 ρ dηh (ρ; tj+1)

h
∫ rh(tj+1)

0 dηh (ρ; tj+1)
−
∫ rh(tj )

0 ρ dηh (ρ; tj )
h
∫ rh(tj )

0 dηh (ρ; tj )
+ 1> 0−Mr + 1

so thatεr = −Mr + 1> 0 under the assumptions of the theorem. �

Proof of theorem 4.2. The proof follows from corollary 5.1 provided we show that
condition (5.2) holds. In fact, under the conditions of theorem 4.2,∫ rh(tj+1)

0 ρ dηh (ρ; tj+1)

h
∫ rh(tj+1)

0 dηh (ρ; tj+1)
−
∫ rh(tj )

0 ρ dηh (ρ; tj )
h
∫ rh(tj )

0 dηh (ρ; tj )
+ 1= b1(γ (tj+1)− γ (tj ) + 1/b1 + ĉ2(h)/b1)

> b1[γ (tj+1)− γ (tj ) + p̂]

where ĉ2(h) = O(h), and the inequality is valid for allh sufficiently small, usingp̂ =
1/b1− (1/b1− p)/2> p. Thus ifγ satisfies (4.3), condition (5.2) holds withεr > 0. �

6. Conclusions

We have considered a local regularization method for the solution of ill-posed Volterra
problems, focusing in particular on discrete realizations of the method. We have provided
theoretical results guaranteeing convergence of the discretized method, and have examined the
role played by functional regularization parametersrh andµh. Further, we have developed
a sequential discrepancy principle to select the penalty parameterµh = µh(t), presenting
numerical examples to illustrate the effectiveness of this adaptive procedure.

We should mention that several parts of the analysis and practical use of this sequential
discrepancy principle have not been presented here. Current study involves the development of
a convergence theory guaranteeing that this selection ofµh leads to a convergent approximation
method ash→ 0 and the level of the noise decreases to zero. In addition, we are investigating
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models of propagated error in order to make best use of the results in theorem 2.2. Finally, the
results in [20] give hope that we may be able to extend our theoretical results toν-smoothing
problems (most likely for small-integerν), under additional assumptions on the problems.
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