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Abstract: We study interaction of rotating higher dimensional black holes with a brane

in space-times with large extra dimensions. In the approximation when a black hole is

slowly rotating and the tension of the brane is small we demonstrate that the black hole

loses some angular momentum to the brane. As a result of this effect a black hole in

its final stationary state can have only those components of the angular momenta which

are connected with Killing vectors generating transformations preserving a position of the

brane. The characteristic time when a rotating black hole with the gravitational radius r0
reaches this final state is T ∼ rp−10 /(Gσ), where G is the higher dimensional gravitational

coupling constant, σ is the brane tension, and p is the number of extra dimensions.
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1. Introduction

There are several reasons why brane world scenarios [1, 2] became popular recently. One of

the main reasons is that in these scenarios the fundamental energy scale can be as low as a

few TeV which opens a possibility of the experimental tests of predictions of these models

in the future collider and cosmic ray experiments [3, 4]. The most dramatic prediction of

these models is a possibility of creation of mini black holes when the center of mass energy

of two colliding particles becomes higher than a fundamental energy [3].

Being gravitational solitons black holes can propagate in the bulk space and thus to

serve as probes of extra dimensions. We focus our attention on black holes with a size much

smaller than the size of extra dimensions. In this case the effects of the extra dimensions

on the black hole geometry are small and can be neglected. (For recent review of black

holes in a space-time with large extra dimensions see [5].)

In a general case a black hole created by a collision of two particles is rotating. If

there is no emission of the bulk gravitons the bi-plane of the black hole rotation lies within

the brane. In a more realistic situation when bulk gravitons are emitted, a black hole can

also acquire an angular momentum in the bi-plane not lying within the brane. There are

other processes which may result in the black hole rotation in the bulk dimensions. For

example, if a black hole collides with a particle or another black hole with emission of bulk

gravitons, or when it emits bulk gravitons in the Hawking evaporation process.

The aim of this paper is to demonstrate that a rotating black hole interacting with a

brane loses some of the components of its angular momenta. We study this effect in the

approximation when a black hole is slowly rotating and the tension of the brane is small.

We demonstrate that as a result of this friction effect a black hole in its final stationary

state can have only those components of the angular momenta which are connected with

Killing vectors generating transformations preserving a position of the brane. We illustrate

this result first by considering a 4-dimensional Kerr black hole interacting with a thin

domain wall. Next we prove this result for a slowly rotating higher dimensional black holes

interacting with branes.
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Our calculations show that the characteristic time of the relaxation during which a

rotating black hole reaches the equilibrium state is shorter than the time during which

it loses its bulk angular momentum because of the Hawking radiation. This may have

important experimental signature of mini-black holes in future collider and cosmic ray

experiments.

2. Static black holes

In the approximation when the gravitational back-reaction of the brane is neglected its

world-sheet obeys the Nambu-Goto equation

(n+1)∆Xµ + γabΓµ νλX
ν
,aX

λ
,b = 0 . (2.1)

The relations Xµ = Xµ(ζa) determine the embedding of the n+ 1-dimensional brane into

N + 1-dimensional bulk space-time. ζa, (a, b = 0, n), are internal coordinates in the brane

and Xµ, (µ = 0, N) are coordinates in the bulk space with the metric gµν . The connections

Γµ νλ are determined for gµν . To exclude degenerate cases we assume that 0 < n < N .
(n+1)∆ is the box-operator for the induced metric

γab = gµν X
µ
,aX

ν
,b . (2.2)

The stress-energy tensor of the brane is defined as follows:

√
−gT µν = σ

∫

dn+1ζδ(N+1)(X −X(ζ)) tµν , (2.3)

where tµν =
√−γγabXµ

,aXν
,b and σ is the brane’s tension.

The metric of a non-rotating higher dimensional black hole is [6]

ds̄2 = −Bdv2 + 2drdv + r2dΩ2N−1 . (2.4)

The coordinate v is the advanced time, dΩ2
N−1 is the metric on the unit sphere SN−1, and

B = 1 − (r0/r)
N−2. For N = 3 this metric reduces to the Schwarzschild metric. The

gravitational radius r0 is related to the black hole mass M as follows

M =
(N − 1)AN−1
16πGN+1

rN−20 , (2.5)

where AN−1 = 2πN/2

Γ(N/2) is the area of a unit sphere SN−1 and GN+1 is the N+1-dimensional

gravitational coupling constant which has dimensionality [length](N−2)/[mass].

Consider a unit sphere SN−1 embedded in a N -dimensional euclidean space RN , and let

XA, (A = 1, . . . , N) be the cartesian coordinates in RN . One can choose these coordinates

so that the equations Xn+1 = · · · = XN = 0 determine the n-dimensional hyper-surface

(brane). This hyper-surface intersects the unit sphere SN−1 along a surface S which has a

geometry of a round unit sphere Sn−1. The surface S is a higher dimensional analogue of a

‘large circle’ on a two-dimensional sphere. In particular, being considered as a sub-manifold

of SN−1 it has a vanishing extrinsic curvatures, and hence is a geodesic sub-manifold. We

denote by ωα coordinates on S, and by dω2n−1 the metric on it.

– 2 –
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One can construct a solution for a static n-brane as follows. We use ζ a = (v, r, ωα) as

coordinates on the brane. Then

dγ̄2 = −Bdv2 + 2drdv + r2dω2n−1 , (2.6)

is the induced geometry on the brane. It is easy to check that such a surface is geodesic

and hence is a solution of the Nambu-Goto equations (2.1).

Denote by ξµ a Killing vector field generating a rotation in some bi-plane. Then the

flux per unit time v of the corresponding angular momentum of the brane, J̇ b, through the

surface r=const is given by the expression

J̇ b = −
∫

r=const

√
−gT rνξνd

N−1Ω . (2.7)

Due to the conservation law T µν
;ν = 0 the flux J̇ b does not depend on r. Let us denote by

J̇ the rate of the loss of the angular momentum of the black hole. The angular momentum

is transmitted to the brane and therefore J̇ = −J̇ b. By using (2.3), (2.7) one finds

J̇ = σ

∫

r=const
dn−1ω tµνnµξν , (2.8)

where nµ = r,µ. The integral is over (n − 1) dimensional sphere and dn−1ω is a measure

on a unit sphere Sn−1.

For a static black hole, since ξµ is tangent to the surface r=const, J̇ = 0.

3. Kerr black hole

Before considering higher dimensional rotating black holes let us discuss a simpler case of

a brane attached to the rotating black hole in the 4-dimensional space-time. We consider

only slowly rotating black holes. For a/M ¿ 1 one can write the Kerr metric in the form

ds2 = ds̄2 − 2a sin2 θ dϕ
(r0
r
dv + dr

)

. (3.1)

Here ds̄2 is the Schwarzschild metric

ds̄2 = −Bdv2 + 2drdv + r2(sin2 θdϕ2 + dθ2) , (3.2)

and B = 1 − r0/r, r0 = 2M . Denote by α an angle between the axis of rotation and the

brane, then the equation of the unperturbed domain wall is ϕ = ϕ̄(θ) where

sin ϕ̄ = tanα cot θ , (3.3)

and α ≤ θ ≤ π − α for 0 ≤ α ≤ π/2. The induced metric on the world-sheet of such a

tilted domain wall is

dγ̄2 = −Bdv2 + 2drdv +
r2 sin2 θ

sin2 θ − sin2 α
dθ2 . (3.4)

– 3 –
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The domain wall deformed by the black-hole rotation is described by the equation ϕ =

ϕ̄+ ψ, where ψ obeys the equation

(3)∆̄ψ +
2

r2
cot θψ,θ + 2

B

r
ψ,r =

a

r3
, (3.5)

where (3)∆̄ is the box-operator in the metric (3.4). This equation has a solution ψ = −a/r.
It is possible to show that this is a unique solution which is regular both at the horizon

and infinity [8].

For this regular solution, T r
ϕ is given by the following expression

√
−gT r

ϕ = −σr0 a sin θ
√

sin2 θ − sin2 αδ(ϕ − ϕ̄(θ)) . (3.6)

This quantity is already of the first order in a and one can use (2.7) to obtain

J̇ = −πσar0 cos2 α = −2πG4σ cos
2 αJ . (3.7)

The angular momentum flux vanishes when the domain wall is in the equatorial plane of

the rotating black hole.1 Thus this is the final stationary equilibrium configuration of the

rotating black hole in the presence of the domain wall. The relaxation time when the black

hole reaches this final state is T ∼ (πG4σ cos
2 α)−1.

For a cosmic string attached to the Kerr black hole, a similar problem can be solved

for an arbitrary value of the rotation parameter a because solutions of the Nambu-Goto

equations are known exactly [7]. In this case the final stationary configuration is a string

directed along the rotation axis. The relaxation time is T ∼ r0/(4G4σ sin
2 α), where α is

an initial angle between the the string and the axis of rotation [8].

4. Higher dimensional rotating black holes

Now we consider a general case. We assume that a N -dimensional rotating black hole is

attached to a n-dimensional brane. If the black hole size is much smaller that the size of

extra dimensions, and the tension of the brane is small, the gravitational field of the black

hole is described by the Myers-Perry (MP) metric [9].2 This metric besides the time-like at

infinity Killing vector ξµ(t) has [N/2] (the integer part of N/2) mutually commutative and

mutually orthogonal Killing vectors ξµ(i) singled out by the property that they have closed

integral lines. The Killing vectors ξ(i) are elements of the Cartan sub-algebra of the group

of rotations SO(N). The MP metric is characterized by the gravitational radius r+ and by

[N/2] rotation parameters ai. Such a black hole has angular velocities Ωi = ai/(r
2
+ + a2i ).

The vector η = ξ(t) +
∑

iΩiξ(i) on the horizon becomes a null generator of the horizon.

(The summation over i is performed from i = 1 to i = [N/2].)

1It is easy to check that for an arbitrary value of a the equatorial plane of the Kerr metric is a geodesic

surface and hence it obeys the Nambu-Goto equations. For this configuration there is no angular momentum

transfer
2In the higher dimensional case there is no uniqueness theorem and there may exist rotating black hole

solutions different from the MP metric. An example is a black ring solution [10]. This metric has no slow

rotation limit. For this reason we do not discuss it in the paper. Also in the slow rotation limit the effect

of instability of rapidly rotating black holes [11] is not important
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For slow rotation ai/r0 ¿ 1, the MP metric in the Kerr-incoming coordinates takes

the form

ds2 = ds̄2 − 2

r2

[

dr +
(r0
r

)N−2
dv

]

%µdx
µ , (4.1)

%µ =
∑

i

aiξ
µ
(i) , (4.2)

where ds̄2 is the unperturbed metric (2.4). For this form of the metric relations Lξ(i) ḡµν = 0

imply that Lξ(i)gµν = 0. The angular momenta of the black hole Ji are defined as

Ji =
AN−1

8πGN+1
rN−20 ai =

2

N − 1
Mai . (4.3)

In the linear approximation (4.1) r+ ≈ r0, Ωi ≈ ai/r20 , and η = ξ(t) + r−20 %.

Consider a static brane in the metric ds̄2. We analyze now what happens with the

brane in the presence of slow rotation. Interaction of the brane with the black hole results

in the change of the brane position Xµ = X̄µ + δXµ. By linearizing the Nambu-Goto

equations (2.1) one obtains a linear equation for δXµ. It is possible to show that a solution

of these equations which is regular at the horizon and infinity is [8]

δXµ = ψ(r) %µ , ψ′(r) =
(1− (r0/r)

n−1)

(r2B)
. (4.4)

We calculate now the rate of the loss of the angular momentum of the black hole which

interacts with a stationary brane. Since for the static metric ds̄2 J̇i vanishes, it is sufficient

to calculate the variation of (2.8) induced by the metric perturbations. We have

J̇i = σ

∫

r=const
dn−1ω δ(tµνnµξ(i)ν) . (4.5)

It is easy to check that in the linear in ai approximation the following relations for the

variations induced by the perturbed metric (4.1) are valid: δ(
√−γ) = 0,

ξ(i)aδγ
ra =

1

r2
(ξ
‖
(i), %

‖)−B(ξ
‖
(i), δX

‖
,r) , (4.6)

γraδξ(i)a = −ai
r2

(ξ(i))
2 , (4.7)

γra ξ(i)λδX
λ
,a = B(ξ(i), δX,r) . (4.8)

We denote by p‖ a projection of the vector p on the brane. (p, q) is a scalar product of

vectors p and q in the unperturbed metric, (p, q) = ḡµνp
µqν .

The flux of the angular momentum from the black hole to the brane changes the

angular momenta of the black hole (4.3). In the linear approximation the equations for the

change of the angular momenta of the black hole can be written as follows

J̇ = −KJ . (4.9)

– 5 –
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We use bold-faced quantities for vectors and tensors in the space of rotation parameters,

so that J and K have components Ji, and Kij . Relations (4.3)–(4.8) enable one to get K

in the form

Kij =
(N − 1)σrn−10 kij

(2M)
, (4.10)

kij =

∫

Sn−1

dωn−1
1

r2
(ξ⊥(i), ξ

⊥
(j)) . (4.11)

We denote by p⊥ a projection of a vector p orthogonal to the brane. In an agreement with

the conservation law, the angular momentum flux does not depend on the radius r of the

surface where it is calculated.

Note that in the linear in ai approximation Ṁ = ṙ0 = 0 and M and r0 in (4.10) are

considered as constant parameters. The evolution equation (4.3) can also be written as

ȧ = −Ka, where a is a vector with components ai. This equation shows that the black

hole can be stationary, ȧ = 0, if and only if a is the zero vector, Ka = 0. In this case the

equation aTKa = 0 implies that

∫

Sn−1

dωn−1 (%⊥, %⊥) = 0 , (4.12)

and hence %⊥ = 0. This means that the corresponding Killing vector % generates trans-

formations that preserve a position of the brane. The stationary metric of the final black

hole configuration in this case is given by (4.1) where % is a vector tangent to the brane.

Because in the considered approximation % is related to the null generator of the black hole

horizon, η = ξ(t) + r−20 %, one can also describe the final state of the black hole as a state

where η is tangent to the brane world-sheet.

From (4.4) it follows that in the final stationary state δX⊥µ = 0. Since the tangent

to the brane components of δXµ can always be gauged away, the brane in this case is not

deformed.

Besides zero eigenvectors, the non-trivial matrix K has eigenvectors with positive eigen-

values. These eigenvectors define the directions in the space of parameters ai for which

the evolution is damping. The damping is caused by the ‘friction’ which is a result of the

interaction between the black hole and the brane. The characteristic time of the relaxation

process during which the black hole reaches its final state is

T ∼ rp−10

(GN+1σ)
∼ T∗

(

r0
L∗

)p−1
(σ∗
σ

)

. (4.13)

Here p = N − n is the number of extra dimensions, σ∗ = M∗/L
n
∗ and quantities M∗, L∗

are, respectively, the fundamental mass and length of the theory.

The black hole can also lose its bulk components of the rotation by emitting Hawking

quanta in the bulk. The characteristic time of this process is TH ∼ T∗(r0/L∗)N . For black

holes which can be treated classically r0 À L∗, TH À T . Thus the friction effect induced

by the brane is the dominant one.

– 6 –
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5. Discussion

We considered interaction of rotating black holes with branes. Such systems include several

physically interesting examples, such as cosmic strings and thin domain walls interacting

with the Kerr black hole, as well as rotating black holes in a brane world. In the slow

rotation approximation we demonstrated that there exist an angular momentum transfer

from a black hole to the attached brane. It vanishes when the generator of rotation %, (4.2),

is tangent to the brane. One can expect that a similar result may be valid beyond the

adopted approximation, that is when a black hole is not slowly rotating and the brane

generates a nontrivial gravitational field. It will happen for example if a higher dimensional

analogue of the Hawking theorem [12] is valid.

We would like to conclude the paper by the following remark. We focused our at-

tention on the higher dimensional space-times with vanishing bulk cosmological constant

(ADD model [1]). A similar problem concerning general properties of higher dimensional

rotating black holes with the horizon radius r+ can be addressed in the Randall-Sundram

(RS) models [2] provided the bulk cosmological constant is much smaller than r−2+ . A

characteristic property of such models is the existence of Z2 symmetry. Under Z2 trans-

formation the brane remains unchanged, while the components of any vector orthogonal

to the brane change their sign. Thus Z2 symmetry implies %⊥ = 0. Hence a stationary

black hole attached to the brane in the RS-model can rotate only within the brane. Exact

solutions describing rotating black holes on two-branes [14] possess this property.

The relaxation process related to the presence of %⊥ which is typical for the ADD-

model is absent in the RS-model. This is an additional signature which in principle may

allow one to distinguish between these models in observations.

Acknowledgments

V.F. and D.F. kindly acknowledge the support from the NATO Collaborative Linkage

Grant (979723). The work of V.F. and D.F. is also partially supported by the Killam

Trust and the Natural Sciences and Engineering Research Council of Canada.

References

[1] N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new

dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315];

I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a

millimeter to a fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257

[hep-ph/9804398].

[2] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys.

Rev. Lett. 83 (1999) 3370 [hep-ph/9905221], ibid. 83 (1999) 4690.

[3] D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions,

Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034].

[4] G. Landsberg, Black holes at future colliders and in cosmic rays, hep-ex/0310034.

– 7 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB429%2C263
http://xxx.lanl.gov/abs/hep-ph/9803315
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB436%2C257
http://xxx.lanl.gov/abs/hep-ph/9804398
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C3370
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C3370
http://xxx.lanl.gov/abs/hep-ph/9905221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C044011
http://xxx.lanl.gov/abs/gr-qc/0201034
http://xxx.lanl.gov/abs/hep-ex/0310034


J
H
E
P
0
6
(
2
0
0
4
)
0
5
7

[5] P. Kanti, Black holes in theories with large extra dimensions: a review, hep-ph/0402168.

[6] F.R. Tangherlini, Nuovo Cim. 77 (1963) 636.

[7] V.P. Frolov, S. Hendy and A.L. Larsen, How to create a 2-d black hole, Phys. Rev. D 54

(1996) 5093 [hep-th/9510231].

[8] V.P. Frolov, D.V. Fursaev and D. Stojkovic, Interaction of higher-dimensional rotating black

holes with branes, gr-qc/0403054.

[9] R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Ann. Phys. (NY)

172 (1986) 304.

[10] R. Emparan and H.S. Reall, A rotating black ring in five dimensions, Phys. Rev. Lett. 88

(2002) 101101 [hep-th/0110260].

[11] R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, J. High Energy Phys.

09 (2003) 025 [hep-th/0308056].

[12] S.W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152.

[13] One of the possible examples is a 5-dimensional rotating black hole in a homogeneous

magnetic field, see A.N. Aliev and V.P. Frolov, Five dimensional rotating black hole in a

uniform magnetic field: the gyromagnetic ratio, Phys. Rev. D 69 (2004) 084022

[hep-th/0401095].

[14] R. Emparan, G.T. Horowitz and R.C. Myers, Exact description of black holes on branes. ii:

comparison with btz black holes and black strings, J. High Energy Phys. 01 (2000) 021

[hep-th/9912135].

– 8 –

http://xxx.lanl.gov/abs/hep-ph/0402168
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUCIA%2C77%2C636
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C5093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C5093
http://xxx.lanl.gov/abs/hep-th/9510231
http://xxx.lanl.gov/abs/gr-qc/0403054
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C172%2C304
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C172%2C304
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C101101
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C101101
http://xxx.lanl.gov/abs/hep-th/0110260
http://jhep.sissa.it/stdsearch?paper=09%282003%29025
http://jhep.sissa.it/stdsearch?paper=09%282003%29025
http://xxx.lanl.gov/abs/hep-th/0308056
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C25%2C152
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C084022
http://xxx.lanl.gov/abs/hep-th/0401095
http://jhep.sissa.it/stdsearch?paper=01%282000%29021
http://xxx.lanl.gov/abs/hep-th/9912135

