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1. Introduction

In [1] we constructed static, non-supersymmetric p-brane solutions of type II supergravities

in d-dimensions and showed how they interpolate between chargeless p-brane–anti p-brane

solutions and BPS p-brane solutions. So, the two different brane solutions of the two sides

of the interpolation have the same dimensionalities. However, for the case of non-BPS

branes, the tachyon condensation on the kink solution reduces the non-BPS D(p+1)-branes

to codimension one BPS Dp-branes [2, 3]. Therefore, the two brane solutions in this case

have dimensionalities differing by one. The most natural way to see this picture emerging

from a supergravity solution (in the absence of explicit appearance of the tachyon field) is

to consider the non-supersymmetric p-brane solutions delocalized in one of the transverse

spatial directions. The purpose of this paper is to construct such solutions and study their

properties, in particular, we will try to understand how the BPS Dp-branes arise from

the non-BPS D(p + 1)-branes [3] and also how the supergravity configuration of tachyon

matter [4]-[6] arise from these solutions.

For BPS D-branes, the difference in dimensionalities (i.e. Dp → D(p+ 1), or D(p+ 1)

→ Dp) appear due to T-duality transformation and in this process the theory also changes

from type IIA (IIB) to type IIB (IIA). For example, to construct a D(p+ 1)-brane from a

Dp-brane, one first delocalizes the Dp-brane solution in type IIA (or IIB) theory by placing

a continuous array of Dp-branes along one of the transverse spatial directions (the T-dual

direction). This produces an isometry in that particular direction and then the application

of T-duality along this direction produces a localized D(p + 1)-brane solution in type IIB

(or IIA) theory [7]. This procedure works because the BPS branes do not interact with

each other. However, because the non-supersymmetric branes interact, it is not clear how

the above process of delocalization will work. This is the reason we have to explicitly

solve the equations of motion of type II supergravities containing a metric, a dilaton and

a q = d− p− 2 form field-strength.1 We use a specific ansatz for the metric and the form-

field to solve the equations of motion and obtain delocalized, non-supersymmetric p-branes

1Similar delocalized solutions were also constructed in a different context in an earlier work in [8].
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characterized by four independent parameters. We show that, unlike the BPS p-branes, it

is possible to convert these solutions to fully localized (p + 1)-branes, without taking T-

duality, if the parameters satisfy certain condition. We recognize these to be the non-BPS

D(p + 1)-brane solutions [9, 10, 1] of the same theory as the original p-brane solutions.

This also explains why we have non-BPS D-branes of odd and even dimensionalities in

type IIA and type IIB string theories respectively [2]. By scaling certain parameters of the

delocalized solutions appropriately, we show how these solutions reduce to BPS Dp-brane

solutions. We therefore interpret these solutions as the interpolating solutions between

non-BPS D(p+1)-branes and the BPS Dp-branes very similar to the tachyon condensation

for the tachyonic kink solution on the non-BPS D(p+ 1)-branes [2, 3].

Next we Wick rotate these solutions which simply exchanges the delocalized spatial

direction with the time-like direction of the non-supersymmetric p-branes. We therefore

end up getting Euclidean p-branes delocalized along the transverse time-like direction of

the branes. We find that these solutions will be real only if they do not possess any charge

and so, they are characterized by three parameters. As discussed before, these solutions

can also be converted to fully localized (p + 1)-branes i.e. non-BPS D(p + 1)-branes if

the parameters satisfy certain condition. However, since in this case one can not have

charged solutions, we find that it is not possible to obtain completely localized Euclidean

p-branes (or S-branes) [11]–[15] from the delocalized solutions by scaling parameters as

was mentioned for the spatially delocalized case. On the other hand, we show that by

adjusting the parameters it is possible to obtain the supergravity configuration of tachyon

matter [6] from these Wick rotated solutions. We therefore interpret these solutions as

the interpolating solutions between non-BPS D(p+1)-branes and the tachyon matter very

similar to the rolling tachyon solution [16] of the non-BPS D(p+1)-branes discussed by Sen.

This paper is organized as follows. In section 2, we construct and discuss the properties

of spatially delocalized, non-supersymmetric p-branes. The Wick rotated versions and their

properties are discussed in section 3. We conclude in section 4.

2. Spatially delocalized, non-SUSY p-branes

In this section we construct and study the properties of the non-supersymmetric p-branes

in d-dimensions delocalized along one of the (d− p− 1) spatial transverse directions. The

relevant supergravity action in the Einstein frame has the form,

S =

∫

ddx
√−g

[

R− 1

2
∂µφ∂

µφ− 1

2 · q!e
aφF 2

[q]

]

, (2.1)

where gµν , with µ, ν = 0, 1, . . . , d − 1 is the metric and g = det(gµν), R is the scalar

curvature, φ is the dilaton, F[q] is the field strength of a (q − 1) = (d − p− 3)-form gauge

field and a is the dilaton coupling.

We will solve the equations of motion following from (2.1) with the ansatz for the

metric and the q-form field strength as given below,

ds2 = e2A(r)
(

dr2 + r2dΩ2
d−p−3

)

+ e2B(r)
(

−dt2 + dx21 + · · ·+ dx2p
)

+ e2C(r)dx2p+1

F[q] = b Vol(Ωd−p−3) ∧ dxp+1 . (2.2)

– 2 –
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In the above r = (x2p+2 + · · ·+ x2d−1)
1/2, dΩ2

d−p−3 is the line element of a unit (d− p− 3)-

dimensional sphere, Vol(Ωd−p−3) is its volume-form and b is the magnetic charge parameter.

The solutions (2.2) represent magnetically charged p-branes delocalized in a transverse

spatial direction xp+1. It should be clear from the form of r given before which says that

the true transverse directions are xp+2, . . . , xd−1. On the other hand xp+1 is neither a

transverse direction nor a brane direction (since B(r) 6= C(r) in general), but represents

the delocalized direction. We will also use a gauge condition

(p+ 1)B(r) + (q − 2)A(r) + C(r) = lnG(r) . (2.3)

Note that whenG(r) = 1, the above condition reduces to the extremality or supersymmetry

condition [17]. We call G(r) as the non-extremality function, whose extremal limit is

G(r)→ 1.

Using (2.2) and (2.3) the various components of Einstein equation and the dilaton

equation take the forms,

B′′ +
q − 1

r
B′ +

G′

G
B′ − b2(q − 1)

2(d− 2)

e2(p+1)B+aφ

G2r2(q−1)
= 0 (2.4)

C ′′ +
q − 1

r
C ′ +

G′

G
C ′ +

b2(p+ 1)

2(d− 2)

e2(p+1)B+aφ

G2r2(q−1)
= 0 (2.5)

A′′ +
q − 1

r
A′ +

G′

G

(

A′ +
1

r

)

+
b2(p+ 1)

2(d− 2)

e2(p+1)B+aφ

G2r2(q−1)
= 0 (2.6)

−A′′ − G′′

G
+
G′2

G2
− 1

p+ 1

(

G′

G
− (q − 2)A′ − C ′

)2

− (q − 2)A′2+

+
G′

G
A′ − q − 1

r
A′ −C ′2 − 1

2
φ′

2
+
b2(q − 1)

2(d− 2)

e2(p+1)B+aφ

G2r2(q−1)
= 0 (2.7)

φ′′ +
q − 1

r
φ′ +

G′

G
φ′ − ab2

2

e2(p+1)B+aφ

G2r2(q−1)
= 0 . (2.8)

In the above ‘prime’ denotes derivative with respect to r. Using (2.3), (2.4) and (2.5) in

eq. (2.6) we obtain an equation for the non-extremality function as,

G′′

G
+

(2q − 3)

r

G′

G
= 0 (2.9)

There are three different solutions to this equation and they are

(i) G = 1− ω2(q−2)

r2(q−2)
, (ii) G = 1 +

ω2(q−2)

r2(q−2)
, (iii) G =

ω2(q−2)

r2(q−2)
. (2.10)

The solution in (iii) can be shown to be supersymmetric by a coordinate transformation

and lead to the near horizon limits of delocalized BPS p-brane solutions [1]. Since we

are interested in non-supersymmetric solutions we do not consider (iii). Also the solution

(ii) is not of our interest since it gives non-supersymmetric delocalized p-brane solutions

which have BPS limits leading to some unusual brane configuration and not the usual

BPS p-brane configuration [1]. Since we are interested in interpolating solutions between

non-BPS D(p+1)-branes and the usual BPS Dp-branes we will consider only case (i). The

– 3 –



J
H
E
P
1
1
(
2
0
0
4
)
0
0
8

non-extremality function in this case can be factorized as follows,

G(r) =

(

1 +
ωq−2

rq−2

)(

1− ωq−2

rq−2

)

= H(r)H̃(r) , (2.11)

where H(r) = 1 + ωq−2/rq−2, H̃(r) = 1 − ωq−2/rq−2, with ωq−2, a real parameter. Now

from (2.4) and (2.8) we express φ in terms of B and also from (2.4) and (2.5) we express

C in terms of B as follows,

φ =
a(d− 2)

q − 1
B + δ1 ln

H

H̃
(2.12)

C = −p+ 1

q − 1
B + δ2 ln

H

H̃
(2.13)

where δ1 and δ2 are two real and negative integration constants which can be understood

if one actually finds the above solutions from the corresponding equations of motion. We

can also determine A in terms of B using (2.3) and (2.13) as,

A = −p+ 1

q − 1
B − δ2

q − 2
ln
H

H̃
+

1

q − 2
ln(HH̃) . (2.14)

We therefore have to solve B from eq. (2.4) and check whether the solution is consistent

with eq. (2.7). In order to solve B we make an ansatz

eB = F γ

with,

F = cosh2 θ

(

H

H̃

)α

− sinh2 θ

(

H̃

H

)β

, (2.15)

where α, β, θ and γ are real constants and we will comment on them later. Substitut-

ing (2.15) in eq. (2.4) we find that the solutions exist provided the parameters satisfy the

following relations,

γχ = −2, α− β = aδ1 , b =

√

4(d− 2)

χ(q − 1)
(q − 2)(α + β)ωq−2 sinh 2θ , (2.16)

where χ = 2(p + 1) + a2(d − 2)/(q − 1). Note that we have taken b ≥ 0 and kept both

sign choices for α + β for later convenience. The sign of α + β determines the sign for θ,

given b > 0 in (2.16). These solutions are consistent with eq. (2.7) provided the parameters

satisfy
1

2
δ21 +

2α(α − aδ1)(d − 2)

χ(q − 1)
= (1 − δ22)

q − 1

q − 2
. (2.17)

From (2.17) and α− β = aδ1, we can express α and β in terms of δ1 and δ2 as,

α = ±
√

χ(q − 1)2

2(d − 2)(q − 2)
(1− δ22)−

δ21
2

(q − 1)(p + 1)

(d− 2)
+
aδ1
2

β = ±
√

χ(q − 1)2

2(d − 2)(q − 2)
(1− δ22)−

δ21
2

(q − 1)(p + 1)

(d− 2)
− aδ1

2
. (2.18)
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We thus find from the above relations that both δ2 and δ1 are bounded by2

|δ2| ≤ 1

|δ1| ≤
√

χ(q − 1)(1 − δ22)

(q − 2)(p+ 1)
. (2.19)

Since we found γ = −2/χ, we obtain from (2.12)–(2.15)

e2A = F
4(p+1)
(q−1)χ (HH̃)

2
q−2

(

H

H̃

)−
2δ2
q−2

e2B = F
− 4
χ

e2C = F
4(p+1)
(q−1)χ

(

H

H̃

)2δ2

e2φ = F
−

4a(d−2)
(q−1)χ

(

H

H̃

)2δ1

. (2.20)

So, the complete non-supersymmetric p-brane solutions delocalized in transverse xp+1 di-

rection have the forms,

ds2 = F
4(p+1)
(q−1)χ(HH̃)

2
q−2

(

H

H̃

)−
2δ2
q−2
(

dr2+r2dΩ2
d−p−3

)

+F−
4
χ

(

−dt2+
p
∑

i=1

dx2i

)

+F
4(p+1)
(q−1)χ

(

H

H̃

)2δ2

dx2p+1

e2φ = F
−

4a(d−2)
(q−1)χ

(

H

H̃

)2δ1

, F[q] = bVol(Ωd−p−3) ∧ dxp+1 . (2.21)

Note that unlike the localized solutions [18, 1], which are characterized by three param-

eters, the delocalized solutions are charaterized by four parameters ω, θ, δ1 and δ2 (α

and β are given in terms of δ1 and δ2 as in (2.18) and b is related to δ1, δ2, ω and θ

by (2.16)). We thus find that the delocalization actually introduces one more parameter

in the non-supersymmetric solutions and this does not happen for BPS solutions. This

will prove crucial to interpret these solutions as interpolating solutions between non-BPS

D(p + 1) branes and BPS Dp-branes. Also since these solutions are non-supersymmetric,

the four parameters would presumably be related to the mass, the charge, the tachyon

vev 〈T 〉 and the vev of its derivative 〈∂xT 〉 of the non-supersymmetric p-branes. However,

the microscopic string interpretation of these solutions and also the precise relationships

of these parameters and the physical parameters just mentioned are not clear to us.

In d = 10, the delocalized p-brane solutions (2.21) take the forms,

ds2 = F
p+1
8 (HH̃)

2
6−p

(

H

H̃

)−
2δ2
6−p
(

dr2 + r2dΩ2
7−p

)

+ F−
7−p
8

(

−dt2 +
p
∑

i=1

dx2i

)

+

+F
p+1
8

(

H

H̃

)2δ2

dx2p+1

e2φ = F−a
(

H

H̃

)2δ1

, F[q] = bVol(Ω7−p) ∧ dxp+1 (2.22)

2The solutions also exist when these bounds are violated [1] but their BPS limits do not give the usual

BPS p-branes, therefore they, as mentioned earlier, are not considered in this paper.
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where F is as given in (2.15) and H = 1 + ω6−p/r6−p, H̃ = 1 − ω6−p/r6−p and also

χ = 32/(7 − p).

Once we know the form of the metric, we can calculate the energy-momentum (e-m)

tensor associated with the brane from the linearized form of Einstein equation given by,

∇2

(

hµν −
1

2
ηµνh

)

= −2κ20Tµνδ(8−p)(r) , (2.23)

where we have expanded the metric around asymptotically flat space as gµν = ηµν+hµν and

used the harmonic gauge ∂λh
λ
µ − 1

2∂µh = 0 with h = ηµνhµν . Also in (2.23) 2κ20 = 16πG10,

G10 being the ten dimensional Newton’s constant. From (2.22) we find

h00 =
7− p

8
[(α+ β) cosh 2θ + (α − β)]

ω6−p

r6−p

hij = −7− p

8
[(α+ β) cosh 2θ + (α− β)]

ω6−p

r6−p
δij

hxx =

{

p+ 1

8
[(α+ β) cosh 2θ + (α− β)] + 4δ2

}

ω6−p

r6−p

hmn =

{

p+ 1

8
[(α+ β) cosh 2θ + (α− β)]− 4δ2

6− p

}

ω6−p

r6−p
δmn

h =

{

p+ 1

4
[(α+ β) cosh 2θ + (α− β)]− 8δ2

6− p

}

ω6−p

r6−p
, (2.24)

where i, j = 1, . . . , p, x = xp+1 and m,n = p + 2, . . . , 9. Substituting (2.24) in (2.23) we

obtain,

T00 =
Ω7−p

2κ20
(6− p)ω6−p

[

(α+ β) cosh 2θ + (α− β)− 4δ2
6− p

]

Tij = −Ω7−p

2κ20
(6− p)ω6−p

[

(α+ β) cosh 2θ + (α− β)− 4δ2
6− p

]

δij

Txx =
Ω7−p

2κ20
(6− p)ω6−p

[

4δ2(7− p)

6− p

]

Tmm = 0 . (2.25)

Here Ωn = 2π(n+1)/2/Γ((n + 1)/2) is the volume of the n-dimensional unit sphere. In the

above T00 is nothing but the ADM mass of the brane. It has the dimensionality mass per

unit (p + 1)-brane volume and therefore shows that the energy is spread also along the

delocalized direction x = xp+1 as expected. The fact that the brane is spread along x can

also be seen from Txx in (2.25) which is non-vanishing. Tmm = 0 implies that the brane is

localized along m = xp+2, . . . , xd−1 directions and they are the true transverse directions.

Now let us look at the metric in (2.22). These represent non-supersymmetric p-branes

delocalized in xp+1 direction in d = 10. Note that for BPS case one can make such solutions

localized (p + 1)-brane by a T-duality transformation and so if the p-brane is a solution

to type IIA (or IIB) theory then (p + 1)-brane is a solution of type IIB (or IIA) theory.

However, in this case it is possible to make the p-brane solution to a localized (p + 1)-

brane without taking T-duality by simply putting θ = 0 and 2δ2 = −α (note that this is

– 6 –
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possible because of the presence of the extra parameters which are not present for the BPS

solutions. Here we choose a plus sign in (2.18).). To make it clear note from the last two

terms of the metric in (2.22) that for the coefficients of these two terms to match (which

is necessary to make it a metric for localized (p + 1)-brane) F must be some powers of

(H/H̃) and from (2.15) we find that this happens only for θ = 0. The coefficients would

then match for α = −2δ2. From (2.16) we see that θ = 0 corresponds to b = 0 i.e. the

solutions must be chargeless. Also from the expressions of the e-m tensors we see that for

θ = 0 and α = −2δ2, T00 = −Tii for i = 1, . . . , (p+1), i.e. we have a localized (p+1)-brane.

The solutions and the e-m tensors then take the forms,

ds2 = (HH̃)
2

6−p

(

H

H̃

)
p+1
8
α+ α

6−p
(

dr2 + r2dΩ2
7−p

)

+

(

H

H̃

)−
7−p
8
α
(

−dt2 +
p+1
∑

i=1

dx2i

)

e2φ =

(

H

H̃

)−aα+2δ1

, F[q] = 0 (2.26)

T00 = −Tii =
Ω7−p

2κ20
(6− p)ω6−p

[

2α(7 − p)

6− p

]

. (2.27)

This is the supergravity configuration of non-BPS D(p+1)-brane discussed by Sen [2] and

were also obtained in refs. [9, 10, 1]. The solutions in this case are characterized by two

parameters ω and α (or δ2). The parameter relation (2.17) takes the form,

δ21 + α(α − aδ1) =
(4− α2)(7− p)

2(6− p)
. (2.28)

This determines δ1 in terms of α (or δ2) and to have real and negative δ1, we must have

|α| ≤ 8
√

2(5p + 14− p2)
. (2.29)

We also point out that for p = even (odd) the original delocalized p-branes in (2.22)

represent solutions in type IIA (IIB) string theory. But since we made the solutions

to localized (p + 1)-branes without T-duality transformation then the solutions in (2.26)

also represent solutions in the same theory i.e. in type IIA (IIB) theory for p = odd

(even). This clarifies the reason why the non-BPS branes (of the type discussed by Sen)

in type IIA and IIB string theories have the wrong dimensionalities compared to the BPS

branes.

Now in order to see how the delocalized solutions (2.22) reduce to BPS p-branes, we

need the necessary condition from the expressions of the e-m tensors in (2.25), Txx = 0

and T00 = −Tii for i = 1, . . . , p. This condition means we take either δ2 → 0 or ω → 0.

Examining the metric (2.22) carefully, we have the correct BPS limit by sending |θ| → ∞
while having ω → 0 according to the following

ω6−p → ε ω̄6−p

(α+ β) sinh 2θ → ε−1 , (2.30)

– 7 –
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where ε is a dimensionless parameter which tends to zero. With the above scaling b →
(6 − p)ω̄6−p, F → H̄ = 1 + ω̄6−p

r6−p
, and H, H̃ → 1. Since both δ1 and δ2 are bounded given

in (2.19), it can be easily checked that the configuration (2.22) reduce to

ds2 = H̄
p+1
8
(

dr2 + r2dΩ2
7−p + dx2p+1

)

+ H̄−
7−p
8

(

−dt2 +
p
∑

i=1

dx2i

)

e2φ = H̄−a, F[q] = bVol(Ω7−p) ∧ dxp+1 . (2.31)

This is precisely the BPS Dp-brane solutions delocalized in xp+1 direction. Note from (2.25)

that even in this case Txx → 0 and T00 = −Tii → Ω7−p

2κ2
0
(6 − p)ω̄6−p. However, this

delocalization is trivial in the sense that since Txx = 0, we can always replace the line

source along x-direction by a delta function source without any cost of energy (true for BPS

branes). In other words, in calculating the e-m tensor we replace the Poisson’s equation of

the harmonic function H̄ as,

∇2H̄ = −Ω7−p(6− p)ω̄6−pδ(8−p)(r)→ ∇2H̄ = −Ω8−p(7− p)ω̄7−pδ(9−p)(r) . (2.32)

The harmonic function now takes the form H̄ = 1 + ω̄7−p/r7−p where r includes x ≡ xp+1

The e-m tensor will be given as T00 = −Tii → Ω8−p

2κ2
0
(7− p)ω̄7−p, for i = 1, . . . , p and (2.30)

will reduce to the localized Dp-brane solutions.

This therefore shows how the delocalized, non-supersymmetric p-brane solutions (2.22)

can be regarded as the interpolating solutions between the non-BPS D(p+ 1)-branes and

BPS Dp-branes very similar to the tachyon condensation on the tachyonic kink solution on

the non-BPS branes.

3. Wick rotation and delocalized, non-SUSY p-branes

In this section we will Wick rotate the spatially delocalized solutions (2.22) and obtain

temporally delocalized p-branes as follows. Let us make the following Wick rotation,

xp+1 → it

t → ixp+1 . (3.1)

Since the harmonic functions H and H̃ are independent of both xp+1 and t, under the

above change the configurations (2.22) become,

ds2 = F
p+1
8 (HH̃)

2
6−p

(

H

H̃

)−
2δ2
6−p
(

dr2 + r2dΩ2
7−p

)

+ F−
7−p
8

p+1
∑

i=1

dx2i − F
p+1
8

(

H

H̃

)2δ2

dt2

e2φ = F−a
(

H

H̃

)2δ1

, F[q] = ib Vol(Ω7−p) ∧ dt . (3.2)

Note that under the Wick rotation (3.1) the field strength has become imaginary and so, if

we insist on real solutions b must vanish or in other words, the solutions in this case must

be chargeless. b = 0 implies θ = 0 by (2.16) and so, F in (2.15) takes the form,

F =

(

H

H̃

)α

. (3.3)
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So, the real solutions in this case become,

ds2 = (HH̃)
2

6−p

(

H

H̃

)
p+1
8
α−

2δ2
6−p
(

dr2 + r2dΩ2
7−p

)

+

(

H

H̃

)−
7−p
8
α p+1
∑

i=1

dx2i −

−
(

H

H̃

)
p+1
8
α+2δ2

dt2

e2φ =

(

H

H̃

)−aα+2δ1

, F[q] = 0 . (3.4)

Therefore, unlike the case of spatially delocalized solutions, the temporally delocalized

solutions are characterized by three parameters ω, δ1 and δ2 (α is related to δ1 and δ2
by (2.18)). The brane directions in (3.4) are all spatial and so they are Euclidean branes

(or S-branes) delocalized in the transverse time-like direction. However, because these

solutions are chargeless, it is not possible to obtain the localized S-branes [11]–[15] by

localizing the time direction as was done for the case of spatially delocalized solutions.

As before we calculate the various components of the e-m tensor from the metric

in (3.4) as,

T00 = −Ω7−p

2κ20
(6− p)ω6−p

[

4δ2(7 − p)

6− p

]

Tij = −Ω7−p

2κ20
(6− p)ω6−p

[

2α− 4δ2
6− p

]

δij

Tmm = 0 , (3.5)

where in the above i, j = 1, . . . , p+ 1 and m = p+ 2, . . . , 9. We also note from (3.5) that

for α = −2δ2, T00 = −Tii as expected of a localized (p + 1)-brane. Indeed we find that

under this condition, the coefficient of −dt2 and the coefficient of (dx21 + · · ·+ dx2p+1) term

match. The configurations (3.4) in this case reduce to

ds2 = (HH̃)
2

6−p

(

H

H̃

)
p+1
8
α+ α

6−p
(

dr2 + r2dΩ2
7−p

)

+

(

H

H̃

)−
7−p
8
α

(−dt2 +
p+1
∑

i=1

dx2i )

e2φ =

(

H

H̃

)−aα+2δ1

, F[q] = 0 . (3.6)

This is precisely the non-BPS D(p+1)-brane solutions obtained before in (2.26), although

our starting solutions in these two cases are different.

On the other hand, we note that the time direction can not be made true transverse

direction of the brane by adjusting or scaling the parameters as was done for the spatially

delocalized solutions. From the e-m tensors in (3.5), however, it might seem that it is

possible to achieve that either for δ2 → 0 or for ω6−p → 0, when T00 vanishes. (Note

that this happens for S-branes where time is the true transverse direction of the Euclidean

or S-branes.) But it is clear from the metric in (3.4) that the coefficients of −dt2 term

and (dr2 + r2dΩ2
7−p) term do not match for δ2 = 0. So, even if T00 vanishes, ‘t’ does

not become a transverse direction of the brane. This happens because T00 encodes only

– 9 –
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the linear property of the metric. In the other limit ω6−p → 0, T00 → 0, but since α

and δ2 are finite, we also have Tij → 0 and the metric becomes trivial i.e. the flat space.

Note that this did not happen for the spatially delocalized solutions because the solutions

were charged and involved more parameters which were scaled appropriately to obtain the

localized BPS Dp-brane solutions. However, in this case we can keep T00 = fixed and send

Tij → 0 by allowing α→ 2δ2/(6 − p) (Note that this is possible only when the minus sign

is chosen in (2.18).). This is exactly the configuration one gets for the tachyon dust or

tachyon matter [16] which is pressureless and possesses fixed energy. This configuration is

possible because of the extra parameter δ2 in the solutions. Now with the condition

α =
2δ2
6− p

(3.7)

the solutions (3.4) will be characterized by two parameters only, namely, ω and δ1 (since

δ1 and δ2 are related by (2.18)). However, we would like to point out that this is not the

end of the story. It is known from the string field theory [20, 21] as well as the tachyon

effective action analysis [22], that for the rolling tachyon, when the tachyon condenses, not

only the pressure vanishes, but also the so-called dilaton charge vanishes [6]. The dilaton

charge is the source for the dilaton equation of motion following from the action (2.1).

Since the value of the dilaton charge is frame dependent we work in the string frame where

the metric is ĝµν = eφ/2gµν . Expanding the string frame metric around the asymptotically

flat region ĝµν = ηµν + ĥµν , we get from (3.4)

ĥ00 = [α− δ1 − 2(7 − p)α]
ω6−p

r6−p

ĥij = (δ1 − α)
ω6−p

r6−p
δij , i, j = 1, . . . , p+ 1

ĥmn = (δ1 − α)
ω6−p

r6−p
δmn , m, n = p+ 2, . . . , 9

ĥ = ηµν ĥµν = 2 [5δ1 − α(p− 2)]
ω6−p

r6−p
. (3.8)

The linearized equation of motion of the dilaton in the string frame takes the form

∇2
(

ĥmm − ĥ+ 4φ
)

= −2κ20QDδ
(8−p)(r) . (3.9)

Whence we obtain,

QD =
Ω7−p

2κ20
(6− p)(α− δ1)ω

6−p , (3.10)

where φ was calculated from (3.4) as φ = (2δ1 − p−3
2 α)ω

6−p

r6−p
. Thus we find that for the

dilaton charge to vanish

α = δ1 (3.11)

Using (3.7) and (3.11) we obtain from (2.18) in d = 10

α = −
√

4

(6− p)(7 − p)
= δ1 =

2δ2
6− p

. (3.12)
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Substituting (3.12) into (3.4) we find the supergravity configuration of tachyon matter as,

ds2 =

(

H

H̃

)
1
4

√

7−p
6−p



−
(

H

H̃

)−2
√

7−p
6−p

dt2 +

p+1
∑

i=1

dx2i + (HH̃)
2

6−p
(

dr2 + r2dΩ2
7−p

)





e2φ =

(

H

H̃

)−
√

7−p
6−p

, F[8−p] = 0 . (3.13)

This is precisely the tachyon matter configuration obtained in [6] using a different method.

We have thus seen how the Wick rotated solutions or the temporally delocalized non-

supersymmetric p-branes (3.4) can be regarded as the interpolating solutions between non-

BPS D(p+1)-branes and the tachyon matter, similar to the picture of rolling tachyon [16]

on the non-BPS D-branes discussed by Sen. We like to point out that although the rolling

tachyon implies that the tachyon is time dependent, the supergravity solutions are still

static. The reason is, the supergravity configurations represent S-branes delocalized in the

time direction and unless the time direction is fully localized the supergravity configura-

tions will remain static. In the approach of [6], the question of time independence of the

supergravity configurations or even why one should start with the non-supersymmetric

black p-brane solutions [18] to arrive at tachyon matter was not clear. Our approach,

however, clarifies these points.

4. Conclusion

To summarize, in this paper we have constructed non-supersymmetric spatially delocalized

(in one transverse direction) p-brane solutions of type II supergravities in d space-time

dimensions. Unlike the localized solutions (which contain three parameters), the delocalized

solutions are characterized by four parameters. We have shown how these solutions in

d = 10 nicely interpolate between non-BPS D(p+1)-branes (of the type discussed by Sen)

and the BPS Dp-branes. This process is very similar to the picture of tachyon condensation

on the tachyonic kink solution of the non-BPS D(p+ 1)-branes. In our approach we have

clarified the reasons for the appearance of even and odd dimensional non-BPS D-branes

in type IIB and type IIA string theories respectively. Further, we have obtained non-

supersymmetric, temporally delocalized Euclidean p-brane solutions by an Wick rotation

on our previous solutions. We have shown how these latter solutions nicely interpolate

between non-BPS D(p + 1)-branes and the tachyon matter supergravity configurations.

This process is very similar to the picture of rolling tachyon on the non-BPS D(p + 1)-

branes. Our approach also clarifies why we need a static solution to understand the tachyon

condensation for the time-dependent tachyon or the rolling tachyon on the non-BPS D-

branes. We emphasize that although we have indicated the similarities of our approach with

the process of tachyon condensation for the space dependent as well as the time dependent

tachyons, it would be nice to understand the physical meanings of the parameters and the

exact relationships of them with the dynamics of tachyon condensation.
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