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1. Introduction

Recently, a new theory called topological M-theory was constructed on seven-manifolds with

G2 structure [1, 2]. It is proposed as a unification of the A- and B-model topological string

theories which are themselves related to counting maps from Riemann surfaces into Calabi-

Yau three-folds. The topological M-theory is related to these topological string theories

via dimensional reduction along the seventh dimension. This is similar to the relationship

between 11-dimensional M-theory and the type II superstring theories in ten dimensions.

Evidence for the existence of topological M-theory was given also in [3, 4].

Topological strings have many interesting applications. It has long been known that

the topological A- and B-models compute F-terms for compactifications of type IIB su-

perstring theory on Calabi-Yau three-folds [5]. Recently it was also discovered that they

are related to perturbative N = 4 super Yang-Mills theory [6] and to the entropy of BPS

black holes in four dimensions [7]. This underscores the importance of understanding their

non-perturbative formulation.

In this note we examine the possibility, already raised in [1], that a topological theory

on eight-manifolds with Spin(7) structure may also be constructed. The framework is

analogous to 12-dimensional F-theory and so is named topological F-theory . For simplicity,

we will consider the eighth dimension to be compact (and in fact circular in the discussion

of dualities).

The effective action for topological M-theory was obtained using Hitchin’s formalism

for volume functionals that are built out of stable forms [8]. Within the cohomology class of

a given stable closed 3- or 4-form in seven dimensions, the extrema of this action functional

precisely correspond to Riemann metrics of G2 holonomy. We will adopt a similar strategy

here to construct an action in eight dimensions.
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We consider the eight-dimensional space to be a seven-manifold with G2 structure

fibred over a line interval or circle. We will find it convenient to think in terms of the

Cayley 4-form that defines the Spin(7) structure on this manifold. Although this 4-form is

not stable, it determines a Spin(7) holonomy metric. We use the gradient flow constructed

by Hitchin [8] to relate this Cayley 4-form to the 3- and 4-forms associated withG2 structure

on the seven-manifold. We write an action functional in eight dimensions in terms of this

special Cayley form which precisely reduces to the topological M-theory effective action [1]

on compactifying the eighth dimension. By reducing on an additional circle, we rewrite

the Cayley form in terms of the basic quantities of the topological A- and B-models, the

Kähler form and complex structure.

It has recently been conjectured that there exists a duality, called topological S-duality,

exchanging A- and B-model topological strings on the same Calabi-Yau three-fold tar-

get space [9]. It was related in [10] to the S-duality of type IIB superstrings. Similarly

to the connection of the latter with physical F-theory, it is natural to ask if our eight-

dimensional construction can be used to analyse topological S-duality. A naive canonical

quantization of topological M-theory on the product space M6 × R was performed in [1],

and the canonically conjugate variables are eventually identified with the real and imag-

inary parts of the 3-form Ω corresponding to the SU(3) structure on M6. It was also

suggested that S-duality would exchange these two conjugate variables. We therefore look

for symmetries of the eight-dimensional theory which induce such an exchange in the re-

duced theory on M6. We find that a change of variables, similar to the one involved in

the S-duality between the topological string theories, is induced from modular transfor-

mations of the two-torus upon requiring invariance of the Cayley form that defines the

Spin(7) structure. In this sense, the topological F-theory seems a real analogy to physical

F-theory, where the complex structure change of the extra torus induces S-duality in type

IIB superstrings.

A point which remains to be resolved is the embedding of our topological S-duality in

physical string theory. In [10] an embedding in superstring theory was described, which

allowed to deduce the appropriate dependence on the string coupling constant. In section 6

we include some discussion on introducing coupling constant dependence in our formalism,

but a full treatment is left for future work.

To better understand the action of S-duality, it would be desirable to include back-

ground fluxes in our construction. In this paper we make initial steps in this direction

by considering action functionals involving fluxes, which are related to six-dimensional

non-Kähler manifolds.

2. Eight-manifolds with Spin(7) holonomy

We begin by giving a short introduction to Spin(7) structures on eight-dimensional mani-

folds. The first examples of metrics with Spin(7) holonomy were given in [11] and a more

general class of such metrics was given in [12]. In those references, together with [13], one

can also find a more thorough introduction.
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A Spin(7) holonomy metric g on an eight-dimensional manifold M8 is defined by the

existence of a Cayley 4-form Ψ which is both closed

dΨ = 0 , (2.1)

and self-dual

∗Ψ = Ψ . (2.2)

The expression for the metric g in terms of the Cayley form is rather complicated, though

certain aspects of the reconstruction are described in an appendix (and proved in, e.g. [14]).

We need only note here that the volume form of such a Spin(7) manifold can be written as

vol8 =
1

14
∗Ψ ∧Ψ =

1

14
Ψ ∧Ψ , (2.3)

where vol8 = ∗1 has the single component
√

det g.

The closure of the form Ψ, eq. (2.1), is equivalent to the vanishing of all torsion classes

of M8. In the forthcoming discussion we will consider only this case. However, one can

relax this assumption to define more general Spin(7) structures, where dΨ is expressed

in terms of the non-zero torsion classes of M8. The associated metrics no longer have

Spin(7) holonomy and are not Ricci-flat but arise naturally when considering solutions of

the Einstein equations in the presence of non-vanishing fluxes.

2.1 Relation to seven-manifolds with G2 structure

In [8] Hitchin showed that one can reconstruct certain special holonomy metrics as extrema

of action functionals written in terms of stable forms. The stability condition is analogous

to non-degeneracy of the metric for the case of general p-forms. It ensures that the volume

measure in the action integral is nowhere vanishing. For a general eight-manifold M8, there

exist stable 3-form α and 5-form α̂ = ∗α (with stabiliser PSU(3)). The action functional

constructed from these forms is

V (α) =
3

8

∫

M8

α̂ ∧ α . (2.4)

For variations

α = α0 + dβ , dα0 = 0 , (2.5)

within the fixed cohomology class [α0] ∈ H3(M8,R), where β is an arbitrary 2-form, the

critical points of the action above are

dα = 0

dα̂ = 0 . (2.6)

However, the extrema of this action are not Spin(7) manifolds. In fact, the geometry

is encoded in the above equations in a complicated way and, in the single case solved by

– 3 –
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Hitchin [13], the manifolds associated with these solutions are not even Ricci-flat. In the

following, we will find it more convenient to write an action explicitly in terms of the Cayley

4-form, which naturally encodes the Spin(7) structure.1

We now consider Spin(7) eight-manifolds with the topology

M8 = M7 ×M1 . (2.7)

If M1 is an interval then such eight-manifolds can be foliated by equidistant hypersurfaces

(each diffeomorphic to M7) labeled by the coordinate x ∈ M1. Theorem 7 in [8] implies

that the restriction G(x) of the Cayley 4-form Ψ on each M7 hypersurface evolves as the

gradient flow of the seven-dimensional action functional

VH(G) =

∫

M7

∗G ∧G . (2.8)

The extremum of VH(G) within the cohomology class of a given G determines a metric of

G2 holonomy on the corresponding M7 hypersurface. Furthermore the Cayley form can be

written as

Ψ = dx ∧ ∗G(x) +G(x) , (2.9)

which is closed as a result of the flow equation d ∗ G = ∂G/∂x. The converse of the

construction above also follows. That is, given a closed stable 4-form G(x) on M7 which

evolves as the gradient flow of VH(G) along M1 (restricted to the class of G in H4(M7,R))

then the 4-form (2.9) defines a metric with holonomy Spin(7) on M7×M1. In the following

we take the extra dimension to be a circle, i.e. M1 = S1.

Unlike the G2 holonomy case in seven dimensions, one already faces a difficulty in

describing a Spin(7) holonomy eight-manifold as the extremum of a form action because of

the required self-duality condition, Ψ = ∗Ψ. Taking the usual approach that self-duality

is to be imposed by hand at the level of the field equations, it seems natural to write the

action functional

V (Ψ) =
1

2

∫

M8

∗Ψ ∧Ψ . (2.10)

For generic 4-form field strength Ψ however, one cannot simply obtain the equation of

motion d ∗ Ψ = 0 from the variational principle. The reason is that a general 4-form is

not stable in eight dimensions (irrespective of whether it is self-dual or not) which means

that the volume form ∗Ψ ∧Ψ vanishes for some values of Ψ. Then clearly the extrema of

the action (2.10) will be given not only by 4-forms that satisfy the field equations but also

by 4-forms for which ∗Ψ∧Ψ has zeros. To make the variational principle well-defined (i.e.

localizing the extrema of the action on the field equations), one needs some way to exclude

the degenerate points from the space of all 4-forms. A possibility is to define some kind

of restricted variation of Ψ which keeps it in a subspace of Λ4(M8) that does not contain

degenerate points. Although generically we do not know how to do this, for the special case

1One might also try to localize on Spin(7) geometries by a reduction and constrained variation of the

stable-form action. However, we note that the stable 3 and 5-forms do not naturally encode Spin(7)

geometries.
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of interest there is a natural way of implementing it. Namely, we can define the off-shell

continuation of the Cayley form Ψ to be a 4-form of the form given by equation (2.9), where

the field strength G is not necessarily coclosed. In particular, we only consider variations

δΨ := dx∧ δ(∗G) + δG, with δG = dΓ being the variation of G within a fixed cohomology

class in H4(M7,R) for a given value of x.2

Substituting the explicit form of Ψ given in (2.9), the action (2.10) reduces to

V (Ψ) =

∫

M7×S1

dx ∧ ∗G(x) ∧G(x) .

The extrema of this action correspond to closed and coclosed 4-forms G which determine a

G2 holonomy metric on M7, that is independent of the value of x.3 Our restricted variation

of Ψ has therefore effectively reduced the theory in eight-dimensions to the topological M-

theory on seven-manifolds of G2 holonomy. Consequently the Spin(7) eight-manifold M8

becomes a direct product M7 × S1, as opposed to a non-trivial fibration.

The eighth dimension (parameterised by x) therefore seems to be just a spectator in

the discussion above, and in particular it remains classical. Its importance will be seen in

the next section where it will enable us to construct a two-torus that is transverse to the

six-dimensional topological string target space in a classically topological eight-dimensional

theory. The impossibility of having a full quantum theory for the Cayley form Ψ may be

just the counterpart in the topological context of the fact that F-theory is not on the

same footing as M-theory. That is, F-theory is not a genuine quantum theory in twelve

dimensions but just a technical tool that is useful for obtaining new classical solutions of

type IIB superstrings.

3. Torus reduction

To make connection with the topological A- and B-models, we now reduce along one more

circle direction (with coordinate y) via the hamiltonian flow equations considered in [1]:

G = ρ̂ ∧ dy +
1

2
k ∧ k

∗G = ρ+ k ∧ dy , (3.1)

where k is a two-form related to the Kähler structure, and ρ defines the almost complex

structure of the six-manifold

Ω = ρ+ iρ̂(ρ) .

Hence the torus reduction of the Cayley form gives

Ψ = dx ∧ ρ− dy ∧ ρ̂+ dx ∧ dy ∧ k +
1

2
k ∧ k . (3.2)

2A possible alternative approach to localize on Spin(7) geometries may be via a constrained variation

(i.e. including Lagrange multipliers) of an action containing ∗Ψ∧Ψ and Ψ∧Ψ. We comment more on that

at the end of section 5.
3Recall that d ∗ G = 0 implies ∂G/∂x = 0 due to the flow equation d ∗ G = ∂G/∂x.
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The action then effectively reduces to the sum of the symplectic and holomorphic actions

in six dimensions that were argued in [1] to describe the A- and B+ B̄ models respectively:

V (Ψ) =

∫

M6×T2

dx ∧ dy ∧
(

1

2
k ∧ k ∧ k − ρ̂∧ρ

)
. (3.3)

We recall that the first term is viewed as an action for a stable four-form field strength

σ = 1
2k ∧ k. Extremizing this action with respect to variations δσ = dα in the fixed

cohomology class [σ] ∈ H4(M6,R), one obtains the field equation dk = 0 that describes

Kähler geometry. Similarly, viewing the second term as an action for a 3-form field strength

ρ and varying it in the fixed cohomology class [ρ] ∈ H 3(M6,R), one finds the equation of

motion dρ̂ = 0, which describes complex geometry.

As a last remark in this section, we recall that the compatibility conditions for SU(3)

structure

k ∧ ρ = 0 and
2

3
k ∧ k ∧ k = ρ̂ ∧ ρ , (3.4)

are interpreted from the topological string perspective as a nonperturbatively generated

coupling between the A- and B-model [1].

4. S-duality

We will now analyse the SL(2,Z) modular transformations of the extra torus, which keep

the Cayley form Ψ and hence also the action V (Ψ) invariant. Under an SL(2,Z) transfor-

mation, the torus coordinates (x, y) transform such that

(
dx

dy

)
→
(
a b

c d

)(
dx

dy

)
, (4.1)

for any integers a, b, c, d which obey ad− bc = 1.

Defining

dX :=

(
dx

dy

)
,

and

Ξ :=

(
ρ̂

ρ

)
,

and introducing the SL(2,Z)-invariant

J =

(
0 1

−1 0

)
,

implies the Cayley form can be written as

Ψ = dXt ∧ JΞ +
1

2
dXt ∧ JdX ∧ k +

1

2
k ∧ k . (4.2)
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The expression above is manifestly SL(2,Z)-invariant provided Ξ transforms like dX, i.e. as
(
ρ̂

ρ

)
→
(
a b

c d

)(
ρ̂

ρ

)
, ad− bc = 1 , (4.3)

in the fundamental representation of the modular group, with

k → k , (4.4)

transforming as a singlet.

In the canonical quantization of topological M-theory on M6 × R considered in [1], it

was found that fluctuations of the stable closed 4-form G in seven dimensions (within the

fixed cohomology class [G]) correspond to a phase space parameterized by the canonically

conjugate variables ρ̂ and ρ. Their commutation relation is

{ρ̂, ρ} =

∫

M6

ρ̂ ∧ ρ . (4.5)

These are also the canonically conjugate variables of the B-model wavefunction. Here

we find that changing the modular parameter of the torus, while keeping the Cayley form

invariant, changes the almost complex structure of M6, defined by ρ̂ and ρ, by an SL(2,Z)

transformation. Such SL(2,Z) transformations correspond to a subgroup of the infinite-

dimensional group W∞ of two-dimensional area preserving diffeomorphisms which leave

the left and right hand side of (4.5) invariant.

In particular, the SL(2,Z) generator S which exchanges the cycles of the torus trans-

forms the conjugate variables ρ̂ → ρ, ρ → −ρ̂ so that Ω → iΩ. This is the conjectured

in [1] S-duality of the A- and B-models. The other generator T transforms ρ̂ → ρ + ρ̂,

ρ→ ρ. Of course, the general SL(2,Z) transformation obtained by successive applications

of these generators just mixes the conjugate variables as in (4.3).

The S-duality which exchanges A- and B-models was derived from the superstring S-

duality in [10]. Including the RR and NS gauge fields, it was argued there that the A- and

B-model three-forms

Ω̂A = ΩA + iCR ,

Ω̂B = ΩB + iCNS (4.6)

are exchanged under it as

Ω̂A ↔ Ω̂B . (4.7)

Following [1], we have considered the on-shell Calabi-Yau three-fold geometry which

assumes the RR and NS fluxes are zero from the superstring perspective. We have also

taken a unit string coupling, as in [1]. We will comment more on the inclusion of coupling

dependence later on. Imposing these conditions in the considerations of [10] implies the

relations

Ω̂A = Ω = ρ+ iρ̂

Ω̂B = iΩ = −ρ̂+ iρ . (4.8)

– 7 –
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Hence the torus S transformations of our variables are in agreement with the prediction

that S-duality exchanges the A- and B-models on the same manifold. That is, since the

holomorphic 3-form of a given Calabi-Yau three-fold of fixed volume is only determined up

to U(1) multiplication then the S transformation above does not change this volume.

More generally, in the quantization of the B-model wavefunction or in the canonical

quantization in [1] one must consider fluctuating off-shell geometries. Then, in the quanti-

zation of fluctuations of G within a fixed cohomology class, δρ̂ is not necessarily closed and

is the same type of quantity as the RR-flux. It therefore naturally couples to the world-

volume of A-model branes (i.e. lagrangian 3-cycles). One can similarly argue a coupling

for the B-model branes (i.e. holomorphic cycles). Thus S-duality has a very interesting

effect in the quantum theory, where it can generate new couplings for branes, as already

predicted in [1, 10].

The action of S-duality and the couplings to branes would be more transparent in ge-

ometries with background fluxes. In the following section, we discuss Hitchin’s construction

for form actions associated with these geometries in six dimensions. In order to lift them

to eight dimensions so that we could study S-duality in a manner similar to our consid-

erations above, we would need to generalize Hitchin’s gradient flow equations to the case

of non-zero flux. We leave this for future work, and here will only consider constructions

of the six-dimensional form actions. Thus the forthcoming discussion is intended to be an

initial step towards understanding target space actions and S-duality for these geometries.

Before proceeding with this discussion, we conclude the present section by noting a

curious symmetry of the Cayley form Ψ in eight dimensions which commutes with the

S-duality described above. When written as in (4.2), Ψ is also invariant under the trans-

formations

Ξ → Ξ +E ∧ k
k → k − dX t ∧ JE +

1

2
ẽ dXt ∧ JdX , (4.9)

provided the SL(2,Z)-doublet of 1-forms E :=
( ê
e

)
on M6 and SL(2,Z)-singlet 0-form ẽ on

M6 are related such that

−1

2
Et ∧ JE = ẽ k . (4.10)

This equation simply implies that ẽ is proportional to ∗6(Et ∧ JE ∧ k ∧ k) so that E are

the only independent parameters in the symmetry transformation (4.9). The particular

SL(2,Z) representations of the parameters are chosen so that (4.9) is compatible with the

S-duality transformations described previously.

The transformation of k in (4.9) is slightly peculiar in that it maps a 2-form on M6 to

a 2-form on the full space M6×T2. Thus the transformations (4.9) are not a symmetry of

the reduced six-dimensional action. Nonetheless, the symmetry in eight dimensions has an

intriguing structure which mixes the A- and B-model data k and Ξ in a non-trivial way. It

is worthwhile investigating whether this is a reflection in the topological setup of dualities

of the physical superstring theories.
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5. Background fluxes in six dimensions

In recent years it has become clear that one of the long-standing problems of string theory,

namely moduli stabilization, can at least partially be resolved by compactifing on non-

Kähler manifolds. The reason is that this generates a superpotential in the low energy

effective theory and so some of the moduli fields get fixed. Unlike the Calabi-Yau case,

which is a purely geometric compactification, the non-Kähler manifolds are solutions of

superstring theory only in the presence of non-zero background fluxes.

It is well-known that in Calabi-Yau compactifications some quantities of physical in-

terest (namely, F-terms) can be computed using topological string theory. The worldsheet

description of the latter is in terms of a supersymmetric sigma-model with a Calabi-Yau

three-fold target space and with an appropriate twisting of the worldsheet fields. Simi-

larly, one expects that topological strings on non-Kähler manifolds may provide valuable

information for the corresponding physical non-Kähler compactifications. In this regard,

several topological sigma-models with non-Kähler target spaces have been considered re-

cently [15]. In the present section we will write down form actions according to Hitchin’s

construction in the presence of non-zero background fluxes, i.e. actions which would be the

effective action of topological strings on non-Kähler manifolds.

Let us first recall the action functional description of nearly Kähler manifolds [13].

These are a particular subset of SU(3) structure manifolds characterized by non-vanishing

first torsion class. Recall that the SU(3) structure manifolds are classified in terms of five

torsion classes Wi, i = 1, ..., 5 [16]. Complex manifolds have W1 = 0 = W2. It has been

shown that supersymmetry requires the internal manifold to have W1 = 0 both in type

II [17] and heterotic [18] compactifications.4 So nearly Kähler manifolds do not seem to be

of immediate physical interest.

On the other hand, in certain cases, in the large complex structure limit, one can

consider superstrings on half-flat manifolds5 to be a good approximate description of the

low energy effective theory [19]. The nearly Kähler manifolds are a subset of the half-flat

ones and in [20] they were even argued to capture important information about the resulting

superpotential. So it is conceivable that topological strings on them are of some interest

too. With this motivation in mind, let us review the constrained variational problem whose

critical points give these manifolds [13]. Consider the action functionals

V1(ρ, σ) =

∫

M6

(
ρ ∧ ρ̂+

1

2
k ∧ k ∧ k

)
, V2(ρ, σ) =

∫

M6

dα ∧ β , (5.1)

where ρ = dα ∈ Ω3(M6) and σ = 1
2k ∧ k = dβ ∈ Ω4(M6). The field equations obtained by

varying α and β, while keeping V2 = 1, are

dρ̂ = −λ k ∧ k , dk = λ ρ , (5.2)

4More precisely, for IIB and heterotic superstrings, the internal space has to be complex whereas for IIA

superstrings it must be twisted symplectic.
5These are SU(3) structure manifolds whose intrinsic torsion belongs to W−1 ⊕W−2 ⊕W3, where ”−”

denotes the imaginary part of the corresponding class. Equivalently, they can be defined by requiring

k ∧ dk = 0 and dΩ− = 0 while dk 6= 0, dΩ 6= 0 (see [16]).

– 9 –
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where λ is a Lagrange multiplier. The constrained variation is necessary to enforce non-

degeneracy of the functional
∫
M6

dα∧β. The action V1 in (5.1) is just the sum of the actions

for the holomorphic 3-form and Kähler form encountered in section3. Equations (5.2) define

an SU(3) structure manifold with W1 6= 0 and W2,3,4,5 = 0, i.e. a nearly Kähler manifold.

The role of the first torsion class is played by the Lagrange multiplier λ. Putting λ = 0,

one recovers the Calabi-Yau case.

We note that the compatibility conditions for SU(3) structure (3.4) follow from (5.2),

up to rescalings. Indeed, taking the derivative of the first equation in (5.2) and using the

second one results in

ρ ∧ k = 0 , (5.3)

for λ 6= 0. Using the above relation and again (5.2) one also finds the second condition

in (3.4) [13]. So we see here that these compatibility conditions, that previously had to

be imposed on the unification of the topological A- and B- models as constraints arising

non-perturbatively,6 can be automatically incorporated in the six-dimensional action, at

least for some non-Kähler compactifications.

It is very interesting to understand how the above construction can be generalized to

non-Kähler manifolds with W1,2 = 0 and W3,4,5 6= 0, which are of much greater physical

relevance.7 Here we make initial steps in that direction. A well-defined action functional

which localizes on manifolds with W4,5 6= 0 is

V (ρ, σ) =

∫

M6

[
ρ̂ ∧ ρ− 1

2
k ∧ k ∧ k + µ

(
ρ̂ ∧ ρ− 2

3
k ∧ k ∧ k

)]
, (5.4)

where µ is a smooth function. By varing ρ and σ in a fixed cohomology class, i.e. by taking

ρ = ρ0 + dα , σ = σ0 + dβ (5.5)

for some fixed closed 3- and 4-forms ρ0, σ0, and arbitrary 2- and 3-forms α, β, we find the

field equations

dρ̂ = −d ln(µ+ 1) ∧ ρ̂ , dk = −d ln

(
4

3
µ+ 1

)
∧ k . (5.6)

Thus the action above is indeed related to non-Kähler manifolds with

W4 = −d ln

(
4

3
µ+ 1

)
, W5 = −d ln(µ+ 1) . (5.7)

Note that the µ → 0 limit gives the Calabi-Yau action with zero torsion classes. A nice

feature of (5.4) is that the field equation for µ enforces the relation between the volumes

determined by ρ and k that is the second compatibility condition for SU(3) structure

manifolds in (3.4).

6In [1] they were shown to follow from the lift to a seven-dimensional G2 manifold.
7For a very non-exhaustive list of references on the vast subject of flux compactifications, see [21].
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Another action that seems very natural to consider in order to incorporate the physi-

cally interesting NS and RR fluxes is

V (ρ, σ) =

∫

M6

(
(ρ+C) ∧ (ρ̂+ Ĉ) + (k +B) ∧ (k +B) ∧ (k +B)

)
, (5.8)

where we can identify Ĉ with the RR 3-form potential CR that couples to the D2-branes

of the topological A model, whereas C − with the potential8 that couples to the B model

NS2-branes of [9]. The two-form B can be taken to be a combination of the NS B-field,

BNS , which couples naturally to the fundamental string F1; and the 2-form potential BR,

under which the holomorphic D1-branes of the B model are charged. Under S-duality [10],

these branes are exchanged as follows: D2 ↔ NS2, D1 ↔ F1.

Invariance of the first term in (5.8) under SL(2,Z) transformations can be achieved by

requiring that the doublet (C, Ĉ) transform the same way as (ρ, ρ̂). The second term is

more subtle as k is a singlet under our SL(2,Z). Taking B = BNS +BR would ensure that

this term is invariant under the S transformation since S-duality is expected to exchange

BNS ↔ BR. The issue of the full SL(2,Z) invariance is related to the role of the coupling

constant which is yet to be understood.

Now, varing ρ in a fixed cohomology class we obtain

dρ̂ = −dĈ , (5.9)

whereas varing σ = 1
2k ∧ k:

1

2
dk = −dB − d ∗ (B ∧B) . (5.10)

So the action (5.8) is related to non-Kähler manifolds whose nonvanshing torsion classes

are determined by the decomposition of d(B+∗(B∧B)) and dĈ into SU(3) representations.

Although the stability properties of this action have to be investigated more thoroughly,

each term in it seems very natural. The first one, (ρ + C) ∧ (ρ̂ + Ĉ), is inspired by the

combinations Ω̂A = ΩA+ iCR and Ω̂B = ΩB + iCNS introduced in [10], whereas the second

by Hitchin’s construction of generalized Kahler manifolds from an action functional [23].

The transformation of (C, Ĉ) is also very natural from the point of view of our eight-

dimensional torus S-duality, where one expects a simple change ρ → ρ + C and ρ̂ →
ρ̂ + Ĉ. To make this precise, we should construct the proper eight dimensional lift i.e. a

generalization of Hitchin’s flow including background fluxes. Clearly, the form actions for

geometries with background fluxes and their possible lifts to seven and eight dimensions

deserve further study and we hope to come back to this topic in the near future.

As a last remark, we note that Hitchin’s constrained variations provide a general pro-

cedure of making well-defined actions, which might have had degeneracies otherwise. This

suggests that there might be a way of defining an 8-dimensional action, whose equations of

8The existence of this ’NS’-type potential was predicted from mirror symmetry in [22].
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motion, obtained from arbitrary fixed cohomology class variations of Ψ, would determine

a Spin(7) structure metric, by considering terms like Ψ ∧ Ψ and Ψ ∧ ∗Ψ and introducing

suitable Lagrange multipliers. This possibility may be worth further investigation.

6. Summary and discussion

In this note we found evidence for the existence of a topological theory on Spin(7)

eight-manifolds, which would be analogous to physical F-theory. The topological F-theory

considered was constructed on the product manifold M6 × T2. We found that SL(2,Z)

transformations of the torus, which keep the Cayley form invariant, induce SL(2,Z) trans-

formations of the real and imaginary part of the 3-form Ω that were the canonically con-

jugate variables in the naive quantization in [1].

An important point which remains to be resolved is the embedding of this duality in the

full superstring theory. In particular, it was discussed in [10] how deriving the topological

S-duality from the S-duality of type IIB superstrings naturally leads to the inclusion of

the string coupling constant. As it is derived from the full superstring theory, topological

S-duality should invert the string coupling constant g → 1/g. In particular, since the

A-model and B-model are related by S-duality on the same Calabi-Yau manifold, we have

the relations gA = 1/gB and gAµν = gBµν/gB . Transforming only the holomorphic 3-form Ω,

but not Ω̄, this implies that kA = kB/gB and ρA = ρB/g
3
B . In our formulation, since the

holomorphic and antiholomorphic part of the volume form are treated on equal footing,

such a scaling appears unnatural to introduce (although it is certainly natural from the

perspective of the B-model Kodaira-Spencer theory).

For a better understanding of the action of topological S-duality, it seems essential

to include background fluxes in the geometry. As a starting point for these investiga-

tions we have considered form actions, based on Hitchin’s formalism, which localize on

six-dimensional generalized geometries with fluxes. The higher dimensional lift for these

actions and the study of S-duality on these generalized backgrounds are both interesting

directions for further investigation.

In particular, a starting point for understanding the inclusion of the coupling in our

considerations can be the construction of a six-dimensional action with background fluxes

that is invariant under the S transformation. For example, the IIB S-duality should be used

to write an invariant combination of BR, BNS and the coupling g. In addition, powers of

the coupling should also be introduced in the terms containing the potentials (C, Ĉ) along

the lines of [10]. We leave these delicate and important issues for future work.9

One may also hope to relate the coupling constant g to the size of the extra circle as

in the relation between physical M-theory and IIA superstrings, along the lines suggested

9It is worth noting though that one can obtain the correct 1/g coupling [10] in the six-dimensional action

from our framework by simply reducing on a torus with metric |dx+ i/g dy|2 (rather than the square torus

metric |dx + idy|2 we have considered). Of course, these two metrics are related by diffeomorphism and

replacing y with y/g in (3.2) and (3.3) indeed reproduces the desired coupling dependence. In physical

F-theory this choice of metric would just correspond to having a non-vanishing dilaton whilst keeping the

axion set to zero.
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in [1]. The difficult point here is that by reducing the extra circle one actually obtains

both A and B + B̄ theories, and so it is not clear which coupling should be related to the

size of the circle, and whether there is a physical basis for such a relation. The inclusion

of couplings as described above and the lift of the full action to eight dimensions seem to

be essential for such a physical interpretation.

Finally, it would also be interesting to consider open topological string Chern-Simons

like target space actions in seven and eight dimensions, which could then form the basis

for a D-brane interpretation. Investigations along these lines have recently appeared in [2].
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A. Metric reconstruction from the Cayley form

The explicit reconstruction of the Spin(7) holonomy metric from the Cayley 4-form is rather

complicated. For seven-dimensional G2 manifolds one simply proceeds by contracting the

indices of the Levi-Civita symbol with seven of the 9 indices of the tensor product of three

invariant 3-forms so as to obtain a second rank symmetric tensor proportional to the G2

metric. It is straightforward to see algebraically that one cannot make a metric in the same

way in eight dimensions via contractions of Levi-Civita symbols with Cayley forms.

The purpose of this appendix is to write the norm defined by the reconstructed Spin(7)

metric (following the analysis in [14]). Given a vector v on a Spin(7) eight-manifold with

Cayley form Ψ, it is convenient to define

A(v) := (ιvΨ)abcΨdefg ε
abcdefg

Bij(v) := (ιvΨ)iab(ιvΨ)jcd(ιvΨ)efg ε
abcdefg , (A.1)

where ιv denotes the eight-dimensional interior product with v and ε is the SL(7,R)-

invariant Levi-Civita symbol. Then Theorem 4.3.5 in [14] states that the norm is given by

|v|2 = vtgv = c

(
(det7(Bij(v)))1/6

(A(v))3/2

)
, (A.2)

for any 8-vector v (the value of the constant c is given in [14]).
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