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1. Introduction

The AdS/CFT conjecture, where gravity in anti-de Sitter space is holographically dual

to a conformal field theory on the boundary, has led to additional interest in black hole

thermodynamics. In this context the thermal properties of an AdS black hole configuration

are dual to that of the finite temperature CFT. A particularly well studied example of

this is the Hawking-Page phase transition [1] for black holes in AdS, corresponding to a

deconfinement transition in the dual field theory [2].

A common approach to extracting thermodynamic quantities from the black hole back-

ground is to evaluate the on-shell gravitational action, I, as well as the boundary stress

tensor T ab, given by

T ab =
2√
−h

δI

δhab
, (1.1)

where hab is the boundary metric. According to black hole thermodynamics, the on-shell

value of the action may be identified with the thermodynamic potential Ω according to

I = βΩ [3]. For static backgrounds with the time-like Killing vector ∂/∂t, the energy E is

given by the ADM mass, extracted from the tt component of the boundary stress tensor.
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Black hole thermodynamics has been widely explored in the context of pure Einstein

gravity with a cosmological constant. In this case it is well known that the first law of

thermodynamics, dE = T dS, holds rather generally. Furthermore, the thermodynamic

potential Ω is equivalent to the Helmholtz free energy F , so that F = E − TS is also

satisfied. The fact that these features of black hole thermodynamics closely parallel those

of ordinary thermodynamics has been the motivation behind the study of AdS/CFT at

finite temperature.

For AdS/CFT, however, it is necessary to extend the results of black hole thermo-

dynamics to encompass gauged supergravities or more general systems of matter coupled

to gravity. In these systems it is possible to turn on conserved R-charges in addition to

the temperature. It is then appropriate to work with the grand canonical ensemble, as

discussed in [4]. The thermodynamic potential is related to the energy according to

Ω = E − TS − ΦIQI , (1.2)

whereQI are the set of conserved R-charges and ΦI are the corresponding electric potentials

(which play the rôle of chemical potentials).

Although it is expected that (1.2) would be satisfied in general, a slight complication

arises in that both Ω and E (extracted from the on-shell Euclidean action and the bound-

ary stress-tensor, respectively) are divergent quantities and require renormalization. One

approach to dealing with this problem, as suggested by Brown and York [5], is to subtract

the divergent action of a reference spacetime from the action for the spacetime of interest.

In many cases this technique is sufficient, but it suffers from two main drawbacks. First,

it requires that we embed a boundary with intrinsic metric hab in the reference space-

time, which is often not possible. Second, the procedure is not intrinsic to the spacetime of

interest, and all physical quantities are defined with respect to a particular reference space-

time. This becomes problematic when the appropriate reference background is unknown

or ambiguous.

These problems can be avoided by using the boundary counterterm approach for remov-

ing divergences from the action [6, 7]. There are two common prescriptions for calculating

the boundary counterterms. The first of these involves the asymptotic expansion of bulk

fields near the boundary of spacetime. This approach is clearly defined and rigorous; it

provides a complete set of covariant counterterms that remove all divergences from the

on-shell actio [8]–[15]. The second method, which we employ in this paper, is based on the

Hamilton-Jacobi formalism [16]–[21]. The Hamilton-Jacobi formalism, which has found

many applications in semi-classical gravity, was first applied in the AdS/CFT context by

de Boer, Verlinde, and Verlinde [16]. We will not discuss the motivations and subtleties

of this approach; instead we refer the reader to the excellent review by Mück and Martelli

in [19].

In this paper we reexamine the familiar asymptotically AdSd black hole solutions of

gauged supergravities in 4, 5, 6 and 7 dimensions, and demonstrate how divergences are

renormalized through the addition of appropriate Hamilton-Jacobi counterterms. Given

a well-defined renormalization scheme, we are able to prove that the relation (1.2) is

– 2 –
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automatically satisfied for all such black hole solutions. This proof is, in fact, quite

general, and is anticipated to remain valid for more general asymptotically AdSd back-

grounds.

2. General charged black hole solutions

While details of the various supergravity theories depend crucially on dimension, general

features of the bosonic sector can be treated in a dimension independent manner. We may

thus consider a general bosonic action for gravity coupled to a set of scalar and vector fields

given in the form

I[gµν , φ
i, AIµ] = − 1

16πGd

∫

M
ddx
√−g ×

×
[
R− 1

2
Gij(φ)∂µφ

i∂µφj − 1

4
GIJ (φ)F IµνF

µν J − V (φ)

]
+

+
1

8πGd

∫

∂M
dd−1x

√
−h Θ . (2.1)

This action is appropriate to a d-dimensional spacetime M with a (d − 1)-dimensional

boundary ∂M. The Gibbons-Hawking surface term is given in terms of the trace of the

extrinsic curvature Θµν of the boundary

Θµν = −1

2
(∇µnν +∇νnµ) , (2.2)

where nµ is the outward-pointing normal on ∂M, and hµν is the induced metric. The

equations of motion derived from (2.1) are

Rµν =
1

2
Gij(φ)∂µφ

i∂νφ
j +

1

2
GIJ

(
F IµλFν

λ J − 1

2(d− 2)
gµνF

I
ρσF

ρσ J

)
+

+
1

d− 2
gµνV ,

∇µ(GIJF
J
µν) = 0 ,

∇µ(Gij∇µφj) =
1

2
(∂φiGjk)∂µφj∂µφk +

1

4
(∂φiGIJ)F IµνF

µν J + ∂φiV . (2.3)

Since we are interested in spherically symmetric black holes carrying electric charge,

in much of the following we choose to work with a field ansatz of the form

ds2 = −e−2(d−3)B(r)f(r)dt2 + e2B(r)

(
dr2

f(r)
+ r2dΩ2

d−2

)
,

φi = φi(r) , AIt = AIt (r) . (2.4)

Anticipating the explicit solutions of interest, we have specialized to a black hole ansatz

where the gtt and grr warp factors are appropriately related. Doing so simplifies some of

the intermediate expressions below. However this condition will be relaxed when exploring

thermodynamic considerations more generally in section 5.
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Before proceeding, note that the (d− 2)-sphere may be parametrized as

dΩ2
d−2 = dψ2 + sin2 ψdΩ2

d−3 , (2.5)

in which case the Rψψ component of the Einstein equation, (2.3), takes the form

2Rψψ = − 1

2(d− 2)
GIJF

I
µνF

µν J +
2

d− 2
V . (2.6)

This expression will prove useful below when evaluating the on-shell action.

2.1 Stationary R-charged black holes

Although the explicit form of the matter sector depends on the theory of interest, the

stationary R-charged black holes share a common gravitational description. In particular,

the metric of (2.4) has the form

ds2 = −H(r)−(d−3)/(d−2)f(r) dt2 +H(r)1/(d−2)

(
dr2

f(r)
+ r2dΩ2

d−2

)
, (2.7)

where

f(r) = 1− µ

rd−3
+ g2r2H(r) . (2.8)

The function H(r) remains to be determined via the equations of motion, and will be

influenced by the set of matter fields and charges that are turned on. Nevertheless, in

general H(r) admits an expansion in inverse powers of r:

H(r) =
∏

i

Hi(r) = 1 +
α1

rd−3
+

α2

r2(d−3)
+

α3

r3(d−3)
+ · · · . (2.9)

For the solutions considered below the function H(r) may be given explicitly as a product

of harmonic functions:

H(r) =
∏

i

Hi(r) =
∏

i

(
1 +

qi
rd−3

)
. (2.10)

In this case, the expansion coefficients in (2.9) are related to the charges qi according to

α1 =
∑

i

qi , α2 =
∑

i<j

qiqj , α3 =
∑

i<j<k

qiqjqk , etc . (2.11)

Note that, in the notation of (2.4), the warp factor B(r) is given simply by B(r) =
1

2(d−2) logH(r). We will examine these black holes in more detail in section 4. However,

we first turn to the evaluation of the on-shell action, corresponding to the thermodynamic

potential Ω.

2.2 The regulated action and energy

We now proceed to evaluate the on-shell action for spherically symmetric configurations of

the form (2.4). It is well known that the action diverges due to the behavior of the metric

and matter fields near the boundary of an asymptotically AdSd spacetime. Anticipating

these infrared divergences, a natural (but non-covariant) way of regulating the calculation

– 4 –
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is to ‘cut-off’ the spacetime at a large but finite value of the AdS radial coordinate, r = r0.

The result is a truncated spacetime, which we denoteM0, whose ‘boundary’ ∂M0 is located

at the cut-off.

We may now calculate the regulated action on the truncated spacetime. To do so, we

consider the bulk and boundary terms separately. For the bulk contribution, we first take

the trace of the Einstein equation and substitute it into (2.1) to obtain

Ibulk = − 1

16πGd

∫

M0

ddx
√−g

[
− 1

2(d− 2)
GIJF

I
µνF

µν J +
2

d− 2
V

]
. (2.12)

Using the equation of motion (2.6), this expression may be rewritten as

Ibulk = − 1

8πGd

∫

M0

ddx
√−gRψψ . (2.13)

This may now be evaluated by explicit computation of Rψψ for the black hole metric (2.4).

The result turns out to be a total derivative

√−gRψψ = − d

dr

(
rd−2f(r)B′(r) + rd−3(f(r)− 1)

)
. (2.14)

Hence

Ibulk =
βωd−2

8πGd

[
rd−2f(r)B′(r) + rd−3(f(r)− 1)

]r0
r+

=
βωd−2

8πGd

(
rd−2

0 f(r0)B′(r0) + rd−3
0 (f(r0)− 1) + rd−3

+

)
, (2.15)

where r+ is the location of the horizon, given by f(r+) = 0. The factor β = 2π/T is

the periodicity along the (Euclidean) time direction, and ωd−2 is the volume of the unit

(d− 2)-sphere.

Turning to the Gibbons-Hawking surface term, we start by noting that the unit nor-

mal in the r direction is given by nr = e−B(r)f(r)
1
2 . Using the definition eq. (2.2) the

components of the extrinsic curvature tensor are:

Θtt = −htte−B(r)f(r)1/2

(
−(d− 3)B′(r) +

f ′(r)
2f(r)

)
,

Θαβ = −hαβe−B(r)f(r)1/2

(
B′(r) +

1

r

)
, (2.16)

where indices α, β denote coordinates on the (d − 2)-sphere. The trace of the extrinsic

curvature is then given by:

Θ = −e−B(r)f(r)
1
2

(
B′(r) +

f ′(r)
2f(r)

+
d− 2

r

)
. (2.17)

The Gibbons-Hawking term, evaluated at the boundary of the regulated spacetime, is:

IGH = −βωd−2

8πGd

(
rd−2

0 f(r0)B′(r0) +
1

2
rd−2

0 f ′(r0) + (d− 2)rd−3
0 f(r0)

)
. (2.18)
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Assembling these terms, the regulated value of the on-shell action (2.1) is given by

Ireg = Ibulk + IGH =
βωd−2

8πGd

(
−(d− 3)rd−3

0 f(r0)− 1

2
rd−2

0 f ′(r0)− rd−3
0 + rd−3

+

)
. (2.19)

This expression diverges as the cut-off is removed, r0 →∞, and must be renormalized by

an appropriate counterterm prescription.

Before addressing the counterterms, however, we first derive an expression for the

unrenormalized ADM energy. To do so, we start with the unrenormalized boundary stress

tensor, given by

T ab =
2√
−h

δI

δhab
= − 1

8πGd

(
Θab −Θhab

)
. (2.20)

Making use of (2.16), the time-time component of the stress tensor has the form

√
−hTtt = − 1

8πGd
htt(d− 2)

(
rd−2f(r)B′(r) + rd−3f(r)

)
(2.21)

so that

Ereg = − ωd−2

8πGd
(d− 2)

(
rd−2

0 f(r0)B′(r0) + rd−3f(r0)
)
. (2.22)

While this ADM energy also diverges as the cut-off is removed, the difference (Ireg−βEreg)

is finite in this limit. In other words, the difference between the thermodynamic potential

and the energy is a priori finite, and does not need renormalization. Nevertheless, one is

often interested in understanding the energy of the system on its own, and in this case a

proper choice of counterterms must be made. We now turn to a Hamilton-Jacobi analysis

in order to fix the counterterm action.

3. Hamilton-Jacobi counterterms

As we have seen above, the on-shell action for gravity on an asymptotically AdS space-

time typically contains infrared divergences related to the behavior of the metric (and any

other fields) near the boundary. We now review the calculation of boundary counterterms

and demonstrate that the Hamilton-Jacobi method generates appropriate counterterms for

canceling all power-law divergences in the on-shell action.

In order to facilitate the hamiltonian analysis it is convenient to foliate this spacetime

with constant r hypersurfaces, orthogonal to a spacelike unit normal nµ. The hypersurface

defined by the cut-off r = r0 can be thought of as the ‘boundary’ of the regulated spacetime,

with

lim
r0→∞

∂M0 = ∂M . (3.1)

Using the Gauss-Codazzi equations (see e.g. [22]), the action (2.1) can be rewritten in terms

of the intrinsic curvature R of the hypersurfaces and the extrinsic curvature Θab describing

their embedding in M0. Note that, now that we have fixed the normal to point in the r

direction, we will use indices a, b, . . . for tensors defined on the constant r hypersurfaces of

– 6 –
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the foliation. The regulated action is then given by:

I = − 1

16πGd

∫

M0

d dx
√−g

[
R+ Θ2 −ΘabΘab −

1

2
Gij(φ)nµ∂µφ

inν∂νφ
j −

− 1

2
Gij(φ)hab∂aφ

i∂bφ
j − 1

4
GIJ(φ)F ab IF Jab −

− 1

2
GIJ(φ)hab nµF Iµan

νF Jνb − V (φ)

]
. (3.2)

The action eq. (3.2) is explicitly quadratic in first derivatives of the fields φi, A I
µ , and hµν .

Taking into account the holographic principle of flows in the radial direction, we define

conjugate momenta and the hamiltonian with respect to the AdS radial coordinate r, as

opposed to the usual choice of a time coordinate. In this case, the momenta conjugate to

these fields are given by:

πi =
1

16πGd
Gij(φ)nµ∂µφ

j ,

πaI =
1

16πGd
GIJ(φ)habnµF J

µb ,

πab =
1

16πGd

(
hab Θ−Θab

)
. (3.3)

Using these momenta, the hamiltonian density obtained from eq. (3.2) is:

H = 16πGd

(
1

2
Gij(φ)πiπj + πabπab −

1

d− 2
πaaπ

b
b +

1

2
GIJ h

abπIaπ
J
b

)
+

+
1

16πGd

(
R− 1

2
Gij(φ)hab∂aφ

i∂bφ
j − V (φ)− 1

4
GIJF

I
abF

ab J

)
+

+GIJh
abπIan

µ∂bA
J
µ . (3.4)

Diffeomorphism invariance of the theory constrains the hamiltonian (and other generators

of coordinate transformations) to vanish. in other words,

H
[
πi, φ

i, πaI , A
I
a , π

ab, hab

]
= 0 . (3.5)

To obtain the Hamilton-Jacobi equation we must rewrite the hamiltonian constraint in

terms of functional derivatives of the on-shell action. The on-shell action is a functional of

the bulk fields evaluated at the boundary ∂M0. According to Hamilton-Jacobi theory the

variational derivative of the on-shell action with respect to a field’s boundary value gives

the momenta conjugate to that field, evaluated at ∂M0. Thus, the momenta eq. (3.3) can

be written as functional derivatives of the on-shell action:

πi =
1√
−h

δI

δφi
, πaI =

1√
−h

δI

δA I
a

, πab =
1√
−h

δI

δhab
, (3.6)

where the fields in eq. (3.6) are evaluated at r0. Finally, replacing the momenta appear-

ing in the hamiltonian with functional derivatives of the on-shell action, we obtain the

– 7 –
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Hamilton-Jacobi equation:

H
[
δI

δφi
, φi,

δI

δA I
a

, A I
a ,

δI

δhab
, hab

]
= 0 . (3.7)

The Hamilton-Jacobi equation is a functional differential equation for the on-shell action

in terms of the boundary values of the bulk fields.

3.1 Derivation of the counterterm action

Using the Hamilton-Jacobi equation, we can obtain a set of counterterms that will re-

move power-law divergences from the on-shell action. We first write the regulated on-shell

action as:

Ireg = Γ− Ict . (3.8)

The first term, Γ, represents the part of the action which is finite1 upon removing the

cut-off. The second term, Ict, represents the power-law divergences appearing in the ac-

tion. The terms appearing in Ict are conveniently organized in terms of an inverse metric

expansion, as described in [19]. A sufficient counterterm action for the gauged supergravity

black hole solutions we consider is given by:

Ict =
1

8πGd

∫

∂M0

dd−1x
√
−h
(
W (φ) + C(φ)R+D(φ)R2 +E(φ)RabRab

)
. (3.9)

The first two terms contain the divergences that appear in four and five dimensions, while

in six and seven dimensions it is necessary to include the remaining terms. In construct-

ing this action we have discarded a number of possible gradient counterterms of the form

Mij(φ)∂aφ
i∂aφj , etc., because the scalar fields only depend on the AdS radial coordinate

r. In addition, since the counterterm action should respect any residual bulk symmetries,

the U(1) gauge fields should only appear in terms of gauge-invariant field strengths F I
ab.

These terms do not contribute to eq. (3.9) for the electrically charged configurations given

by the ansatz eq. (2.4). It is important to note, however, that if one wishes to study

fluctuations around the black hole backgrounds then such counterterms must be included

in eq. (3.9), since the fluctuations may depend on the transverse coordinates. For such

cases, the counterterm action eq. (3.9) alone is not sufficient for calculations of correlators

in the field theory duals of these solutions.

The momenta can be decomposed into contributions from the terms in eq. (3.8),

schematically of the form:

π = πΓ − P . (3.10)

The contributions P due to the counterterm action are given by functional derivatives of

eq. (3.9) with respect to the fields on ∂M0:

Pi =
1√
−h

δIct
δφi

1In general Γ might contain logarithmic divergences. These divergences, which are related to the Weyl

anomaly in the dual field theory, can be addressed using the Hamilton-Jacobi approach. However, the

gauged supergravity solutions we consider are free of such divergences.
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=
1

8πGd

(
∂ W

∂φi
+
∂ C

∂φi
R+

∂ D

∂φi
R2 +

∂ E

∂φi
RabRab

)
,

P ab =
1√
−h

δIct
δhab

=
1

8πGd

(
1

2
habW − C Gab +

1

2
habDR2 +

1

2
habERcdRcd −

− 2DRRab + 2ERdbac Rcd −E∇c∇cRab
)
. (3.11)

The term Gab appearing in the expression for P ab is the boundary Einstein tensor, given

by:

Gab = Rab −
1

2
habR . (3.12)

The counterterms W (φ), C(φ), . . . are now determined by substituting these momenta into

the Hamilton-Jacobi equation eq. (3.7) and solving it order-by-order in the expansion eq.

(3.9). We denote the various terms in the hamiltonian by

H = H(0) +H(1) +H(2) + · · ·+HΓ . (3.13)

The terms H(i) represent contributions from Ict, with the index counting the number of

inverse metrics appearing in that term. For the backgrounds we are interested in this

is an adequate measure of the degree of divergence these terms represent. Evaluating

these terms leads to differential equations for the functions appearing in eq. (3.9). The

most illuminating of these is the equation for W (φ) that comes from the term H(0) in the

hamiltonian constraint:

H(0) =
1

16πGd

(
2Gij(φ)

∂W

∂φi
∂W

∂φj
− d− 1

d− 2
W 2 − V

)
. (3.14)

Setting H(0) = 0 recasts eq. (3.14) as the familiar relation for the potential V (φ) in terms

of the superpotential W (φ):

V = 2Gij(φ)
∂W

∂φi
∂W

∂φj
− d− 1

d− 2
W 2 . (3.15)

The conclusion is that the leading term in the counterterm action eq. (3.9) is simply

proportional to the superpotential W (φ) [16].

We obtain similar equations for the functions C(φ), D(φ), and E(φ) by evaluating the

remaining terms in eq. (3.13). The equation derived from H(1) = 0 determines C(φ) in

terms of W (φ):
1

2
+ 2Gij(φ)

∂ W

∂φi
∂ C

∂φj
− d− 3

d− 2
CW = 0 . (3.16)

The counterterms W (φ) and C(φ), determined by equations eq. (3.15) and eq. (3.16), com-

pletely characterize the power-law divergences in four and five dimensions. For the six and

seven dimensional supergravities there are two additional counterterms whose coefficients

– 9 –
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D(φ) and E(φ) are determined by two equations obtained from functionally independent

terms in the equation H(2) = 0:

−Gij(φ)
∂ C

∂φi
∂ C

∂φj
− 2Gij(φ)

∂W

∂φi
∂ D

∂φj
+
d− 5

d− 2
DW +

d− 1

2(d− 2)
C2 = 0 ,

−2Gij(φ)
∂W

∂φi
∂ E

∂φj
+
d− 5

d− 2
EW − 2C2 = 0 . (3.17)

In five dimensions, where D(φ) and E(φ) are not included in the counterterm action eq.

(3.9), H(2) actually represents a potentially non-vanishing term in the expansion eq. (3.13)

for H:

H(2) =
1

8πGd

(
Gij(φ)

∂ C

∂φi
∂ C

∂φj
R2 + 2C2

(
RabRab −

1

3
R2

))
. (3.18)

In principle such a term might signal the presence of a logarithmic divergence in the on-

shell action, corresponding to a Weyl anomaly in the dual field theory. However, for the

solutions we are interested in the terms appearing in eq. (3.18) either vanish due to the

S1×Sd−2 topology of the boundary, or vanish sufficiently rapidly near the boundary so as

to not contribute any additional divergences to the effective action.

While we have shown, in equation eq. (3.15), that the leading counterterm is simply

the superpotential W (φ), we have not provided explicit solutions for the remaining terms.

For the gauged supergravity solutions we are interested in it is sufficient to solve for the

functions C(φ), D(φ), and E(φ) as a power series in φi, out to order O(φ2). However,

rather than writing general solutions, which would depend on the choice of basis for the

gauged supergravity scalars, we will specialize to an appropriate expansion for each of

the d-dimensional black holes that we consider in the next section. Finally, it should be

noted that the functions C(φ), D(φ), and E(φ) can be written in terms of integrals of the

superpotential and its derivatives, but these expressions are not particularly illuminating.

3.2 Counterterm renormalization of the energy

Since the counterterm W (φ) is simply related to the potential according to (3.15), its form is

already determined. For the remaining counterterms, C(φ), D(φ) and E(φ), their solutions

as power series expressions may be motivated by noting that the large r asymptotics of the

black hole solution (2.4) generically has the form

f(r) ∼ g2r2 , B(r) ∼ 1

rd−3
, φi(r) ∼ 1

rd−3
, AIt (r) ∼

1

rd−3
. (3.19)

To cancel divergences, and to provide possibly finite counterterms, the series solution to

C(φ) must be determined to O(1/rd−3) while the series solutions to D(φ) and E(φ) must

be determined to O(1/rd−5). As a result, only the leading terms will be important

C(φ) = c0 + ciφ
i + unimportant ,

D(φ) = d0 + unimportant ,

E(φ) = e0 + unimportant . (3.20)
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To solve for the constants c0, ci, d0 and e0, we begin with (3.16). For simplicity, we

assume that linear terms in φi are absent in the superpotential, so that W (φ) = W0 +
1
2Wijφ

iφj + · · ·. This is true for all the systems we consider in the following section, as the

corresponding gauged supergravities admit supersymmetric vacua when all the scalars have

vanishing expectation value, 〈φi〉 = 0. Furthermore, we expand Gij(φ) = G0
ij +Gij|kφk+ · · ·,

so that Gij(φ) = Gij 0 − Gij |kφk + · · ·, where the first two indices on Gij|k are raised and

lowered with G0
ij . We now substitute the above expressions into (3.16), and collect powers

of φi. Up to first order in φi, we find

1

2
− d− 3

d− 2
c0W0 = 0 ,

(
2Gij 0Wikcj −

d− 3

d− 2
W0ck

)
φk = 0 . (3.21)

The first equation is easily solved to yield

c0 =
d− 2

2(d− 3)W0
=

1

2(d− 3)g
, (3.22)

where we have used our convention that W0 = (d−2)g, with corresponding AdS cosmolog-

ical constant V0 = −(d− 1)(d − 2)g2. To find ci, we rewrite the second equation of (3.21)

in matrix form as

~φ ·
[
2W (2)G0 − d− 2

d− 3
W0

]
· ~c = 0 . (3.23)

So long as none of the eigenvalues of the matrix vanish, the only solution to this expression

is to set ci = 0. However, even if the determinant were to vanish, it would still be consistent

to set ci = 0. Hence from now on we drop the linear term in C(φ).

It is now straightforward to solve (3.17) for the constant pieces d0 and e0. As a result,

we find that the relevant contribution of the counterterm action has the form

Ict =
1

8πGd

∫
dd−1x

√
−h
(
W (φ) +

1

2(d− 3)g
R+

+
1

2(d− 5)(d − 3)2g3

(
RabRab −

d− 1

4(d− 2)
R2

)
+ · · ·

)
.(3.24)

This can be compared with similar expressions for pure gravitational backgrounds, as found

in [6, 7]. Note that g is also the inverse of the AdS length scale, `−1, which is given in

terms of the constant term V0 in the scalar potential V (φ) by:

` =

√
−(d− 1)(d− 2)

V0
. (3.25)

Corresponding to the counterterms in (3.24), the regulated boundary stress tensor picks

up an additional contribution

T abct =
1

8πGd

(
habW (φ)− 1

2(d− 3)g
(2Rab −Rhab) +

1

2(d− 5)(d − 3)2g3
×

×
(

4RacbdRcd −
d− 1

d− 2
RabR+ hab

(
RcdRcd −

d− 1

4(d− 2)
R2

)))
. (3.26)

Some terms proportional to derivatives of R along the boundary have been omitted, as

they vanish for the spherically symmetric solutions of interest.
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For black hole metrics of the form (2.4), the boundary Ricci tensor is given by

Rtt = 0 , Rαβ = (d− 3)hαβe
−2Br−2 . (3.27)

Thus the counterterm action and contribution to the energy may be expressed as

Ect =
Ict

β
=

ωd−2

8πGd
eBf1/2

(
rd−2W (φ) +

(d− 2)

2 g
e−2Brd−4 − (d− 2)

8 g3
e−4Brd−6 + · · ·

)
,

(3.28)

where

Ect = ωd−2

√
−hhttT ct

tt (3.29)

is the counterterm contribution to the ADM energy. The relation Ict = βEct demonstrates

that, while the counterterms are necessary to render both the action and the energy finite,

the validity of the thermodynamic relation Ω = E −TS−QIΦ
I is unaffected by any finite

shift in the counterterm action.

4. The renormalized action and mass

Given the regulated action (2.19) and energy (2.22), as well as the corresponding coun-

terterm expressions (3.24) and (3.28), we are now in a position to examine the various

R-charged black holes. In each case we calculate the renormalized action Γ and energy

Eren, and show that they are finite in the r0 →∞ limit.

4.1 D = 4 black holes

In four dimensions, the N = 2 truncation of gauged N = 8 supergravity yields a sys-

tem with three complex scalars and four U(1) gauge fields. For simplicity, we consider a

truncation of the scalar sector by setting the axionic components to zero. While this is in

principle an inconsistent truncation, this is nevertheless a valid procedure when applied to

the non-rotating electrically charged black holes. In this case, the three dilatonic scalars

may be parametrized by a constrained set of real fields Xi satisfying X1X2X3X4 = 1. The

potential and superpotential are then given by

V = −g2
∑

i<j

XiXj , W =
1

2
g
∑

i

Xi . (4.1)

In addition to the metric, (2.7), the four-charge black holes have gauge potentials and

scalars given by [23]–[25]

Ai(1) =

√
qi + µ

qi

(
1− 1

Hi

)
dt , Xi =

H1/4

Hi
. (4.2)

As a result, the regulated action integral, (2.19), becomes

Ireg =
βω2

8πG4

(
−2g2r3

0 −
3

2
g2α1r

2
0 − (2 + g2α2)r0 +

1

2
µ− 1

2
g2α3 + r+

)
. (4.3)
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Note that the first three terms are divergent as r0 → ∞. Of course, the boundary coun-

terterm remains to be evaluated. To do so, we simply insert the form of the superpotential,

given by (4.1), into (3.28) to obtain

βEct = Ict =
βω2

8πG4

(
2g2r3

0 +
3

2
g2α1r

2
0 + (2 + g2α2)r0 − µ+

1

2
g2α3

)
. (4.4)

We now see explicitly that the divergent terms in the regulated action are canceled by the

counterterms. Furthermore, the nonlinear charge term, proportional to α3, vanishes in the

renormalized action

Γ = Ireg + Ict =
βω2

8πG4

(
−1

2
µ+ r+

)
. (4.5)

Turning to the ADM energy, we first evaluate (2.22) in four dimensions to obtain

Ereg =
ω2

8πG4

(
−2g2r3

0 −
3

2
g2α1r

2
0 − (2 + g2α2)r0 + 2µ+

1

2
α1 −

1

2
g2α3

)
. (4.6)

Combining this with Ect yields the linear mass/charge relation

Eren =
ω2

8πG4

(
µ+

1

2
α1

)
=

ω2

8πG4

(
µ+

1

2
(q1 + q2 + q3 + q4)

)
. (4.7)

4.2 D = 5 black holes

As in the ungauged case, gauged D = 5, N = 2 supergravity coupled to an arbitrary

number of vector multiplets has a natural description in terms of special geometry. Here we

consider only the particular case of the STU model, corresponding to the U(1)3 truncation

of maximal gauged supergravity. The black holes in this model, which may carry up to

three charges, have been well studied [4].

The counterterm renormalization prescription for black holes in the STU model was

recently examined in [26] for single-charge black holes and in [27] for three-charge black

holes. In this model, the potential and superpotential are given by

V = −4g2
∑

i<j

XiXj = −4g2
∑

i

1

Xi
, W = g

∑

i

Xi , (4.8)

where the two real scalars are encoded in the constrained fields X1X2X3 = 1. Furthermore,

the gauge potentials and scalars have the form [28, 29]

Ai(1) =

√
qi + µ

qi

(
1− 1

Hi

)
dt , Xi =

H1/3

Hi
. (4.9)

Working out the regulated action and energy, we find the similar expressions

Ireg =
βω3

8πG5

(
−3g2r4

0 − (3 + 2g2α1)r2
0 + µ− g2α2 + r2

+

)
,

Ereg =
ω3

8πG5

(
−3g2r4

0 − (3 + 2g2α1)r2
0 + 3µ+ α1 − g2α2

)
. (4.10)
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The divergences are renormalized by the counterterm action

βEct = Ict =
βω3

8πG5

(
3g2r4

0 + (3 + 2g2α1)r2
0 −

3

2
µ+

3

8g2
+ g2α2

)
. (4.11)

Consequently, we find the familiar results

Γ =
βω3

8πG5

(
−1

2
µ+ r2

+ +
3

8g2

)
, (4.12)

and

Eren =
ω3

8πG5

(
3

2
µ+ α1 +

3

8g2

)
=

ω3

8πG5

(
3

2
µ+ q1 + q2 + q3 +

3

8g2

)
. (4.13)

4.3 D = 6 black holes

In six dimensions, the gauged N = (1, 1) supergravity admits two inequivalent AdS

vacua [30], only one of which is supersymmetric. It is this one that we consider. The

bosonic components of the supergravity multiplet consists of a graviton gµν , antisymmet-

ric tensor Bµν , SU(2) × U(1) gauge fields AIµ, Aµ and a dilaton φ. The potential and

superpotential have the form

V = −g2

(
9X2 +

12

X2
− 1

X6

)
, W = g

(
3X +

1

X3

)
, (4.14)

where X = e
− 1

2
√

2
φ
.

The gauging of [30] which leads to an AdS6 vacuum also turns on a mass for the

antisymmetric tensor. More directly, the abelian vector Aµ is absorbed by Bµν for mass

generation. Thus we only consider abelian black holes charged under the U(1) subgroup of

SU(2). The gauge potential and dilaton are given by

A3
(1) =

√
q + µ

q

(
1− 1

H

)
dt , X = H−1/4 . (4.15)

Note, however, that H = H2, so that α1 = 2q and α2 = q2.

The regulated six-dimensional action is

Ireg =
βω4

8πG6

(
−4g2r5

0 − 4r3
0 − 5g2qr2

0 +
3

2
µ+ r3

+

)
. (4.16)

The regulated ADM energy is similarly

Ereg =
ω4

8πG6

(
−4g2r5

0 − 4r3
0 − 5g2qr2

0 + 3q + 4µ
)
. (4.17)

At the same time, evaluation of the boundary counterterm, (3.28), yields

βEct = Ict =
βω4

8πG6

(
4g2r5

0 + 4r3
0 + 5g2qr2

0 − 2µ
)
. (4.18)

This is the first case when the curvature-squared counterterms turn out to be important.

We end up with simple expressions for the regulated action and ADM energy

Γ =
βω4

8πG6

(
−1

2
µ+ r3

+

)
,

Eren =
ω4

8πG6
(2µ+ 3q) . (4.19)

Note the absence of any Casimir energy for the odd-dimensional boundary theory.
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4.4 D = 7 black holes

Maximal gauged supergravity in seven dimensions involves the gauging of an SO(5) R-

symmetry, as can be deduced from the S4 reduction of eleven-dimensional supergravity.

This can be truncated to half-maximal supergravity (with SU(2) gauging) coupled to an

abelian vector multiplet. For simplicity, however, we consider a further truncation to two

abelian vectors and two scalars. In general, this is no longer a consistent supergravity

theory. However, it is consistent to consider a subset of solutions, including the electrically

charged black holes of present interest.

Because of the slightly unusual nature of the truncated theory, the potential has a

more complicated structure [31, 25]

V = −2g2

(
8X1X2 +

4

X2
1X2

+
4

X1X2
2

− 1

X4
1X

4
2

)
, (4.20)

where X1 and X2 are unconstrained fields. In terms of canonically normalized scalars, we

may take the representation

X1 = e
1√
10
ϕ1+ 1√

2
ϕ2 , X2 = e

1√
10
ϕ1− 1√

2
ϕ2 . (4.21)

The superpotential has the form

W = g

(
2X1 + 2X2 +

1

X2
1X

2
2

)
. (4.22)

For the R-charged black holes, the two gauge potentials and two scalars are given in

terms of the harmonic functions Hi by [31, 25]

Ai(1) =

√
qi + µ

qi

(
1− 1

Hi

)
dt , Xi =

H2/5

Hi
. (4.23)

This yields the expression for the superpotential

W = gH2/5

(
2

H1
+

2

H2
+ 1

)
. (4.24)

The resulting regulated on-shell action is

Ireg =
βω5

8πG7

(
−5g2r6

0 − 5r4
0 − 3g2α1r

2
0 + 2µ+ r4

+

)
, (4.25)

and the regulated ADM energy is

Ereg =
ω5

8πG7

(
−5g2r6

0 − 5r4
0 − 3g2α1r

2
0 + 5µ+ 2α1

)
. (4.26)

Note that these expressions are already at most linear in the charges.

In six or higher dimensions, the asymptotic scalar behavior falls off sufficiently rapidly

so that the scalars do not contribute to the boundary counterterm. We find

βEct = Ict =
βω5

8πG7

(
5g2r6

0 + 5r4
0 + 3g2α1r

2
0 −

5

2
µ− 5

16g4

)
, (4.27)
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so that the renormalized values are

Γ =
βω5

8πG7

(
−1

2
µ+ r4

+ −
5

16g4

)
, (4.28)

and

Eren =
ω5

8πG7

(
5

2
µ+ 2α1 −

5

16g4

)
. (4.29)

5. Black hole energy and thermodynamics

In the previous sections we demonstrated explicitly that the on-shell action and the ADM

energy may be renormalized by introducing an appropriate counterterm action given by a

Hamilton-Jacobi analysis. Turning to the dual field theory, the renormalized on-shell action

is to be identified with the thermodynamic potential Ω according to Γ = β Ω. Likewise,

the ADM energy Eren ought to be identified with the energy (including Casimir energy) of

the field theory.

For backgrounds with non-trivial R-charge, the thermodynamic potential may be re-

lated to the energy according to

Ω = E − TS − ΦIQI , (5.1)

where QI are the set of conserved R-charges, and ΦI are the corresponding horizon values

of the electric potential. Here we prove that the relation (5.1) is automatically satisfied for

the black hole solutions of the previous section.

We start with a static, stationary metric in d dimensions, of the form (2.4)

ds2
d = −e2Af dt2 + e2B

(
dr2

f
+ r2dΩ2

d−2

)
. (5.2)

Note, however, that here we allow independent warp factors for the time and space direc-

tions. This choice of coordinates is specialized so that the boundary of AdS is located at

r →∞ and also so that ∂/∂t is a natural time-like Killing vector. We further assume that

the matter sector preserves the time translation symmetry, so that in particular all matter

fields are independent of t.

As in (2.1) the unrenormalized action integral is composed of two pieces, the bulk inte-

gral and the surface term. To evaluate the bulk action we start with the expression (2.12).

However, instead of using the Rψψ component of the Einstein equation, we substitute in

the Rtt component to rewrite the bulk action as

Ibulk = − 1

8πGd

∫

M0

ddx
√−g

(
Rtt −

1

2
GIJF

I
trF

J tr

)
. (5.3)

We now show that this bulk integrand is in fact a total divergence. First note that, for the

metric (5.2), the tt component of the Ricci tensor may be written as

Rtt =
1√−g

d

dr

(√
−hΘt

t

)
, (5.4)
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which is already a total derivative. For the gauge fields, on the other hand, we recall that

they satisfy the equation of motion (2.3) so that

∂r
(√−gGIJF J rt

)
= 0 . (5.5)

As a result, we may define the conserved charges

qI =
√−gGIJF J rt . (5.6)

Substituting (5.4) and (5.6) into the bulk action, (5.3), we arrive at

Ibulk = − 1

8πGd

∫
dd−1x

∫ r0

r+

dr
d

dr

(√
−hΘt

t +
1

2
AIt qI

)

= −βωd−2

8πGd

(√
−hΘt

t +
1

2
AIt qI

)∣∣∣∣
r0

r+

, (5.7)

where r+ is the location of the horizon. We must add to this the Gibbons-Hawking term

IGH =
1

8πGd

∫

∂M0

dd−1x
√
−hΘ =

βωd−2

8πGd

√
−hΘ . (5.8)

The resulting action is thus given by

β Ωreg ≡ Ireg =
βωd−2

8πGd

(√
−h(−Θt

t + Θ) +
√
−hΘt

t

∣∣∣
r+
− 1

2
ΦIqI

)
, (5.9)

where ΦI = AIt (r0)−AIt (r+). It is now clear that the first term, proportional to (−Θt
t+Θ),

may be related to the ADM energy, the second term may be related to the product of

temperature with entropy, and the last term gives directly the product ΦIQI up to charge

normalization

QI =
βωd−2

16πGd
qI . (5.10)

More explicitly, the tt component of the regulated boundary stress tensor, (2.20), is

Ttt =
1

8πGd
(Θtt −Θhtt) , (5.11)

so that the ADM energy is

Ereg =
ωd−2

8πGd

√
−h(−Θt

t + Θ) . (5.12)

In addition, the entropy and temperature are given by

S =
1

4Gd
A

∣∣∣∣
r+

=
ωd−2

8πGd

(
2πe(d−2)Brd−2

)∣∣∣
r+
,

T =
1

4π
eA−B

df

dr

∣∣∣∣
r+

. (5.13)

Hence

TS =
ωd−2

8πGd

(
1

2
eA+(d−3)Brd−2 df

dr

)∣∣∣∣
r+

= − ωd−2

8πGd

√
−hΘt

t

∣∣∣∣
r+

. (5.14)
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Here we have used the expression

√
−hΘt

t = −eA+(d−3)B

(
rd−2f

dA

dr
+

1

2
rd−2 df

dr

)
, (5.15)

which is valid for the metric (5.2). Note that the first term in Θt
t vanishes at the horizon

(at least for a regular horizon).

Combining the above expressions, and substituting into (5.9), we finally obtain the

expected relation

Ωreg = Ereg − TS − ΦIQI . (5.16)

Note that the unrenormalized quantities Ωreg and Ereg both diverge as we remove the reg-

ulator, r0 →∞. However, this divergence is cancelled by a counterterm action (3.9) which

contributes equally with Ωct = Ect. Hence, the thermodynamic relation (5.1) always holds

identically, with or without counterterm insertion, at least for the counterterm structures

that we are interested in.

It is worth emphasizing that, while the addition of finite local counterterms would

modify the quantities Ωreg and Ereg, this would not affect the validity of the relation (5.1)

itself. Physically this corresponds to a change of renormalization scheme where the regu-

lated quantities are scheme dependent but where the physical expressions themselves are

left untouched.

Of course, one would ideally want to prove the first law dE = TdS + ΦIdQI directly.

Although we have not demonstrated this explicitly, we note that the Hamilton-Jacobi tech-

nique provides a useful framework for such an analysis. In this case, it would be worthwhile

to examine whether the choice of finite counterterms could play a rôle in determining the

validity of the first law.

6. Conclusions

In general, the notion of mass or energy in a gravitational system can be rather difficult

to define in a precise and useful manner. Nevertheless, rigorous definitions of energy and

conserved charges are essential in the application of black hole thermodynamics. Here

we have highlighted a holographic approach, based on the Hamilton-Jacobi formalism, to

dealing with black holes in asymptotically AdS spacetimes. In this approach, conserved

quantities (including the mass) may be extracted from the boundary stress tensor, so long

as the gravitational action itself is regulated in an appropriate manner. We demonstrate, in

particular, that the Hamilton-Jacobi method generates the appropriate boundary countert-

erms for removing all divergences of the on-shell action pertaining to stationary R-charged

AdS black holes in four, five, six and seven-dimensional gauged supergravities.

Although the importance of the boundary stress tensor method has been realized for

some time, and the notion of holographic renormalization has been well developed, less

attention has been given to systems with a non-trivial matter sector. In this paper, we

have focused on gravitational systems with long-range scalars, and have shown that they

may be treated in a uniform manner, regardless of spacetime dimension or specific matter

content. Of the actual black holes we have investigated, we note that the non-trivial scalar
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counterterms (namely the non-constant parts of the superpotential W ) are divergent in

four, finite in five, and vanishing in higher dimensions. And yet they all have a common

origin, namely the hamiltonian constraint (3.14) arising from the Hamilton-Jacobi analysis

of the counterterms.

It would of course be natural to apply the Hamilton-Jacobi counterterm prescription

developed here to the study of thermodynamics of other interesting systems with non-trivial

matter fields. For example, masses of rotating supersymmetric AdS5 black holes [32, 33]

were recently considered in [27]. It may also be of interest to apply the above methods in

examining the properties of the five-dimensional black ring solutions [34]–[37].

Finally, note that the boundary stress tensor contains information not just on the

energy of the system but also on general conserved quantities corresponding to additional

Killing symmetries. In particular, angular momentum along with the thermodynamics

of rotating solutions has been explored in [38]–[41] (see also [42]–[46]). For stationary

solutions, the analysis of the previous section indicates that any suitably chosen regulator

will preserve the thermodynamic relation (1.2). However, the introduction of angular

momentum yields additional complications meriting further study [41]. The full resolution

of the first law of black hole thermodynamics in the AdS/CFT context with rotation will

certainly be an important accomplishment with widespread implications.
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