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Abstract. We develop the average effective energy-momentum tensor for a spherically
symmetric cosmology with randomly oriented spin using the improved energy-momenturn tensor
in the framework of the self-consistent Einstein—Cartan theory with spin-density.

PACS numbers: 95308, 9380C, 4775, (340G, 0450

It has been known for nearly two decades in the investigations of Einstein—Cartan (EC)
theories that the spin-density of matter heavily influences [I} and could dominate the
behaviour of spin aligned fluids for extremely large matter density which may occur at
cither early or later stages of the universe {2-4]. It was then shown by Hehl, von der Heyde
and Kerlick [5] that the general conclusions reached above for aligned spins would aiso
hold for randomly oriented spins which are locally isotropic, i.e. spherically symmetric,
Except for Kopczynski [2], however, the spins in these theories were generally associated
with the quantum mechanical spin of particles. We feel, however, that it is not necessary
to identify the spin-density of a fluid with the spin of ar elementary particle. Our approach
involving an improved energy—momentum tensor for spinning fluids [6] is similar to the
concept of Israel [7], Bailey and Israet [8], Bailey [9] or Kopczyiiski [3,10]), where the
cosmological fluid particles, which may be galaxies or clusters of galaxies, have intrinsic
but classical spin. Although one could investigate within the context of general relativity
(GR) [11,12] the effect of spin on important cosmological issues such as inflation in the
early universe [13], the natural arena should be within an EC theory in Riemann-Cartan (RC)
spacetime. In fact, recent investigations by Martin et al [14] have indicated that consistency
relations [15, 16] restrict most interesting spinning fluid configurations in GR even though
their work seems to require further analysis. We will find from this work that the lack of
spin-squared terms, which do not occur in the GR calculation, limits the range of examples,
but we will leave the proof to a future work. A fortiori, in the extensive review of the BC
theory, Hehl er af [17] have shown that the field equations and conservation laws for the
metric and the angular momentumn arise naturally from variational considerations within the
EC theory. In RC spaces a fundamental field quantity is the torsion, which is identified with
the antisymmetric part of the RC connection S;;% = I';;;1*. The relationship between torsion
and physical spin has been clarified and made more preicse [18]. We now know that the
ng is dlrectly identified with a natual object in the geometry, namely the trace-free torsion,
St =8y ; +6[, ¢j1» where the torsion vector §; = 3 i*. Within the context of a Lagrangian-
based self-consistent EC theory [6], the torsion vector enters the theory depending on the
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form of the fluid constraint. For the case of particle number conservation in the fiuid frame,

the constraint is given by {75 (pu') where the ‘star’ derivative %’i = V; -+ 25;,". The torsion
field equation then shows that the torsion vector vanishes. For the discussion of stars, gas
clouds and galaxies, this type of constraint is probably sufficient; however, for cosmological
models, this may not be the case. If the constraint is given by V;(pu') (which is the direct
miinimal coupling generalization of the fluid constraint to RC [19]), then the torsion vector
remains active; however, its interpretation in the theory is somewhat incomplete, since
the torsion field equation can only resolve it in terms of the Lagrange multiplier for the
fiuid constraint [18] (as will be seen later on) without a complete solution {model) of the
field equations. One interpretation obtained by applying Gauss® law for a region between
two spacelike hypersurfaces enclosing all matter leads to mass ‘creation’ (or annihilation),
which may have cosmological significance [6]). This interpretation nevertheless does seem
controversial. Since this work involves cosmological questions, we necessarily have used
the constraint which keeps the torsion vector active.

Our investigations seem to indicate that the effects of spin-density in cosmological
problems such as inflation, final collapse, or even collapsing objects, should be investigated
in an RC spacetime [20]. Our averaging treatment of the proper torsion represents an older
variation of the microscopic viewpoint of torsion [21]. In fact, uging the improved energy—
momentum tensor with spin-density, Gasperini [22] has demonstrated spin-dominated
inflation in the EC theory for a spinning fluid with randomly oriented spin. This result
seems most reasonable in comparison with similar conclusions obtained from an earlier ad
hoc description of spinning fluids [5] obtained by just adding to the energy-momentum
tensor a spin-density contribution based upon a generalization of the special relativistic
treatment of Halbwachs [23]. We point out that the improved energy-momentum tensor
for a spinning fluid within an EC theory is also a generalization of Halbwachs’ classical
treatment of spin 1o RC spacetime, but here we depart from others through the use of a
self-consistent, Lagrangian formulation which also treats the thermodynamic properties of
the fluid {19]. Thus with these comments in mind, the purpose of this paper is to discuss
the changes that occur in the ‘average’ contribution to the energy-momentum tensor for
randomly oriented spins when the self-consistent description of a spinning fluid is used. An
expression for the average energy—momentum tensor is then obtained.

The results of the self-consistent EC description of a spinning fluid are the field
equations 6, 18,11

GU(T) = 29, TP = T (0
‘S‘;ka = %Kpsﬁmuk (2)
$e = —Kphaity 3

where G¢(T") are the symmetric components of the Einstein tensor in RC space;time
with torsion S;;* = T';;*, where the modified torsion is T¥ = 5 — 2¢;8%, sy is the
spin/particle, p is the mass density, ¥ = 87 G, and X; is the Lagrange multiplier for the
fluid constraint. The improved energy—momentum tensor is

T4 = T + Ty (4

+ Our basic notation follows that of [25], except that we use latin letters for spacetime indices.
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where

T = [p(1+ )liul + pg¥ (5)

Ts'l = 20utsM¥ gy + Gy [puts) — pay sk, 6)

The LHS of equation (1) can be written as the Riemannian Einstein tensor plus torsion-
squared correction terms defining the ‘spin’ correction tensor —t* such that [5, 25]

Kt = — AT THy — 2T T/ + TR T + 187 (AT 1 T 1 + TP Tipm] - 7

We then combine equation (7) with (4) to obtain the effective Riemannian energy—
momentum tensor

To¥ =T + 17 )

and then find its average for a randomly oriented, spherically symmetric spinning fluid.

The average of the effective energy-momentum tensor is a two-step process. Since a
general spherically symmetric tensor takes the form au'u’ + bg'/, we can rewrite it in this
form for convenience. The average is then easily found. We note that the fluid part is
already in this form. The spin parts are then

Ts" = — 3[4 S* + 468? — g Sl w/ — QU SY + € 5% — w0 $¥1Y )
and
et = [2628% — 627w/ + [ 5525% — 35718V (10)

where the spin-density tensor §¥ = ps’/, and §;; 5% = 25, 5% = 25 where S, is the spin
vector, £*¢; = t?, and Q¢ is the vorticity tensor in GR [26]1. In taking the average of
a spherically symmetric, isotropic system of randomly oriented spins, then for the spin
average itself {$/) = 0, but for the spin-squared terms (S;;S%) # 0. First we note that
if we ignore the vorticity, angular velocity and torsion vector terms, we obtain the old EC
results for the average of the effective energy-momentum tensor {5,271}

{Te')a = [p(1 4+ &)+ p — 3x ') + [p — 31 5°1gY (11)

where the subscript NI refers to the results obtained from the non-improved effective energy—
momentum tensor. We have also set (S%) = S? for convenience.

Another way of looking at the results given by equation (11} is to assume that on
average there is no correlation between the randomly oriented spins and the GR vorticity of
the congruences associated with 4-velocity, i.e. we have {£;;5%) = 0. At first one might

f See, for example, [26].

% These are the results for the spin-squared terms obtained by [27], but in order to obtain these results they defined

the torsion S;;* = 21, used the ad koe classical Weyssenhoff relation between torsion and spin §;;* = 8;;4*,

and used §;;S¥ = 287, On the other hand, [5] also used the classical Weyssenhoff relation, but defined the torsion

as in this paper, and defined 25;;5% = $2. Thus in reality, these results are very different from one another

because of conflicting definitions. On the surface, the compensating factors of 2 in [27] gives the same look-alike

results as the exact calculation of the EC limit found in this paper, but we can not rectify an additional factor of 2
in {5).
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want to extend this conclusion to the w; ,-SU terms, but this would be incorrect, since we
can write

w;;S¥ = VS — e s? (12)

where we have separated a RC term into a gencral relativistic term plus torsion related
terms. In the form of equation (12) we easily note that the average is non-zero, because
of the presence of the spin-squared term, 'We further argue that the average of the general
relativistic term vanishes (similarly to the vorticity-spin term), since it can be written in
terms of products of the uncorrelated tetrads (or, equivalently, metric terms) without any
torsion terms present. Thus

(w,-jS”) = —-ICSZ. (13)

Combining this with equations (9) and (10), we find in the seif-consistent EC theory the
average of the effective energy-momentum tensor

KTy = |:Kp (I +e+ %) — 3k*8% —~ 6;2] w'u! +[ep — Tx?S? — 378 (14)

where the subscript I refers to the improved results, Note this does not reduce to the old
EC results in equation (11), because of the contribution of the angular velocity term in
the improved energy—momentum tensor given by equation (6). The effect of the negative
contribution of the spin-density to the energy-density is about twice as large as the old
EC results. However, because of the torsion vector field equation (3), the torsion vector
contributes positive terms to the energy-momentum density. This is not entirely conclusive,
since one needs to introduce source fields (e.g. a vector field Lagrangian sensitive to the
torsion vector) and then include the contribution of those fields in the energy-momentum
tensor as well. The Lagrange multiplier can be removed from equation (3) by solving the
constraint field equation from the variation of the Lagrangian [6]). This gives an equation
of motion for A

Kphy =K [,o (1 +e+ %) + TS} + 3(xpra)? (15)

where Ts is the spin energy density. Equation (15) for Az can be solved within the context of

some cosmological model. For the example of constant density p and uniform total energy
density, the contribution of the torsion vector terms to the average energy—mmomentum

equation (14) s a monotonically increasing function of proper time. Although an unlikely

model, it does serve to show that the torsion vector terms and the spin terms act oppositely

to one another.

Thus, although we agree with the general conclusion of Gasperini concerning spin-
dominated inflation [22], his result is based upon equation (11), which neglects the angular
velocity contributions which would give a much stronger spin effect, as is seen in the
average for the self-consistent EC theory given In equation (14).

In conclusion, equation (14) describes the average effective energy-momentum tensor
due to the effects of torsion in an RC spacetime. The averaging process could be thought
of as the transition from the microscopic to the macroscopic description of a spin field.

In a different approach to cosmological models, Smalley has shown how one can obtain
a spacetime-dependent cosmological ‘function’ in a Weyl spacetime [28]. It has been
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known for some time that in some affine geometries the torsion and Weyl vectors may be
proportional [29]. One way to see this is to note that the fluid constraint in an affine
geometry will contain an independent connection that can have both torsion and non-
metricity, the trace of the non-metricity being the Weyl vector. The field equations for
the torsion vector and the Weyl vector then give the proportionality. The similarities of
the results of spacetime geometries with torsion vector or Weyl vector have been pointed
out earlier [30]). The linking of the torsion vector to a cosmological function would be
interesting. However, the relationship to this work is only suggestive, since one first needs
a Lagrangian theory with all the appropriate elements, including source fields as well. We
leave this for future work.

Finally, we mention that other approaches to the torsion vector have not been included
in this work, such as the possible relationship of torsion and electromagnetism by
Hammond [31] or that of Smalley and Krisch [32].

References

[1] Hehl F W and von der Heyde P 1973 Ann. Inst. H Poincaré A 19 179
[2] Kopezyiski W 1972 Phys. Lett 39A 219; 1973 Phys. Letr. 43A 63
[3] Trautman A 1973 Nat. Phys, Sci, 242 7
[4] Stewart J and Héjfcek P 1973 Nat, Phys. Sci. 244 96
[5] Hehl F W, von der Heyde P and Kerlick G D 1974 Phys, Rev, D 10 1066
Hehl F W 1974 Gen. Rel. Grav. 5 491
[6] Ray ] R and Smalley L L 1982 Phys. Rev. Lett. 49 1059; 1983 Phys. Rev. Lett. 50 626E; Phys. Rev, D 27
1383
[7] lsrael W 1973 Nuovo Cimento 7 860
[8] Bailey I and Israel W 1975 Commun. Math, Phys. 42 65
9] Bailey I 1979 Ann. Phys., NV 119 76
[10] Kopezyhski W 1986 Phys. Rev. D 34 352
[i11] Ray J R and Smalley L L 1982 Phys. Rev. D 26 2619
{12] Ray JR, Smalley L L and Krisch J P 1987 Phys. Rev. D 35 3261
[13] Bedran M L and Vasconcellos-Vaidya 1984 Nuovo Cimento 41 73
{14] Martin M A P, Vasconcellos-Vaidya E P and Som M M 1991 Class. Quantum Grav, 8 2225
{15] Amorim R 1984 Phys. Letr. 104A 259
[18] Ray J R and Smalley L L 1986 Phys. Rev. D 34 3268
{17] Hehl F W, von der Heyde P, Kerlick G D and Nester ] M 1976 Rev. Mod. Phys, 48 393
[18] Smalley L L and Ray ] R 1986 Gen. Rel. Grav. 18 549
[19]1 Ray J R 1972 J. Math. Phys, 13 1451
[20] Arkuszewski W, Kopezyniski W and Ponomariev V N 1974 Ann. Inst. H Poincaré 21 89, 1975 Conumun.
Math, Phys. 45 183
{21] Heht F W, McCrea J D, Mielke E W and Ne'eman Y 1989 Found. Phys. 19 1075
{22] Gasperini M 1986 Phys. Rev. Lert. 56 2873
[23] Halbwachs F 1960 Théorie refativiste des fluides & spin (Paris: Gauthier-Villars)
{24] Hehle F W 1974 Gen. Rel. Grav. § 491
[25] Schouten J A 1954 Ricci Calcnlus (Berlin: Springer)
{26] Ehlers J and Kundt W 1962 Gravitation: An Introduction to Current Research ed L Witten {New York:
Wiley) pp 49-101
[27] Arkuszewski W, Kopezynski W and Ponomariev ¥V N 1974 Ann, Inst. H Poincaré 21 89
{28) Smalley L L 1993 Class, Quantum Grav. 10 1179
[29] Hehi F W, Lord E A and Smalley L L 1978 Gen. Rel. Grav. 9 691
[30] Smalley L L 1986 Phys. Rev. D 33 3590
[311 Hammond R T 1988 Gen. Rel. Grav. 20 813
[32] Smalley L L and Krisch T P 1991 Class. Quantum Grav. 8 1889, 1991 J. Math. Phys. 33 1073; 1992 Ins.
J. Theor. Phys. 31 1253



