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Abstract
We present a method for constructing stationary, asymptotically flat, rotating
solutions of Einstein’s field equations. One of the spun-up solutions has
quasilocal mass but no global mass. It has an ergosphere but no event horizon.
The angular momentum is constant everywhere beyond the ergosphere. The
energy–momentum content of this solution can be interpreted as a rotating
string fluid.

PACS numbers: 04.20.Jb, 04.40.Dg

1. Introduction

A metric description of the spacetime around an object encodes information about its mass and
angular momentum. While many of the objects of interest to astrophysicists and cosmologists
are rotating, there is not a large number of metrics that can be used to describe isolated
rotating objects. Most models of the early universe encode no angular momentum into the
metric. Developing methods to generate rotating solutions is clearly of value. There are two
well-known solution generating algorithms which start with a static metric and transform it
by adding rotation to some aspect of the spacetime structure. The complex transformation
discovered by Newman (N–J) and others [1–3], for example, takes the Schwarzschild metric
to the Kerr metric, and the Reissner–Nordström metric to the Kerr–Newman solution. The
N–J transform adds angular momentum to a seed spacetime initially containing only global
mass (and possibly charge). The N–J method has also been used [4] to spin up spherical
metrics to obtain Kerr interiors. There is a method begun by Ehlers [5] and fully developed
by Geroch [6, 7] which adds twist to the timelike Killing vector of the original (seed) metric
and also changes its norm. If the method is applied to the static Schwarzschild spacetime the
Taub–Nut spacetime results.

In this paper, we suggest a new method for adding rotation to a known static spacetime.
The method starts with an asymptotically flat static metric written in null Bondi–Sachs form.
A transform of the type dϕ̃ = dϕ − � du is applied. � has coordinate dependence thus
adding angular momentum to the spacetime. The Komar integral is used to calculate the
angular momentum. Asymptotic flatness is enforced by using the Bondi–Sachs metric as a
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prototype for adding angular momentum, with the Bondi–Sachs metric conditions ensuring
that asymptotic flatness is preserved in the transformation.

In the next section, we describe the method in detail. In section 3 of the paper we apply the
method to the Schwarzschild spacetime, adding a rotation term, maintaining the Bondi–Sachs
metric form and using the rotation term from the linearized Kerr metric in the Bondi–Sachs
frame as a guide. We also apply the method to Minkowski space, obtainable as a limiting
case of the spinning Schwarzschild example. This spacetime contains some unusual features.
Unusual because there is quasilocal mass but no global mass, and there is an ergosphere
but no event horizon. The solution is stationary, axially symmetric and asymptotically flat.
The energy–momentum content can be identified as a rotating string fluid. Values from the
Komar superpotential provide angular momentum which does not fall off asymptotically and
quasilocal mass which does. The quasilocal mass arises from the kinetic energy of the rotating
string fluid.

Conventions

In this work Greek indices range over (0, 1, 2, 3) = (u, r, ϑ, ϕ). Sign conventions are
2Aν;[αβ] = AµRµ

ναβ and Rαβ = Rν
αβν. The metric signature is (+, −, −, −) and the

field equations are Gµν = −8πTµν .

2. The method

The Bondi–Sachs metric has been used since 1960s. It is based on a foliation of outgoing
null hypersurfaces (N ) and a conformal boundary (I), with sufficient generality to describe
bounded radiating astrophysical systems (details are given in appendix D). Asymptotically flat
electrovac spacetimes in Bondi–Sachs form are summarized by Bicak and Pravdova [8].

To construct our solution, we begin with the Schwarzschild vacuum metric. Angular
momentum is added using the ∂ϕ Killing vector as a generator of rotations. This is done
in the context of the Bondi–Sachs metric in order to identify the term to add, and to
maintain asymptotic flatness. A new term is added containing angular velocity with form
dϕ̃ = dϕ − � du. For � a function rather than a constant, this is not an integrable coordinate
transformation. The Komar superpotential integral for ∂ϕ insures that the desired amount of
angular momentum is added. The particular choice of � is guided by the linearized Kerr
metric written in Bondi–Sachs form. We then have an analytic asymptotically flat spinning
metric.

2.1. Kerr vacuum solution

The Kerr solution in Boyer–Lindquist coordinates is given by

gkerr
αβ dxα dxβ = ψdt2 − (
/�) dr2 + (1 − ψ)2a sin2ϑ dt dϕ

−
dϑ2 − sin2ϑ[
 + (2 − ψ)a2sin2ϑ] dϕ2.

Here, ψ = 1 − 2m0r/
,
 = r2 + a2 cos2 ϑ,� = r2 + a2 − 2m0r . The linearized Kerr metric
has terms linear in ‘a’.

glin-Kerr
αβ dxα dxβ = (1 − 2m0/r) dt2 − (1 − 2m0/r)−1 dr2

+ (2m0a/r)sin2 ϑ 2 dt dϕ − r2(dϑ2 + sin2 ϑ) dϕ2. (1)
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To reach Bondi–Sachs form transform from Boyer–Lindquist ‘t’ to outgoing u = t − r −
2m0 ln(r − 2m0).

glin-Kerr-BS
αβ dxα dxβ = (1 − 2m0/r) du2 + 2 du dr + (2m0a/r) sin2ϑ2 du dϕ

− (1 − 2m0/r)−1(2m0a/r) sin2ϑ2 dr dϕ − r2(dϑ2 + sin2 ϑ) dϕ2. (2)

Note that

(du)α(du)βg
αβ

Kerr = 0 to order ‘a’.

3. Spinning Schwarzschild

The Schwarzschild vacuum is spun up by choosing a term with angular velocity �(r). The
spinning metric is written in Bondi–Sachs form as

gBS
αβ dxα dxβ = (1 − 2m0/r) du2 + 2 du dr − r2 dϑ2 − r2 sin2 ϑ(dϕ − � du)2. (3)

The term (2m0a/r) sin2 ϑ2 du dϕ in the linearized Kerr metric equation (2) leads to the
function Uϕ = �(r) in equation (D.1), multiplied by r2Hϕϕ = r2 sin2 ϑ . This directs the
choice �(r) = r2

0

/
r3.

The Bondi–Sachs form can be rewritten as the spinning Schwarzschild (sSCH) metric

gsSCH
αβ dxα dxβ = Z du2 + 2 du dr + 2�r2 sin2 ϑ du dϕ − r2(dϑ2 + sin2 ϑ dϕ2) (4)

with Z := 1 − 2m0/r − (�r sinϑ)2.
To understand the physical content of the sSCH solution we write the metric in a basis

which is locally non-rotating (v̂α has zero twist).

gsSCH
αβ = v̂αv̂β − r̂α r̂β − ϑ̂αϑ̂β − ϕ̂αϕ̂β . (5)

Here, A2 = 1 − 2m0/r . The unit vectors are defined by

v̂α dxα = A−1(A2 du + dr), v̂α∂α = A−1(∂u + �∂ϕ), (6a)

r̂α dxα = A−1 dr, r̂α∂α = A−1(∂u − A2∂r + �∂ϕ), (6b)

ϑ̂α dxα = rdϑ, ϑ̂α∂α = −r−1∂ϑ, (6c)

ϕ̂α dxα = rsin ϑ(dϕ − � du), ϕ̂α∂α = −(rsinϑ)−1∂ϕ. (6d )

The Einstein tensor is expanded as

GsSCH
αβ = U 2(v̂αv̂β − r̂α r̂β + ϑ̂αϑ̂β + 3ϕ̂αϕ̂β) (7)

with U 2 = (9/4)�2 sin2 ϑ . In the locally non-rotating frame, the energy–momentum
tensor is

T sSCH
αβ = ρv̂αv̂β + pr r̂αr̂β + pϑϑ̂αϑ̂β + pϕϕ̂αϕ̂β . (8)

It follows from Gαβ = −8πTαβ that

8πρ = −U 2, 8πpr = U 2, 8πpϑ = −U 2, 8πpϕ = −3U 2. (9)

The Ricci tensor has the form

RsSCH
αβ = 2U 2(v̂αv̂β − r̂α r̂β + ϕ̂αϕ̂β), RsSCH

αβ lβ = 2U 2lα, (10)

with lα∂α = ∂r an eigenvector of the Ricci tensor.
The fluid velocity v̂α is expansion-free and twist-free, with shear scalar 1

2σαβσαβ = U 2

and acceleration aα = (
m0
Ar2

)
r̂α . The content of spinning Schwarzschild can be interpreted as

a rotating radial string fluid with ρ + pr = 0.
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The sSCH metric can be written as

gsSCH
αβ = gSCH

αβ − 2�lαSβ, (11)

where gSCH
αβ is the Schwarzschild metric and Sβ is a spacelike vector such that

Sβ dxβ = (�/2)r2 sin2 ϑ du − r2 sin2 ϑ dϕ, SαSα = −(r sin ϑ)2. (12)

When m0 → 0 in sSCH, we have spinning Minkowski (sM):

gsM
αβ = ηαβ − 2�lαSβ. (13)

This spacetime, as seen from null infinity, has angular momentum but no mass.

3.1. Spinning Minkowski

We set m0 = 0 in Z of equation (4) to obtain a metric with no global mass. The spinning
Minkowski metric (sM) has one parameter, r0, in function �(r) = r2

0

/
r3.

gsM
αβ dxα dxβ = (1 − �2r2 sin2 ϑ) du2 + 2 du dr + 2�r2 sin2 ϑ du dϕ − r2(dϑ2 + sin2 ϑ dϕ2).

(14)

The metric has two Killing vectors, stationary k(u) and axial k(ϕ). In terms of the Minkowski
metric ηαβ , the sM metric can be written as

gsM
αβ dxα dxβ = ηαβ dxα dxβ − �2r2sin2ϑ du2 + 2�r2sin2ϑ du dϕ. (15)

The rotation axis [ϑ : 0, 2π ] is a regular line in the spacetime. As r → ∞,�r2 → 0 and
gsM

αβ → ηαβ , hence the sM metric is asymptotically flat. In fact, one can remap the Minkowski
metric

ηαβ dxα dxβ = du2 + 2 du dr − r2(dϑ2 + sin2 ϑ dϕ̃2)

by shifting the ϕ̃ coordinate to ϕ̃ = ϕ − �0u.

ηαβ dxα dxβ = (
1 − �2

0r
2sin2 ϑ

)
du2 + 2 du dr + 2�0r

2sin2 ϑ du dϕ − r2(dϑ2 + sin2 ϑ dϕ2).

The Minkowski metric then coincides with the limit of the sM metric as �
(

lim
r→∞

) → 0, and
�0 → 0.

The sM solution is written in the same locally non-rotating frame as sSCH above, but now
the frame velocity v̂α is geodesic. It is also expansion-free and twist-free, with shear scalar
1
2σαβσαβ = U 2 = (

3r2
0 sin ϑ

/
2r3

)2
.

gsM
αβ = v̂αv̂β − r̂α r̂β − ϑ̂αϑ̂β − ϕ̂αϕ̂β . (16)

The unit vectors are (this is the tetrad in equation (6) with A = 1)

v̂α dxα = du + dr, v̂α∂α = ∂u + �∂ϕ, (17a)

r̂α dxα = dr, r̂α∂α = ∂u − ∂r + �∂ϕ, (17b)

ϑ̂α dxα = rdϑ, ϑ̂α∂α = −r−1∂ϑ, (17c)

ϕ̂α dxα = r sin ϑ(dϕ − � du), ϕ̂α∂α = −(r sin ϑ)−1∂ϕ. (17d )

The Einstein tensor and energy–momentum tensor here are the same as those of the sSCH
solution above.

GsM
αβ = U 2

(
v̂αv̂β − r̂α r̂β + ϑ̂αϑ̂β + 3ϕ̂αϕ̂β

)
. (18)

T sM
αβ = ρv̂αv̂β + pr r̂αr̂β + pϑϑ̂αϑ̂β + pϕϕ̂αϕ̂β, (19)

8πρ = −U 2, 8πpr = U 2, 8πpϑ = −U 2, 8πpϕ = −3U 2. (20)

The sM solution contains a rotating radial string fluid with ρ + pr = 0. Since U =
(3/2)r2

0 sin ϑ/r3, the entire matter content approaches vacuum as r → ∞.
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4. Mass

The Bondi mass of gsSCH is evaluated on a spherical cut of future null infinity I+.
Equation (D.4) and the Weyl tensor component (equation (A.2)) yield

MsSCH
Bondi = − 1

8π

∮
∂N

(
�0

2 + �̄0
2

)√−g dϑ dϕ = m0. (21)

Since metric gsM is the m0 → 0 limit of gsSCH it follows that

MsM
Bondi = 0. (22)

The Komar superpotential for Killing vector kβ is

Uαβ(k) = (−g)
1
2 [∇αkβ − ∇βkα]. (23)

For timelike Killing vector k
β

(u)∂β = ∂u one writes Uαβ(∂u), and for axial Killing vector

k
β

(ϕ)∂β = ∂ϕ one writes Uαβ(∂ϕ). Metrics gsSCH and gsM both have (−g)
1
2 = r2 sin ϑ . For

u = const 3-surface N , the mass within a u = const, r = const 2-surface ∂N is

MKomar = − 1

8π

∮
∂N

Uαβ(∂u) dSαβ. (24)

Metric gsSCH
αβ and 2-surface dSαβ = u,[αr,β] dϑ dϕ contains global mass m0 and quasilocal

mass at all r beyond the ergosphere.

MsSCH
Komar = − 1

8π

∫ 2π

0

∫ π

0

(
−2m0 sin ϑ − 3

r4
0

r3
sin3 ϑ

)
dϑ dϕ = m0 +

r4
0

r3
,

(25)

MsM
Komar = r4

0

r3
.

There is no global mass for gsM since m0 = 0 and MsM
Komar → 0 as r → ∞.

Although the sM solution is not spherically symmetric, we can compute a sectional
curvature mass since tetrad vectors ϑ̂α and ϕ̂α of equations (17c) and (17d ) form a bivector
which satisfies the Frobenius surface-forming condition. They span a family of closed
2-surfaces. The sectional curvature (Gaussian curvature) mass is

−2MsSCH
curv

r3
= Rαβµνϑ̂

αϕ̂β ϑ̂µϕ̂ν = m0. (26)

The sectional curvature mass for gsM vanishes.
The explanation of why MsSCH and MsM are positive when the density ρ = −U 2/8π is

negative lies with the relativistic contribution of pressure to mass. If one traces the Komar
integral back it then becomes clear.

MKomar = − 1

8π

∮
∂N

Uαβ(∂u) dSαβ

= − 1

8π

∮
∂N

√−gk
[α;β]
(u) dSαβ

= − 1

8π

∫
N

√−gkα
(u)Rα

β dSβ

for dSβ = u,β d3x. The 3-volume integration is over any u = const null surface from r
(beyond the ergosurface) to ∞. The Ricci tensor provides

MKomar = − 1

8π

∫
N

√−g(−2ρ − pr + pϕ) d3x

= 1

4π

∫
N

√−gU 2 dr dϑ dϕ.

For gsSCH the volume integral does not measure the m0 contribution.
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5. Angular momentum

For u = const 3-surface N , the angular momentum within a u = const, r = const 2-surface
∂N is

J = − 1

16π

∮
∂N

Uαβ(∂ϕ) dSαβ. (27)

Metric gsSCH and metric gsM admit constant J at all r beyond the ergosphere. For 2-surface
element dSαβ = u,[αr,β] dϑ dϕ

J sSCH = J sM = − 1

16π

∫ 2π

0

∫ π

0

(
3r2

0 sin3 ϑ
)

dϑ dϕ = −1

2
r2

0 . (28)

This is a global value.
The normalization of the Komar integrals is chosen [9] so that

J Kerr(∂ϕ) = −m0a and MKerr(∂u) = m0.

The sign difference occurs because our −2 signature gives timelike vectors positive norms
and spacelike vectors negative norms.

6. Surfaces of sM

6.1. Horizon

Spacelike closed 2-surfaces are trapped if their null generators (incoming and outgoing null
geodesics) converge towards the future. The time evolution of the outermost trapped surface
is a null surface called the ‘apparent horizon’. The spherical 2-surfaces of metric gsM have
area 4πr2, with null geodesic generators lα and nα (see equation (A.4)). Their expansions
(convergences) are given, respectively, by

ρ = −lα∂α(ln r) = −1/r, µ = nα∂α(ln r) = −1/(2r). (29)

(here ρ is a spin coefficient, not mass density). There can be no horizon since neither ρ nor µ

change sign over the interval 0 < r < ∞.

6.2. Ergosurface

The norm of the timelike Killing vector is, with � = r2
0

/
r3,

∂sM
u · ∂sM

u = 1 − �2r2 sin2 ϑ, (30)

placing the ergosphere at r2 = ±r2
0 sin ϑ = ∣∣r2

0 sin ϑ
∣∣.

The shape of the ergosurface (outer boundary of the ergosphere) is determined by the
locus of points where the norm of ∂sM

u is zero, r2 = ∣∣r2
0 sin ϑ

∣∣. The curve ranges from r = 0 to
r = r0, and is called the ‘lemniscate of Bernoulli’ [10]. In (x, y, z) coordinates, with rotation
about the z-axis, the ergosurface is shaped like a deformed torus without a centre hole, since
the surface boundary curve goes smoothly to 0 at x = y = z = 0. Inside the ergosurface the
spacelike 2-surfaces are 2-spheres.

With ∂sM
u · ∂sM

u < 0, the Gaussian curvature of ϑ, ϕ 2-surfaces inside the ergosphere is

Kergo = 1/r2. (31)

We compute the Euler–Poincaré characteristic χ of the ergosurface. The 2-surface metric is

ds2
2-surf = r2

0 sin ϑ(dϑ2 + sin2 ϑ dϕ2) (32)
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and

K2-ergo = 1

r2
0 sin ϑ

(33)

undefined at the poles ϑ = 0, π . The Euler–Poincaré characteristic [11] is then

2πχ =
∫ 2π

0

∫ π

0
K2-ergo

(
r2

0 sin2 ϑ
)

dϑ dϕ = 4π. (34)

Thus χ = 2, with associated genus g = 0 which characterizes the topology of a standard
2-sphere.

The Kerr ergosphere is quite different. The norm of the Kerr timelike Killing vector (in
Boyer–Lindquist coordinates) is

∂Kerr
t · ∂Kerr

t = 1 − 2m0r

r2 + a2 cos2 ϑ
.

The Killing vector is spacelike in the region 2m0 � r < m0 +
(
m2

0 − a2 cos2 ϑ
)1/2

. The Kerr
ergosurface is tangent to the rotating trapped surface at the poles.

6.3. Geodesic deviation of sM

Test particles move along a congruence of timelike geodesics vα = dxα(τ )/dτ . Vector vα is
twist-free and acceleration-free with respect to metric gsM and is given by vα∂α = ∂u + �∂ϕ .
Covariant differentiation along the geodesics is defined by

D/dτ := vα∇α. (35)

Deviation vector ηα is tangent to the line connecting pairs of neighbouring geodesics in the
congruence. It is Lie transported along the congruence and satisfies

Lvη
α = 0. (36)

D2

dτ 2 η
α gives the relative acceleration between neighbouring test particles. The geodesic

deviation equation is [12, 13]

D2

dτ 2
ηα = [

Rα
βµνv

βvµ
]
ην. (37)

If one considers any ϕ = const slice of a family of {ϑ, ϕ} 2-spheres then η = (1/ sin ϑ)∂ϕ is
a deviation vector linking timelike geodesics orthogonal to the 2-spheres. We find

D2

dτ 2
ηα =

(
9

4
�2r

)
ϕ̂α (38)

for � = r2
0

/
r3 and tetrad vector (17d). A view of the geodesic congruence shows the tip of

the connecting vector η spiralling up the congruence with acceleration �2r .

7. Discussion

A method has been presented for adding angular momentum to static spacetimes. Metric gsSCH

is a spinning generalization of the vacuum Schwarzschild metric. The spin-up method creates
a spinning object with an atmosphere in an asymptotically flat spacetime. There are many
isolated astrophysical systems in our observable universe that spin. We have recently seen that
the unexpected behaviour of the angular velocity of globular clusters was a strong clue to the
existence of dark matter and dark energy. Analytic metrics, with a family of possible angular
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velocities, can be a useful tool for studying and classifying rotating systems. They can be used
to predict and analyse observable data such as lensing and to check numerical simulations.

Here we started with the Schwarzschild metric and added a rotation term, maintaining
Bondi–Sachs metric form and using the rotation term from the linearized Kerr metric
(transformed to a Bondi–Sachs frame) as a guide. The resulting metric, gsSCH, has global
mass and angular momentum. The global mass is MsSCH

Bondi = m0, the Bondi mass. The Komar
mass of spinning Schwarzschild MsSCH

Komar = m0 + r4
0

/
r3 has both global mass and a quasilocal

term which falls off asymptotically. When m0 is set to zero, then gsSCH → gsM the spinning
Minkowski metric.

The gsM metric has unusual properties. Unusual because there is quasilocal mass but
no global mass, and there is an ergosphere but no event horizon. Values from the Komar
superpotential provide global angular momentum, J sM = − 1

2 r2
0 . The quasilocal mass does

fall off asymptotically. It arises from the kinetic energy of the rotating string fluid. As seen
from conformal infinity, gsM is a large spinning object with no total weight.

In this first work we focused on asymptotically flat seed metrics, and spun them up in a
prescribed manner. Future work will allow other configurations, such as cylindrical symmetry,
or extended matter, and the Bondi–Sachs metric form can be relaxed.

Appendix A. Null tetrad

A.1. Spinning Schwarzschild

The null tetrad which spans metric gsSCH
αβ of equation (4) is, with � = r2

0

/
r3 and

A2 = 1 − 2m0/r ,

lµ dxµ = du, lµ∂µ = ∂r ,

nµ dxµ = (A2/2) du + dr, nµ∂µ = ∂u − (A2/2)∂r + �∂ϕ,

mµ dxµ =
(

i�r sin ϑ√
2

)
du −

(
r√
2

)
(dϑ + i sin ϑ dϕ), mµ∂µ = 1√

2r

(
∂ϑ +

i

sin ϑ
∂ϕ

)
.

(A.1)

The Weyl tensor components are

�0 = 0, �1 =
(

3i

2
√

2

)
� sin ϑ

r
,

�2 = −m0

r3
− 3

2

(
�2 sin2 ϑ + i

�

r
cos ϑ

)
, �3 = −�1

2

(
1 − 2m0

r

)
,

�4 = 0.

(A.2)

The Ricci components are

�00 = �01 = �12 = �22 = 0, �02 = 9
8�2 sin2 ϑ,

�11 = − 3
2�02, 6� = R/4 = �02.

A.2. Spinning Minkowksi

The massless spinning metric, with � = r2
0

/
r3

gsM
αβ dxα dxβ = (1 − �2r2sin2ϑ) du2 + 2 du dr + 2�r2sin2ϑ du dϕ − r2(dϑ2 + sin2 ϑ dϕ2)
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is expanded in a null tetrad as

gsM
αβ = lαnβ + nαlβ − mαm̄β − m̄αmβ (A.3)

where

lα dxα = du, lα∂α = ∂r ,

nα dxα = du/2 + dr, nα∂α = ∂u − (1/2)∂r + �∂ϕ,

mα dxα = i√
2
(�r sin ϑ) du − r√

2
(dϑ + i sin ϑ dϕ), mα∂α = 1√

2r

(
∂ϑ +

i

sin ϑ
∂ϕ

)
.

(A.4)

This tetrad has six zero-valued spin coefficients: κ = ε = σ = λ = ν = γ = 0. The others
are

ρ = −1

r
, µ = − 1

2r
,

π =
(

3i

2
√

2

)
� sin ϑ, τ = −π,

β = 1

2
√

2

(
cot ϑ

r
− 3i

2
� sin ϑ

)
, α = −β.

lα is geodesic since κ = 0, and nα is geodesic since ν = 0.
The Weyl tensor components are

�0 = 0, �1 =
(

3i

2
√

2

)
� sin ϑ

r
,

�2 = −3

2

(
�2 sin2 ϑ + i

�

r
cos ϑ

)
, �3 = −�1/2,

�4 = 0.

(A.5)

If there was a Bondi mass, it would appear in �2 at O(1/r3) since r is a valid luminosity
distance. The Einstein tensor null tetrad components are

GsM
αβ = −4�11(lαnβ + nαlβ) − 2�02(mαmβ + m̄αm̄β) + (2�11 − R/4)gsM

αβ (A.6)

where

�00 = �01 = �12 = �22 = 0, �02 = 9

8
�2 sin2 ϑ = U 2

2
,

�11 = −3

2
�02, 6� = R/4 = �02.

One can transform from the null tetrad to the locally non-rotating tetrad in equation (17):

v̂ = l/2 + n, r̂ = −l/2 + n, ϑ̂ = −(m + m̄)/
√

2, ϕ̂ = i(m − m̄)/
√

2.

(A.7)

Appendix B. Invariants

In general, the quadratic Riemann invariant (Kretschmann scalar) is related to the Weyl and
Ricci invariants by

RαβµνR
αβµν = CαβµνC

αβµν + 2RαβRαβ − R2/3.
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The quadratic invariants for gsSCH are, with � = r2
0

/
r3,

RsSCH
αβµνR

αβµν

sSCH = 48
m2

0

r6
+ 24

m0

r3
(3� sin ϑ)2 + RsM

αβµνR
αβµν

sM ,

CsSCH
αβµνC

αβµν

sSCH = 48
m2

0

r6
+ 24

m0

r3
(3� sin ϑ)2 + CsM

αβµνC
αβµν

sM , (B.1)

RsSCH
αβ R

αβ

sSCH = 243

4
�4 sin4 ϑ, R2

sSCH = 81

4
�4 sin4 ϑ,

and the quadratic invariants for gsM are

RsM
αβµνR

αβµν

sM = −3

(
6�

r

)2

+ 2

(
6� sin ϑ

r

)2

+
9 × 99

4
�4 sin4 ϑ,

CsM
αβµνC

αβµν

sM = −3

(
6�

r

)2

+ 2

(
6� sin ϑ

r

)2

+ 108�4 sin4 ϑ, (B.2)

RsM
αβ R

αβ

sM = 243

4
�4 sin4 ϑ, R2

sM = 81

4
�4 sin4 ϑ.

For comparison, the Kerr invariant is

RKerr
αβµνR

αβµν

Kerr = CKerr
αβµνC

αβµν

Kerr

= 48
m2

0

r6

1 − α2 cos2 ϑ

(1 + α2 cos2 ϑ)6
(1 − 14α2 cos2 ϑ + α4 cos4 ϑ)

where α = a/r .

Appendix C. Poincaré inequality

An inequality due to Poincaré [14] shows that � is reasonable. Consider the equilibrium of a
rotating, self-gravitating fluid obeying Newtonian gravity.

∇2φ = 4πGρ

for uniform density ρ. The fluid is spinning with constant � about the ẑ-axis. The force on
the liquid is

�F = −∇[φ − (�2/2)(x2 + y2)].

For equilibrium, the total force on the boundary of fluid volume V with outward normal n̂

must be∮
�F · n̂ d2x � 0 ⇒ −

∮
∇[φ − (�2/2)(x2 + y2)] · n̂ d2x � 0

⇒ −
∫

∇2[φ − (�2/2)(x2 + y2)] d3x � 0 ⇒
∫

(4πGρ − 2�2) d3x � 0.

The mass, volume and average density are

M =
∫

ρ d3x, V =
∫

d3x, ρ̄ = M/V

and so

�2 � 2πGρ̄. (C.1)

It is simple to verify that �(r) = r2
0

/
r3 satisfies Poincaré’s inequality for r > r0 and quasilocal

mass M = r4
0

/
r3 in equation (25). The average density is ρ̄ = M/(4πr3/3) = 3r4

0

/
4π and

�2 = r4
0

/
r6.
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Appendix D. Bondi–Sachs metric

Asymptotically flat systems are described by the Bondi–Sachs metric

gBS
µν dxµ dxν = V e2b

r
du2 + 2e2b du dr − r2HAB(dxA − UA du)(dxB − UB du), (D.1)

where outgoing null hypersurfaces are labelled by u and coordinates are (x0 = u, x1 = r, x2 =
ϑ, x3 = ϕ). The Bondi–Sachs metric [15] extends Bondi’s original metric [16] to include ϕ

dependence and has six independent functions {V, b,Uϑ,Uϕ, y, q} of (u, r, ϑ, ϕ). The rays
of each u = const null surface are null geodesics xα(r) with tangent dxα/dr where x1 = r

is a luminosity parameter. Coordinates (ϑ, ϕ) are constant along each ray. The luminosity
parameter is defined by r4 sin2 ϑ = det(gAB) = det(r2HAB) where

HAB =
[

e2y cosh(2q) sinh(2q) sin ϑ

sinh(2q) sin ϑ e−2y cosh(2q) sin2 ϑ

]
.

The boundary conditions on the metric functions in the limit of future null infinity I+ are

rUA → 0, b → 0, y → 0, q → 0, V/r → 1.

Notation was chosen to avoid confusion between Sachs metric functions and Newman–Penrose
spin coefficients:

2y = γ + δ (Sachs), 2q = γ − δ (Sachs), b = β (Sachs).

The u = const hypersurfaces have null geodesic tangent lα∂α which is also hypersurface
orthogonal as lα dxα = du. The twist of lα is zero and its expansion and shear are given by

ρ = −e−2b/r, σ = −e−2b[(∂ry) cosh(2q) + i(∂rq)] (D.2)

which follows from r as a luminosity parameter, and where the phase of σ is determined by
the choice of tetrad orientation. The Bondi mass aspect M(u, ϑ, ϕ) is

−2M = �0
2 + �̄0

2 + ∂u(σ
0σ̄ 0), (D.3)

where the zero superscript indicates the leading coefficient in a 1/r expansion. The Bondi
mass is the 2-surface integral of the mass aspect over a topological 2-sphere at I+

MBondi = − 1

8π

∮
S2

[
�0

2 + �̄0
2 + ∂u(σ

0σ̄ 0)
]√−g dϑ dϕ. (D.4)

References

[1] Newman E T and Janis A I 1965 J. Math. Phys. 6 915
[2] Newman E T, Couch T E, Chinnapared K, Exton A, Prakash A and Torrence R 1965 J. Math. Phys. 6 918
[3] Newman E T 1973 J. Math. Phys. 14 774
[4] Drake S P and Turalla R 1997 Class. Quantum Grav. 14 1883
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