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Abstract 

A reduced MHD fluid model for the unstable toroidicity-induced shear 
Alfvkn eigenmode (TAE) is described. This consists of four coupled time 
evolution equations for the poloidal magnetic flux, toroidal component of 
vorticity, energetic particle density and parallel flow velocity, which are 
solved numerically using the three-dimensional initial value code FAR in 
toroidal geometry. The TAE mode is readily excited and exhibits similar 
scalings as have been predicted analytically. 

1. Introduction 

The viability of an ignited deuterium-tritium (D-T) fusion 
device depends on adequate confinement of the fusion- 
produced alpha particles through slowing-down time scales. 
However, energetic plasma components, such as 3.5 MeV 
alphas, are predicted to couple with and destabilize discrete 
shear Alfvtn gap modes. This can result in new instabilities 
that are unique to ignited tokamaks and would not be 
apparent in present experiments. An example is the 
toroidicity-induced shear Alfvtn eigenmode (TAE) mode, 
which is located in the spectral gaps between the sher Alfvtn 
continua [l, 23. Passing alpha particles with parallel velo- 
cities near the TAE phase velocity can resonantly couple to 
these discrete gap roots and drive them unstable by trans- 
ferring the free energy in the alpha density gradient [3-71. 
There has been considerable interest in this instability 
because of its sizable growth rate and global mode struc- 
ture. Several recent theoretical models have predicted its 
presence in ignited tokamaks such as the Burning Plasma 
Experiment (BPX, formerly CIT) and the International 
Thermonuclear Experimental Reactor (ITER) [5, 61. Also, 
numerical orbit-following calculations have shown fast 
alphas can rapidly be removed from the plasma in the pre- 
sence of a linear TAE mode structure long before they ther- 
malize, [8] thus impacting requirements for a self-sustaining 
ignited state. In addition, experiments in beam-heated toka- 
maks operated at low magnetic fields (such that ukam > 
uAlfv;a) have recently demonstrated the existence of fluc- 
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tuations in the frequency range appropriate to the TAE 
mode [9, lo]. 

The existing theory of the TAE instability has been pri- 
marily based on the use of kinetic quadratic forms [3-71. 
These have been either minimized numerically [4, 6) or 
evaluated analytically [3, 5, 71 by using the stable discrete 
gap eigenmode without alphas as a trial function. The 
purpose of this paper is to discuss an alternative approach: 
a set of fluidlike time evolution equations that contain the 
gap mode and can be solved with existing magnetohydro- 
dynamic (MHD) initial value codes. A Landau fluid model 
with consistent closure relations [ l l ,  121 is used for the 
alphas and a reduced MHD model for the background 
plasma. Also, the effects of background pressure, finite ion 
Larmor radius, and Landau damping on the background 
ions and electrons are neglected. This model can be gener- 
alized in these areas, and such improvements are currently 
under way. 

2. Basic equations 

The model is based on toroidal geometry with R the major 
radius, cp the toroidal angle, and z the vertical coordinate 
along the symmetry axis. We assume the usual tokamak 
ordering of BpoloidaJBtoroidal 4 1 and eliminate the fast Alfvtn 
wave. The fluid equations that result from keeping the cp 
components of Amphe’s law, Faraday’s law and the perpen- 
dicular component (to cp) of the momentum balance equa- 
tion are: 

- = 6 . V $ ,  a* 
at 

(3) 

with $ = -RA, and 6 = BIB. 
Here C$ is the electrostatic potential, po is the free space 

permeability, and $ is the poloidal magnetic flux function. 
The energetic alpha component is assumed to enter only 
through the pressure gradient term in eq. (3). We next multi- 
ply eq. (3) by RIB,, take the curl of this equation, keep only 
the cp component, and transform to straight-field-line coor- 
dinates. This results in: 
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with F = RB,  , Bj0 = B of species j at magnetic axis, and 

Here g", gre, gee are the metric elements of our flux surface 
coordinate system. We have employed the usual reduced 
MHD normalizations : t is normalized to the poloidal 
Alfvkn time T ~ ~ .  = R O / v A , ,  with uAO the Alfvbn velocity at 
the magnetic axis; 4 is normalized to a2Bo/zHp and t,b is nor- 
malized to a2Bo,  with Bo the magnetic field at the magnetic 
axis; the minor radius r is normalized to a; P j  is normalized 
to the value of the equilibrium pressure of species j at the 
magnetic axis, p j o ;  and Bjo = 2p0 p j o / B i .  

The alpha component is included in our calculation using 
a gyrofluid model with Landau closure. This technique was 
previously developed for the electrostatic vi mode [ll] and 
has recently been extended to the case of alpha populations 
coupled to electromagnetic shear Alfvkn waves [l2]. The 
basic procedure is to solve the linearized kinetic equation in 
the normal manner in terms of the plasma dispersion func- 
tion; this solution is next compared with that resulting 
when a moments hierarchy is developed from the same 
kinetic equation. A closure relation is then constructed such 
that the moments solution is equivalent to the exact kinetic 
solution if an n-pole approximation is made to the plasma 
dispersion function. 

This technique contains the necessary mechanism for 
exciting the unstable TAE mode since this occurs via inverse 
Landau damping through the alpha component. A set of 
moment equations with consistent Landau closure has been 
developed [l2] for alphas based on a fully electromagnetic 
slab model, using a two-pole approximation to the plasma 
dispersion function and assuming constant drift velocity (i.e., 
evaluated at the thermal velocity). Use of a two-pole 
approximation implies that two fluid equations will be 
required for the alphas. These are the time evolution of the 
alpha density and parallel flow velocity. Converting the 
density equation to a pressure equation (the alpha tem- 
perature has been assumed constant here) and using the 
same normalized units as discussed above results in the 
following equations : 

where 

Here Oca is the a cyclotron frequency, T, is the alpha tem- 
perature, and the perturbed alpha pressure and parallel flow 
velocity have been normalized to the equilibrium pressure 
and the Alfvkn speed at the magnetic axis (uA0), respectively. 
The 1 VII  I operator has a simple interpretation only for the 
case in which cp and 8 are Fourier analyzed, in which case it 
is the absolute value of the parallel wavenumber. A small 
amount of diffusion is included in the alpha pressure evolu- 
tion equation for numerical reasons; this is at a level where 
it does not have a significant effect on the answers obtained. 
Equations (l), (2), (5) and (6) then complete our system of 
time evolution equations. 

This model is solved in toroidal geometry with the three- 
dimensional (3-D) initial value code FAR [13], which 
evolves the four scalar fields t,b, U, ha, all, using an implicit 
algorithm. All quantities are expanded in Fourier harmonics 
in cp and 8 and discretized on a radial grid. The time evolu- 
tion is followed until an asymptotic, linear, exponentially 
growing state is achieved. 

3. Results 

The strength of the alpha-destabilized TAE mode is directly 
influenced both by the level of alpha pressure and its gra- 
dient, since the driving terms scale with these parameters. 
Scaling of the growth rate with pai l  I dpao/dr 1 and Ba0 is thus 
of interest for validating the present model against analytic 
growth rate predictions and for comparison with experi- 
ment. Another characteristic feature of the TAE mode is 
that its real frequency, or,,1, should be relatively fixed at 
that of the original, resonant discrete shear Alfvkn mode. 
This can be approximately determined [ 5 ]  by the crossing 
point of the two adjacent cylindrical continua and is 
wrealrHp = n/(2m + 1) = 4 for n = 1, m = 1. Such roots 
become readily apparent in solving our system of evolution 
equations. We assume an energetic species equilibrium 
profile pao(r) = exp ( -r2/L;), take a flat ion density profile, 
and include the modes n = 1, m = (0 to 6). Typical scalings 
of the real frequency and growth rate vs. the alpha pressure 
gradient parameter, LJa obtained from the numerical 
results are displayed in Fig. 1. The parameters (TJM,J"2 = 
1.05uA0, Ba0 = 0.004, Bpa = and Gca = 100 are used. 
The equilibrium is numerically computed with E = 0.25 and 
zero /3 is the background plasma. The q profile is 

2 1  111 

= q0[ 1 + (;) ] ' 

with q0 = 1.05, I = 1, ro = 0.956 and q(1) = 2.2. These sim- 
plified profiles are chosen since they result in only a single 
TAE gap formed by coupling of the m = 1 and m = 2 
modes, as is typically assumed in the analytical treatments. 
The other parameters we have chosen are fairly typical of 
ignited devices, but are not intended to correspond to any 

Physica Scripta 45 



Alpha Destabilization of the T A E  Mode using a Reduced Gyrofluid model with Landau Closure 161 

0.012 

vW 1 
0.008 

0.25 

0.2 
arealrHp 

0.15 

0 0.8 1.6 

LJa 

Fig. 1 .  Dependence of real frequency and growth rake on alpha pressure 
profile [for Ba0 = 0.004, E = 0.25, 6 ,  = (TJMJ"' = 1.05uAO, = 
100, pion = constant]. 

particular device. Figure 1 indicates the real frequency is 
relatively constant near wreaI zHp x 0.3, as expected. The 
growth rate first increases as the gradient steepens and then 
decreases. The dropoff for LJa < 0.5 is due to the fact that 
the maximum gradient region of the puo(r) profile is shifting 
inward from the TAE gap location [which is at rgap = 0.63, 
i.e., for our q profile q(rgap) = (m + i ) / n  = 1.51. For LJa  > 
0.5 the profile is broadening, causing the local gradient at 
the gap location to decrease and lowering the growth rate. 
Similar scaling is seen in the analytic growth rate estimates 
with curve (a) corresponding to Ref. [3] and curve (b) to 
Ref. [7]. Using our pressure profile and taking n = 1, the 
result of Ref. [3] can be written as: 

with g(x) = x(l + 2x2 + 2x4)e-x2 and x = u J d m a  
while that of Ref. [7] is: 

Here rLo is the alpha poloidal gyroradius. Since the numeri- 
cal calculation includes more poloidal modes and takes into 
account the full global radial structure, it should not be 
expected to precisely agree; however, both results do indi- 
cate similar scaling. The elevated growth rate of the numeri- 
cal calculation at the higher values of LJa  and lack of a 
marginal point is likely due to coupling to higher order pol- 
oidal modes (up to m = 6 is included) for which the alpha 
Landau growth term (am, , )  still exceeds the alpha Landau 
damping term (amreaI) .  In Fig. 2, we plot the radial struc- 
ture of the poloidal electric field for two values of Duo. These 
are quite similar to the gap eigenfunctions given in Ref. [3], 
except for minor differences due to the slightly different q 
profile we use here. The radial mode structure appears to be 
relatively insensitive to variations in puo over the ranges 
considered here. Next, in Fig. 3 we show the scaling of the 
real frequency and the growth rate with the energetic species 
pu0 (for LJa = 0.35). For comparison, the analytically pre- 
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Fig. 2. Typical radial dependence of poloidal electric field eigenfunctions 
(for Be0 = 0.002 and 0.006, E = 0.25). 

dicted growth rates of Refs [3] and [7] for a Maxwellian 
energetic species distribution (without electron Landau 
damping) are shown by the remaining curves with (a) corre- 
sponding to Ref. [3] and curve (b) to Ref. [7]. All calcu- 
lations indicate a linear scaling with puo and a stability 
threshold at pu0 = 0 (which will move to a finite value of Duo 
if background ion and electron Landau damping are 
included). 

Finally, we examine the scaling with respect to the 
thermal velocity of the alpha component. In Fig. 4 numeri- 
cally obtained growth rates are plotted as ( 2 T ~ M , ) 1 ~ 2 / u A 0  
varies from about 0.3 up to 2. For these runs we have taken 
a,, = 0.004, L,/a = 0.4 and again compared with analytic 
results from Refs [3] (curve (a)) and [7] (curve (b)). As may 
be seen, the numerical growth rates are higher, although 
the scaling is similar, especially at the larger values of 
(2TJit431'2/uA0. For lower values of ( ~ T J M & ' / ~ / U ~ ~ ,  the 
numerical growth rates do not drop off as fast as the anlytic 
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Fig. 3. Dependence of real frequency and growth rate on pa, [for LJa = 
0.35, E = 0.25, 6, = (TJMJ"' = 1.05uAO, ace = 100, pion = 
constant]. 
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Fig. 4. Dependence of growth rate on mean alpha energy [for Ba0 = 0.004, 
LJa = 0.35, E = 0.25, b, = = 100, pion = constant]. 

ones. This is likely to be due again to the larger number of 
poloidal modes included in the numerical calculation; the 
higher m sidebands allow coupling to the hot distribution at 
lower velocities in the distribution. This feature is partially 
present in the analysis of Ref. [7] where coupling of the hot 
species with the first sideband (m = 2) is included in addi- 
tion to the coupling at the fundamental (m = l), which is 
retained in both analytical calculations [3, 71. 

4. Conclusions 

A simplified fluid model has been presented for the alpha- 
destabilized TAE gap mode. Numerical solutions using the 
existing MHD initial value code FAR [lo] have indicated 
real frequencies and growth rate scalings characteristic of 
the TAE instability. This opens up a number of new pos- 
sibilities for study of the gap mode that would be either 

difficult or impossible using other methods. First of all, the 
model can be extended to the nonlinear regime if mode 
coupling and profile relaxation are assumed to be the domi- 
nant nonlinearities. Second, in the linear regime, it is rela- 
tively easy to include multiple poloidal modes (to check 
convergence), examine noncircular cross sections, and con- 
sider toroidal mode numbers n > 1. Also, it is a relatively 
simple extension to include the background plasma 
pressure-gradient drive, Landau damping on the back- 
ground ions and electrons, finite ion FLR, and various dissi- 
pative effects (resistivity, viscosity, etc.) in this type of model. 
Although the latter might be expected to be small for the 
parameters of ignited devices, they have been shown to sig- 
nificantly modify the nature of the underlying shear Alfvkn 
spectrum [14]. 
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