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The problem of equilibrium and kinetics for adsorption] desorption of condensable
®apors in porous media is studied experimentally and theoretically. For adsorption, the

(network model for diffusion based on pore blocking theory with percolation in the
)network added by effecti®e medium approximation is further impro®ed. A new predic-

ti®e model based on properties of the Bethe lattices is proposed to account for the
existence of liquid-filled ‘‘blind’’pores that result in a decrease in the total diffusion rate.

( )For desorption, a new ‘‘shell and core’’ or shrinking core representation of the network
model is proposed. Information from adsorption] desorption equilibria is needed to
compute the thickness of the shell in which desorptionre®aporation occurs for concen-
trations higher than the percolation threshold. These models form a unified
equilibrium-kinetics theory for gas-porous solid systems that exhibit hysteresis. The mod-
els are applied to the systems silica gel-water ®apor and Vycor glass-nitrogen. Concen-
tration-dependent Fickian diffusi®ities for these systems ha®e been measured for both
adsorption and desorption branches. The adsorption model successfully predicts the
experimental data with a maximum in diffusi®ity. The desorption model correctly pre-
dicts the concentration dependence of diffusi®ity with a steep minimum at the percola-
tion threshold.

Introduction

The problem of predicting diffusion rates of adsorbable
vapors in porous media in the range of pressure where capil-
lary condensation occurs is a significant one for the design
and operation of adsorbers, dryers, catalytic reactors, mem-
brane separators, and so on. Although many aspects of the
diffusionrtransport process are understood in principle
Ž .Sahimi, 1995 , the important role of capillary condensation
and evaporation has been largely neglected due to difficulties
in separating the contributions from different transport
mechanisms.

For adsorption and desorption of condensable vapors, the
vapor in the adsorbent exists as adsorbed molecules on the
solid surface, condensate in fine pores and as vapor in the
voids. During adsorption at low partial pressures, monolayer
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adsorption plays the major role. At higher partial pressures,
the role of multilayer adsorption becomes important and si-
multaneously capillary condensation in the finer pores be-
gins. Capillary condensation increases with increasing rela-
tive pressure, and eventually the entire pore volume becomes
filled by capillary condensate. During desorption, as the rela-
tive pressure is reduced, systems in which capillary condensa-
tion occurs generally show hysteresis, that is, in a particular
pressure range more vapor remains adsorbed during desorp-
tion than was adsorbed during the initial adsorption process.
Classical explanations of hysteresis based on single pores
Ž .such as Everett, 1967; Gregg and Sing, 1982 cannot satisfac-
torily explain some important experimental observations, such
as the higher-order adsorption]desorption scanning curves.
Models that treat the pore system as an interconnected net-
work have been developed more recently. These models at-
tribute hysteresis to pore blocking where the emptying of a
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large pore filled with capillary liquid has to be preceded by
Žthe emptying of its smaller neighbors Mason, 1988; Parlar

and Yortsos, 1988; Seaton, 1991; Li et al., 1991; Lilly et al.,
.1993; Rajniak and Yang, 1993, 1994 . Hence, the primary

desorption is a connectivity-related phenomenon. Such phe-
Žnomena can be described best by percolation theory Broad-

.bent and Hammersley, 1957 .
The percolation model for primary desorption is not in

complete agreement with the experimental data shown in
Figure 1a, because the initial part of the real desorption
isotherm is not horizontal as described by the theory and
shown in Figure 3a. There are various explanations for this

Ž .fact: decompression of the liquid phase Mason, 1988 and
Ž . Ž .nucleation effects Parlar and Yortsos, 1989 . Liu et al. 1993

carried out extensive Monte Carlo simulations of the primary
desorption and have shown that the finite size of the mi-
croparticles is important and the surface clusters must be
taken into account. The desorption process is then related to

Ž .invasion percolation Wilkinson and Willemsen, 1983 , the
Žmain difference being that here the invading phase vapor in

.this case enters from the whole surface of the system, rather
Žthan from just one face Guyer and McCall, 1996; Page et al.,

.1993 .
The equilibrium behavior of capillary condensate is rela-

tively well understood, but its dynamic behavior has not been
studied in the works cited above. Various experimental meth-
ods used to determine the mass transport rates in the capil-

Žlary condensation regime Rhim and Hwang, 1975; Tamon et

Figure 1. Experimental hysteresis dependent adsorp-
tion-desorption equilibria and kinetics.
Ž .a Equilibria; L s lower limiting point, Us upper limiting

Ž .point of the hysteresis loop; b kinetics.

.al., 1981; Toei et al., 1983; Eberly and Vosberg, 1965 and
theoretical approaches explaining the experimental results
ŽCarman, 1952; Flood et al., 1952; Gilliand et al., 1958;

.Kapoor et al., 1989 have appeared in the literature. Most of
Žthem are discussed in our previous work Rajniak and Yang,

.1996 .
Like in adsorption-desorption equilibria, hysteresis has also

been reported for the diffusion rates or kinetics in the capil-
lary condensation region. Hysteresis in both equilibria and
kinetics are illustrated, respectively, in Figures 1a and 1b. The
concentration dependence of diffusivity exhibits a maximum
during adsorption and a minimum during desorption. Inter-
estingly, the maximum is located near the upper closure point
Ž . Ž .U of the hysteresis loop Chen and Yang, 1993 , while the

Ž .minimum appears near the lower closure point L . The ad-
sorption and desorption branches coincide only in the region
of surface diffusion, that is, at low partial pressures. Such
concentration dependence is typically seen in gravimetric
measurements for rates of adsorption and desorption when

Žthe results are fitted by the transient diffusion equation Fick’s
. Žsecond law with a constant diffusivity Karger and Ruthven,¨

.1992; Rajniak and Yang, 1996 . Mass transport in the porous
material is a complex combination of gaseous diffusion,
surface diffusion, capillary condensationrevaporation, and
flow of liquid condensate. Evaluation of such a complicated
process using diffusion equation with a constant diffusivity is
only a mathematical simplification for the purpose of com-
paring rates at various concentrations during adsorption and
desorption. Literature reports on hysteresis in the kinetics in
adsorption-desorption include the study of capillary conden-

Ž .sation flow of toluene in Vycor glass Abeles et al., 1991 ,
gravimetric measurements of the kinetics of isothermal ad-

Žsorption and desorption of isopropanol in Vycor glass Haynes
.and Miller, 1982 , multilayer diffusion and capillary conden-

Žsation of propylene in supported alumina films Uhlhorn et
. Žal., 1992 , permeabilities in Vycor glass Lee and Hwang,

.1986 , and isothermal transport of liquids in partially satu-
Ž .rated packed beds of glass spheres Bussing et al., 1996 .¨

Literature reports that are of particular interest to this work
Žare the theory on preparation of supported catalysts Neimark

.et al., 1981 , moisture transport in microporous substances
Ž . ŽRadjy, 1974 , study of drying by NMR imaging Maneval et

.al., 1991 , and determination of moisture diffusivity in porous
Ž .media using concentration profiles Pel et al., 1996 . The

models used in these studies represent the classic continuum
Ž .approach Sahimi et al., 1990 . Most of these works are re-

stricted to the idealized case of a single pore size. The
complexities caused by the pore-size distribution and by the
network effects were not considered. In the continuum mod-
els, the porous medium is treated as a continuum within which
the properties of the fluid and solid phases are defined as
smooth functions of time and positions. Continuum models
are often not adequate for systems consisting of phases that
differ appreciably from one another in their effective proper-

Ž .ties Sahimi et al., 1990 .
There have been only a few studies on kinetics using net-

Žwork models where phase changes are included Daian, 1992;
Yortsos et al., 1993; Prat, 1993, 1995; Laurindo and Prat, 1996;

. Ž .Li and Yortsos, 1995; Rajniak and Yang, 1996 . Daian 1992
examined various methods for computing moisture diffusion
rates. The interactions between vapor diffusion and liquid

April 1999 Vol. 45, No. 4 AIChE Journal736



transport are discussed based on the network theory. Some
experimental results seem to indicate that the actual role of
vapor diffusion is strongly influenced by its interaction with
the liquid phase through condensation and evaporation. Prat

Žand coworkers studied evaporation in porous media Prat,
.1993, 1995; Laurindo and Prat, 1996 . They conclude that

evaporation belongs to the invasion percolation type. The
main difference between evaporation and standard invasion
percolation lies in the erosion of the disconnected liquid clus-
ters that form as a result of the growth of the invading vapor
phase. As phase change takes place at the boundary of these
disconnected clusters, they can be invaded in evaporation
while they are generally considered as trapped in standard
invasion percolation. Experimental and simulated phase dis-

Ž .tributions Laurindo and Prat, 1996 for the case with stabili-
zing gravity forces show a sharp boundary between the liquid
and vapor phases.

Ž .In our recent work Rajniak and Yang, 1996 , a network
model was formulated for predicting effective Fickian dif-
fusivities of condensable vapors in porous media where ca-
pillary condensation and adsorption-desorption hysteresis
occur. The model unifies the equilibrium theory based on the
pore-blocking interpretation of hysteresis in the intercon-
nected network of pores and the percolation model of mass
transport in the network with randomly interspersed regions
for capillary condensation and surface flow. In the present
work, we briefly summarize the main concepts of the equilib-
rium theory for adsorption-desorption systems with hysteresis
Ž .Mason, 1988; Rajniak and Yang, 1993, 1994 based on the
pore-blocking theory and percolation theory in the Bethe tree
network. Next, the network model for both adsorption and
desorption kinetics is developed for the idealized case of the
infinite media. Modifications of the theory necessary for real
systems with finite dimensions of the network are then pro-
posed. For adsorption, a modification is proposed for the
computation of ‘‘blind’’ liquid-filled pores. The derivation is
based again on the Bethe tree approximation of the pore net-
work structure. The only parameter in the proposed model is
connectivity, which can be obtained independently. The im-
proved model predicts the concentration dependence of the
effective diffusivity for systems with a maximum diffusivity.
For desorption kinetics, a model is proposed for computing
the descending branch of the concentration dependence of
effective diffusivity for relative pressures higher than that
corresponding to the percolation threshold. The proposed

Žmodel is based on the ‘‘shrinking core’’ Sahimi et al., 1990;
Lee and Aris, 1985; Brunovska et al., 1985; Markos et al.,´

.1987 . In order to compare the predictions of the proposed
models with experimental data, a complete set of concentra-
tion-dependent equilibrium-diffusion data is obtained for the
system Vycor glass-nitrogen.

Theoretical Considerations
We consider the adsorption-desorption process of a con-

densable vapor in a porous adsorbent. In Figure 1a the ad-
sorption-desorption equilibria for the process are shown. At
relative pressures below point L, the lower closure point of
the hysteresis loop, only surface adsorption occurs. The posi-
tion of point L is characteristic of each sorbate-sorbent pair
Ž .such as, Naono and Hakuman, 1993; Burgess et al., 1989 .

Mass transport rates in this region are contributed by gaseous
diffusion and surface diffusion. Mass transport rates in this
region are the same for both adsorption and desorption, and
the study of the kinetics in this region is out of scope of this

Ž .work Karger and Ruthven, 1992; Yang, 1987 .¨
Above point U, the upper closure point of the hysteresis

loop, all pores become filled with capillary condensate. The
position of point U depends on the pore-size distribution of
the adsorbent. If point U lies below the saturation pressure
of the adsorptive, then it is presumed that the solid has no
pores of radii greater than that corresponding to the closure
point. Adsorption beyond this pressure is related to the
change of curvature of menisci freely accessible to the vapor

Žand the compression of liquid condensate in the pores Liu et
.al., 1993 . On the other hand, when decreasing the pressure

in the region above point U, a negative pressure is produced
and this decompression reduces the density of liquid conden-

Ž .sate Mason, 1988 . Transport of liquid condensate in the
region above point U can then occur only by hydraulic pres-
sure, and, under usual conditions of adsorption experiments,
this flow is much smaller than the capillary condensate flow.
During adsorption at point L, the condensation pressure is
reached in the finest pores and the pores are filled with a
liquidlike phase. The extent of capillary condensation in-
creases with increasing pressure, and, at point U, the entire
pore volume is filled by capillary condensate.

In this study we are interested in the mass transport rate in
the region of capillary condensation, that is, in the region
between the limiting points of the main hysteresis loop L and
U.

Adsorption-desorption equilibria for infinite systems
ŽThe pore blocking theory Mason, 1988; Rajniak and Yang,

.1993, 1994 was developed directly for the capillary conden-
sation domain, and it describes the adsorption-desorption
equilibria for relative pressures x L- x- xU. Following the
pore blocking theory, a porous material consists of a number
of pores connected together in a network in which we distin-

Ž . Ž .guish sites pore bodies from bonds pore throats . The indi-
vidual sites are connected via bonds. The average number of
bonds to each site is defined as connectivity C. The charac-
teristic dimension of the site or of the bond r can be related
to the macroscopic Kelvin equation for capillary condensa-
tion. Thus, at any value of relative pressure x, the process
may be uniquely parametrized by the characteristic dimen-
sion r. Another important function is q, the probability that
the site is filled by capillary condensate at relative pressure x.
Similarly p is the probability that the bond is filled at the
relative pressure x. Under the assumptions that the capillary
condensation phenomenon controls the equilibrium of the
sorption process between points L and U, and that the vol-
ume of capillary condensed liquid is primarily associated with
the cavities, the adsorption process is represented by an in-
crease of qs0 at xs x L to qs1 at xs xU. On the other
hand, the desorption process is represented by a decrease of
ps1 at xs xU to ps0 at xs x L.

The probabilities p and q are related through connectivity
Ž .C by Mason, 1988; Rajniak and Yang, 1993

qs pC 1Ž .
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To relate q and p to a, the amount adsorbed on the sorption
isotherms, the variable S must be introduced. S, the fraction
of pores filled, is related to the adsorbed amount by the ex-
pression

ay aL

Ss 2Ž .U La y a

The amount adsorbed a during adsorption or desorption is
a function of the relative pressure x via the adsorption or
desorption isotherm, that is,

a s f x 3aŽ . Ž .A

a s f x 3bŽ . Ž .D

ŽFor the primary adsorption process the subscript A is for
primary adsorption and the subscript D for primary desorp-

.tion , the fraction of pores filled by capillary condensation is

S s q 4Ž .A

It is worth noting that S is not dependent on connectivityA
C. Pore blocking does not play any role in adsorption equilib-
ria. When a porous material is filled by adsorption, all of the
pores are equally accessible. Even if the pore becomes iso-
lated from the bulk vapor, it can still fill by condensing vapor
from adjacent pores that can then refill from the bulk vapor.

For primary desorption, the hysteresis of capillary con-
densed vapor can be explained by pore-blocking effects, where
a pore cannot empty until at least one of its neighbors has
emptied. This effect depends in principle on the interconnec-
tions and the interconnectedness of the pore network. The
model frequently used for the interconnectedness is the Bethe
tree shown in Figure 2. The advantage of using the Bethe
tree is that the description of its behavior can be carried out

Figure 2. Bethe lattice with connectivity C=3.

analytically. Bethe trees can give simplified expressions for
several properties of the porous medium, while retaining most

Žfeatures of percolation theory Sahimi, 1993; Kainourgiakis
.et al., 1998 .

ŽThe analysis given here uses percolation theory Stauffer
.and Aharony, 1992; Sahimi, 1994, 1995 with the restriction

to a Bethe tree network. During the primary desorption
process, whether a site remains full or empty depends on
whether one of its bonds is connected to the vapor and at the
same time can also be emptied. At some stage during pri-
mary desorption, at some value of p, the probability that a
bond into a site is connected to the vapor is ®. The fraction
of the pores filled during primary desorption S at probabili-D
ties p and ® can be computed via Eqs. 5 and 6 derived by

Ž .Mason 1988

CS s ®pq1y ® 5Ž . Ž .D

where

Ž .C y1®pq1y ® s1y ® 6Ž . Ž .

Combining Eqs. 1]6 and knowing connectivity C, we can
compute for any relative pressure x the amount adsorbed
during desorption a , or during desorption a , and the cor-A D
responding fractions of pores filled S or S , and the proba-A D
bilities q and p.

Figure 3a shows the theoretical primary desorption
isotherm computed from Eqs. 1]6 assuming Cs3. The ini-

Figure 3. Theoretical hysteresis-dependent adsorption-
desorption equilibria and kinetics.
Ž . Ž .a Equilibria, T s percolation threshold; b kinetics.
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Žtial part of the theoretical desorption isotherm between
.points U and T is a horizontal line. In fact, the theoretical

relations 5 and 6 give values S s1 for all values of p greaterD
than pT, where

Cy2Ž .
Tp s 7Ž .

Cy1Ž .

is the value of probability p at the percolation threshold T of
the desorption process.

Along this desorption branch, there is theoretically no
desorption. Desorption should begin only at point T, the
percolation threshold for primary desorption, when there is
a sufficient number of bonds in which the adsorbate is below

Žits condensation pressure and thus is present as either
.metastable liquid or vapor and, consequently, a sufficient

number of vapor connections in the porous network and de-
sorption from the bulk of the adsorbent can start.

The primary adsorption process in the capillary conden-
sation region can be treated as a classic site percolation
problem. Pores with different dimensions are randomly dis-
tributed in the pore space. In this case pore sites of the
network are filled by capillary condensate with probability q
and partially filled by surface adsorption with probability 1y
q. However, percolation characteristics of the primary ad-
sorption are not important for description of the equilibrium
behavior of the process, because whether a particular site is
filled by capillary condensation depends only on its charac-
teristic dimension. The percolation properties of the primary
adsorption are of particular interest for the kinetic behavior
of the process.

The primary desorption equilibrium problem belongs to the
group of bond percolation problems, because the emptying of
the pore sites is determined by the bonds connections. Con-
nectivity of the network plays a dominant role in the descrip-
tion of the process. The theoretical model using Bethe tree is
developed for the infinite system and the clusters at the sur-
face of the system cannot be taken into account. Between
points T and U starting with a filled system, p is progres-
sively reduced until at the critical value pT, the system starts
to empty. This occurs at the critical percolation probability
pT. For an infinite system, there is no desorption until the
percolation threshold is reached and the desorption isotherm
has a discontinuity in slope at the threshold.

Adsorption-desorption kinetics for infinite systems
Mass transport in the capillary condensation region is a

complex phenomenon. The conditions under which capillary
condensation occurs are also those under which significant
surface diffusion is expected. Study of this phenomenon is
therefore complicated by the difficulty of separating the
contributions from the various transport mechanisms. For-
tunately, vapor-flow contribution is found to be negligible
under these conditions. Vapor-phase transport is in this
case usually orders of magnitude smaller than the surface flow
because of the relatively small amount of molecules in the

Žvapor phase compared to that in the adsorbed phase Haynes
.and Miller, 1982; Abeles et al., 1991 . As soon as a pore is

filled with condensate during adsorption, the vapor flux
through that pore is cut off and transport then depends on

surface diffusion together with any bulk flow induced by the
capillary forces. It is not generally recognized that the capil-
lary suction is a contributor leading to the mass-transfer am-

Žplification Weisz, 1975; Lee and Hwang, 1986; Abeles et al.,
1991; Karger and Ruthven, 1992; Radjy, 1974; Rajniak and¨

.Yang, 1996 . Any capillary condensate volume elements will
create a short-circuit effect leading to a reduction in the
length of the diffusion path and a corresponding increase in
the effective diffusivity. As a consequence, capillary conden-
sation generally increases the total mass transport rate. As
the relative pressure is increased, the number of pores that
are still not filled with condensate decreases rapidly, and at
point U, all pores are filled with capillary condensate. So, the
first effect of the capillary condensation is to increase the
mass transport rate when some pores are filled with conden-

Ž .sate. For theoretical infinite media, the total mass transport
rate during adsorption will increase in the capillary conden-
sation region with an increasing number of pores being filled
by capillary condensation, as shown in Figure 3b.

If the upper closure point U lies below xs1, we can ex-
pect a decrease of the total mass transport rate for relative
pressures xU- x-1, because in this region all pores are filled
with capillary condensate and the transport is controlled by
the flow of liquid condensate. For x) xU, there exists a dis-
continuity in the concentration dependence of diffusivity that
drops abruptly to the value characteristic of the system when
the whole sample is filled with condensate. In this region, the
transport is controlled by the liquid flow of capillary conden-
sate during the compression of the condensate in the sample
and flattening of the menisci. Such discontinuity is an artifact
of the model for the theoretical infinite system of connected
pores; and it does not exist in real systems. If the upper clo-
sure point U is at xs1, capillary condensation accelerates
the mass transport in the whole concentration range above
point L. Theoretical prediction of diffusivity during adsorp-

Žtion is discussed in detail in our previous work Rajniak and
.Yang, 1996 .

The physical situation is quite different for the case of de-
sorption or evaporation of the condensed adsorbate. While
the condensation generally increases the mass transport rate,
evaporation is a very slow process and one can expect a de-
crease in the total mass transport rate with an increasing role
by evaporation from pores. For an infinite medium, there is
no desorption between points U and T and diffusivity is zero
in this region, as shown in Figure 3b. At the percolation
threshold T, desorption starts and the diffusivity increases
from zero. At point L, the two branches of concentration-
dependent diffusivities coincide.

Theoretical models for infinite media successfully predict
some qualitative features of the concentration dependence of
diffusivity, that is, a rise in diffusivity during adsorption be-
tween points L and U and a rise in diffusivity between points
T and L during desorption. However, the models cannot pre-
dict extremes on both dependencies, that is, a maximum for
adsorption and a minimum for desorption, which are typical
for the real finite systems.

One of the simplest methods for estimating the effective
transport properties of disordered media is the effective

Ž .medium approximation EMA , which is a phenomenological
method by which a disordered medium is replaced with a
hypothetical homogeneous one represented by unknown
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Ž .physical constants Kirkpatrick, 1971; Sahimi, 1993 . EMA
thus transforms a many-body system into a one-body problem
by which effective transport coefficients can be obtained.

The problem of mass transport in the porous adsorbent
with randomly distributed fractions of pores filled by capil-
lary condensation and by surface adsorption is similar to the

Žproblem of diffusion in a bi-disperse medium Benzoni and
.Chang, 1984; Burganos and Sotirchos, 1987 . Generally, a

discrete multimodal distribution of pore diffusivities has the
form

n

f d s f d dy d 8Ž . Ž .Ž .Ý i i
is1

where d is the Delta function and d is the diffusivity of thei
Žpore of the ith kind such as, d s d for the pore partiallyi s

filled by surface adsorption and d s d for the pore filled byi c
.capillary condensation and n is the number of different frac-

tions of pores. The EMA equation for the Bethe lattice with
Žconnectivity C Stinchcombe, 1974; Heinrichs and Kumar,

.1975; Sahimi, 1993 reduces to the summation

n d y di EMA
f s0 9Ž .Ý i d q Cy2 dŽ .i EMAis1

where n is the number of different fractions of pores, dEMA
is the effective medium diffusivity, and d is the diffusivity ofi
the pore of type i.

The value of d computed from the effective mediumEMA
Ž .equation Eq. 9 is related to the effective diffusivity of the

Ž .whole network D Stinchcombe, 1974 byEMA

Cy2Ž .
D sC d 10Ž .EMA EMACy1Ž .

The following assumptions are made for all ensuing mod-
els:
Ž . L1 For relative pressures x- x , all pores of the porous

medium are partially filled by surface adsorption, while for
x) xU all pores are filled by capillary condensation. For x L

- x- xU, that is, in the hysteresis domain, the pores are par-
tially filled by surface adsorption as well as capillary conden-
sation.
Ž .2 The fraction of pores filled by capillary condensation is

S and that by surface adsorption is 1yS. For primary ad-
sorption S is given by Eq. 4 and for primary desorption SA D
is given by Eqs. 5 and 6.
Ž .3 The symbol d was used for the diffusivity in the poreS

site that is partially filled by surface adsorption and d forC
the diffusivity in the pore site that is filled by capillary con-

Ždensation during adsorption in the hysteresis region. Mass
transport occurs in pores containing condensate by pressure-
driven flow, rather than diffusion, and the use of d is aC

.formal simplification. Similarly, we will use the symbol dE
for the diffusivity in the pore site that is filled by capillary
condensation during desorption in the hysteresis region. We
will use the symbol d for the diffusivity in the pore site thatF
is filled by capillary condensation in the region of flow of
capillary condensate, that is, for relative pressures x) xU.

Ž . Ž4 We will assume d - d - d that is, evaporation isE S C
slower than surface adsorption which is slower than capillary

. Žcondensation , and also d - d that is, flow of capillaryF C
.condensate is slower than diffusion of capillary condensate .

Ž . Ž .5 The bonds pore throats and windows between the
pore sites do not contribute significantly to the total volume
and the volume of capillary condensed liquid is associated
only with the pore sites.

Based on the foregoing discussion, the model for the ad-
sorption kinetics in the infinite media is given by Model A1
as follows:

Model A1:
For xF x L:

f s1 f s0 d s d1 2 EMA S

For x L- x- xU:

f s1yS f sS d s d d s d1 A 2 A 1 S 2 C

d given by solution of Eq. 9 for ns2EMA

For xG xU:

f s0 f s1 d s d1 2 EMA F

The dependence of the effective diffusivity for Model A1 is
shown in Figure 3b. Model A1 is equivalent to Model 2 dis-

Ž .cussed in our previous article Rajniak and Yang, 1996 , where
the theoretical dependencies for various values of connectiv-
ity are also shown. The dependence of diffusivity contains a
maximum at xs xU. For x) xU, there exists a discontinuity
in the concentration dependence of diffusivity that decreases
abruptly to the value d .F

The model for desorption kinetics in the infinite media that
Ž .is discussed in the present analysis Model D1 is summa-

rized as follows:

Model D1:
For xG xU:

f s0 f s1 d s d1 2 EMA F

For xT- x- xU:

f s0 f sS s1 d s01 2 D EMA

For x L- x- xT:

f s1yS f sS d s d d s d1 D 2 D 1 S 2 E

d given by solution of Eq. 9 for ns2EMA

For xF x L:

f s1 f s0 d s d1 2 EMA S
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Figure 4. Theoretical dependencies of diffusivity on
( ) ( )pore-filling q for various connectivity C .

Ž . Ž . Ž . Ž .For a adsorption Model A1 ; b desorption Model D1 .

The theoretical dependence of the effective diffusivity based
on Model D1 is shown in Figure 3b. The model predicts a
decreasing diffusivity between points L and T, which is ob-
served also for real systems. Between points T and U, the
diffusivity is zero indicating no desorption or mass transfer in
this region.

In Figure 4 the theoretical dependencies of effective diffu-
sivity for various connectivities are shown for both adsorption
and desorption. Models A1 and D1 successfully predict the
basic features of experimental results, that is, a maximum in
diffusivity during adsorption and a minimum during desorp-
tion. However, there exist artifacts in the models which need
further discussion, that is, discontinuity in the concentration
dependence during adsorption and zero diffusivity in the
concentration dependence during desorption.

Adsorption-desorption equilibria for finite systems
From the viewpoint of the equilibrium behavior, the pri-

mary adsorption process in the capillary condensation region
can be treated as a classic site percolation problem. The pore
sites of the network are filled by capillary condensate with
probability q and partially filled by surface adsorption with
probability 1y q. As discussed earlier, whether a particular
site is filled by capillary condensation depends only on its
characteristic dimension, while the connectivity of the pores
is irrelevant, and the primary adsorption for the real systems,
that is, porous media with finite dimensions, is the same as
that for the infinite systems described by Eqs. 2, 3a, and 4.

Disagreement between theory and experiment exists for the
case of real primary desorption, since the real desorption

Figure 5. Desorption equilibria for finite systems.
Amount adsorbed in the shell a and in the core aU at pointA1
1 on the experimental primary desorption curve where the

Ž .amount adsorbed is a inset shell and core of the mi-D1
Ž .croparticle for amount adsorbed a see also Eq. 11 .D1

isotherm is not horizontal and desorption does occur. Vari-
ous explanations for this fact were discussed in our previous

Ž .work Rajniak and Yang, 1994 and empirical correction
functions were proposed for computation of the real amount
adsorbed during primary desorption, as well as during
higher-order desorption processes. However, most of the the-
oretical and experimental studies indicate that the finite size
of the microparticles of the porous material and correspond-
ing desorption from the surface of the microparticles is the
most important reason of the disagreement. The real primary

Ždesorption can be described by various relations Rajniak and
.Yang, 1993, 1994 . However, use of either Langmuir or Du-

binin or other kind of adsorption equilibria relationship for
the hysteresis-dependent desorption is only a mathematical
simplification.

Some properties of the Bethe trees make them unsuitable
for evaluating surface effects of the real media. The fraction
of the sites of the Bethe tree that are on its surface is given

Ž . Ž .by Cy2 r Cy1 . This means that, in a Bethe lattice, most
Ž .of the sites or bonds are on the surface, whereas, in reality,

this fraction is small. So the Bethe tree model of the pore
structure can be used only for the core of the microparticle
and another approach has to be used for the surface.

In this work, a new approach based on mass balance of the
adsorbed material in the particle will be used to evaluate the
amount adsorbed during primary desorption. We assume that
between points T and U in Figure 5, as the pressure de-
creases, the condensed adsorbate is able to vaporize only from
some pores near the outer surface of the microparticle, and
then from some of the pores adjacent to those vapor filled

Žpores, so that clusters of vapor filled pores or surface clus-
.ters grow on the outer surface of the microparticle. The va-

por phase increasingly penetrates the surface layer of the mi-
croparticle. At the same time, the bonds in the bulk of the
microparticle form clusters of bonds in which the adsorbate
is below its condensation pressure but without access to the
vapor phase. Only at the percolation threshold, the bonds in
the bulk of the microparticle form a percolating cluster that
has access to the outer surface, and desorption from the bulk
of the microparticle can start. The decrease in the amount
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adsorbed between points U and T on the real primary de-
sorption isotherm is a consequence of the desorption from
the surface cluster of the microparticle of the porous mate-
rial. Next we assume that there is a distinct boundary be-

Ž .tween the surface shell that is partially desorbed and the
Ž . Žbulk core that is completely filled for the microparticle see

. Ž T U .Figure 5 inset . At relative pressure x x - x- x , the core
is completely filled with liquid condensate, that is, the frac-
tion of the pores filled in the core is Ss1 and the amount
adsorbed is aU, while the fraction of pores filled in the shell
is equal to S , the fraction corresponding to the primary ad-A

Ž .sorption isotherm that is, the amount adsorbed is a . TheA
mean value of the fraction filled in the whole microparticle is
obviously S , the fraction corresponding to the real primaryD

Ž .desorption isotherm the amount adsorbed is a . From theD
material balance on the microparticle, it is then easy to eval-
uate the thickness of the core R1

33 a y a S ySD A D A
R s R s R 11Ž .1 U (( 1ySa y a AA

Ž .The material balance Eq. 11 and the evaluation of the core
and shell thicknesses are important also for the desorption
kinetics prediction for real finite systems.

Adsorption-desorption kinetics for finite systems
The theoretical relations of Model A1 were developed for

Ž .the idealized case of an infinite network that is, Bethe tree ,
in which all pores are conductive. There are neither blind
pores nor nonconductive pores, and the effect of decreasing
the total mass transport rate by the influence of the flow of
capillary condensate in pores completely filled by the con-
densate is important only for xG xU. In real porous adsorb-

Ž .ents, there exists both blind dead-end pores and noncon-
ductive pores.

The problem of nonconductive pores was discussed by
Ž . Ž .Radjy 1974 and Lee and Hwang 1986 . They assumed that

in a cylindrical pore, an annular film is formed on the solid
wall and considered that the thickness of this film is the same
as the thickness of the adsorbed layer on a free surface not
subject to capillary condensation. Therefore, it increases when
the vapor concentration increases and the smallest pores may
become completely nonconductive at higher relative pres-
sures. The fraction of pores that are nonconductive will in-
crease with increasing pressure as well as with increasing q.

Ž .The blind dead-end pores are accessible for filling by sur-
face adsorption and capillary condensation; but, after filling
with capillary condensation, they do not increase the total
mass transport rate, but on the contrary, decrease it, because
they do not conduct the flow. Again, the fraction of pores
that belongs to the blind clusters will increase with increasing
q. For qs1, all pores are filled with condensate and belong
to blind clusters. Therefore, in real porous adsorbents with a
broad pore-size distribution and with the presence of the blind

Žpores, all three main mechanisms surface diffusion, capillary
.condensation, and liquid flow of capillary condensate may

already be operative simultaneously below point U. The
existence of nonconductive or blind pores can explain the
maximum in the concentration dependence of diffusivity dur-
ing adsorption at a relative pressure x- xU. In our previous

Ž .work Rajniak and Yang, 1996 , a model was proposed by
taking into account the empirical fraction of blind pores. Us-
ing that previous model with an adjustable quantity aU, it was
possible to fit the experimental diffusivity data. A similar ap-
proach can be used to take into account also the existence of
the nonconductive pores.

In this work we formulate a completely predictive ap-
proach based on the properties of Bethe trees. For such lat-
tices, the analytical solution for the evaluation of the fraction

Žof liquid filled pores without connection to infinity exterior
. Žsurface B is available Stinchcombe, 1974; Larson and Davis,

.1982 , that is,

C y1 qy1
Cy jB q s0 12Ž .Ý qjs 2

and

Qs1y B 13Ž .

represents the probability that an arbitrarily chosen conduct-
ing branch leaving a given site is an infinite cluster.

We will define a ‘‘blind’’ liquid-filled pore as one having
also all its C neighbors liquid filled and with all its C neigh-

Ž .bors connected to infinity external surface via at least one
connected pathway of liquid-filled pores. The situation is
shown in Figure 6. So the probability s that any pore is ‘‘blind’’

Ž .is given by probability q that a given pore is liquid filled
C Žmultiplied by q the probability that all its C neighbors are
. C Žalso liquid filled and multiplied by probability Q that all C

neighbors have at least one liquid-filled branch connected to
.infinity , that is,

ss qqC QC 14Ž .

( )Figure 6. Dead-end blind pore for Bethe tree network.
The filled central pore is blind because all three neighbors
Ž . Ž .pores 2, 3, 4 are filled and connected to infinity surface

Žvia at least one connected pathway of liquid-filled pores that
is, pathway 2-5-6-7-8, pathway 3-9-10-11-12, and pathway 4-

.13-14-15-16 .
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Figure 7. Adsorption kinetics for finite systems vs. frac-
tion of pores filled.
Ž . Ž . Ž .a Fraction of blind pores s for various connectivity C
Ž . Ž .Eqs. 12]14 ; b dependence of diffusivity for various con-
nectivity d s d s1, d s 6.S F C

The theoretical dependence of the fraction of blind pores s
as a function of q is shown in Figure 7 for various values of
connectivity.

Ž .The model for the adsorption kinetics for the finite real
media incorporating the existence of the blind pores is there-
fore given below:

Model A2:
For xF x L:

f s1 f s f s0 d s d1 2 3 EMA S

For x L- x- xU:

f s1y q f s q 1y s f s qsŽ .1 2 3

d s d d s d d s d1 S 2 C 3 F

s given by solution of Eqs. 12]14

d given by solution of Eq. 9 for ns3EMA

For xG xU:

f s f s0 f s1 d s d1 2 3 EMA F

The theoretical dependence of the effective diffusivity
based on Model A2 for various values of connectivity is shown

in Figure 7b as a function of pores filled by capillary conden-
sation q. Comparing Figures 7a and 7b, it can be concluded
that the acceleration of the mass transport rate is more pro-
nounced for higher values of connectivity where the existence
of blind pores is less important. A higher value of connectiv-
ity also shifts the position of the maximum diffusivity to a
higher value of concentration.

The use of EMA employed in the development of the net-
work model for mass transfer during adsorption is based on
the assumption that the various classes of pore diffusivities
Ž .conductances are spatially distributed at random. This as-
sumption is valid for the case of adsorption, because all the
pores accessible to a given phase are effectively occupied by
it. Its validity is more doubtful for desorption when the spa-
tial topology of the phases is influenced by pore blocking. As
a consequence of pore blocking for the infinite systems, there
is no desorption and no mass transport for concentrations
higher than that corresponding to the percolation threshold.
This problem was already discussed above, and, for real finite
systems, it seems to be logical that the desorption begins for
the higher concentrations when evaporation proceeds from
the external surface of the finite microparticle. In the second
step the boundary of the phase separation along the widest
pores connected with the external surface penetrates into the

Ž .pellet microparticle volume.
For desorption kinetics for the real finite system, the fol-

lowing assumptions are made:
Ž .1 There exist two basic configurations inside the mi-

croparticles of the adsorbent, that is, a completely filled core
and a partially filled shell. The thickness of the core R is1

Ž .given by Eq. 11 see also Figure 4 .
Ž .2 For mass transport in the core, the model for infinite

Ž .medium Model D1 can be used, that is, there is no desorp-
tion from the core for x) xT.
Ž . Ž .3 There is no pore blocking and no hysteresis in the

shell, and mass transport in the shell occurs at all relative
pressures.

Following the discussion above, the model for predicting
the effective diffusivity for desorption in the finite media is
summarized as follows:

Model D2:
For the whole particle:

For xG xU:

f s0 f s1 d s d1 2 EMA F

For xF x L:

f s1 f s0 d s d1 2 EMA S

For the core:
For xT- x- xU:

f s0 f sS s1 d s01 2 D EMA, core

For x L- x- xT:

f s1yS f sS d s d d s d1 D 2 D 1 S 2 E

d given by solution of Eq. 9 for ns2EMA, core
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For the shell:
For x L- x- xU:

f s1yS f sS d s d d s d1 A 2 A 1 S 2 E

d given by solution of Eq. 9 for ns2EMA, shell

The theoretical dependence of the effective diffusivity for
both core and shell is shown in Figure 8. The dependence

Žfore the core diffusivity is the same as that by Model D1 see
.Figure 3b . Both diffusivities decrease with an increasing rel-

ative pressure, and they join at the two limiting points of the
main hysteresis loop L and U. However, there is no minimum
in any of the dependencies.

ŽFrom adsorption-desorption experiments such as by a
.gravimetric method , we can evaluate only one apparent dif-

fusivity which is representative of the whole microparticle. In
the next part, the models of diffusion in the finite microparti-
cle are formulated for both adsorption and desorption. Theo-
retical prediction of the apparent diffusivity is also discussed
in the following.

Models for mass transport in a single microparticle
Processes in porous media can be studied by the contin-

uum approach or the discrete approach. The present study
refers to the discrete approach and is based on a representa-
tion of the pore space as a network of interconnected pores.

Figure 8. Theoretical prediction of diffusivities by Model
D2 for system silica gel-water.
Ž . Ž .a Equilibria and b diffusivity for shell D and core Dshell core
computed using Model D2 with d s1 and d s 0.001.S E

The effective medium approximation is then used for evalua-
tion of the effective diffusivities of the disordered medium.
Then, the continuum model based on the diffusion equation
Ž .Fick’s law can be employed. From the foregoing analysis, it
is clear that effective diffusivities for adsorption and desorp-
tion are strongly concentration-dependent. However, if the
uptake occurs over a small step change in the adsorbed-phase
concentration, and with sufficiently high total flow rate, we
may assume the absence of external heat- and mass-transfer
resistances. We also assume isothermal behavior during the
sorption. Then, the mass transport in a spherical microparti-
cle with radius R can be represented by the transient diffu-
sion equation with a constant diffusivity:

Model A3

t-0 0F r F R as a0 15Ž .

tG0 r s R as a 16Ž .`

­ a
r s0 s0 17Ž .

­ r

­ a ­ 2a 2 ­ a
0- r - R s D q 18Ž .2ž /­ t r ­ r­ r

The analytical or numerical solution of Eqs. 15]18 is avail-
Ž .able Karger and Ruthven, 1992; Rajniak, 1985 . For predic-¨

tions of mass transport in the particle during adsorption, the
mathematical model A3 can be used with Ds D com-EMA
puted via Model A2 and Eq. 10.

This model can also be used for desorption assuming con-
stant diffusivity in the whole microparticle. However, the pre-
diction of mass transport during desorption is more compli-
cated. As discussed earlier, there are various configurations
of pores and, consequently, various ‘‘diffusivities’’ in the core
and in the shell. The mathematical model then contains tran-
sient diffusion equations for the core and for the shell.

Model D3

t-0 0F r - R as a0 19Ž .1 core

R F r F R as a0 20Ž .1 shell

tG0 r s R as a 21Ž .A

­ a ­ a
r s R D s D 22Ž .1 EMA, core EMA, shellž / ž /­ r ­ ry q

­ a
r s0 s0 23Ž .

­ r

­ a ­ 2a 2 ­ a
0- r - R s D q 24Ž .1 EMA, core 2ž /­ t r ­ r­ r

­ a ­ 2a 2 ­ a
R - r - R s D q 25Ž .1 EMA, shell 2ž /­ t r ­ r­ r
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Core and shell diffusivities are predicted by Model D2 and
Eq. 10. The numerical solution of Eqs. 19]25 is done using a

Žglobal spline orthogonal collocation method Villadsen,
.Michelsen, 1978; Rajniak, 1985 . Finally, the apparent Fick-

ian diffusivity D for the whole particle is obtained byapp
matching the solution of the Model A3 with Ds D to theapp
solution of Model D3.

Experimental Studies
Vycor glass and silica gel were used in the experiments.

Vycor is a porous glass which has been widely used as a model
material in studies of properties of fluids and molecules in
highly confined geometries. The large internal surface area
of Vycor effectively adsorbs molecules at low ambient vapor
pressures, while the large pore volume effectively absorbs bulk
fluids by capillary condensation at higher ambient vapor

Ž .pressures Page et al., 1993 . Silica gel, Davison Grade H, a
standard commercial desiccant was used in our previous ex-

Ž .periments Rajniak and Yang, 1993, 1994, 1996 .
Sorption data for nitrogen at liquid nitrogen temperature

77 K were obtained using a Carlo Erba Sorptomatic 1900 ap-
paratus for both sorbents. The Sorptomatic 1900 is a fully
automatic instrument for measuring the adsorption and de-

Ž .sorption of gases usually nitrogen on a solid sample. It uses
a multipoint technique for determining the complete adsorp-
tion and desorption isotherms from which specific surface

Žarea using either B.E.T. or the Dubinin equation according
.to the sample , and pore-sizerpore-volume distributions of

solids are obtained. A complete adsorption-desorption iso-
therm, which usually takes hours of operation, is obtained
automatically.

Equilibrium results for the system silica gel-nitrogen have
shown complete reversibility through the entire pressure
range. On the other hand, results for the system Vycor glass-
nitrogen have shown a significant hysteresis loop. The spe-
cific BET surface area and pore volume for the silica gel were
determined to be 767 m2rg and 0.398 cm3rg, respectively. The
BET surface area and pore volume for the Vycor glass were
189 m2rg and 0.715 cm3rg, respectively.

For the system silica gel-water vapor, the equilibrium and
the kinetic data were measured using a Mettler TA2000C

Ž .Thermoanalyzer TGA . For the kinetic data measurement,
the flow conditions were adjusted to avoid or minimize influ-
ence by external diffusion. The total flow rate of the mixture
flowing to the TGA was measured by using two additional
gas wash bottles. The experimental conditions were adjusted

Žto ensure that the external diffusion resistance was absent or
.minimized to a negligible level and that the wet helium

Ž .stream was indeed saturated Rajniak and Yang, 1996 . The
equilibrium and kinetic data for the system Vycor glass-
nitrogen were measured using the Sorptomatic 1900 de-
scribed above. There was no influence by external diffusion,
because pure nitrogen was used in the experiments.

In the diffusivity measurement, the sample initially at equi-
librium was subject to a sudden small change in partial pres-
sure and the weight changes during adsorption or desorption
were continually recorded. The heat effects during the sorp-
tion measurements were minimized by allowing only small
step changes in relative pressure during each measurement.
Because the sorption rates were independent of the pellet

size, we can assume that the total sorption rate was con-
trolled by the mass transport processes within the microparti-
cles. Successive adsorption and desorption were conducted
by changing the composition of the adsorptive and allowing
adequate time to establish equilibrium.

Results and Discussion
In all figures the experimental and theoretical diffusivity

data are normalized. The data are ratioed against the Fickian
diffusivity at the lower closure point of the hysteresis loop
D . The ratio DrD is plotted in all figures. The mass trans-o o
port process is expected to be reversible in the region of
surface diffusion. Study of the concentration dependence of
diffusivity below the lower limiting point L and above the
upper limiting point U is out of the scope of this work. Evalu-
ation of the absolute values of the diffusivities for the systems
studied in this work requires information on the characteris-
tic dimension of the microparticle in which the mass trans-
port process occurs. The term diffusivity is also used in the
formulation of the EMA model for pores of various kinds,
such as for pores in which only surface diffusion occurs and
for pores in which capillary condensation occurs.

The experimental rate data for adsorption are first ana-
lyzed. The data for the system silica gel-water vapor reported

Ž .earlier Rajniak and Yang, 1996 are treated with the im-
proved network model for adsorption kinetics Model A2. The
experimental results at 298 K are compared in Figure 9 with
the predictions from the models A1 and A2. The experimen-
tal concentration dependence of the diffusivity shows a maxi-
mum near the upper closure point U. In comparison to the
results of Model A1 for an infinite medium presented earlier
Ž .Rajniak and Yang, 1996 , a significant improvement in the
theoretical prediction is seen. The prediction by Model A2 is
based completely on theoretical considerations. The value of
the connectivity Cs3 was evaluated from the equilibrium

Ždata using Mason’s method Mason, 1988; Rajniak and Yang,

Figure 9. Experimental diffusivity vs. theoretical predic-
tions by Models A1 and A2 for the system sil-
ica gel-water vapor at 298 K for the adsorp-
tion case.
d s1, d s 5.S C
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.1996 . All the other parameters used for the theoretical pre-
diction are the same as reported earlier, that is, positions of
the limiting points of the main hysteresis loop and parame-
ters of the primary adsorption isotherm. The only adjustable
parameter for the diffusivity prediction by Model A2 is the
ratio of the diffusivity in the capillary condensation region
and that of the surface diffusivity, that is, d rd . No ad-c s

U Žjustable parameters similar to x the empirical relative pres-
sure at which the blind pores become filled with capillary

Ž .condensate Rajniak and Yang, 1996 are needed here.
Ž .The analytical relations Eqs. 12]14 for the evaluation of

the fraction of ‘‘blind’’ pores are derived using the Bethe tree
lattice as the model for the pore network. This is the main
advantage of the Bethe lattice, as it is often possible to derive
analytical formulas for the properties of interest; and often
the predictions of such formulas agree surprisingly well with

Ž .those of three-dimensional systems Sahimi, 1995 . As dis-
Ž .cussed also by Mason 1988 , general forms of the percola-

tion properties that are known for both crystal structures and
Bethe trees show surprising similarities.

The use of EMA in the development of the network model
for mass transfer during adsorption is based on the assump-

Žtion that the various classes of pore diffusivities conduc-
.tances are spatially distributed at random. This assumption

is valid for the case of adsorption, because all the pores ac-
cessible to a given phase are effectively occupied by it. The
approach derived here solves the main artifact of our earlier

Ž .model Rajniak and Yang, 1996 , that is, a discontinuity in
the concentration dependence of diffusivity.

Model A2 represents the next step in the unification of the
equilibrium theory based on the pore-blocking interpretation
of hysteresis and the percolation model of mass transport in
the network of pores randomly filled by capillary condensate
or surface adsorption. Using Model A3, the mass transport
process in the particle can be predicted using diffusivity val-
ues calculated from Model A2.

The main objective of the present work is to develop and
check the validity of the network model for the difficult prob-
lem of desorption kinetics, which has not been done previ-
ously. Experimental kinetic data available in the literature

Žfor the capillary condensation regime Rhim and Hwang,
1975; Tamon et al., 1981; Toei et al., 1983; Eberly and Vos-

.berg, 1965 cannot be compared with predictions from our
models because either the equilibrium data are incomplete,
are missing, or the kinetics data are for the adsorption case
only. Therefore, it was necessary to measure new sets of com-
plete equilibrium and kinetic data. Two systems, silica gel-
water vapor and Vycor glass-nitrogen, were studied. The
complete equilibrium data for the system silica gel-water va-

Ž .por were published elsewhere Rajniak and Yang, 1993, 1994 .
ŽThe kinetic data for adsorption are analyzed above see Fig-

.ure 9 .
In Figure 10 the experimental data of the relative Fickian

diffusivity for desorption for the system silica gel-water vapor
are shown and are compared to the theoretical predictions.
The experimental concentration dependence of the diffusiv-
ity shows a minimum near the lower closure point L. Using
the equilibrium data and following the theory presented in
the foregoing, Model D2 is used to predict diffusivities in the
core and in the shell. Model D3 uses predictions from Model
D2 for calculating the core and shell diffusivities and subse-

( )Figure 10. Experimental diffusivity data a vs. theoreti-
( )cal predictions b by using Model D3 for the

system silica gel-water vapor at 298 K, for
the desorption case.
d s1; d s 0.001.S E

quently yields the overall diffusivity for the whole particle.
Ž . UStarting from the concentration or relative pressure xs x

and decreasing relative pressure by small changes, we solve
Model D3 for D and D that are predicted byEMA, core EMA, shell
Model D2. By matching the solution of Model D3 to the so-

Žlution of the diffusion equation Model A3 is for the desorp-
.tion case , we obtain the overall value D for each transient.

The results are normalized by dividing by the diffusivity D .o
T Ž .For relative pressures x) x , desorption evaporation oc-

curs only from this shell at the microparticle surface. The
thickness of the shell increases with decreasing x. Both diffu-

Ž .sivities D for the completely saturated core and Dcore shell
Ž .for the partially saturated shell increase with decreasing

Ž .pressure see Figure 8b , but the overall diffusivity D for the
whole particle decreases in this region. This is because de-

Žsorption proceeds in an increasingly thicker shell with thick-
.ness R given by Eq. 11 , and the corresponding diffusion1

path increases. It is seen that the increasing diffusion path
dominates over the accelerating effect of the shell and core
diffusivities. When the concentration is dropped below xT,
desorption starts also from the core and the diffusivity passes
through a minimum, as shown in Figure 10. The mass trans-

Ž .port desorption is very slow in this region and an unusual
transient behavior occurs. In this stage the process is very

Ž .slow, first, because desorption evaporation occurs from the
whole core, that is, the mass-transfer path for the core
molecules is the longest, and secondly, because the evapora-
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Ž .tion which is slow process alone occurs from the maximum
amount of pores and in the pore space with the minimum

Žnumber of empty pores. Also, the mass-transfer path in the
core alone is the longest and curved, because of only few

.empty pores, that is, high tortuosity. For relative pressures
smaller than threshold relative pressure, the desorption
Ž .evaporation occurs already from the whole microparticle.

ŽThere is still pore blocking, but the fraction of empty non-
.blocking pores is increasing with decreasing pressure, that is,

the apparent diffusivity is increasing. This branch is nicely
predicted from the theoretical relations for infinite medium
Ž .no surface effects , as shown in Figure 3b.

The theoretical and experimental results are in qualitative
agreement. The theoretical model successfully predicts the
position of the minimum in diffusivity between points T and
L. The model also predicts higher values for the overall, ap-
parent diffusivity in the concentration range between points
U and T, compared to the diffusivities between points T and
L. However, quantitative agreement is not satisfactory. The
maximum experimental relative diffusivity is 4.2 and the min-
imum experimental diffusivity is 0.19, while the theoretical
maximum relative diffusivity is 17.4 and the minimum is 0.001.

In Figure 11 typical dependencies of the amount adsorbed
during desorption for the system silica gel-water are com-
pared for concentrations higher and lower than the percola-

T Ž .tion threshold x . The desorption evaporation process at
Ž .the percolation threshold close to the lower limiting point L

Figure 11. Desorption upon step changes in relative
pressure for the system silica gel-water at
298 K.
Ž . Ž .a Experimental; b predictions by Model D3.

Figure 12. Experimental adsorption-desorption equilib-
rium data for the system Vycor glass-nitro-
gen at 77 K.

is unusually slow. Also, the shape of the transient amount
Žadsorbed at this point for the relative pressure change from

.0.35 to 0.306 is different from the Fickian behavior observed
at other concentrations. The mass transport at this point in-

Žvolves a combination of various mechanisms surface diffu-
.sion, evaporation, condensation, and liquid flow , and model-

ing the mass transport process by the diffusion equation is an
oversimplification.

Figure 12 shows the experimental data for adsorption-
desorption equilibria for the system Vycor glass-nitrogen at
77 K. The primary adsorption isotherm of type IV and the
primary desorption isotherm of type H2 are observed.

In Figure 13 the experimental data of the relative Fickian
diffusivity for desorption for the system Vycor glass-nitrogen
are shown and are compared with the theoretical predictions.
The behavior of the system is qualitatively similar to that of
silica gel-water, that is, with a decreasing diffusivity going
from point U to point T, passing through a minimum near
the threshold point T, followed by an increasing diffusivity
between points T and L. Compared with the results for the
system silica gel-water, it was possible to measure more ex-
periments data points between points T and L.

The theoretical model is again able to predict well, qualita-
tively, the concentration dependence of the diffusivity, but
the quantitative agreement is understandably poor. The max-
imum experimental relative diffusivity is 1.92 and the mini-
mum experimental diffusivity is 0.13, while the theoretical
maximum relative diffusivity is 18.34 and the minimum is
0.046.

There are several possible reasons for the quantitative dis-
crepancy between the theory and experiment for the case of
desorption kinetics:
Ž .1 The boundary between the shell and the core is as-

sumed to be distinct in the theoretical model, as shown in
Figure 5. In the real microparticle the boundary is a diffuse

Ž .one. An improved model with a third middle zone between
the core and the shell should better describe the reality. The
mass transport path will be longer for molecules from the
middle zone. As a consequence, the apparent diffusivity will
be smaller for the descending branch of the diffusivity de-
pendence. Another consequence will be an acceleration of
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Figure 13. Experimental desorption diffusivity data.
Ž . Ž .a Vs. theoretical predictions; b by using Model D3 for
the system Vycor glass-nitrogen at 77 K. d s1, d s 0.001.S E

the process for relative pressure xF xT, because slow evapo-
ration will occur from the smaller core. So, the addition of
the middle zone should decrease the maximum and increase
the minimum of the theoretical dependence of diffusivity
without changing the correct position of the minimum.
Ž .2 The use of EMA in the development of the network

model for mass transfer in the shell assumed that various
Ž .classes of pore diffusivities conductances are randomly dis-

tributed in the shell. This assumption is valid for the case of
adsorption, because all the pores accessible to a given phase
are effectively occupied by it. It is less so for desorption. The
spatial topology of the phases is influenced by pore blocking,
and the distribution of phases is not random, especially in the
shell for concentrations higher than the percolation thres-
hold.
Ž .3 The model assumes only surface diffusion and evapora-

tion during desorption in the hysteresis region and is thus
much simplified. From the theoretical and experimental study

Ž .of Abeles et al. 1991 , different flow regimes can exist de-
pending on the magnitude of the vapor andror liquid pres-
sures at the inlet and outlet sides of the porous medium. Re-

Ž .sults of Laurindo and Prat 1996 indicate that film flows
could be important in evaporation and, more generally, in
phase change phenomena in porous media. Other possible

Ž .complicating effects are nucleation Parlar and Yortsos, 1989 ,
Ž .decompression of the condensed liquid Mason, 1988 , and

Ž .flow of conductance by gravity Prat, 1995 .
Ž .4 Simultaneous evaporation and condensation processes

during the emptying of the pores of various dimensions com-

bined with the actual nonisothermality can slow down the
process.
Ž .5 There exist possible loops in the path of mass transport

during desorption, because of nonrandom distribution of
phases. It is known that if a particular percolation property
depends on the existence of loops, then the use of the Bethe
tree would not be appropriate.
Ž . Ž .6 The assumption that the diffusivities or conductances

of the pores of various dimensions are constant could be an
oversimplification.

The study of equilibria and kinetics for adsorption-de-
sorption systems with hysteresis shows that the concepts of
percolation theory play a prominant role. Theoretical predic-
tions are excellent for simpler percolation processes, that

Ž .is, desorption equilibria bond percolation and adsorption
Ž .kinetics ordinary percolation . Qualitative agreement is

Ž .also obtained for desorption kinetics invasion percolation ,
but quantitative agreement is not satisfactory for this com-
plicated process of the invasion percolation type. For such
processes, further studies are needed. Numerical Monte Carlo
simulation of the percolation processes on a more realistic
Ž .but more complex pore network, such as the diluted
simple-cubic lattice, should improve the agreement between
model and experiment. However, for engineering purposes
Ž .such as within a process simulation , it is always useful to
have a quick solution that is capable of predicting limiting
behaviors of the process, as given in this contribution.

Conclusion
Network models are formulated for predicting the concen-

tration dependence of the Fickian diffusivity for systems ex-
hibiting hysteresis in adsorption-desorption equilibria.

Adsorption-desorption equilibria and kinetics are studied
both experimentally and theoretically. The main results are
as follows:
Ž .1 For adsorption, the network model of mass transport

of condensable vapors in porous media based on the combi-
nation of the percolation model of mass transport in the pore

Žnetwork with the effective medium approximation Rajniak
.and Yang, 1996 is further improved. A new predictive rela-

tion based on the properties of Bethe lattices is proposed to
account for the existence of liquid-filled ‘‘blind’’ pores that
decrease the total mass transport rate.
Ž . Ž2 For desorption, a new ‘‘shell and core’’ or shrinking
.core picture of the network model is proposed. Information

from adsorption-desorption equilibria are used to compute
the thickness of the shell in which desorptionrevaporation
occurs for concentrations higher than the percolation thresh-
old xT. For concentrations lower than xT, the model similar
to the model for adsorption is used.
Ž .3 Complete sets of experimental kinetic data for the sys-

tems silica gel-water vapor and Vycor glass-nitrogen are mea-
sured and analyzed.
Ž .4 The adsorption model successfully predicts the experi-

mental data with a maximum in diffusivity. The desorption
model correctly predicts the dependence of diffusivity with a
minimum, but the quantitative agreement is not satisfactory
due to a number of reasons.
Ž .5 Improvement of the models is possible by including

Žmore transport mechanisms such as flow of liquid conden-
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.sate, nucleation andror by allowing the diffusivities to be
dependent on concentration and pore size.
Ž .6 The two models proposed in this work represent a

unification of the theories for equilibrium and kinetics for
systems with hysteresis. Information on the adsorption-
desorption equilibria is needed for the models for mass trans-
port. A minimum number of adjustable parameters are used
in the models.
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Notation
Ž .asamount adsorbed grg

Bsfraction of liquid filled pores, Eq. 12
Dsdiffusivity in the network of pores; effective Fickian or

overall diffusivity
D ssurface diffusivity or diffusivity at zero loadingo
Ž .f d sdistribution function, Eq. 8
Ž .f x sequilibrium function, Eq. 3

qssite filling probability, Eq. 1
Qsprobability, Eq. 13

R sshell thickness1
ts time

Subscripts
Esevaporation
Fs flow of capillary condensate
Sssurface diffusion
`s value at surface

1, 2, . . . , nsdifferent pores

Superscripts
Tspercolation threshold
os initial value
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