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Introduction 

The idea that the spectral characteristics of light can affect visual or mental 

performance has long been used to promote a variety of products that either filter light 

(eyeglass lenses, tinted windows) or produce light.  Reported effects are quite varied.  For 

example, some have promoted the use of colored filters to correct “scotopic sensitivity,” 

an affliction speculated to affect individuals with a variety of nonspecific learning deficits 

(Irlen, 1983); others have reported relief from seasonal affective disorder, lessened 

fatigue, heightened productivity, reduced eyestrain, better contrast sensitivity, and 

lessened dental caries with full-spectrum lighting (see Veitch & McColl, 1994 for a 

comprehensive review).   

The reasons cited for these effects are nearly as varied as the effects themselves.  

Some effects can be attributed to specific physical mechanisms in the eye.  For example, 

if the spectral content of light is biased to match the responsiveness of rod receptors, 

improved visual clarity is reported even when the photopic luminance of the object is the 

same or less (Berman, 1992).  This effect has been explained as a consequence of 

selective pupil response to ambient scotopic luminance levels.  Not all research, however, 

makes a precise statement about either the nature of the effect, or the mechanism 

responsible for it.  Indeed, some evidence that has been offered on this issue appears to 

lack scientific rigor (see, for example, a review by Gifford, 1994).  Many anecdotal 

reports about “the healing power of light” and the use of colored lenses have also 

appeared in the popular press (e.g., Brister, 1996; Greenman, 2000; Malamanig, 2000; 

McKenna, 1992; Williams, 1999), often without substantive critical scrutiny.  In any 

case, it is clear that people find something compelling about the idea that the spectral 

characteristics of light may influence behavior and performance. 

With respect to the motor vehicle consumer, interest in altering the spectral output 

of tungsten-halogen headlamps has probably developed as a consequence of the growing 

use of high-intensity discharge (HID) sources, particularly on expensive vehicles.  

Conventional tungsten-halogen headlamps appear relatively yellow next to HID lamps, 

which appear relatively blue.  Both lamps, however, produce light within the definition of 

white set forth in SAE Standard J578.  And indeed, perhaps partly because of color 
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constancy, if each bulb were the sole source of illumination for a scene, it would usually 

be seen as white.  The color difference is most noticeable when the two lamp types are 

seen at the same time.   

Although HID lamps provide more light than TH lamps, it is their distinctive 

color that has most caught consumer attention.  Many car owners find this difference 

appealing, and manufacturers have responded to this interest by marketing replacement 

tungsten-halogen bulbs that resemble the color (if not the light output) of the HID lamps.  

Accompanying this growing interest in headlamp spectra are popular beliefs about the 

ways in which blue-tinted bulbs are superior to conventional tungsten-halogen lamps.  

Some beliefs are confined to subjective, aesthetic judgment—the bulbs are said to look 

cool.  Other beliefs are that roadway visibility is improved or that glare or driver fatigue 

is reduced by the difference in bulb color.  These latter ideas have clear safety 

implications and bear closer scrutiny. 

The investigations described in this report use two tasks to help evaluate possible 

visual effects of blue-tinted bulbs.  In the first task, observers were asked to rate the 

subjective discomfort they experienced when viewing various bluish-tinted oncoming 

headlamps.  We did this to see if discomfort glare, which seems to be affected by the 

chromaticity differences between tungsten-halogen and HID lamps (Flannagan, Sivak, & 

Traube, 1994), would be similarly affected by blue-tinted halogen lamps.  In the second 

task, observers indicated when a target, illuminated by differently tinted headlamps, first 

became visible as the amount of reflected light from the target was increased.  Observers 

were also asked when the target became invisible as the amount of reflected light was 

decreased.   

Blue-tinted bulb characteristics 

In the experiments discussed in this report, we compared a conventional 9004 

tungsten-halogen replacement bulb installed in a conventional headlamp to: (a) a widely 

available, blue-tinted 9004 bulb produced by a major manufacturer, installed in the same 

lamp; and (b) a tungsten-halogen lamp filtered through a glass neodymium filter.  It 

should be noted that the replacement bulb marketplace offers a wide variety of blue 

replacement bulbs.  Some of these bulbs are of markedly inferior quality.  To ensure that 
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observed differences between bulbs would be related to bulb color, and not 

characteristics related to inferior bulb design (e.g., uneven coatings, poor filaments), we 

limited our bulb selection to established manufacturers.  As can be seen in Figure 1, the 

spectral power distribution of the blue-tinted tungsten-halogen bulb used in these studies 

is quite similar to that of a tungsten-halogen bulb.  There appears to be only a small 

reduction in the blue-tinted bulb’s output, mostly between 580 and 680 nm.  In contrast, 

the neodymium filtered tungsten-halogen bulb shows a characteristic absorption notch at 

about 580 nm.  We also note that the color similarity observed here should not be 

assumed to exist for all blue-tinted tungsten-halogen bulbs.  Some blue-tinted bulbs on 

the market are more deeply tinted than the type we investigated. 
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Figure 1.  Relative power of tungsten-halogen (TH), blue-tinted tungsten-halogen (Blue), 
and neodymium filtered (Nd) sources. 
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All the headlamps in this study fall within the chromaticity limits for white lamps 

as defined in SAE Standard J578 (Society of Automotive Engineers, 1988) and are, as 

Figure 2 shows, relatively near to each other, when compared to a sample HID lamp 

chromaticity.  This similarity is also consistent with our informal subjective impressions.  

When a vehicle was fitted with a conventional TH bulb in one headlamp, and one of the 

blue-tinted bulbs in the other, it was not readily obvious which bulb was installed in 

which lamp.  Figure 3 depicts the chromaticity in u' and v' coordinates (in which 

distances are more representative of perceived color differences than in x y coordinates), 

rescaled to better resolve the differences among the three bulbs.   
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Figure 2.  Chromaticity coordinates of tungsten-halogen (TH), blue-tinted replacement 
(Blue), neodymium filtered tungsten-halogen (Nd), and high-intensity discharge lamp 
(HID) with reference to the spectrum locus and the SAE J587 standard boundary for 
white (dashed lines).  Also depicted are the two deeply colored lamps used in 
Experiment 2. 
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Figure 3.  Chromaticity of sample tungsten-halogen (TH), blue-tinted tungsten-halogen 
(Blue), neodymium filtered tungsten-halogen (Nd), and HID headlamps.  Note that the 
apparent differences in color are greater between any of the tungsten-halogen lamps and 
the HID sample, than they are among the various tinted tungsten-halogen lamps. 
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Experiment 1: Ratings of Discomfort Glare 

In this study, we investigated whether an observer’s subjective judgment of 

discomfort glare is different for each type of light source at comparable levels of photopic 

illuminance.  In previous research examining the influence of wavelength on glare 

ratings, middle wavelengths (yellow, 577 nm) produced the least discomfort, while short 

wavelengths (blue, 480 nm) produced the greatest discomfort (Flannagan et al., 1994).  

Insofar as glare judgment may be influenced by spectral power distribution, we might 

expect that light with more pronounced energy at the shorter wavelengths (bluish light) 

would be judged as more glaring.  

Method 

Subjects 
Sixteen paid subjects participated in the study.  Eight of the subjects were young 

(ranging from 20 to 29 years old, with a mean of 22) and eight were older (ranging from 

65 to 75 years old, mean 67).  All subjects were licensed drivers with normal or corrected 

to normal vision (20/20 minimum), and were color normal based on testing with an Optec 

2000 Vision Tester, Stereo Optical Company, and Standard Pseudoisochromatic Plates, 

Igaku-Shoin.  

Stimuli 
Subjects viewed a pair of headlamps mounted in a rack located 50 m in front of 

them.  The headlamps were mounted 62 cm above the pavement and were separated 

horizontally by 112 cm, measured between the optical axes of the lamps.  These 

dimensions were based on the average lamp height and separation for passenger cars in 

the U.S. (Sivak, Flannagan, Budnick, Flannagan, & Kojima, 1996).  The rack was offset 

3.66 m to the left of straight ahead to mimic the headlamps from an oncoming vehicle 

one lane to the left.  Each lamp was partially masked around the edges to accommodate a 

rigid 110 by 150 mm filter.  Lamps were aimed in the rack to produce a standard low-

beam distribution pattern.  Each lamp was fitted with a 9004 bulb.  Only the low-beam 

filament was energized. 
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Three different spectral distributions were investigated: one produced by standard 

tungsten-halogen bulbs (TH), one produced with blue-tinted replacement bulbs (Blue), 

and a third produced by the tungsten-halogen bulb filtered through neodymium-doped 

glass (Nd).  A neutral density filter (Lee Filters .15ND 298) was applied to balance the 

luminous intensity of the Blue and TH bulbs so that approximately the same photopic 

illuminance level was obtained for all three light sources at the observer’s eye.  The 

actual illuminances were then measured to enable the interpolation discussed later in this 

report.  

Three illuminance conditions were investigated for each color condition, by 

applying to the lamps either no additional filter, or one of two neutral density filters: 0.3 

and 0.6 optical densities (Lee Filters .3ND 209, and .6ND 210), producing approximately 

100%, 50%, and 25% transmittance.  Thus, nine glare stimuli were produced by 

combining three illuminance levels with the three colors.  

Procedure 
Observers were seated in a stationary vehicle 50 m from the headlamp rack, 

parked in a dry, darkened (0.02 lx), otherwise vacant, asphalt-paved parking lot.  The 

vehicle’s low-beam headlamps were turned on, producing pavement luminances along a 

line directly ahead of the observer as described in Table 1.  The maximum pavement 

luminance was 1.3 cd/m2, and was found at 15 m, slightly to the right of the observer’s 

eyepoint. 

Table 1.  Pavement luminance measured from the driver's eyepoint at selected straight 
ahead distances from the observation vehicle. 

Distance (m) Luminance (cd/m2) 

10 0.89 
15 1.00 
20 0.82 
25 0.24 
30 0.07 
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Observers were instructed to rate the discomfort from the lamps in the rack using the de 

Boer scale rating system for glare (de Boer, 1967) as shown in Table 2. 

Table 2.  The de Boer rating scale. 

Rating Meaning 
1 Unbearable 
2  
3 Disturbing 
4  
5 Just Acceptable 
6  
7 Satisfactory 
8  
9 Just Noticeable 

 

Observers were run in groups of three, each seated in a different position in the 

vehicle: two were seated in the driver and passenger front seats, and a third was seated in 

the middle of the rear seat.  All observers had unobstructed views through the vehicle’s 

windshield.  They were first instructed about the use of the de Boer scale and advised 

about the experimental procedures as follows.   

At the start of a trial, Experimenter 1, seated with the observers, requested them to 

direct their gaze toward a target located on the pavement 40 m straight ahead, to 

approximate the center of a driver’s normal eye fixations during night driving (Graf & 

Krebs, 1976).  Experimenter 2, located at the lamp rack, then switched on the glare 

stimulus lamps for about three seconds, and then switched them off.  Following this, each 

observer recorded his or her numeric rating on a data sheet.  Experimenter 2 then 

prepared the next glare stimulus.  Experimenter 1 alerted the observers when the next 

trial was about to start, and signaled Experimenter 2 (via radio) to present the glare 

stimulus. 

Experimental trials were initiated only after observers had a minimum of ten 

minutes of visual adaptation to the lighting condition produced by the low-beam lamps of 

the observation vehicle.  Trials were organized in four blocks, with each block consisting 

of a complete set of the 9 color and filter conditions.  Presentation orders of trials within 



 

 9  

blocks were randomized with the restriction that no more than two identical color or filter 

conditions occurred in a row.  

To summarize, the experimental design included three between-subjects factors: 

age group, sex, and seating position (driver, passenger, rear), and two within-subjects 

factors: source color (TH, Blue, Nd) and filter (0.0, 0.3, and 0.6 optical density). 

Results 

Summary results of the observers’ average de Boer ratings by color and filter 

condition are shown in Table 3.  As filter density increased, glare ratings increased 

(which on the de Boer scale indicates less discomfort).  Also, observers rated the TH 

source as less discomforting than the other sources.  These results, however, do not 

account for the actual photometry across the nine experimental conditions.  The next 

analysis will take this into account. 

Table 3.  Average de Boer rating by color and filter condition. 

Color Filter 
Blue Nd TH 

0.0 3.8 4.1 4.7 
0.3 5.5 5.9 6.3 
0.6 6.9 7.3 7.3 

 

For each observer and color, a linear regression was performed across the three 

filter conditions, relating the observer’s de Boer rating to the log of the measured 

illuminance of the light source at the observer’s viewing position.  This enabled us to 

correct for the actual photopic levels of the different light sources.  For each color, we 

then computed the illuminance level at which an observer would have given a de Boer 

rating of 6.   

For example, Observer 4 produced the ratings given in Table 4.  The illuminance 

levels given in the table were measured at the eye point of the observer during the 

experimental session.  For each observer, equal-slope regression lines were computed for 

each color, regressing de Boer ratings on log of illuminance (Figure 4).  The validity of 

the assumption of equal slopes was directly tested in a separate regression analysis that 

compared the slopes of separately computed regressions of de Boer ratings on 
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illuminance for each observer and color.  No differences in slope among colors were 

observed in this analysis, F(2,22) = 1.52, p > .2.  Using each observer’s regression lines, 

we determined what the log lux value for each color would be for a de Boer rating of 6.  

(We chose 6 because it is the median score across all observers. However, because of the 

requirement for equal slopes, any de Boer value would have produced exactly the same 

differences among the light sources.)  In the case of Observer 4, we found where the 

respective lines crossed the de Boer rating of 6, yielding a log lux value of -0.41 for blue,  

-0.34 for Nd, and -0.24 for TH light sources (also depicted in Figure 4). 

Table 4.  Average discomfort glare ratings of Observer 4, using the de Boer scale. 

Source Filter Level 
(Density) 

Illuminance 
(Lux) 

Average Rating 

Blue 0.0 0.72 4.50 
Blue 0.3 0.36 6.25 
Blue 0.6 0.18 7.75 
Nd 0.0 0.71 5.25 
Nd 0.3 0.35 6.50 
Nd 0.6 0.17 8.00 
TH 0.0 0.69 5.75 
TH 0.3 0.34 6.75 
TH 0.6 0.17 8.75 
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Figure 4.  Linear regressions of de Boer ratings on illuminance for each lamp color.  This 
plot shows the log lux value at which the median de Boer glare rating (6) intersects the fit 
lines for each light source for Observer 4.  Note that for this observer, for equal glare 
ratings, the lux levels of the Blue and Nd sources were lower than the level of the TH 
source, indicating that the Blue and Nd sources are judged as relatively more glaring. 

An analysis of variance was performed on log lux values derived from each 

observer’s regression lines for each color.  A significant main effect of light source was 

found, F(2,12) = 30.85, p < .001, and is illustrated in Figure 5.  The influence of color on 

de Boer ratings can be compared to the influence found in a previous study comparing 

HID and TH lamps (Flannagan, Sivak, Battle, Sato, & Traube, 1993).  In that study, the 

same glare rating was associated with lamps that differed in log lux values by 0.165 (a 

factor of 1.46).  The present study found log lux differences between the blue bulb and 

the TH of 0.135 (a factor of 1.36), between the neodymium and the TH source of 0.066 (a 

factor of 1.16), and between the blue and neodymium source of 0.068 (a factor of 1.17).  

The observed differences in the present study are perhaps larger than would be expected 

from differences in each source’s u'-v' chromaticity coordinates (see Figure 3).  That is, 

the color difference between an HID and a tungsten-halogen source is much larger than 
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the difference between either of the blue-tinted tungsten-halogen sources used here and a 

normal tungsten-halogen source; however, the differences in equal-glare levels found in 

the present study are more than proportional to the size of the color differences.  
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Figure 5.  Average log lux value of each light source corresponding to levels of 
discomfort glare across observers.  The TH lamp is seen as least glaring in this analysis 
because it has the highest photometric value when glare is subjectively equal. 

An interaction effect was also observed between age and light source, F(2,12) = 

4.58, p < .05, as illustrated in Figure 6.  It shows that younger and older observers appear 

to differ in the degree to which they found the blue light source to be glaring relative to 

the other light sources, F(2,12) = 4.5, p < .05.  The interaction is small, however, and it 

seems clear from the figure that the effects of color for both younger and older observers 

are at least in the same direction.  There also appears to be a difference in the older 

observer’s application of the de Boer rating of 6 (the median), possibly reflecting 

differing interpretations of the verbal anchors used in the scale, but the effect did not 

reach statistical significance.  

There were no other main effects (e.g., age and seat position) or interactions that 

approached statistical significance.   
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Figure 6.  Average log lux value of each light source corresponding to equal levels of 
discomfort glare (de Boer rating 6) across observers by age.  Note that for older observers 
the rating of 6 seems to be assigned to slightly higher light levels.   

Discussion 

These results are consistent with other results (Flannagan et al., 1993) that 

indicate observers regard light with a bluer appearance to be more glaring.  It is also 

consistent with previous studies that report yellowish lamps to be less glaring to 

observers (Schreuder, 1976), although evidence of objective advantages is not typically 

observed. 
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Experiment 2: Target Detection with Tinted Sources 

In this study, we measured an observer’s ability to detect a retroreflective disk 

illuminated by each of the three headlamp colors (Blue, Nd, and TH) investigated in 

Experiment 1 during nighttime viewing conditions.  In addition, two more color 

conditions were added in order to investigate the effects of very large differences in 

color.  That is, we attempted to push the color values in extreme directions to see if we 

could find any influence of color on detection in a task that was similar, at least in some 

characteristics, to what drivers typically encounter on the road.  These additional colors 

were deep red and deep blue.  Their chromaticities are shown in Figure 2.  Our strategy in 

using these somewhat unrealistic sources was based on our expectation that any visibility 

differences among the relatively conventional colors would likely be extremely small, 

and that being able to measure effects of the extreme colors might allow us, by 

interpolation, to make at least preliminary estimates of the magnitude of any differences 

that one might expect among the relatively conventional colors. 

This experiment also looked at differences between foveal and parafoveal 

detection by presenting the detection stimulus either straight ahead of a fixation point, or 

offset from the fixation direction by 6 degrees to the left.  We did this because there 

appear to be differences in the spectral sensitivity of the retina, depending on where—

between the periphery and the fovea—light happens to fall.  Some of these differences 

can be attributed to differences in the distribution of visual receptors about the retina.  In 

particular, rod receptors, which mediate night vision, are absent in the center of the fovea, 

but increase in density in the near periphery.  Cones, which mediate color vision, are 

concentrated in the fovea and decline in density toward the periphery (Osterberg, 1935).  

The two systems of receptors also display different sensitivities to wavelengths of light, 

as illustrated in Figure 7.  That figure shows the luminous efficiency functions for 

photopic (day/color vision) and scotopic (night/monochromatic vision).  Of particular 

interest for this discussion is that scotopic (rod-mediated) vision is more sensitive to 

shorter wavelengths of light than photopic (cone-mediated) vision.  

Rod and cone density, however, are not the only likely mechanisms influencing 

spectral sensitivity across the retina.  Macular pigment density also changes with retinal 
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eccentricity, and the cones themselves change in size and shape, altering their spectral 

sensitivity.  One consequence of this is that there are two sets of color matching functions 

(CMFs) defined by the CIE: one for a 2-degree stimulus, and another for a 10-degree 

stimulus.  The differences among the CMFs involve a greater sensitivity to short (blue) 

wavelengths with the 10-degree stimulus.  From a practical perspective, it seems 

reasonable to look for differences in an observer’s detection capability both for foveal 

and peripheral stimuli, even if all of the mechanisms that might produce a difference 

cannot be unambiguously identified. 
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Figure 7.  Photopic (daytime), V(λ), and scotopic (nighttime), V'(λ), luminous efficiency 
functions. 

Method 

Subjects 
Two licensed drivers with normal or corrected to normal visual acuity, and color-

normal vision served as subjects in this experiment.  Visual screening was conducted as 

in Experiment 1.  
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Apparatus 
The colored headlamps were positioned in front of a stationary test vehicle with 

the observer seated in the driver’s seat.  A fixation point was marked in the roadway at 40 

m in the straight-ahead direction as in Experiment 1.  The detection stimulus was a white 

retroreflective disk (30 mm diameter), positioned 75 m from the observer, with its center 

0.62 m above the pavement, in one of two locations: center (C, straight ahead) or 

eccentric (E, 6 degrees left of straight ahead).  The target subtended a visual angle of 

approximately 13 minutes.  Because the target was located beyond the fixation point, and 

was slightly elevated above the pavement, from the subjects’ point of view its center was 

about 1.2 degrees from the fixation point in the center condition, and about 6.1 degrees 

from the fixation point in the eccentric condition. 

The stimulus was illuminated by one of five different colors—the same TH, Blue, 

and Nd colors used in Experiment 1, plus a tungsten-halogen lamp filtered with a deep 

blue filter (Lee Filters, No. 118) and a tungsten-halogen lamp filtered by a deep red filter 

(Lee Filters, No. 164).  For each position and light color, the illumination at the target 

was measured (Table 5). 

Table 5.  Illuminance levels at the target locations without the variable neutral density 
filtering described in the text.  

Color Position Illuminance 
(Photopic Lux) 

E 0.18 Blue 
C 0.44 
E 0.18 Nd 
C 0.42 
E 0.18 TH 
C 0.42 
E 0.11 Deep Red 
C 0.17 
E 0.11 Deep Blue C 0.17 

 

The luminance of the target stimulus was adjusted using a long band of neutral 

density filters increasing in effective optical density in increments of 0.1.  The band 

ranged from 0.1 to 3.5 in density (79.4% to 0.03% transmission).  An experimenter, 
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located 75 m away from the observer at the target disk, either increased or decreased the 

brightness of the target disk by scrolling the filter band until the observer reported that 

the target was visible (as filter density decreased) or invisible (as filter density increased).   

Procedure  
Two experimenters participated in this procedure.  One accompanied the subject 

in the observation vehicle, seated in the rear, while the other was situated 75 m down the 

roadway and controlled the positioning and brightness of the detection disk.  The remote 

experimenter was hidden from view so that the observer was unable to predict the initial 

position (6 degrees left or straight ahead) of the detection disk.   

Observers were allowed 10 minutes to adapt to the ambient roadway light levels 

while an experimenter read them instructions.  An individual trial began at the signal 

from the remote experimenter, whereupon the subject fixed his or her gaze on a marker 

located 40 m straight ahead in the roadway.  Direction of gaze was verified using an 

infrared video camera positioned to unobtrusively monitor the observer’s eyes.  The 

remote experimenter, starting at a filter density which dimmed the target disk well below 

the observer’s detection threshold, proceeded to lower the filter density, increasing the 

target brightness until the observer signaled that the target was visible by sounding the 

observation vehicle’s horn.  After the horn was sounded, the observer was asked to 

identify the location of the target to verify the detection.  The remote experimenter 

recorded the filter density at which the detection was made.  Following the initial 

detection, the experimenter reduced the filter density by 0.50 so that the target was 

clearly visible to the observer and began a descending adjustment series, decreasing the 

brightness of the target by increasing the filter density.  For the descending series, the 

observer signaled with the horn when the target was no longer visible.  The ascending 

and descending trials were then repeated three more times, yielding four ascending 

measures of the brightness at which the target was first detected, and four descending 

measures of the brightness at which the target first disappeared.  Notably, the position of 

the target (center or eccentric) was uncertain only for the first trial of the series.  

Trials were blocked by color (Blue, Nd, TH, Deep Red, Deep Blue).  Within each 

block, each of the two target positions was tested twice in a constrained random order—
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the order of repeated trials was inverted from their initial presentation.  The order of 

light-source blocks was randomized and then repeated in the reverse of the initial order.   

Results 

For each subject, luminance detection thresholds (in log cd/m2) were computed by 

calculating the resulting target luminance based on the measured illuminance of the 

unfiltered target (Table 5) for each light source and position, the retroreflectivity of the 

target, and the optical density of the filter in place when the target was either first 

detected or judged to have first disappeared.  An analysis of variance was then performed 

on this dependent variable. 

Main Effects   
The ANOVA revealed no main effects of color, positional eccentricity, or 

ascending versus descending order.  There was a main effect of order within the trial, 

such that the first target detection judgment in the series appeared to occur at a lower 

threshold than the later judgments (Figure 8).  It is unclear what the basis for this 

difference is, but it may be that observers had a lower criterion for detection when the 

target position was uncertain. 
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Figure 8.  Detection threshold by measurement order within a trial. The location of the 
target is uncertain in the first ascending measurement taken in a trial. 
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Although no other main effects were statistically significant, there were some 

noteworthy trends.  For example, detection thresholds tended to be higher by a factor of 

1.4 at the 6-degree offset location relative to straight ahead (-1.42 log cd/m2 at center, 

-1.27 at -6 degrees).  This is what might be expected if observers were less sure of what 

they saw in the periphery and thus raised their detection criteria.   

Detection thresholds tended to be higher for ascending (brightening) trials than 

descending (dimming) trials by a factor of 2.4.  This is expected, and likely also reflects 

criterion differences between the judgment that an object is visible and the judgment that 

an object has disappeared.  

Interaction effects 
The interaction of color and eccentricity, shown in Figure 9, was statistically 

significant, F(4,4) = 24.9, p < .001.  It appears that the threshold for the red light source 

is much higher in the periphery (by a factor of 2.72) than it is for the other light sources, 

demonstrating that, at least with deeply colored sources, differences can be observed in 

an observer’s spectral sensitivity at different eccentricities, under visual conditions 

similar to those faced by drivers at night.   
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Figure 9.  Interaction effect between target eccentricity (C, center; E, -6 degrees) and 
light source.  The figure shows that the threshold for the deep red light source is higher in 
the eccentric location than it is for the other light sources. 
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Discussion 

  The interaction between color and eccentricity in Figure 9 is qualitatively what 

one would expect from the idea that detection in the central position depends relatively 

more on the cone (photopic) system and that detection in the eccentric position depends 

relatively more on the rod (scotopic) system.  Table 6 shows the threshold differences for 

each color, along with the ratios of scotopic to photopic luminosity for those colors.  As 

might be expected, the deep red source is very low in the scotopic to photopic ratio, and 

the deep blue source is very high.  The relatively conventional colors (Blue, Nd, and TH) 

are all much more moderate.  The differences between center and eccentric thresholds are 

very closely related to the ratios of the scotopic and photopic measures.  The Deep Blue 

source yields the largest ratio of center to eccentric threshold (0.99) and the Deep Red 

source yields the smallest (0.37).  In fact, the linear relationship between the logs of the 

values shown in Table 6, as illustrated in Figure 10, is very strong.   

As we expected, the present experiment did not have enough power to detect any 

small differences in visibility that might exist among the relatively conventional colors, 

but the strategy of including unrealistically extreme colors at least allows us to make a 

preliminary prediction of how big such differences might be.  The two blue-tinted sources 

(Blue and Nd) are both slightly above and to the right of the TH source in Figure 10, 

indicating that the observed differences in visibility, as given in Table 6, are consistent 

with the regression model in terms of their direction.  However, the differences in 

visibility between either of the blue-tinted sources and the TH source (the vertical 

separations in Figure 10) are larger than would be expected from the differences in 

relative scotopic and photopic luminosity (the horizontal separations in Figure 10).  Thus, 

to the extent that the empirical relationship in Figure 10 is valid, any differences in 

visibility among the relatively conventional colors would be very small. 
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Table 6.  Threshold difference factors between centrally viewed (C) and eccentrically 
viewed (E) light sources, and the calculated scotopic/photopic ratios. 

Source C vs. E Threshold Difference Scotopic/Photopic Ratio 

Blue 0.83 1.63 
ND 0.84 1.72 
TH 0.74 1.55 

Deep Red 0.37 0.19 
Deep Blue 0.99 3.90 

 

y = 0.3407x - 0.1801
R2 = 0.9808
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Figure 10.  The relationship between log of the threshold ratios (central threshold divided 
by eccentric threshold) and log of the scotopic/photopic ratios. 
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Conclusion 

In Experiment 1, blue-tinted light sources were judged to be more glaring than 

standard tungsten-halogen light sources.  The result is consistent with previous reports 

(Flannagan, Sivak, & Gellaty, 1991).  The size of the difference does not appear to be 

closely related to chromaticity differences characterized by u' and v' coordinates, nor to 

the scotopic/photopic luminance ratio (calculated in Table 6).  Thus, although it is true as 

a rough empirical generalization that relatively blue sources have been found to produce 

more subjective glare, and relatively yellow sources have been found to produce less 

subjective glare, the quantitative nature of this relationship remains to be explained.  

Also, differences in subjective glare are not always accompanied by differences in the 

tendency of glare sources to reduce objective visual performance (Flannagan, 1999).  

Although both subjective and objective effects of glare sources may affect safety, 

objective effects are probably more important.  The effects of color on objective glare 

should therefore be further evaluated.   

With regard to possible differences in the visibility provided by the various 

sources tested here, there were no statistically significant differences among the relatively 

conventional colors (Blue, Nd, and TH).  However, when the more extreme colors are 

included (Deep Blue and Deep Red) a statistically reliable interaction of color and retinal 

location emerges, and the pattern of the interaction seems to be well accounted for by the 

idea that, under conditions similar to night driving, the rod system makes a relatively 

larger contribution to detection in the near periphery, compared to the center of the visual 

field.  However, interpolation based on the visibility of the extreme colors suggests that 

any differences in the visibility provided by the relatively conventional headlamp colors 

are likely to be very small.   
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