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Preface 

The Workshop of which this volume is the 
somewhat augmented and supplemented 
Proceedings was mounted in Ann Arbor in May 
1988. Its purpose was to determine the maturity of 
the consensus just then emerging regarding the 
interrelations among the best morplion~etric 
methods for evolutionary biology and systematics. 
At that Workshop it became clear to us that a 
careful new synthesis of old themes--ordination, 
transformation, superposition-*as indeed worth 
mastering for most applications. Over the ensuing 
twenty-four months the new methods were 
reprogrammed and exemplified in the case studies 
collected in this volume. The whole system- 
methods lectures, programs, examples--was 
extensively tested at a second Workshop, on  the 
campus of the State University of New York at 
Stony Brook, in June 1990. We found it to support 
an ever-greater varicty of morphometric 
investigations, which will require a second volume 
for tlzcir collection, and so on. These Proceedings, 
and the associated system of programs on  floppy 
disks, should be more valuable than is usual in this 
genre. Beyond the mere historical record of what 
was said in Ann Arbor, here are sharp and sturdy 
tools for you to exploit or develop further. 

The synthesis put forward here combines 
three different thrusts in morphometrics that used 
to be separate: multivariate morphometrics 
(typically the analysis of distances and angles 
among landmarks, with an emphasis on ordination), 
the morphometrics of deformation ("Cartesian 
transformations," finite-element methods, and the 
like), and superposition-based morphometrics (the 
"Procrustes" analyses and their resistant variants). 
When carried out unwisely, even if in keeping with 
the example of the original publications, these 
methods may sometimes appear to lead to 
irretrievably contradictory analyses of a single data 
set. But when each is constrained and disciplined 
by integration with the others, they are remarkably 

consistent in statistics, in graphics, and in biological 
implications. Our purpose in this volume is to 
impart some of the tactics of each of these 
approaches and to show how by careful scrutiny, 
with modifications of published algorithms as 
necessary, they can be made to yield up the same 
interpretations. Using the associated program 
disks, you will be able to analyze your own data by 
most of these approaches; you will learn how to 
consider all the alternative displays for a single data 
set before choosing one, or more than one, for 
report and interpretation; you will learn some of 
the algebraic and geometric strategies by which one 
can prove that certain of these techniques must 
agree and others must omit information in 
predictable ways; and you will learn how to critique 
other methods by calibration against this shared 
framework. 

A litttc hi5tory. Morphometrics grew 
naturally out of the tradition of accurate description 
in comparative anatomy. Before the 1960's, it was 
the concern of gifted amateurs, like D'Arcy 
l'hompson and Julian Huxley. They and other 
pioneers explored the ways in which quantities can 
be reasonably attached to biological shape in light 
of  understandings from developmental and 
evolutionary theory. The first branch of 
morphometrics to emerge as a praxis on its own, 
multivariate morphometrics, was almost wholly 
complete by the 1960's. Jolicoeur, Blackith, 
I3urnaby, llopkins and others contributed bits of 
logic and inference to  the now-classical synthesis 
represented in Blackith and Reyment's Multivuriufe 
Morpllor?zctricr of 1971. This approach emphasizes 
a common core of frequently useful matrix 
manipulations involving variables the origin of 
which is never explored. 

In the late 1970's and early 19801s, some 
methodologists turned their attention back to the 
more graphical methods o f  earlier years. Bookstein 
developed his implementation of Cartesian 



transformations during this pcriocl; Oxnartl 
explored new applications of methods of 
mathematical optics, biomechanics, and cornputer 
vision; Blum invented and tested his "medial axis." 
Yet the variety of new graphical tools was not 
matched by any commensurate advarlces in tlie 
biometrics (narrowly construeel) w1ierel)y data of 
this sort might be surnmarized and its covarilttion 
with causes or effects rigorously testeel. 

'I'he third clement in the synthesis :~l)pe:~rcd 
somewhat unexpectcclly in the c:~rly 1080's. 
Working at  first separately, 13ookstci11, Goodall, 
and Kendall tleveloped the same statistical ~iicthod 
to exploit all the information avail:~ble i n  sets of 
landmark locations. 'I'hc convergence was 
announced to statisticii~ns only very recently-in 
1086, in fact-ancl the first book-lcngth treatment of 
the topic, 1300kstein1s Morpirotrlc>~r;c 7i)ol.s / o r  

Lundr?lurk flufa, will n o t  appear ~ ~ n t i l  100 1. It is 
now clear that the olcl "rri~lltiv:~ri:~tc 
morphometrics," which tho~~gl l t  i t  W;IS ;~~i :~lyzi~ig  
"distances" and "angles," was actLr:~lly analyzing 
landmark location data instead. I.ikcwisc, the 
"outline" r-nethods were sun~ni;~rizirig rcl:rtionsIiips 
arnong "corresl)ondirig" points, somewhat akin to 
landmarlis, ant1 tlic supcrpositio~i ~~ictliocls were 
graphical approxirnatioris to sonic of tlic sariie 
statistical themes. 

For a few years now,  ~norphornctrici :~~~s who 
ernphasiize the geometry of form h:~vc been 
exploring ways o f  explaining this convergence t o  our 
various (and very diverse) audiences. 'I'hese 
Proceeciings are the strongest evidence to (late that, 
at least when supl)lernentetl Oy work at the 
blackl)oard, we think we've got it: we can teach 
mixed groups of biologists how to apl~ly rill the 
methods to a single data set, and rnake scrisc of all 
the computations and graphics. 

The easiest way to approach this common 
core of rnorphornetric method-by slogan, as it 
were-is to assert that the synthesis fills the Ii~cunae 
in each of the component methods by carefully 
hybridizing it to another. l 'here are thus three 
"methodological mosaics," corresponding to the 

three pairings we ~riiglit invoke. ( I )  One 
interpretatiorl of what we are preaching is tlie 
careful addition (via the deforrnatio~i methocls) of 
information about mean lantlnlark locations to the 
multivariate analysis of covari:~riccs of tliosc 
locatiorls, or tlicir distances, uith group. size, or 
environment. (2) Another way of exl)lair~irig csactly 
the sarne syntliesis is :IS tlie c:~ref~rl :ttlclitiorl of 
inforrriation al)out v:~riarice to tllc "('artesian 
transformatior~" nlcthocls, so that ~vhcri one dr;~u,s :I 

dcforriied grid, one has access to clcscriptors o f  thc 
reliability of all its feat~rrcs. (3) Yet a third way of 
explaining the syrlthesis is as the overl:rymcrit of tllc 
superposition tcchnicl~~es by information allout 
spatial cohere r i ce -a~~toco~- rc l :~ t io~ i  of the little 
vectors it is ericour:igirig our visual systems to ir~tuit. 
13ut this recli~ircs that the dist;~riee fullerions usually 
reported tllcre be r-epl;~cccl hy otlrers riior-c c,eritr-:rl 
to the rnorl)hornctric statistical literature. 

When the original tech~~iclues :!I-c pairctl 
correctly, the resulting reports have all the sanie 
sfatistics. One may think of otrr syrithesis, tficri, :Is :I 

schenie of alternate rlirigt-irtlls for- the s;trile 
~~~lrlcrlying inlor11i;~tion. For inst;~ricc,, you I I ; I \ Y  
llcen taught, correctly, that ratios : I I - C I I ' ~  us~r:111y ;I 

vcr-y good way of arialyzing tlista~lcc tlat:~. I % u t  tlie 
multivariate :~n;~lysis of' larlclrilark loc:ttio~is gocs 
forward perfectly in terms of a ~~:~rticuli~r-ly carefully 
cr:~ftcd sort of ratio, the sli;lpc coorclinxte pair, 
which can, in turn. suggest new v:~rial)les, 
theriiselves conventional ratios, which Iwst 
sunlm;trize observed clifferenccs. As  nothe her 
example, it is well-known that the results of :I 

multivariate orelination are in large part a function 
of thc vnria1)les  yo^^ choose. Yet once a set of 
lanclmarks 11:~s been fixed, :I good arguincnt can I K  
made (and is mridc i n  one of the clial)ters Ilere) t l l t t t  

there are three "net nlorpho~netric clistanccs" t I i :~ t  

underlie most biologically nie:tni~igl'ul 
7 7 

morphornetric ordinations anci explan:~tions. I licse 
are size difference, ~rniforrn sh~ipe clistance, and  
localized change ("l)ending energy"). An:~lysis gocs 
I~cst, and the rel:~tiori of altcrn;tte technicl~les is 
clearest, \vhe~l these ~)icturcs are kept carefully 
separate. As a final cxarnl)lc, the features of' 
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deformation (and we're distributing to you a fairly 
nifty little package, TPSPL,INE, for these graphics) 
can be usefully irrlagined as vectors in a few 
conventional multivariate analyses of geometrically 
distinctive "components," uniform and nonuniform. 
.I'tius features of deformation can he sul>ject to 
visual inspection just like any other set of 
multivariate descriptors, checked for outliers and 
contemplated for hints of alignment with 
organismic form. I:or outline data without 
landmarks, several of the choices we are teaching 
coalesce; we will show you those, and also indicate 
which rernain patent, to be weighed carefi~lly in 
part ic~~lar applications. 'I'liesc concerns apply 
especially to analyses of outlines with few, or any 
la~id~iiarks. such as typical plant Ic:~ves and certain 
rnicrofossils. 

Flhose of you who will read 311 the way 
 tir rough these Proceedings, and test the programs 
on the sample data sets supplied, will have been 
exposed to a great variety of good rnorptiometric 
:uialyses and the appropriate reporting styles. Our 
subject is the translation of findings back and forth 
arnong these essentially equivalent hybrid methods. 
'There is not one "best" method, but many; get to 
know therti all. If you absorb the message of these 
chapters, then in your research and in your reading 
and reviewing you will be committed to at least 
three distinct methodological virtues: 

1. You will apply every sort of graphical 
report to every data set. YOLI will N/WU}~.Y look at 
mean differences as deformations; always compute 
and scatter features of these deformations; always 
scatter each landmark "separately" according to 
some convenient superposition; always test for 
spatial integration of patterns among such scatters. 
You will proceed in all this with confidence that the 
multivariate statistics of all these sheafs of reports 
are the same. 

2. You will ulwuy.~ consider how 
variously the common core of findings from these 
analyses may be expressed on the page: as vectors, 
tensors, deformations, "warps," or statistics. You 

will be able to use all these tools to communicate 
the meaning of an analysis to all of your audiences. 

3. You will understand how particular 
methods, from the "shear" through finite-elements, 
may he calibrated against this common core, both 
statistically and practically. You will be able to 
detect precisely where in a morphometric analysis 
information is lost, and you will be able to avoid 
that loss wherever you choose. 

'I'here is likely to be a second volume of 
these Proceedings incorporating new lectures from 
the 1990 workshop and further programs and 
worked exan~ples. We are very eager to hear from 
you ahout your experiences with this new synthesis 
and your suggestioris for its further dissemination. 
I t  is easiest to communicate with the editors by 
electronic mail. Write to both o f  us when you write, 
please. 

We arc  very grateful for support from the 
Systematic Biology Progran~ of the National 
Sciences Foundation for the subventions which 
enabled the 1088 and 1090 Workshops and the 
publication of thcse Proceedings at  so low a price. 
Ihvid  Schindcl was an enthusiastic participant in 
most of the planning phases of both; perhaps he will 
accept a leather-bound copy of these Proceedings 
as a sufficient reward. We thank all the participants 
for their patience while we explored methods for 
teaching so interdisciplinary a synthesis. We 
especially wish to thank those who shared the 
podium with us-besides the authors of chapters in 
this volume, there were Julian Humphries, Barry 
Chernoff, Jim Cheverud, William Atchley, and 
Robert Ehrlich-and those who managed the 
computer systems on which sets of 30 participants 
would try out half a dozen methods in one frantic 
week within the confines of one or the other 
innocent evolutionary biology wing. At the 1988 
meeting, the technological fixers included Julian 
Humphries, Norman MacLeod, and Leslie Marcus; 
at the 1990 meeting, Adrian Lema, Junhyong Kim, 
Steve Reilly, Dennis Slice, and, again, Leslie 
Marcus. In  1987-88, Bill Fink and Jennifer Kitchell 
wrote the grant proposal, overseeing the design of 



the curriculum and the selection of teachers, 
students, and vendors. They ably delegated the 
logistics of housing and feeding participants and 
faculty while they went about the business of 
mastering this stuff with the rest of us. In 1990, Rill 
and Sara Fink guided this volume through 
production, and Michael and Bonnie Bell managed 
logistics for the Stony Brook workshop at which the 
text and software were tested. 

Special thanks go to Marie Josee Fortin for 
the tedious hours she spent formatting text, 

converting to yet another wordprocessor, and then 
formatting again for the production of camera- 
ready output. Thanks also to Norma Watson for 
copy editing the book so efficiently under a very 
strict deadline. 

Your editors, while taking no responsibility 
for the bugs in the dormitories, would be interested 
in any bugs in the software or the text that you 
might find. 

F. James Kohlf 
Fred L,. Bookstein 
Stony Brook, New York, and Ann Arbor, Michigan 

E-mail addresses, as of July 1, 1000, are: 
rohlf@sbbiovm.bitnet 
Fred~L.~Bookstein@um.cc.umich.edu 

July 1, 1990 



Part I 

lntroduction 

Introduction 

This proceedings volume is based upon the 
workshop that took place from May 16 through 
May 28, 1988 at the University of Michigan. Most 
facilities were provided by the Museum of 
Paleontology and the Museum of Zoology. The 
workshop was sponsored by the grant "Workshop 
on morphometrics and systematics" (BSR 8801 107) 
from the Systematic Biology program of the 
National Science Foundation. William L. Fink and 
Jennifer Kitchell were the Co-Principal 
Investigators. The summary that follows is based in 
part on their final report to the National Science 
Foundation. 

The Michigan Morphometrics Workshop 

The workshop had three goals. One of the 
goals was to bring experts in various morphometrics 
specialties together with highly motivated 
participants, with the expectation that the 
participants would be able to return to their 
institutions to teach the techniques and to integrate 
them into ongoing or new research programs. A 
second goal was to provide an environment where 
specialists in both morphometrics and systematics 
could interact and focus on conceptual and 
practical problems of integrating systematics and 
morphometrics methods. A third goal was to 
familiarize all concerned with advanced data 
acquisition systems for morphometric applications. 

The organizers of the workshop (the Co- 
Principal Investigators plus F. L. Bookstein) set the 
agenda, chose the 16 lecturers, and selected 30 
participants from the applicant pool. The agenda 
and choice of lecturers were designed to bring 
representatives of major schools of morphometrics 
to the Workshop. Participants were selected with 

the aim of getting a cross-section of the applicant 
pool (141 completed applications were received), 
with emphasis on scholars with a proven publication 
record (or one of great promise) and access to 
graduate participants. An effort was made to get 
reasonable representation from both small and 
large institutions, both public and private. 
University of Michigan faculty, staff, and graduate 
participants were provided with access to the 
workshop by participating as facilitators, usually 
helping participants with data acquisition. 

Participants were expected to remain on 
campus for the entire two weeks of the workshop. 
Lecturers were asked to come for at least two days, 
the day of their presentation and the day following, 
for student interaction and consultation; and three 
off-campus Lecturers managed to attend the entire 
workshop (Humphries, Marcus, Rohlf). Rohlf and 
Bookstein were specifically charged with attending 
all lectures to provide commentary for the sake of 
continuity. 

Lecturers were asked to provide drafts of 
their lectures for circulation among Lecturers and 
for dissemination to the participants in the form of 
a workbook. Lecturers were asked to address four 
issues in their lectures on particular methods: what 
biological assumptions were being made, when the 
technique was appropriate to a particular sort of 
data, when it was inappropriate, and how it related 
to systematic biology. The success of this charge 
was rather variable (but improved somewhat in the 
final versions of the chapters included in this 
volume). 

Workshop Schedule 

The workshop lecture schedule was organized into 
three parts: data acquisition and techniques, theory 



and applications of morphometric methods, and 
case studies of applications to specific problems in 
evolutionary and systematic biology. Laboratories 
were organized in three parts, as well: 
familiarization with data acquisition systems, 
applied data acquisition, and presentations of 
analyses done during the workshop. 

The workshop began with introductory 
lectures to familiarize Lecturers and participants 
with what the workshop's goals were and what 
would be covered. The first afternoon laboratory 
session was assigned to vendors of data acquisition 
systems so that participants could become familiar 
with the equipment (see Chapter 1 by Fink). This 
also gave vendors a chance to demonstrate their 
systems. The second day began with lectures on 
data types and data gathering techniques, with 
emphasis on video-based systems (Fink and 
MacLeod, corresponding to Chapters 1 and 2, 
respectively), followed on the third day by a session 
on image processing (Rohlf, corresponding to 
Chapter 3). Richard Strauss lectured on PCA, 
shearing techniques, and truss analysis. 

On the fourth day, the theoretical portion of 
the workshop was begun by Bookstein, who gave an 
overview of morphometrics (corresponding to the 
material in the Introduction to Part 111 of this 
volume). The next few sessions addressed the 
analysis of outline data by fitting functions (Rohlf, 
corresponding to Chapter 7), eigenshape analysis 
(Lohmann, Chapter 6 ) ,  rotational fit methods 
(Chapman, Chapter 12), coordinate techniques 
(Bookstein, Chapter l l ) ,  Fourier methods 
(Ehrlich), and traditional multivariate methods 
(Marcus and Reyment, Chapters 4 and 5, 
respectively). A final lecture series on advanced 
uses of coordinate techniques for reconciling 
findings of diverse other methods was given by 
Bookstein (corresponding in part to the material in 

the Introduction to Part 111, Section C of the 
present volume). 

The systematics applications section of the 
workshop began with medial axes analyses (Straney, 
Chapter 8), followed on the next day with a 
presentation on morphometrics and analyses of 
development (Kitchell). Lectures on homology and 
morphometrics (Smith, Chapter 17), growth 
functions in Mollusc shells (Ackerly, Chapter 18), 
analysis of morphometric data as characters in 
phylogenetic analysis (Humphries and Chernoff) 
completed this third section of the lectures. 

The final full day of the workshop was filled 
with student presentations of their research 
projects. A number of these reports lead to 
chapters in the present volume (Chapter 9 by Ray, 
Chapter 13 by Tabachnick and Bookstein, Chapter 
15 by Lindberg, Chapter 16 by Reilly, and Chapter 
19 by Sanfilippo and Riedel). The last half day 
involved discussions about the successes and 
failures of the workshop in meeting its goals. 

Supplen~ental activities during the workshop 
included a tutorial on applications of SAS to the 
coordinate as well as traditional morphometric 
techniques (by Marcus). This was extremely 
valuable inasmuch as software for several of the 
techniques was unavailable or was difficult to run. 
Supplemental discussion sections addressed 
systematics issues in the context of the day's lectures 
on morphometrics. These informal, unscheduled 
discussions proved very fruitful in focussing 
participants and Lecturers attentions on what 
systematics issues were being adequately addressed 
by Lecturers and which were not. There were also 
supplemental presentations on use of the 
phylogenetics package PAUP and the UM 
mainframe (both by Fink). 
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Software 
As mentioned above, one of the important 
problems at the workshop was the availability and 
compatiblity of microcomputer based software for 
the various methods discussed. As a partial 
remedy, a set of floppy disks is being distributed 
with this volume. The programs are all designed to 
run on IBM PC compatible (MS-DOS compatible) 
microcomputers. While some of them should run 
on any compatible computer, most require the 
presence of a graphics adaptor and a graphics 
monitor. None of them require the presence of a 
math coprocessor chip but most will benefit greatly 
from its presence. 

All programs are furnished in the form of 
executable programs. Some of the programs also 
include the original source code in whatever 
language the program was written in (FORTRAN, 
BASIC, or Pascal. Documentation is provided in 
the form of "readme" files. This documentation 
should provide enough information to install a 
program and to run a set of example data. In most 
cases it was not practical to include detailed 
information on exactly what operations the program 
performs. That information must be sought in the 
original literature (in some cases chapters in the 
present volume). 

The following programs are included in the 
set of morphometrics software. 

BURNABY and SHEAR Programs to apply the 
Burnaby size correction procedure and the 
method of shearing (see Chapter 4). Written 
in FORTRAN (source code included) by N. 
MacLeod. 

CANVAR and PCA General programs for 
canonical variates analysis and principal 
components analysis with various diagnostics 
and robust estimation procedures (see 
Chapter 5) included. Written in FORTRAN 
(source code included) by R. Reyment. 

DS-DIGIT A general program to capture x,y- 
coordinates from a digitizing pad. Written in 
Pascal by D. Slice. 

EFA A simple program to compute eliptic 
Fourier coefficients given an  outline 
represented by a sequence of x,y-coordinates 
of points. Written in FORTRAN (source 
code included) by F. J. Rohlf. 

EIGENS A large set of programs to perform 
eigenshape analysis (Chapter 6) and related 
computations such as data conversion and 
plotting. General purpose 2 and 3- 
dimensional plotting programs are also 
included. Written by P. N. Schweitzer and G. 
P. b h m a n n .  

FC A program to convert data from 
various input formats to the formats required 
by the various morphometrics software. 
Program written in Pascal by D. Slice and F. J. 
Rohlf. 

GRF Program for generalized rotational 
fitting (least-squares and resistant fit of two or 
more objects represented by x,y-coordinates, 
see Chapter 10). Written in Pascal by F. J. 
Rohlf and D. Slice. 

IMAGE A simple demo program to show the 
effects of various types of image enhancement 
operations. Written in Pascal by F. J. Rohlf 
and D. Slice. 

LINESKEL A program to find the median axis. 
Written in Pascal by D. 0 .  Straney. A 
hypertext user manual is included. 

PROJECT Written in FORTRAN (source code 
included) by F. L. Bookstein. 

RELWARP This program computes relative 
warps (see Chapter 11) for a sample of 
specimens represented by coordinate data. 
The computational program was written in 
FORTRAN (source code included) by F. L. 
Bookstein and a driver program was written in 
Pascal by J. Kim. 

RFTRA A series of programs to perform 
least-squares and resistant fit 
superimpositions of two specimens 
represented by x,y-coordinate data. The 



methods are described in Chapter 12. The 
program was written in BASIC (source code is 
included) by R. Chapman. 

SCALE3D A program to perform the numerical 
calculations of finite scaling analysis. The 
program was written in FORTRAN (source 
code is included) by James Cheverud. 

TPSPLINE Program to compute the thin-plate 
spline transformation of one set of 
coordinates into another. It also computes its 
decompostion into partial warps (see Chapter 
11). Written in Pascal by F. J. Rohlf. 

In order to save space, the program files 
have all been compressed and grouped together in 
logical groups. A utility program, PKUNZIP, is 
included that will extract the various files. There is 
also a READ.ME file that lists the contents of the 
distribution disks and gives instructions on how to 
extract the files and install the programs. Each 
program has its own READ.ME file giving details 
about how a particular program is to be installed 
and used. Please contact the authors of the 
programs for more information about details of 
their operation and the existence of bugs (but also 
notify us so that the distribution copies of the 
software can be updated). 



Part II 

Data Acquisition 

There has been increasing interest in the able at the time of the Michigan Morphometrics 
development of practical and low-cost methods to Workshop. While this material will become dated 
increase the accuracy and reduce the drudgery of very quickly due to the rate of progress in this field, 
acquiring quantitative data for morphometric analy- this account should still be useful as an overview to 
sis. This need has increased in recent years owing the kinds of hardware and software available. It 
to the realization that taking a few simple linear also provides a directory of vendors who can be 
distance measurements is not sufficient for most contacted for current information. 
types of morphometric analyses. Many of the The possibility of using microcomputer- 
newer methods of analysis require the coordinates based image analysis systems to capture morpho- 
of landmarks (see Part 111, Section C). metric data received particular attention at the 

While one can construct coordinates from 
triangulations of linear distance measurements, it is 
much more direct to simply digitize the coordinates 
of the landmarks. But this results in additional 
effort being required to measure and record two- 
(or three)-dimensional coordinates rather than lin- 
ear distances. Fortunately, the microcomputer 
revolution has brought with it the development of 
low-cost devices that can greatly reduce the effort 
required collect morphometric data. 

workshop. Some systems simply allow a user to use 
a mouse to mark points on a image displayed on a 
video screen (simulating a coordinate digitizer). 
Other systems assist the user in various ways. For 
example, programs can automatically follow the 
outlines of structures. Systems can also perform 
various transformations on the image to make it 
easier to see particular features. Chapters 2 and 3 
by MacLeod and by Rohlf, respectively, furnish 
overviews of image analysis. Their accounts include 

Chapter 1 by Fink gives a general survey of discussions of models of the image formation pro- 

microcomputer-based hardware and software cess itself and of methods to extract information 

appropriate for data acquisition in morphometrics. from an image. There are also discussions of some 

The devices range from computer-interfaced digital of the limitation of what one should expect an 

calipers to coordinate digitizers and image analysis image analysis system to do to automate data col- 

systems. It, of course, covers only products avail- lection in a morphometric study. 





Chapter 1 

Data Acquisition for Morphometric 
Analysis in Systematic Biology 

William L. Fink 

Museum of Zoology and Department of Biology 
University of Michigan 

Ann Arbor, Michigan 481 09 

Abstract 
There are several technologies now available for 
acquisition of shape information from biological 
specimens. The technology appropriate to any 
particular application depends on the nature of the 
specimens (their size and shape in three- 
dimensions, soft or hard-bodied, with or without 
identifiable landmarks) and the nature of the 
questions being asked. Two classes of measure- 
ment are typically used: distances and coordinates. 
A survey of data acquisition technologies for both 
of these kinds of data is included, with comments 
on the experiences of students with several systems 
used in the Workshop. 

Introduction 

Data acquisition has always been a major part of 
systematic biology, and a major bottleneck as well. 
Much effort has been spent to gather data on which 
to base systematic inferences, and only recently has 
there been improvement over methods common in 
the 19th century. Although my task is not to discuss 
the problem of what to measure of biological 
objects, but rather of how to measure, the latter 
really is dependent on the former, and that must be 
addressed, however briefly. My own experience in 
ichthyology, where a standard set of distance 

measurements has been in place for much of this 
century (see Hubbs and Lagler, 1941), shows that 
measurements are often made without proper 
consideration of the scientific questions being 
asked. As Strauss and Bookstein (1982) clearly 
showed, the standard ichthyological measures do 
not truly capture the shape of a fish, but rather 
redundantly and unevenly sample only certain 
aspects of its shape. Thus the first questions one 
must ask at the beginning of a systematic study, 
before any data are acquired, are "what do I want to 
measure?" and "why do I want to measure it?". 
Once those questions are answered, the technologi- 
cal issues are approachable. 

The question "why do I want to take a 
measurement?" is one that each scientist must 
ponder before starting a morphometric study. It is 
likely that the study organisms exhibit some shape 
similarities and differences and that there is a need 
to quantify them to ask the standard systematic 
questions of how many taxa are present and how 
are they related, before the study can be extended 
to process levels. It is often true that the question 
of relationships is harder than the first, and one that 
needs to be addressed on a deeper theoretical level 
than the former. 
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The "what do I want to measure?" question 
needs thought as well. Systematists typically wish to 
measure those aspects of shape that contain infor- 
mation about group membership, and for most 
organisms we do not know what that is before an 
analysis is done. So the answer to this question is to 
try to capture as much information about shape as 
possible in the hopes of getting the information 
needed. The data acquisition technique should 
archive shape data in a format that allows use of 
various analytical approaches. Critical use of ana- 
lytical methods is then needed to distinguish the 
systematically informative data from the uninfor- 
mative noise. 

There are two kinds of data useful in 
summarizing representations of form, distances and 
coordinates. Distances are the most common 
morphometric data, and have been in use for 
centuries; they can be taken using tools as primitive 
as string and a ruler. Distances are quantitative 
descriptions of the length or size of an object ("the 
dorsal fin is lOmm long"), or a measure of separa- 
tion between two parts of an organism ("it is 25mm 
between the dorsal fin and the anal fin"). Coordi- 
nate data represent points in a grid, described by an 
x and a y. The grid can be the lines on graph paper, 
a digitizing tablet, or a digital video image. Coor- 
dinate data can be converted into distance data (as 
long as a reference standard measurement is 
provided), but distance data cannot always be 
converted into coordinate data. This makes the 
choice of data acquisition technology important 
since certain kinds of analyses can be performed 
only on coordinates. Outlines are summations of 
coordinate data around the periphery of a form. 

In some studies, with some organisms, 
capturing but two dimensions of the form will be 
adequate to answer systematic questions. For 
others, three dimensions may be needed. This is an 
issue that will have to be addressed by each individ- 
ual and will have a bearing on what kind of data 
acquisition system is appropriate. 

Data Acquisition Devices 

This section must begin with a warning that what- 
ever device is chosen for data acquisition, rigorous 
accuracy and repeatability studies should be done 
before one commits to gathering research data. 
Never assume that the device is accurate. Periodic 
checks on accuracy should be made to insure that 
data are truly comparable over time. Some devices 
are more prone to problems than others, but all 
devices should be monitored for performance. 

Data acquisition systems used in the Work- 
shop are listed in the Appendix. 

Instruments for Measuring Distance 

These include the usual measuring devices used in 
many fields, such as ocular micrometers, dial 
micrometers, calibrated stages, and calipers. 
Devices for coordinate data, discussed below, can 
also be used for distances, with the proviso that 
there is an intermediate step of converting the 
coordinates to distances. Below is a list of some 
common traditional technologies, with comments 
on their strengths and weaknesses. 

An ocular micrometer is a scale etched into 
the optics of a viewing device; depending on lenses 
used, the object being measured can be of virtually 
any size. However, most ocular micrometers are 
used for very small specimens that can be viewed 
through a microscope. To use them you focus on 
the object, move the specimen holder or micro- 
scope stage so that the initial point you wish to 
measure is under one of the lines of the microme- 
ter, then count the number of lines to the second 
point. This distance is given in microns, in most 
cases. The advantage of the micrometer is that it is 
convenient to use and requires no other technology 
(except a tape recorder, or a pencil and paper for 
recording data). The disadvantages are that in most 
applications it is limited to specimens of small size, 
and its accuracy is particularly dependent on expe- 
rience and training. 
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An improvement on the micrometer is the 
mechanized stage. The user moves the stage to 
measure the distance between parts of a specimen. 
This is obviously limited to specimens which fit 
under a microscope, usually a compound micro- 
scope. 

Calipers are the standard tools for many 
standard measures in systematics that involve 
distances across a form. Vernier calipers have been 
replaced almost universally by dial calipers, in 
which the distance between two points is read on an 
analog dial or digital display, usually in millimeters 
and tenths of millimeters (although the calipers 
themselves allow measurements to the hundredths 
of millimeters). A relatively efficient way to use 
dial calipers is to read the measurements into a 
voice-activated tape recorder and then transcribe 
the data to a computer or calculator. The next step 
in efficiency is to purchase a caliper with a 
computer interface (e.g., Marcus, 1982). Several of 
these calipers are on the market, some with 
mechanical gears and analog dials, and some with 
magnetic strips and digital LCD's (Liquid Crystal 
Display). Depending on price, the calipers come 
with either a "dumb" serial connection (RS-232) 
which requires some programming to use, or a 
"smart" interface that minimizes programming 
needs. The "smart" interface usually is a good 
investment. In either case, a data acquisition 
program is needed in the computer to organize the 
incoming data. Several of these programs are 
available, most in BASIC, and some can be 
customized fairly easily. Calipers attached to a 
computer are a very efficient way to take data from 
macroscopic objects, but they are of limited value 
for small, near microscopic objects or for very large 
objects. Calipers can be purchased in several 
lengths. People planning to use calipers in the field 
should take note of the location and vulnerability of 
the gears and teeth on mechanical calipers and note 
that batteries are needed for the LCD instruments. 

Instruments for Coordinate Data 

There are several kinds of instruments available for 
gathering coordinate data, the most common of 

which include the pantograph, digitizing pads (also 
known as graphics tablets), video-based systems, 
sonic digitizers, and light-focusing microscopes. 
The last two devices can be used for three- 
dimensional objects, as discussed below. 

The pantograph is the least expensive device 
for coordinate data acquisition. Its usual applica- 
tion is enlarging and reducing drawings. It consists 
of a series of metal bars connected together to form 
a series of levers. Adjustment of the positions of 
the connections between the levers determines the 
ratio of enlargement or reduction. The tracer, a 
sharp point attached to the underside of one bar, is 
moved about the specimen while a pencil causes the 
points or outline to be laid down (enlarged if that is 
desirable) on a piece of paper. The actual coordi- 
nates can be read by placing the marked paper over 
a piece of graph paper (enhanced by use of a light 
box) and then keyed into a computer. A more effi- 
cient strategy is to use a digitizing tablet to get the 
data into the computer. The greatest drawback of 
the pantograph is its inefficacy on specimens of a 
limited size, especially for small organisms. Speci- 
mens of less than 15 mm are approaching the lower 
limits of repeatability for this mechanism. 

The digitizing pad has become a common 
device for getting positional information into a 
computer, and it is probably the most common tool 
used by morphometricians. A requirement for its 
use is that the object of interest must be essentially 
two-dimensional. For taking coordinate data from 
photographs, such as from a scanning electron 
microscope, or from a microscope and canleru 
lucida (with the caveat noted below), a pad is an 
excellent choice. Another advantage of a digitizing 
pad is its resolution (480 lineslcm is common); 
currently, there is no other physical device that 
allows this degree of resolution with concomitant 
accuracy and repeatability. Whether such resolu- 
tion is needed will depend on the size of the speci- 
mens, the analytical techniques used, and the 
degree of accuracy necessary to approach the 
problem. There are a number of digitizing pads on 
the market, from many manufacturers. To a user, 
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the main differences in them include resolution, 
software support, and ease of installation and use. 
The major market for digitizing pads is the 
burgeoning Computer Aided Design (CAD) indus- 
try and new users may find that many of the 
commercial software data acquisition programs are 
far more complex than needed. There are several 
public domain acquisition programs available, some 
of which accompany this volume. 

Most digitizing pads come with two pointing 
devices, a stylus and a cursor. The stylus looks 
much like a ball-point pen; its tip is touched to the 
pad at the desired coordinate to send the signal to 

that area sends a message, such as "delete the last 
point taken" or "set the scale" to the computer. 
With a little programming this command area can 
be moved about, sized, and have its functions 
changed. 

For systematic work, it is advisable to get a 
digitizing tablet with a translucent working area, so 
that it can be backlit. Digitizers usually plug into 
the serial port of the computer. Some have an 
optional display of the pad output. Their resolution 
and ease of use have led many manufacturers of 
video-based systems to incorporate digitizing pads 
as the main pointing device. 

the computer. The cursor resembles a mouse with The main disadvantage of digitizing pads is 
a transparent plastic disc at  its front. This disk the usual requirement of an intermediate step 
usually has either a "bulls eye" or cross-hair built between the specimen and the pad, Three- 
into it. A cursor is preferred to the stylus because dimensional objects must be to two 
the point being digitized is more visible. and dimensions and objects too small or too large must 
because the cursor is easier to keep steady. be sized to fit on the tablet (usually about 300 mm 

Most digitizing pads are of two types, elec- 
trostatic or electromagnetic. Electrostatic digitizers 
use an electric field from the pad's surface and a 
cursor which is a capacitive pick-up, itself attached 
to a source of a sine wave signal equal to that of the 
tablet. As the cursor moves, it detects changes in 
the phase of the electrical field. While an electro- 
static tablet is relatively unaffected by physical 
shocks and other environmental changes, it is 
sensitive to conductive materials and can even be 
affected by moisture. Electromagnetic digitizers 
are more common than electrostatic, and they are 
unaffected by conductive materials and environ- 
mental changes, making them more attractive. 
These pads have parallel copper wires embedded in 
them which are connected on one side to each 
other and on the other side by a multiplexer which 
scans them. The cursor has a small coil inside and 
acts as a transmitter. The cursor produces a current 
in each wire of the grid, proportional to its distance 
from the wire. The digitizer determines cursor 
location by scanning the output from the wires and 
analyzing the signals. 

Most pads have areas of their surface dedi- 
cated to commands, so that a touch of the cursor in 

or less). This intermediate step can be time- 
consuming and can introduce error into an analysis 
unless it is done carefully. For example, pho- 
tographing specimens to digitize introduces the 
distortions of lenses at least twice: camera and 
photo enlarger. The photographs must be of suffi- 
cient quality that all the pertinent parts of the 
organism are clearly visible. Some workers project 
35mm slides onto a digitizing pad, but usually this is 
not recommended because of the quality of most 
slide projector lenses. Many use digitizing pads in 
conjunction with a curneru lucida (e.g., Jacobs and 
Claeys, 1987), a practice that can potentially intro- 
duce error into analysis due to the distortions in the 
optics of the camera lucida itself, and from the diffi- 
culty of getting the hand-held cursor as seen though 
the camera lucida properly and consistently aligned. 
Caveats about determining the accuracy of a data 
acquisition device apply especially to this kind of 
system and users should do repeatability studies 
with objects of known size before they commit to 
gathering data. It is not advisable that more than 
one person take data for a single study using this 
arrangement because of the distortions caused by 
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differences in technique (usually unconscious) of them now is appropriate. The flexibility and power 
different individuals. of these systems make them the preferred data 

The sonic digitizer is a device that over- 
comes some of the problems of the tablet digitizer, 
with some loss in resolution and repeatability, 
although the resolution lost will not affect many 
systematic applications. This device functions by 
measuring the time of arrival of sound, generated 
by the cursor, at small microphones placed along 
the frame of the digitizer. One small version 
consists of a microphone bar and a cursor, with the 
active area being about one square foot. Larger 
versions consist of two bars perpendicular to one 
another, and a cursor. Since there is no pad, these 
digitizers can be made in large sizes and are excel- 
lent for maps and other large, relatively two- 
dimensional objects. By extending a third micro- 
phone bar perpendicular to the other two, a three- 
dimensional digitizer is formed. The main draw- 
backs of sonic digitizers are inconsistency due to 
imprecise positioning of the sound source in the 
cursor, and the need for a relatively clear area 
between the cursor and the microphone bars. One 
should be aware that objects between the cursor 
and the microphones will deter consistently good 
results. 

The ReflexTM microscope is a light beam- 
based three-dimensional system. To  use the system 
one focuses the microscope on the point to be 
measured, then focuses on that same point light 
beams generated by bright light emitting diodes 
(LED). When the light beam is sharply defined on 
a surface, the press of a foot pedal sends x ,  y, and z 
coordinates via a serial connection to the host 
computer for computation of distances, construc- 
tions of the image in three dimensions, and some 
statistical analysis. This is one of the few systems 
available which allows three-dimensional mea- 
surements on a specimen, directly in three dimen- 
sions. Its disadvantages include its limited range 
(rather small specimens are necessary) and the 
delicacy of the apparatus. 

Video based systems are discussed in detail 
in the next chapter, but a general introduction to 

acquisition technology for many systematics prob- 
lems. One strength of video data acquisition 
systems (VDAS) is that, because they are optically 
based, they can be used for specimens of virtually 
any size, from micron to meter range. Since the 
image of the specimen is being held in a computer's 
memory, many techniques are available to enhance 
the image, and in some systems the computer does 
image analysis and data acquisition. As with other 
optical systems, the VDAS is for data acquisition in 
two dimensions. Three-dimensional representa- 
tions can be obtained by rotating specimens and 
redigitizing. When only a few measures in the third 
dimension are needed, it may be more economical 
of time to use calipers in combination with a VDAS 
(Fink, 1987). 

Video based data acquisition systems usually 
consist of a minimum of a video camera (either 
analog or digital), frame grabber (or video digi- 
tizer), microcomputer, and usually, a video monitor. 
The major differences between individual systems 
involve resolution of the frame grabber and the 
capabilities of the software package. The largest 
investment commercial vendors make in these 
systems is the software, and its design and imple- 
mentation will govern the system's market, almost 
regardless of the hardware being used. 

Some of the important components of a 
VDAS are listed below, with some comments that 
should be kept in mind when using one or consider- 
ing purchase of one. Perhaps the first choice one 
has to make is whether a black-and-white or color 
system is appropriate. 

Most currently available VDAS are black- 
and-white systems, but some of these use 
"pseudocolor" to enhance the gray images. Black- 
and-white systems are less expensive to buy than 
color systems because color video cameras, color 
frame grabbers, and color monitors are all more 
expensive than their black-and-white equivalents. 
For many systematic applications, true color 
systems are not required, but for some, such as 
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analysis of color patterns, a color system is neces- 
sary and completely justifiable. For most systema- 
tists, especially those working with preserved 
museum specimens, a black-and-white system is 
completely adequate, especially given its lesser 
price compared with true color VDAS. 

"Pseudocolor" systems use a black-and-white 
camera with a color video monitor, and the image 
processor (located on the frame grabber) assigns 
colors to ranges of the usual gray scale for display 
of the image. The actual color of specimens is not 
shown. The computational overhead of some 
"pseudocolor" systems may cause them to have 
lower resolution than a black-and-white system. 

Since VDAS's are optical systems, the first 
important component to consider is the lens. There 
are video attachments to virtually all dissecting and 
compound microscopes, although most are rather 
expensive. For macroscopic specimens, a good 
quality lens and bellows or extender ring setup is 
usually adequate. Since most video lenses are 
manufactured for much less demanding optical 
tasks than systematists require, it may often be a 
good choice to buy a high quality 35mm single lens 
reflex (SLR) camera macrolens and a video adaptor 
to attach it to the camera. For larger specimens, 
standard SLR lenses can be used. In all cases 
involving lenses, one should experiment thoroughly 
to determine the limits of the optics; for example, 
distortion increases near the edges of a lens. 
Nothing less than measuring good quality graph 
paper several times, over much of the area covered 
by the lens, is needed to insure that a lens is 
adequate for the task at hand. 

Choice of a video camera is also important, 
and here there are two choices: analog vidicon tube 
cameras and digital (solid state, or so-called "chip") 
cameras. Vidicon cameras are larger, heavier, and 
prone to loss of picture quality over time. Because 
they are analogue cameras, however, compared to 
many less expensive chip cameras, they have higher 
resolution and are less expensive. Chip cameras 
use a photovoltaic silicon chip as the light detector; 
they can be very small, sometimes smaller than the 

lens attached to them, and they are not supposed to 
deteriorate over time. In both vidicon and chip 
cameras, the output is converted to an analogue 
signal. All of the systems used at the Workshop 
included chip cameras, and in all cases these 
cameras appeared to have adequate resolution. 
Color can be recorded either with a color camera or 
a black-and-white camera with several color filters. 

The frame grabber itself is usually a printed 
circuit board that occupies a slot in the microcom- 
puter. This board takes the incoming analogue 
signal from the camera and breaks it into small 
portions, each of which occupies a memory location 
in the random access memory (RAM) of the board, 
and each of which is represented by a pixel, a small 
rectangular or square area of the video screen. 
Resolution of the board is limited in part by size of 
the RAM. Most frame grabbers include enough 
onboard RAM to allow image manipulation and 
processing without depending on the RAM of the 
host computer. As RAM prices fluctuate, so do the 
prices of these boards, but the expectation is that 
prices will drop and thus board prices will drop as 
resolution increases over time. 

Choice of the host microcomputer for a 
VDAS will determine which "fanlily" of computers 
you join, how fast things will work and how much 
data analysis can be done without resorting to a 
mainframe computer. This workshop featured, 
almost exclusively, computers based on Intel 
processors and using Microsoft's MS-DOS operat- 
ing system, the so-called IBM-PC and IBM-clone 
family. Apple systems are surprisingly rare in this 
part of the computer industry, in part because the 
Apple I1 and its permutations are not powerful 
enough to be used for serious image processing, and 
the Macintosh has until recently been a "closed" 
system requiring expensive and usually slow out- 
board add-ons. With the arrival of the Macintosh 
11, Apple has made a powerful and impressive 
computer that is a natural for image processing. 
We had hoped to have such a system for the work- 
shop, but delays in getting these boards to market 
kept fully developed data analysis systems unavail- 
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able. Several Macintosh I1 frame grabbers are now 
on the market, and as software development moves 
forward, this family of computers is becoming an 
attractive (although generally more expensive) 
alternative to those discussed next. 

Regarding the MS-DOS machines, as 
processor speeds have increased, competition has 
forced prices to drop, and the older XT and AT- 
style 8 and 16 bit machines have become very 
inexpensive (most commercial VDAS are now 
based on 80286, AT style machines). The newer 
80386 32 bit machines now have clock speeds of 
25mhz and over, and capacities for up to 16 
megabytes of RAM. Because of the variety of 
processor speeds and proprietary schemes to make 
the machines faster, it is important to verify that 
any frame grabber considered for purchase is guar- 
anteed to work in the computer of choice. 

There are several methods for a user to 
interact with a VDAS, usually by moving a cursor 
around on the video monitor screen. The instru- 
ments that govern cursor movement include mouse, 
track-ball, joy stick, light pen, or digitizing pad. 
Most commercial systems use a digitizing pad or 
mouse, since track balls, light pens, and joy sticks 
are considered by many to be less accurate and/or 
more difficult to use. Mice come in two kinds, 
mechanical and optical, and most commercial 
systems which have a mouse use an optical one. 
The mechanical mouse has a small ball on its 
underside, and movement of the ball is interpreted 
by the mouse to indicate relative movement. Opti- 
cal mice are placed on a pad with a grid imbedded 
in it, and a small sensor on the underside of the 
mouse totes up sightings of the grid to give relative 
movement. Mice also come with different numbers 
of buttons to push, from one to over twenty. 

Finally, the video monitor is a very impor- 
tant component of a VDAS because data acquisi- 
tion is an eye-tiring occupation. A monitor must 
have sufficient resolution for comfortable viewing 
of the image. Even the least expensive monitors 
have resolution greater than most frame grabbers, 
but that does not mean that a higher resolution, 

higher quality monitor won't look better and be 
easier on the eyes. Color monitors in less expensive 
price ranges have lower resolution ratings than 
black-and-white monitors, so unless a system is 
going to use color, a black-and-white monitor is 
recommended. 

Once the physical parts of a VDAS have 
been assembled, either by you or a manufacturer, 
the next crucial step is getting good software. Data 
acquisition programs should make it easy to start a 
session (e.g., have facilities for recording specimen 
number, catalogue number, etc., as appropriate), 
easy to actually record data, and easy to get data 
into a form that can be analyzed. Strategies for 
each of these portions of the data acquisition 
sequence vary depending on the experiences and 
expectations of the designers, and the greatest 
differences among data acquisition packages are in 
software. Some packages allow programming of the 
user interface, some allow the image to be captured 
to disk for archiving, some place data point infor- 
mation in spreadsheets; in short, there are many 
ways to approach data acquisition, and a potential 
buyer should become acquainted with all parts of a 
system before deciding whether to adopt it. Our 
experiences at the Workshop showed that many 
commercial systems, in trying to appeal to a wide 
variety of users with many applications, have soft- 
ware that is complicated and cumbersome. Some 
systems had software that was balky and made data 
acquisition awkward. One gets the impression that 
the software was designed to impress prospective 
customers rather than to be useful on a day-to-day 
basis. The software packages that include 
"programming" by use of macros written to do a 
particular task without forcing one to use the entire 
operating system were especially appreciated by 
Workshop students. Any prospective buyer of a 
VDAS should be very critical of the software 
offered, and use the software to do repetitious data 
acquisition of the kind that will be the normal 
application. Several vendors have noted our 
students' wishes and promise to try to make their 
software more flexible. 



16 W. L. Fink 

Rather than write software for a wide variety 
of applications, some vendors have taken a differ- 
ent approach and designed it for more restricted 
tasks. Two such systems shown at the Workshop 
were CODA (for coordinate data acquisition) and 
MorphoSys (primarily for outline acquisition). 
Both use the Imaging Technologies PCVISION- 
pfurTM frame grabber, and both were developed in 
part by practicing systematists. These systems are 
"goal oriented" in getting to the task at hand right 
away. If the project you wish to do is one these 
packages are designed for, they are attractive and 
inexpensive alternatives to the other "turnkey" 
systems. 

All commercial systems allow some degree 
of manipulation of the video image, and in some 
cases this is very sophisticated. Many have auto- 
mated features for object counting, edge tracking, 
etc., but most of these are less useful to systematists 
than to some other users. Some systems also 
include statistical packages either bundled 
(included in the system purchase price) or as an  
option. Whether this will be attractive or cost 
effective depends on what kinds of analysis the user 
wishes to do. While the statistics packages offered 
usually do basic analyses, they do not provide many 
of the analyses highlighted in this volume. It is 
important that data be portable in ASCII form to 
other packages or to other computers, and, surpris- 
ingly, some rather expensive systems are unable to 
do this. 

Another alternative is to buy the hardware 
and write software for it. Under most circum- 
stances, this is not a trivial task, as much of the 
programming requires knowledge of assembler or 
higher level languages such as Fortran or C. Design 
of the user interface, data output standards, and 
many other things make this a complicated business 
that should not be done unless one has considered 
the commercial systems and found them truly 
wanting. An option that is not as difficult as start- 
ing from scratch is to use a commercial package of 
software like "Image-Pro" (Media Cybernetics, 8484 
Georgia Avenue, Silver Spring, M D  20910), which 

runs on a wide variety of frame grabbers and comes 
with routines that can be integrated by the user for 
specific applications. Programming knowledge is 
still required, but very sophisticated image process- 
ing and data manipulation can be done with rela- 
tively less programming investment. One popular 
system shown at  the workshop, that of D. Schindel, 
was based on software from Media Cybernetics. 

Buyers of turnkey systems are usually also 
buying proprietary data acquisition software, and in 
some cases operating systems. Some vendors are 
willing to customize software for an extra charge. 
In any case, the stability of a company is a factor in 
a buying decision since program code is generally 
not available for modification or updating. 

Comments from Workshop Attendees 

A questionnaire sent to workshop students queried 
them on their experiences with the data acquisition 
systems and for suggestions to improve such 
systems. The respondents made it clear that they 
have specific needs and that most of the commer- 
cial systems don't meet those needs efficiently. The 
four top-rated systems included two which are 
large-scale commercial systems and two which are 
smaller scale, and which had systcrnatists involved 
in their creation (see also the Appendix). The two 
large-scale systems are the OPRS from Biosonics 
and the Videometric 150 from American Innovi- 
sion. Both of these are expensive (around $20,000), 
very sophisticated, and quite able to exceed the 
needs of most systematists. Both are flexible and 
allow user-programmed macros to simplify data 
acquisition. The OPRS system benefits from truly 
excellent support from the vendor; a new, much 
lower cost system was shown at the workshop and 
was met with great interest by workshop students. 
The Videometric 150 is the only true color system 
that was shown, and it appealed to those students 
whose study organisms have systematically useful 
color patterns; user support appears to be strong, as 
well. The two "smaller" systems rated highly are 
MorphoSys and CODA. Both are available as 
"turnkey" systems and both can be purchased as 
software for user-configured hardware. MorphoSys 
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was designed primarily for outline acquisition, but 
has recently been modified to allow coordinate 
input; CODA is for coordinate input only. A fifth 
system, Jandel's JAVA, was also much commented 
on by respondents; some found the system awkward 
to use and overly complex, while others found it 
excellent and inexpensive. 

One thing that most students wanted very 
much is a way to custom format data output. All of 
the systems shown place data in a proprietary 
format which had to be reformatted for input into 
the various morphometrics programs. In some 
systems, the data are placed into spreadsheets 
which can then be dumped to ASCII. In others, 
data conversion programs had to be written to get 
the data into manageable form. Many systems are 
dedicated to certain kinds of "standard" analyses (in 
some cases using proprietary statistical software) 
and some were not designed for ASCII output at 
all. Clearly, any purchase should be contingent 
upon demonstration by the vendor that the data can 
be output in a manner you require. It still may be 
necessary to do some programming to reformat 
data for different analysis programs. 

Summary 
The purpose of the devices discussed above is to aid 
the systematist in the collection of data to apply to 
the resolution of a scientific question. Do not let 
yourself be seduced by the technology, as this can 
become time consuming. By keeping the biological 
questions foremost, you can choose machines of 
appropriate resolution and sophistication. These 
machines can be great time savers, and allow 
approaches to problems that would have been diffi- 
cult or impossible before their arrival. If you find 
that one kind of data acquisition system can't get 
the information you need, abandon it and go to 
something else. 

The cost of most of these systems is dropping 
as their sophistication is increasing. Some of the 
systems are flexible enough that they can be 
purchased as multi-user facilities which can aid 
people in different fields, thus making their 

purchase more palatable to department chairs. 
New technologies are going to make this paper 
obsolete in short order, and every systematist 
should keep alert to new products and new oppor- 
tunities in data acquisition. 
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Appendix. Data acquisition systems 
available to workshop participants. 
Most of these systems are based on "AT-style" 
(80286) microcomputers of various brands. All run 
under DOS, 2.1 and above. Most systems will save 
images to disk and can output data as ASCII (some 
use their own spreadsheet programs). Manufactur- 
ers were asked to supply information about their 
products, including changes since the workshop; 
these comments have been included below. 

* American Innovision, 
Videometric 150 
7750 Dagget St. 
San Diego, CA 921 11 
(619) 560-9355 

A true color video turnkey system (the only true 
color system at the workshop). Programmable user 
interface. Software package capable of sophisti- 
cated image manipulation. Since the workshop, 
both software and hardware have been changed to 
give higher resolution, an expanded macro com- 
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mand language, and several other features. Current 
cost is $21,500. 

* BioSonics, OPRS 
3670 Stone Way North 
Seattle, WA 98103 
(206) 634-0123 

Flexible and programmable user interface. Image 
analysis and manipulation very powerful, some ana- 
lytical software included in package, more is 
optional. Minimum system (frame grabber, soft- 
ware, digitizing pad and mouse) is $12,775; com- 
plete system including minimum system plus com- 
puter, microscope, video camera and monitor) is 
$25,500. A popular system with workshop atten- 
dees. 

* Jandel Scientific, JAVA 
65 Koch Road 
Corte Madera, 
CA 94925 
(800) 874- 1888 

A flexible, relatively inexpensive, and attractive 
system of software for the TARGA-M8 and 
PCVisionplus frame grabbers. Some students criti- 
cized the complexity of the system and its unintu- 
itive help menus while others thought it the best 
system available at the workshop. Software alone 
costs $1,500; hardware accessories are available 
through Jandel. 

* MorphoSys 
C. A. Meacham and T. Duncan 
University Herbarium 
Univ. of California 
Berkeley, CA 94720 

Primarily designed for the acquisition of outline 
data, but has the capability to capture coordinate 
data, as well. Very popular with workshop students. 
Uses the PCVISIONplus frame grabber. Software 
license fee for single user is $250; available from 
Exeter Software, 100 North Country Rd., Setauket, 
NY 11733, (516) 689-7838. 

Olympus dealers 

A powerful, but rather inflexible system that was 
not liked by participants. Designed for a market 
including histological and medical applications. 
Very awkward data output system. Documentation 
was poor and one workshop participant who liked 
the system rewrote parts of the manual for others to 
use. Approximate cost for basic system $18,000. 

Pisces Microcomputer, CODA 
19 Diana Drive 
Scottsville, NY 14546 

Specialized for coordinate data acquisition using a 
mouse and the PCVISIONplus frarne grabber. 
Image zooming is a useful feature. Cost of software 
is $300. Turnkey systems available, pricing depend- 
ing on hardware chosen. Designed partly by work- 
ing systematists, so the system works nicely for sys- 
tematics oriented data acquisition. 

* R&M Biometrics, Bioquunt 
5611 Ohio Ave. 
Nashville, TN 37209 
(615) 350-7866 

Long a standard for video-based data acquisition in 
many biological disciplines. Students did not like 
the XT-based system shown at the workshop, as i t  
was slow, of low resolution, and was awkward to 
use. A new true color system has been added to the 
line since the workshop. Current costs are approx- 
imately $19,000 for the Meg-MX black-and-white 
system, $30,000 for the Meg-Vista color system. 

* Reflex Measurement LTD., Reflex Microscope 
9 Whitehall Park 
London N19 3TS 
England 

Three-dimensional measurements on specimens 
through a modified compound stereomicroscope. A 
sophisticated optical system, but was used in the 
workshop with a computer user interface below the 
standards set by the video systems. Subsequent 
reworking of software has substantially improved 

Olympus System, Cue-2 
Available from 

the user interface. A new high precision model has 
also been recently added. For its application, a very 
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attractive system that was enthusiastically received Atlanta, GA 30339 
by some workshop students. Approximate cost is A inflexible system that was not used much 
f 11,400 for an entry level system. by workshop participants. Clearly designed for 
Southern MicroInstruments, Microcomp specific markets which have needs different from 
120 Interstate North Parkway East, those of systematists. Priced at  about $10,400. 
Suite 308 
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Abstract 
The availability of powerful and relatively low-cost 
image analysis systems has substantially eased the 
time and labor intensive task of image acquisition 
and morphometric data collection. Recent techno- 
logical improvements in biological image analysis 
are largely a consequence of the introduction of 
digital image formats. Digital images, while neces- 
sarily being of lower resolution than their analog 
antecedents, lend themselves to precise quantifica- 
tion and are readily transportable on a variety of 
electronic and magnetic media. Consequently, 
commercially available image analysis systems can 
fulfill several different roles in the systematic labo- 
ratory, from that of simple image or object docu- 
mentation, to completely automated forms of object 
measurement and identification. This paper 
provides an overview of digital image formats, digi- 
tization procedures, spatial and brightness resolu- 
tion in digital images, the general organization of 
typical digital image analysis systems and brief 
discussions of various hardware components used 
by systematists for digital image analysis. 

Introduction 

While the potential contribution of morphometrics 
to systematic biology and paleontology has been 
widely recognized, the routine implementation of 
these techniques has been impeded by 1) a general 
lack of emphasis on the development of quantita- 
tive data analytic skills that, until recently, has 
characterized the training of most young systema- 
tists, and 2) a specific lack of reasonably priced 
laboratory equipment designed to speed the labori- 
ous task of morphometric data acquisition. Fortu- 
nately, both of these barriers are rapidly being 
overcome; the first by the publication of a number 
of introductory textbooks in the field of biological 
morphometrics (e.g., Pimentel, 1979; Reyment, 
Blackith and Campbell, 1984; Bookstein et al. 1985; 
this volume), and the second by a recent increase in 
the availability of automated iniage analysis soft- 
ware packages and hardware/software systems for 
personal computers. 

Ironically, now that image analysis technol- 
ogy is finally capable of providing the data acquisi- 
tion and measurement tools that generations of 
systematists have hoped for, their relatively sudden 
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appearance has left many systematists bewildered 
before the task of choosing among the many alter- 
native computer systems and morphometric data 
analysis programs. In the case of the latter, it is 
sobering to realize that despite a clear need for the 
quantitative investigation of patterns of morphome- 
tric variation in organic form, there presently exists 
no commercially available, fully integrated software 
package that provides users access to a full range of 
specialized morphometric data analytic procedures. 
Of course, a number of more-or-less sophisticated 
statistical data analysis program packages are avail- 
able. Although these programs can provide sys- 
tematists access to techniques that may be usefully 
applied to certain types of morphometric data (e.g., 
distances between landmark points), it should be 
kept in mind that these programs were not specifi- 
cally designed to deal with the general problem of 
morphometric data analysis, and, for the most part, 
fail to include adequate analytic procedures for 
many types of routinely collected morphometric 
data (e.g., outline coordinates, point coordinates). 
The software package that accompanies this volume 
represents an initial attempt at providing the sys- 
tematic community with such a library of morpho- 
metric data analysis procedures. Owing to the 
diverse programming styles and research interests 
of its authors, however, this particular collection is 
perhaps best described as eclectic. 

In addition to this very serious lack of 
adequate software for morphometric data analysis, 
few commercially available image acquisition/ 
processing/analysis computer systems have been 
designed to meet the specific needs of research 
systematists. For example, even a brief survey of 
the current crop of computerized image analysis 
systems reveals large disparities among the features 
offered by various competitors (i.e., differences in 
the types of data that can be collected, spatial and 
brightness resolutions, degrees of automation of the 
various data collection operations, availability of 
image processing methods, techniques used to 
correct known sources of image distortion, compat- 
ibility with external data analysis program package 
formats, prices, etc.). Such diversity arises from the 

fact that many of these instruments were designed 
originally to fulfill a variety of different applied 
image analysis roles in various industrial and medi- 
cal laboratories where methods of characterizing 
aspects of object size and shape have become 
somewhat standardized. This contrasts strongly 
with the rationale and goals of systematic research 
in which we rarely find ourselves in the enviable 
position of knowing which aspects of morphologic 
variation are most informative at the outset of an 
investigation. In order to provide systematists with 
a general overview of this heretofore unfamiliar 
technology, this paper is intended to introduce sys- 
tematists to some of the basic concepts around 
which most automated digital image analysis sys- 
tems are designed and to briefly discuss the impli- 
cations of alternative hardwarelsoftware decisions 
that must ultimately be confronted by those who 
wish to employ morphometric data acquisition and 
analysis in their individual research programs. 

Types of Images 

The images we typically see recorded on photo- 
graphic film (prints, negatives, slides, SEM micro- 
graphs, x-rays, etc.) are continuous tone images 
composed of a graded series of grey tones or colors 
that, at least in principle, blend smoothly into one 
another to reconstruct the original scene. Digital 
images, on the other hand, are composed of indi- 
vidual elements (termed picture elements or pixels) 
of discreetly quantitized brightness, with each pixel 
being separated from its neighbors by sharply 
defined boundaries. Close inspection of a digital 
image will almost always reveal the presence of 
small discontinuities due to the nature of the pixel 
boundaries (Figure 1). But, at normal viewing 
distances, distortions introduced by the conversion 
to many average and high resolution digital formats 
do not significantly alter our ability to recognize 
and measure the object or scene. 

Keeping in mind the fact that digital images 
are wholly artificial constructs whose resolution is 
necessarily inferior to that of the original continu- 
ous tone image, one might wonder why it is neces- 
sary to go to the trouble of converting a continuous 
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feature extraction techniques. I Figure 1 ,  Ex~rnples o f  digitiicd conlinuous tonc in~i~gcs.  A) 72 dots per inch / 

tone image to a digital format? As it 
turns out, however, there are several 
distinct advantages offered by digital 
images that offset this unavoidable, 
thoi~gh in many cases slight, decrease 
in overall image quality. These 
include the speed with which digital 
images can be acquired and repro- 
duced, their portability, and the 
ability to manipulate them on a 
pixel-by-pixel basis thereby enabling 
the implementation of a wide variety 
of automated image processing and 
enhancement techniques. In addi- 
tion, digital images, due to their 
discrete nature, greatly facilitate the 
quantification of morphology by 
increasing the accuracy with which 
spatial relationships between objects 
or features can be measured both 
manually and through the use of 
automated boundary tracking and 

- 

The process of converting a continu- 
ous tone image to digital format is termed 
"digitizing," but the procedure is qualitatively iden- 
tical to that of superimposing a cartesian grid over 
the image to be digitized and then sampling the 
brightness level of the image within each cell of the 
grid. In most types of automated image analysis 
systems, the original continuous tone image is 
initially "captured" by a black and white video 
camera. This is accomplished by focusing the 
image on the surface of a photosensitive tube or 
silicon chip. The camera scans along the surface of 
the exposed tube (or silicon chip) by rows and 
constructs a continuous electronic signal whose 
pattern of voltage variation is directly proportional 
to the pattern of brightness variation present in a 
horizontal transect through the original scene. This 
constitutes one line of video signal. Electronic 
markers are inserted into the signal to identify the 
beginning (or ending) of successive lines and of 

The Digitization Process 

successive frames, and the entire signal is continu- 
OLISIY sequenced O L I ~  of the camera. 

Naturally, in order for any electronic device 
to sample (or for that matter to receive) an incorn- 
ing video signal, the structure of that signal must be 
known. Standards for the timing and voltage level 
range of video signals have been established by the 
Electronic Industries Association (EIA), and the 
black and white (monochrome) television format 
most commonly used in image analysis is EIA RS- 
170. 

An RS-170 video frame consists of 525 
analog video lines. Within the active portion of the 
video line (Figure 2), voltages may range from 
+ 0 . 1 4 3 ~  (black) to + 0 .714~  (white) with interme- 
diate voltages being assigned to various grey levels. 
The interval from 0 . 1 4 3  to 0 . 0 ~  is termed the 
blanking level in which the corresponding video 
signal is considered "blacker than black". Each line 

(DPI) scan of lemur head, B) 400x blowup revealing pixel-boundary 
discontinuities, C) 72 DPI scan of gastropod shcll, D) 4 0 0 ~  blowup of the spire. 
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illustrating the relationship of the active portion of the 

is separated by a horizontal sync that provides the 
signal used to reset the receiving device (e. g., video 
monitor, frame grabber) to the beginning of the 
next line. The RS-170 standard specifies that this 
horizontal sync be a signal sequence 10.9pS long 
during which the voltage drops from 0 . 0 ~  to -0.286~. 
Upon completion of the 525 line video frame, a 
vertical sync signal sequence (Figure 3) is encoun- 
tered that consists of a longer (571 .0~s )  series of 
0 . 0 ~  to -0 .286~ voltage drops. Reception of this 
vertical sync causes the system controller to reset 
the scan to the first video line of the next successive 
frame. Also, by convention, RS-170 requires that 
there be 22 "no-video" lines following the vertical 
sync. Thus, only 485 active video lines are present 
in any RS-170 video frame. 

Thirty RS-170 video frames are either 
transmitted or received every second (one frame 
every 33.33mS). Unfortunately, this sequence rate 
is not quite fast enough to go unnoticed by the 
human eye and many people can detect a distinct 
image flicker that can be tiring when viewing stan- 
dard format RS-170. To  overcome this problem, 
most video systems employ a variation of standard 
RS-170 that tricks the eye into perceiving a 
sequence rate of 60 frameslsec. instead of the 
actual 30 frameslsec. This is accomplished by 
sequencing out all even-numbered lines first and 
then returning to the top of the frame to sequence 
the remaining odd-numbered lines (Figure 4). In 
other words, two virtually identical images, each 
262.5 lines long, are alternated with one another at 

yencdiSI"ClnltnT3 
Figure 3. Schematic diagram of a series of RS-170 vidco 
lines illustrating the structure of the vertical sync (after 
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Figure 4. Diagrartl illustrating scan patterns of RS-170 
standard and interlaced (NTSC) signal formats. 

16.67mS intervals; fast enough for the eye to blend 
the images together so that they seem to be contin- 
uous. This variation of the typical RS-170 signal is 
known as RS-170 interlaced format, or NTSC, and 
it has become the de  facto standard for a wide 
variety of video applications, including image 
analysis. 

Since the RS-170 standard dictates that only 
5 2 . 5 9 ~ s  of active video signal exist per line, digiti- 
zation consists of measuring the voltage of this 
continuous signal at a series of equal time intervals 
determined by the desired level of horizontal reso- 
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A B 
Figure 5. Exarnplc of the type of imagc distortion 
produccd by non-squarc pixels. A. Irnagc produced via 
digitilation using square pixcls. B. Image produccd via 
digili/ation using non-square pixcls with a 4:3 aspect ratio. 
See tcxt for discussion. 

lution. This operation is carried out by the frame or 
line grabber (discussed below). For a horizontal 
resolution of 256 pixels per line, a voltage sample is 
taken once every 205nS, while for 512 pixels per 
line, the sampling rate is once every 10311s. In the 
same way, the vertical resolution of the resulting 
digital image is determined by how many c!f the 485 
active video lines are sampled. For a vertical reso- 
lution of 256 lines, one of the two interlaced fields 
is used and a delay inserted such that 6.5 lines 
within the chosen field remain unsanipled. 
Alternatively, for a vertical resolution of 512 lines, 
all of the 485 active video lines from the two 
interlaced fields are sampled, in addition to 27 lines 
from the two vertical sync and no-video fields 
(thereby introducing a certain falseness into to any 
manufacturer's claim of a resolution of more than 
485 video lines from an RS-170 video signal for his 
frame or line grabber). 

In addition to signal timing conventions, the 
RS-170 standard specifies that the horizontal length 
of the video frame be 4/3 the vertical height. Thus, 
all square grid (e. g., 256 x 256 pixels or 512 x 512 
pixels) digitization schemes will produce pixels that 
have a similar 4:3 aspect ratio. This discrepancy is 
problematical in that any digital image composed of 
such "non-square" pixels will be systematically 
distorted (expanded) in the horizontal dimension, 
resulting in the physical distance between identical 
points on the same object appearing to change as 
the object is rotated within the frame (Figure 5). 

Various methods are available for correcting 
measurements taken on digital images for the 
distortion brought about by non-square pixels. The 
most common of these adjusts the horizontal and 
vertical digitization rates to compensate for the 4:3 
aspect ratio of the RS-170 frame. For example, this 
may be accomplished by digitizing 485 lines per 
frame but only 380 pixels per line, or by inserting a 
small delay (6.5XpS) at the beginning and end of 
each video line so that only 39.44pS of the original 
52.59pS signal is actually used for digitization. The 
former solution corrects for non-square pixels by 
sacrificing equivalence of spatial resolution in the 
horizontal and vertical dimensions, while the latter 
maintains this equivalence but truncates the frame 
from the left and right so that despite the fact that 
the image extends into these regions they are 
unavailable for digitization and analysis. Non- 
square pixel correction may also be accomplished 
by calibrating separate rulers for the horizontal and 
vertical dimensions and using this combination of 
rulers to scale all distance measurements and 
coordinate point locations. 

All non-square pixel correction strategies 
described above sacrifice some aspect of image 
resolution in order to preserve the convenience of 
locating points and measuring distances on the 
image in terms of the pixel coordinate system. 
However, a few digital image analysis systems 
employ a more complex correction strategy that 
involves the use of an external coordinate system as 
the primary referent for the recording of positional 
information within the digital image. One way to 
implement this type of correction strategy is to map 
the non-square pixels onto a "virtual" coordinate 
system (e.g., the coordinate system of a digitizing 
pad or a rectangular grid constructed mathemati- 
cally via appropriate transfer functions) that main- 
tains a 1:l aspect ratio. This alternative has the 
advantage of more faithfully preserving the equiva- 
lence of horizontal and vertical resolutions and 
utilizing the entire video frame as well as providing 
excellent spatial sensitivity for the purpose of object 
location and characterization. While the viability of 
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a virtual coordinate mapping solution is ultimately 
dependent on the comhined resolutions of the 
frame or line grabber, video monitor and digitizing 
pad (if present), this method appears to offer one of 
the more attractive general solutions to the vexing 
problem of non-square pixels. Users of RS-170 
based image analysis equipment should familiarize 
thernselves with the non-square pixel correction 
method (if any) employed by their systern and peri- 
odically check their systems to be sure that they are 
producing data that are independent of this type of 
orientational bias as well as distortions arising from 
the use of various optical attachments to the 
camera (e.g., lenses, microscopes). 

Adequacy of Resolution in Digital 
Images 

One of the n-iost obvious concerns of systematists 
who work with digital images is whether or not the 
digital image adequately represents the morpholog- 
ical complexity seen in the field, microscope, or 
photogral)h. Since video cameras can be mounted 
directly on optical microscopes or fitted with le~is 
systems that enz~ble them to irnage macroscopic 
ot?jects (including photo~nicrogr;~l,hs), virtually 
anything that the systematist can observe can also 
be acquired by a digital image analysis systern. But, 
because the digital image represents only a sample 
of the original continuous tone image, morphologi- 
cal detail present in the original at a scale finer than 
that of the digital sampling interval will not be 
consistently present in the resulting digital image. 

What digitization rate is needed to 
adequately represent a given level o f  morphological 
detail within a particular image? The answer to this 
question must be given i n  two parts, one dealing 
with the required spatial resolution and the other 
addressing the matter of brightness resolution. In  
the spatial domain, fine scitle morphological struc- 
ture appears as high frequency variation in the 
voltage signal coming from the camera or other 
image input device. Images, or regions of images, 
that contain closely spaced brightness changes ( =  
signal voltage) are said to have high spatial 

frequencies, while those characterized by a more or 
less uniform range of brightness values are said to 
have low spatial frequencies. To  represent the 
complete spectrum of spatial frequencies present 
within a continuous tone image, the image must be 
sampled or digitized at a rate at least twice as high 
as the highest spatial frequency (Baxes, 1984). This 
means that if a continuous tone image contains a 
morphological feature that is to be included in the 
digital representation of the image, it must be 
sampled in such a way as to allow at least two of the 
sample elements (pixels) to fall upon the feature 
itself. This relationship between the spatial 
frequency and the sampling rate is known within 
the signal processing literature as the Sampling 
Theorem or the so-called Nyquist Criterion. 

This sampling principle also works in 
reverse. Thu\, provided the minimum amount of 
detail present, or desired, within a particular image 
is known heforehand, i t  is unnecessary, even waste- 
ful, to sample the image at a rate finer than twice 
that spatial frequency. Moreover, it should be kept 
in mind that one can never increase the level of 
resolution present in the original image regardless 
of the frequency of the digitizing or sampling rate. 
In cases where this has been attempted (e.g., 
demonstrations by ill-informed salespersons, tech- 
nical reports by ill-informed image analysts) such 
spurious resolution over and above the level of the 
original is termed false or pseudo-resolution. 

Since the physical size of the individual 
pixels is determined by the sampling rate, a digital 
image with low spatial resolution will contain 
artifacts of the digitization process that are a result 
of the outlines of the individual pixels being larger 
than a significant portion of the detail they are 
attempting to represent. I'he effect of undersam- 
pling an image's spatial frequency is to erroneously 
record high frequency brightness variation as lower 
frequency brightness transitions (Figure 6). Such 
under-representation of high frequency detail in a 
digital image is termed aliasing which, in extreme 
cases, may produce interference patterns that can 
obscure virtually all useful information in some 
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Figure 6. Diagrammatic example of aliasing. The middle 
line represents a series of alternating black and white fields 
within an original continuous-tone image. The uppcr line 
shows the result of sampling the image at a rate that will 
correctly represent the level of  detail present in the original 
Image, while the lowcr line illustrates the erroneous (lowcr 
frequency) pattern produced by a digitization scheme that 
undersamples the original image. 

portions of the image. As spatial resolution 
increases, this aliasing effect will diminish until, at a 
given distance from the display, the viewer fails to 
notice it. 

In most con~mercially available image 
analysis systems, spatial resolution is fixed by the 
frame or line grabber and cannot be increased or 
diminished without altering the hardware configu- 
ration. Low resolution systems tend to be either 
128 x 128 pixels or 256 x 256 pixels along the hori- 
zontal and vertical axes. Normal resolution systems 
either adopt the TV standard of 485 x 380 pixels or 
are either 640 x 480 pixels or 512 x 512 pixels in 
overall dimension. Finally, high resolution systems 
are typically 1024 x 1024 pixels. The spatial resolu- 
tion required by a particular study will vary with the 
complexity of the object and the type of data being 
collected. Manual data collection operations, 
however, are often able to tolerate (and in some 
cases may even have their repeatability improved 
by) lower spatial resolutions than more automated 
forms of data collection such as automatic boundary 
tracking and object location. 

While spatial resolution may be an obvious 
resolution parameter of concern to systematists, 
brightness resolution should also be taken into 
consideration. During the digitization process each 
pixel is assigned a brightness or  luminance value on 
the basis of the voltage present in that portion of 

the video signal. This value usually takes the form 
of an integer and the entire set of integers used for 
brightness quantification is termed the grey scale. 
By convention, a brightness of 0 represents pure 
black and the highest integer brightness value 
represents pure white. Between these two 
extremes, however, a wide variety of grey scales can 
exist. Brightness resolution is a function of how 
many levels are contained in the grey scale, and the 
Nyquist Criterion applies to brightness resolution in 
the same way that it does to spatial resolution. For 
programming convenience, grey scales are usually 
held internally by the image analysis system as 
binary numbers or bits. The number of bits 
assigned to the grey scale register determines the 
number of discrete levels in the digital grey scale. 

4 Thus, a 4-bit register has 2 or 16 grey levels, a 7-bit 
7 register has 2 or 128 grey levels, and an 8-bit regis- 

ter has or 256 grey levels. Figure 7 illustrates the 
visual result of recording an image at different 
levels of brightness resolution. 

Interestingly, from the standpoint of quan- 
tification of the digital grey scale, human perception 
of changes in brightness is logarithmic rather than 
linearly distributed (Figure 8). Under conditions of 
low overall illumination, any slight increase in the 
amount of light reaching the receptor cells of the 
human eye results in a relatively large increase in 
perceived brightness, whereas, under conditions of 
high overall illumination, the same slight increase 
in the amount of light reaching the receptor cells 
results in a much smaller perceived increase in 
brightness. This indicates that human visual sensi- 
tivity is greater in the darker regions of the grey 
level spectrum than in lighter regions. In acknowl- 
edgment of this fact, digital grey scales used in 
image analysis systems can be quantified on either 
arithmetic or logarithmic scales. Quantification on 
a logarithmic scale has definite advantages in terms 
of the naturalness of the images produced. 
However, this convention results in the brighter 
region of the grey scale being represented by fewer 
discrete levels than the darker region. Ideally, users 
should be able to switch between linear and loga- 
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rithmic grey scales, though few currently available capability. 
image analysis systems appear to possess this It is often desirable to determine whether or 

not a digital image is utilizing the entire spectrum 
of available grey levels, or only a portion thereof. 
While there are many ways to summarize this 
information, one of the most useful is the image 
histogram (Figure 9). Image histograms are plots of 
the frequency with which the pixels comprising an 
image, or region thereof, have been assigned to the 
available spectrum of grey levels. Using this type of 
summary the viewer can immediately compare 
images, determine whether an image is utilizing the 
full range of the available grey level spectrum, and, 
in some cases, determine what type of image 
enhancements might be likely to improve the 
overall quality of the digital image (see F. J. Rohlfs 
chapter on image processing for a complete discus- 
sion of image enhancement techniques). 

As with standard continuous tone images, 
the term "contrast" is used to describe the character 
of the distribution of grey values comprising a digi- 
tal image. If a digital image histogram is bimodal, 
with most pixels being assigned either very light or 
very dark brightness values, the image is said to 
exhibit high contrast (Figure 10). Alternatively, if 
the distribution of pixels occupies only a narrow 
region in the middle of the image histogram the 

Perceived Brightness 
Figure 8. Generalized diagram illustrating differences in 

image is said to have low contrast characteristics 
(Figure 11). A well-balanced or "good contrast" 
image is generally composed of a more or less even 
distribution of grey levels. However, it should be 
remembered that terms like "good contrast" and 
"good image" tend to be subjective categorizations 
that are critically dependent on the type of informa- 
tion that the systematist is interested in extracting 
from an image. 

Digital Image Analysis Hardware 

A generalized diagram of an automated image 
analysis system is presented in Figure 12. Though 
images may be input to the system from a variety of 
media (e.g., video tape recorders, laser disk 
recorders, communications link through telephone 
lines), a video camera equipped with an 
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appropriate lens system (consisting of either a 
research grade optical microscope and/or a high 
quality photographic lens system) provides 
maximum flexibility in terms of the range of images 
that can be acquired. Conversion of the analog 
image transmitted by the camera (or other image 
input device) to a digital format is accomplished by 
the frame or line grabber, which, in turn, is 
connected to an area of memory set aside for digital 
image storage. Once stored, the digital image may 
be reconverted to the analog format of the standard 
NTSC video signal and routed to a video display 
monitor for viewing. Since the incoming video 
signal from the camera is continuously digitized and 
written to memory by the frame or line grabber, the 
continuous reading of the stored image to the 
display monitor results in a "live" image being 
displayed. At some point, however, it is usually 

. . 

calculations involved, are usually handled by 
specialized image processing hardware) or sub- 
jected to various image measurement operations. 

Host computer systems for image analysis 
vary widely in size, capability and expense from the 
small, stand-alone processors that drive so-called 
"smart" digitizing tablets up to mini- and mainframe 
computers. However, responding to the widespread 
presence of advanced microcomputers (IBM 
PC/XT/AT/386 line, IBM PS-2 series, Apple 
Macintoshm line) in a large number of research 
laboratories, many manufacturers of image analysis 
hardware and software have recently begun to 
market systems designed to operate within the 
computing environment provided by these personal 
computers. [Note: At the time of the NSF-Univer- 
sity of Michigan Morphometrics Workshop (May 

necessary to "freeze" the live image by suspending 
the writing procedure. Once frozen, the image 
stored in memory can be written to disk or tape for 
archival purposes, made available for image 
processing (which, due to the large number of 

Br~ghtness 

range and "good" contrast characteristics along with its 
digital image histogram. The high frequency of darker 
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1988) almost all PC-based image analysis systems 
were designed to be hosted by the IBM 
PC/XT/AT/386 line of personal computers or 
their equivalents. During the intervening year, 
however, frame grabbers designed to operate with 
the IBM PS-2 series and Apple Macintoshm SE 
and I1 personal computers have been released, and 
automated image analysis systems for all of these 
popular computer systems are currently available.] 
PC-based image analysis software packages 
typically range in price from $1,000 to $20,000 and 
offer cost-effective solutions to the problem of 
getting an advanced level of image analysis 
technology into the systematic laboratory. In 
addition, many of these systems allow some latitude 
in the selection of hardware configurations and 
have a modular software design, thus making it 
possible to extend the capabilities of computers 

Br~ghtness 

Figure 11. Examples of images exhibiting a bimodal (low 
contrast) distribution of grey tones along with its corre- 
sponding digital image histogram. 

originally purchased for different purposes (e.g., 
word processing, database management) to provide 
for immediate image analysis needs while retaining 
the option to increase a system's scope through the 
purchase of additional image processing/analysis 
modules at a later date. And, since image analysis 
hardware components may also be purchased indi- 
vidually, it has also become feasible for some users 
to design, assemble and program what are essen- 
tially "homemade" image processing/analysis sys- 
tems to addresses their specific needs. 

Most retailers of integrated PC-based image 
analysis systems offer users some degree of choice 
in the selection of video cameras, frame or line 
grabbers, and display monitors. The following 
sections provide general descriptions of these 
components along with a brief analysis of the signif- 
icance of alternative selections. 

Video Cameras 

As the primary image input device, the video 
camera is a key component of any image analysis 
system. Most commercially available low and 
medium resolution systems will work well with any 
camera that supplies the RS-170 video signal, so the 
choice of camera type and model should be made 
on the basis of the requirements of the research to 
be undertaken. High resolution systems usually 
require the use of a high definition, non-RS-170 
video signal. Currently, there are two alternative 
types of video cameras: "tube" cameras which use a 
photosensitive electronic tube to convert light 

Camera 
Frame 

Grabber Image Storage 

Image Processor @I 
Figure 12. Schematic diagram illustrating the primary 
components and generalized configuration of a PC-based 
digital image processing and analysis system. 
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energy into an electrical signal, and the so-called 
"chip" cameras which utilize some type of photo- 
sensitive integrated circuit mounted on a small 
silicon chip for this purpose. 

The most obvious distinction between these 
two types of video cameras lies in their respective 
resolutions, or their ability to distinguish between 
discrete objects in the field of view. Video camera 
resolution is measured as the number of individual 
points that can be resolved per line of video signal 
(often termed TV lines) and this information is 
usually provided in the manufacturer's specification 
summary. Typical tube camera resolutions fall 
within the range of 500 to 800 TV lines while typical 
silicon chip cameras may have resolutions as low as 
300 TV lines. In addition, the output video signal 
from a photosensitive tube camera is a true analog 
signal while the output signal coming from a silicon 
chip camera is, in reality, a digital signal that has 
been converted to an analog format. This rather 
odd situation arises from the fact that the silicon 
chip used to convert light energy into the output 
signal is divided into pixels that "digitize" the scene 
during image capture. 

Given the importance of good resolution to 
most systematic applications of image analysis, one 
might be led to reject silicon chip cameras as a 
group in favor of their photosensitive tube competi- 
tors. There are, however, several sound economic 
and scientific reasons for seriously considering a 
chip camera alternative. First, silicon chip cameras 
are far less expensive than their photosensitive tube 
counterparts and a top-of-the-line chip camera can 
have a resolution that equals or even exceeds that 
of an eqliivalently priced tube camera. Silicon chip 
cameras are more compact, weigh less, and are less 
susceptible to damage from rough handling than 
tube cameras due to the fragile nature of the photo- 
sensitive tube. In addition, chip cameras can be 
mounted vertically (the normal position for micro- 
scope and copy stand work) for long periods of time 
without damage to the photosensitive surface of the 
silicon chip. Most manufacturers of tube cameras 
expressly recommend that their products not be 

mounted in this position due to the possibility of 
metallic particles shed from the burning filament 
coming into contact with the light sensitive chemi- 
cal films that coat the inside of the photosensitive 
tube. These light sensitive chemicals also deterio- 
rate with time thus progressively losing their ability 
to become chemically excited by incoming light 
energy. This, in turn, leads to an inescapable 
reduction in image quality over the life of the tube. 
Furthermore, if a photosensitive tube is suddenly 
exposed to very intense light, the sensitivity of these 
chemicals may be temporarily (or permanently) 
altered leading to the production of residual or 
ghost images and burned spots. Chip cameras, on 
the other hand, are not affected by sudden exposure 
to bright light and their sensitivity should not dimin- 
ish over time due to their solid state design. 
Finally, the light sensitive surface of the photosen- 
sitive tube must be electronically scanned in order 
to construct the video signal. In RS-170 cameras, 
this scan normally occurs at the RS-170 frame rate 
of 30 frames/sec. If an  object within the field of 
view is moving during the course of this scan, the 
resultant image will be distorted to a greater or 
lesser extent depending on the object's speed of 
movement through the frame. Silicon chip 
cameras, however, can be designed in such a way as 
to allow all puels to sample the scene at  the same 
instant, thus freezing any motion within the frame 
far more effectively than tube camera designs. 

Silicon chip cameras, nevertheless, have 
their own inherent problems which include suscep- 
tibility to aliasing effects that may lead to the 
production of artifactual interference (moirk) 
patterns when imaging objects or scenes containing 
regions of high spatial frequency and wide variabil- 
ity in the quality and reliability of various chip 
camera models. For instance, manufacturers of 
chip cameras who do not maintain strict quality 
control standards for their product (e.g., those who 
caution users to expect a certain number of 
"blemishes" [=bad pixels] on the light sensitive 
silicon chip) should be avoided. 
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Video cameras are sold without any type of 
lens system. Therefore, regardless of what type of 
object(s) one intends to image, a lens system for the 
video camera will have to be provided. The imag- 
ing of microscopic objects using light optics usually 
requires attachment of the camera to a research 
grade compound or stereoscopic microscope via 
photo-tube. For higher magnifications or improved 
depth of field, the output video signal from a scan- 
ning or transmission electron microscope may be 
directly input into the image analysis system 
provided this signal confornzs to a stundurd video 
formut (e.g., RS-170). Unfortunately, most scanning 
and transmission electron microscopes use non- 
standard video signal formats thereby necessitating 
the modification of these signals before transmis- 
sion to an image analysis system. But, scanning or 
transmission photomicrographs, along with any 
other macroscopic photo, can be acquired by a 
video camera equipped with an appropriate macro- 
scopic lens system. Video camera lenses are, for 
the most part, not of sufficiently high quality to be 
used for systematic research. Rather, single lens 
reflex (SLR) camera lenses are recommended, 
provided they can be fitted with a c-mount adaptor 
for attachment to the video camera. Optimal 
macroscopic lens configurations will vary from 
application to application, but a high quality SLR 
macro lens should suffice for most types of macro- 
scopic imaging. 

Lastly, most photosensitive tube and silicon 
chip cameras respond to changes in brightness 
levels within a scene in a non-linear manner, thus 
reflecting the non-linear brightness response curve 
of the human eye (discussed above). For each 
camera model, this deviation from linearity is 
quantified by the "gamma correction factor" which 
should be reported in the manufacturer's technical 
literature. A few image analysis systems allow the 
response of the frame grabber to be tuned to the 
response curve of the camera via specification of 
this gamma correction factor for particular hard- 
ware configurations. 

Frame and Line Grabbers 

For PC-based image analysis systems, frame and 
line grabbers are usually marketed as plug-in 
expansion boards that perform two functions. First, 
they accept an incoming analog video signal from 
the camera or  other image input device (e.g., video 
tape recorder, laser disc) and convert this signal to 
a digital format. Second, they read a stored digital 
image from memory and convert it to a standard 
analog video format, supplying horizontal and verti- 
cal sync signals as necessary, for transmission to a 
video display monitor or other image output device. 

Frame and line grabbers are rated by the 
number of pixels they divide the analog image into 
(128 x 128 and 256 x 256 = low resolution; 485 x 
380, 640 x 480, and 5 12 x 5 12 = average resolution; 
1024 x 1024 = high resolution) and by the number 
of discrete grey levels in the digital brightness or 
luminance scale (an 8-bit address or 256 grey levels 
is presently considered standard). Both types of 
boards are designed around a sync extractor, which 
sends a signal to the computer system controller 
whenever a horizontal or vertical sync is encoun- 
tered in the incoming video signal, and a series of 
analog-to-digital (AID) converters that sample the 
active video signal and send a binary number repre- 
senting the sampled signal voltage to the appropri- 
ate image storage location. 

The primary difference between line and 
frame grabbers lies in the amount of time needed to 
construct one digital frame from the incoming video 
signal. Frame grabbers employ high-speed A/D 
flash converters that enable them to construct a 
digital image at the frame rate of the video signal 
(30 frameslsec. for RS-170). Line grabbers, on the 
other hand, use less expensive successive approxi- 
mation A/D converters to converge iteratively on a 
digital value representing the input voltage level. 
Since this convergence process may take up to 1,uS 
to complete, most single converter line grabbers 
can digitize only one pixel per line per frame. Thus 
a 256 x 256 digital image would take a single 
converter line grabber 256 frames to complete the 
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sampling process. Because of this limitation, most 
commercially available image analysis systems 
utilize the more time efficient frame grabbers for 
image digitization. But significant saving may be 
had for those whose research can tolerate the 
longer digitization times required by line grabbers. 

Display Monitors 

Video display monitors come in a wide variety of 
types, sizes and resolutions. Usually, a high (data) 
grade black-and-white monitor will be adequate for 
the majority of image analysis applications. Rut, 
despite the fact that the image is being recorded in 
black and white, systems that offer a pseudocolor 
image viewing option or employ color graphic 
overlays to indicate the position of the cursor 
during manual data acquisition operations and to 
identify previously located points and lines require 
a color (RGB) display monitor to take advantage of 
these features. 

A5 with video cameras, resolution in video 
display monitors is rated in terms of TV lines and it 
is convenient (though not always possible) to 
achieve a reasonably close match between the reso- 
lutions of the camera, frame grabber, and display 
monitor. Reflecting the 4:3 aspect ratio of the 
standard video frame, display monitor picture tubes 
are rectangular in shape, and sized by the distance 
from the upper left to the lower right hand corners 
of the projected video frame. However, since 
physical size has little to do with resolution or 
image quality, it is often the case that a smaller, 
higher resolution monitor gives better results than a 
larger, lower resolution model. Though it is possi- 
ble to project an image onto the video monitor used 
to communicate with the host processor, these 
monitors do not usually have wfficiently high 
spatial resolutions to accurately represent fine 
detail. In addition, the dialog menus and program 
icons used to control the image process- 
ing/measurement software take up space on the 
screen thus reducing the size of the frame that can 
be viewed with single monitor image analysis 
systems. Consequently, most PC-based image anal- 
ysis system configurations require two video moni- 

tors: one for system control and the other for view- 
ing of the image. 

Virtually all video display monitors 
marketed in the US.,  Canada, and Japan will 
accept the RS-170 interlaced video signal (NTSC). 
The European standard black-and-white video 
signal differs from RS-170 in consisting of 625 video 
lineslframe sequenced at a rate of 25 interlaced 
frarneslsec. and is known as PALISECAM. Since 
these two signal formats are mutually incompatible, 
it is necessary to check the manufacturer's technical 
literature or specification sheets to be sure that any 
particular monitor has been designed to accept a 
particular frame or line grabber's output signal 
format. 

The Role of Image Analysis in 
Systematic Research 

Despite the novelty of being able to acquire, store, 
and manip~ilate images of living and fossil organ- 
isms, image analysis technology is beginning to 
make its importance felt in many different areas of 
systematic research. This can be seen as a reflec- 
tion of the irnpact that the coming revolution in 
image handling capability will make on society as a 
whole. At present, there is little doubt that image 
analysis technology will have as large an effect on 
the ways in which future research in the biological 
sciences is conducted as did the development of 
optical microscopes (and more recently the devel- 
opment of transmission and scanning electron 
imaging instruments) in terms of providing answers 
to questions that were unanswerable before, not to 
mention fostering the consideration of new types of 
research questions. Broadly construed, most of the 
problems in systematic biology can be formulated in 
morphometric terms, e. g., predictions of the likeli- 
hood and order of chemical reactions taking place 
due to correspondences between the geometric 
arrangement of atoms in organic molecules, mor- 
phological descriptions of patterns of organismal 
development, or analyses of the character of mor- 
phological transitions taking place that result in the 
formation of new species. In each case it is easy to 
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see that the quantification of patterns of geometric high quality paper for dissemination of the images 
variation at  a variety of scales can be used to test to colleagues or editors. Digital image formats 
explicitly stated process-level hypotheses in ways overcome many of these limitations by allowing 
that cannot be duplicated by more qualitative forms images to be captured rapidly and stored on a 
of analysis. variety of electromagnetic and optical media (e.g., 

hard disks, floppy disks, magnetic tape, laser disks). In particular, the availability of computer- 
ized image analysis systems has greatly stimulated With appropriate equipment (see above), the 

both applied and theoretical research in the area of quality of these images can be very high and in most 
larger cities publication-quality image printers are biological morphometrics. Hut, while niorphomet- 

rics has played an increasingly important role in available for hard copy image reproduction at 

many different types of systematic research moderate cost. The real utility of digital images, 

programs, its impact has yet to be appreciated in however, lies in their inherent portability. Digital 
images can be reproduced on electromagnetic and the area of phylogenetic reconstruction where, 
optical rncdia very rapidly and copies of the image despite the logical forrnalisrns of phylogenetic 

systen~atics, character analysis largely depends o n  can be sent over existing phone lines virtually 
anywhere in the world. [Note: though this process qualitative assessments of structural similarity and 
can be somewhat time consuming for large images diffcrcnce. In my view, the proper role o f  morpho- 

rnctric analysis in phylogenetic systcrn:ttics involves sent over old telephone networks at present, these 
networks are currently in the process of being the precise, mathematical description of characters, 

including the identification of discontinuities in the modified to handle digital information/image trans- 

distribution of variable characters that may be used fer at much more rapid rates.] This ease of trans- 

to subdivide them into a numbcr of discrete charac- portation, coupled with the fact that individual 
images (e.g., images o f  holotypic or paratypic ter states. This approach capitalizes on the power 

of morphometrics as a descriptive tool while at the specimens) can be directly linked to sophisticated 
database management programs, will greatly slime time allowing it t o  be integrated into a tradi- 
increase access to up-to-date descriptive treatments tional program of phylogenetic analysis by avoitling 

the untested and largcly unknown methodological of individual truta and groups by the systematic 
community as a whole, as well as helping to facili- complications that would inevitably arise from any 

attempt to use morphometric descriptors thcrn- tate communication between taxonomic specialists. 

selves (e.g., estimates of population means, As for the future, it is clear that color digiti- 
variances, eigenvectors) within cladistic datasets zation is desirable for a number of systematic appli- 
(see Felsenstein, 1988). cations as well as applications in the geological, 

In acldition to enabling the quantitative metallurgical and materials sciences. Existing 
constraints on  mernory sizes in personal computers investigation of organic size and shape changes, 

image analysis can serve the very important func- have t h ~ s  far limited the availability of color digiti- 
zation in the present generation of PC-based image tion of recording images for the purposes of 

archival documentation ancl publication. In  the analysis systems (since color video is produced by 

past, the only cost-efficient way of maintaining a varying the hue and intensity of the three primary 

large image database has been through the use of colors, color franie grabbers require at  least three 

35111m photography, which results in the production times the memory of their typical black-and-white 

of large, single-copy sets of photographic negatives. counterparts). But, as more powerful personal 

These are cumbersome to store, difficult to use on a computers and workstations make their way into 

routine basis and usually require the expensive and industrial and research laboratories, future image 

time-consuming process of photographic printing on analysis systems will be able to make direct use of 
color variations as an aid in object recognition and 
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analysis. Unfortunately, this change to color 
capability will render much of the currently avail- 
able image analysis hardware obsolete, necessitat- 
ing the purchase of more expensive color video 
cameras, frame grabbers and perhaps color video 
display monitors. In addition, it can only be hoped 
that with time, digital image formats and nunlerical 
data storage conventions will become more stan- 
dardized, thereby allowing images or data collected 
by one system to be used by other systems, includ- 
ing specialized morphometric data analysis program 
packages. At the moment, the unacceptably high 
level of incompatibility between images and data 
produced by image analysis software marketed by 
different manufacturers represents a formidable 
barrier for users who need to view, process, and 
analyze a wide range of images collected from a 
variety of sources but who do not possess the 
programming skills required to effect the necessary 
format modifications. Finally, recent advances in 
the field of computer vision have demonstrated that 
many of the problems involving inconsistent object 
orientation, uneven object illumination and partial 
object obscuration that have prevented all but the 
simplest objects to be automatically located and 
categorized within a field of view can, at least in 
principle, be overcome, thus suggesting that practi- 
cal, fully automated object recognition may be a 
real possibility. Though automated computer vision 
at the level of detail required to make a contribu- 
tion to  systematic research remains a long way off, 
it is hard to think of a technological development in 
the biological sciences that holds as much potential 
for contributing to our understanding of the origin, 
development and present organization of life on 
earth. 
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Abstract 

This is a general introduction to methods for image 
processing and image analysis that are useful in 
morphometrics. Image processing consists of 
methods to enhance images, such as contrast 
enhancement, filtering, edge detection, etc. so that 
the desired details of the images are more evident, 
especially when viewed by a human. Image analysis 
is concerned with automatically isolating objects in 
the image and then obtaining descriptive informa- 
tion about the objects. Alternative sets of features 
may be mathematically equivalent in their ability to 
describe an object, but analyses based on different 
features may give different results. Some implica- 
tions of this for morphometrics are also discussed. 

Introduction 

This paper cannot replace a detailed text on image 
analysis, but it should to serve as an  introduction to 
those image processing and image analysis tech- 
niques that are useful (or are expected to become 
useful) in morphometrics. In addition, it considers 
some of the implications of the fact that large num- 
bers of new kinds of morphometric characters are 
available once images of the organisms have been 
captured and manipulated by computers. 

Models for the image-forming process itself 
are covered first. These are needed in order to 
understand some of the kinds of information 
present in an image as well as sources of distortion. 
The computer hardware involved in the scanning 
process is not discussed because it is covered else- 
where in this volume (chapters by Fink and by 
Macleod). The types of techniques available for 
enhancing an image to minimize the effects of 
known kinds of distortion are described as well as 
methods that transform the image to accentuate its 
desirable aspects. These operations, in which new 
images are created from old images, correspond to 
the field of image processing. The field of image 
analysis is concerned with methods for breaking a 
scene into its components (at least into object 
versus background), extracting useful descriptive 
information about the objects in the image, and 
interpreting this information (recognition of the 
objects and their relationships to one another). 

The following texts are especially helpful 
general introductions to image processing and 
image analysis: Ballard and Brown (1982), Horn 
(1986), Pavlidis (1982), and Rosenfeld and Kak 
(1982). Journals that publish technical papers in 
this field include: Computer Vision; Graphics and 
Image Processing; and I.E.E.E. Transactions on 
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Pattern Analysis and Machine Intelligence. The 
former publishes Kosenfeld's extensive annual 
reviews of image processing and image analysis 
literature (the bibliographies usually have over 
1,000 entries). 

lmage Geometry and lmage Functions 

A basic understanding of how an image is formed is 
important for an understanding of the methods 
used to obtain information about the geometrical 
form of the original object being studied. An image 
is treated as a two-dimensional pattern o f  
brightness that is produced by an optical systern 
such as a camera. An ideal pin-hole camera is the 
simplest model of the relationship between points 
on the object and points in the image (see Figure 
1). Since light travels in straight lines, each point in 
the image corresponds to a particular ray of light 
projected back toward the scene containing the 
object. The direction is defined by the position of 
the point on the image and the location of the pin- 
hole. As a result of this geometry, the projection 
onto the image plane yields a perspective 
projection. The optical axis is the perpendicular 
vector from the pin-hole to the image plane (the 
length of this vector is f). Consider a point P on the 
object. To  compute its location, P', on the irnage 
plane, a coordinate system must be established. It 
is convenient to use the location of the pin-hole as 
the origin with the z-axis aligned with the optical 
axis and pointing toward the image (thus points in 
front of the camera will have negative z- 
coordinates). Let the x-axis extend to the right and 

the y-axis upwards. If the coordinates of P are given 

by the column vector P = (x,y,z)', then the vector of 
coordinates of P' can be found as follows: 

where z is the unit vector along the optical axis. 
The elernents of p' are 

In order for the object scene to illuminate 
the image plane, the pin-hole mu\t have a finite 
diameter to permit light to enter, but this leads to a 
blurring of the image. A solution is to use a lens 
rather than a pin-hole. When in focus, a perfect 
lens generates an  image that obeys the same 
projection equations, as given above. The relation- 
ship between the focal length, f ,  of a lens and the 
distances to the ol~ject and the focal plane are 
shown in Figure 2 and in the equation: 

where z' is the distance from the lens to the image 
plane and -z is the distance from the lens to the 
object (as above, z-coordinates are negative in front 

of the lens). If a point is actually at a distance 
then i t  will be imaged as a blur circle of diameter 

I image plans Pin hole  Oblest I 

Figure 1. A model for a pin-hole camera. A point P on the 
object is projected onto a point P on the image plane. 

1 Image plane Lens Object 1 

Figure 2. A model for the projection of a point onto thc 
image plane in a camera with a lens. The z-axis is positive 
toward the image plane. 
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ideal hmber t i an  surface that appears equally 1 F-z3 1 
'i z, (4) hright from all viewing directions and reflects all 

incident light), some light will also be reflected 
towards the lens. This will cause the object to 

where d is the diameter of the lens and Z is the z- appear glossy or mirror-like (specular). One 

of the point at which i is imaged i n  L I S U ~ I I Y  wishes to minimize the effects of scene 

front  or back of the image plane). Thus larger irr;idiance so that reflectance, which is a property of 

lenses have a smaller tolerance or devth of field. the object itself, can be measured. This can best be 

The brightness, or image irradiance, at each 
point, (sg), in the image can be represented by an 
image brightness function, f(xy). Irradiance is 
measured in watts per square meter of radiant 
energy falling on the image plane. The irradiance 
of a small area on the image plane, corresponding 
to a small surface patch at position P on the object, 
can be computed as 

done by making sure that the objects of interest are 
evenly illuminated. If this is not possible, one can 
try applying various mathematical corrections to the 
resultant image. In the models shown above, image 
irradiance is a function of the product of a number 
of factors. Since most of the methods for image 
enhancement involve only linear operations, it is 
useful to use log-transformed brightness values as 
input for the methods described below. 

where L is the scene radiance of the object surface 
in the direction of the lens, d is the diameter of the 
lens (see below), f is the focal length of the lens, 
and a the angle between the vector p and the opti- 
cal axis (see Figure 3). Therefore image irradiance 
is proportional to scene radiance. 

I I / Image plane Lens 

Blurring 

Figure 3. A model for the brightness of a point on the irnr~ge 
plane as a function of the orientation of a patch on the 
surface at the corresponding point on the object. 

Scene radiance, L, is power per unit 
foreshortened-area emitted into a unit of solid 
angle and is measured as watts per square meter 
per steradian. It is more complex to model accu- 
rately, but there are several important generalities. 
The foreshortening effect is proportional to cos 8, 
where 0 is the angle between the surface normal 
and the vector p toward the lens. Thus, less light is 
directed toward the lens if the surface is directed 
away from the lens. Unless the surface is matte (an 

Color 

Color will not be considered in this review except to 
note that digitization of an  image at  more than one 
wave length captures more information about a 
scene. Color images require additional storage 
space and processing power in a computing system 
but having multivariate information at  each picture 
point can enable more powerful techniques to be 
used to discriminate among different objects in a 
scene. 

Ideally, a camera's optics map a point in the scene 
into a point in the film, but in practice the point of 
light is spread out (blurred) as a result of the lens 
being slightly out of focus, diffraction rings, film 
grain, the camera not being perfectly steady, etc. 
The function that describes how a point of light is 
spread out is called a point-spread function (it is 
not imaged as a distinct small circle as implied by 
the equation given above). The spread of bright- 
ness values is often approximated by a normal 
curve. The effect of a point-spread function at  a 
given point in the final image can be modeled by 
superimposing point-spread functions at  each point 
in the image (with the height of each point-spread 
function being proportional to the brightness of the 
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input point). The resulting brightness in the final 
image is the sum of the heights of the point-spread 
functions at  each point. For a I-dimensional image, 
this corresponds to 

where f corresponds to the point-spread function, g 
corresponds to the input function, and h is the 
resultant image function. This operation is called 
the convolution of the functions f and g and is sym- 
bolized as f a g .  The function f is called the kernel 
of the convolution. 

The 2-dimensional generalization is 

It can be shown that the convolution operation is 
both associative and commutative, f@(g@h) = 
(gC3f)ah and f@g = g@f. The operation is 
well-behaved and easy to work with. 

Spatial and Frequency Domains 

The input function, f(xy), can be modelled as the 
sum of an infinite number of sinusoidal curves. 
This allows the input function to be expressed as 

1 
f(xy) = 2 I I F(u,v) ei(u+'?) du dv, 

where 

F(u,v) is called the Fourier transform, 2, of f(.x,y). 
While f(xy) is always real, F(xy) is generally 
complex. 

Fourier transforms of each function considered 
separately. 

j ( f a g )  = FG, (10) 

where 2(f) = F and J(g) = G. Not all functions 
have a Fourier transform. Other difficulties are 
that the integrals are taken over the entire 
xy-plane, whereas imaging devices produce images 
for only a finite part of the image plane: also digital 
computers must use discrete samples of these 
images. For a n  image with M,N rows and columns, 
the discrete version is 

for O l m  I M - 1  and O l n  SN-1. Its inverse trans- 
form is 

for O 5 k 5 M - 1  and 0 1 1  1 N-1. These expressions 
can also be given in terms of sine and cosines 
(which is more common in the morphometric litera- 
ture), rather than as exponentials of complex 
numbers (which is more compact), using the Euler 
relation 

eu' = cos u + i sin u. (13) 

The use of the Fourier transform assumes 
that the image is doubly periodic (replicates of the 

Certain operations are more easily image repeat in both the x and y directions). Unless 

performed on the Fourier transformation of a func- the image at the left edge happens to match that at 

tion than on the function itself. For example, it can the right edge (and the top also matches the bottom 

be shown that the Fourier transform of the convo- edge), there will be a discontinuity and some 

lution of two functions is simply the product of the high-frequency components will be introduced. 
This problem can be avoided by making sure that 
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there is a uniform background all around the object 
and that the entire object is within the image. 

Digital Images 
Of course, the actual images processed by digital 
computers must be represented as discrete samples 
of the image brightness surface over a finite range. 
The image is represented as a 2-dimensional array 
of measurements of brightness. This array usually 
has about 500 rows and columns (but devices are 
available that provide greater resolution). Each 
element of the array is an integer, usually recorded 
to 8 bits of accuracy, giving the average brightness 
of a small region in the image. This element is 
called a pel or pixel (short for "picture element"). 
Thus digital images can be treated as 2-dimensional 
tables of numbers. Figure 4 shows an image as an 
image surface; the brightness values for selected 
rows in the digitized image are plotted as a function 

Figure 4. Digital image of a mouse mandible shown as an 
image surface. Brightness values for the selected rows 
plotted as a function of column position. 

Problems of Sampling 

Using a discrete, rather than a continuous, image 
introduces an  effect called aliasing. It can be shown 
(e.g., Horn, 1986) that sampling an image function, 
f(x), at  intervals of Ax in the image (the spatial 
domain) is equivalent to replicating the Fourier 
transform of the image function, F(x), at intervals of 
l /Ax.  If there are frequencies in the original image 

greater than l/Aq then components of F will 
interact to produce a composite image transform, 
F'. Basically, sampling causes information at high 
spatial frequencies to interfere with that at low 
frequencies (see Figure 5). This phenomenon is 
called aliasing, since a wave of frequency w > A 
produces the same wave in the sample as a wave 
with frequency 2 A-w. Therefore, the image should 
not contain frequencies smaller than half the 
sampling frequency if this problem is to be avoided 
(this lower threshold is called the Nyquist fre- 
quency). But some objects are better recognized at 
lower resolutions (where the effects of high 
frequency noise is averaged out). 

One way to reduce the effects of aliasing is 
to use a pyramihal image data structure (see 
below), where the search for structure begins at low 
resolution and then resolution is increased as 
needed. Rather than redigitizing at lower resolu- 
tions (which would introduce aliasing), the lower- 
resolution images are computed as averages from 
the original high-resolution image. The consolida- 
tion that takes place as one creates lower-resolution 
images tends to offset the aliasing that would be 
introduced if one were to digitize at  larger sampling 
intervals. The averaging attenuates the higher 
frequencies involved in aliasing. Algorithms have 
been developed to perform many types of image 
processing operations directly on data stored in a 
~vramid .  

Figure 5. An example of aliasing. When the high frequency 
wave is sampled at a lower frequency the observed data 
points appear to have been sampled from a lower frequency 

Metrics 

As described above, the usual scanning hardware 
produces a rectangular array of brightness values. 
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This rectangular spatial pattern is convenient for 
storage and indexing in digital computers, but it 
complicates the interpretation of the topological 
relationships among objects in the image. These 
considerations are important for the description of 
outlines using chain codes. The Jordan curve 
theorem states that a simple closed curve should 
separate an  image into two simply-connected 
regions. 

But consider the following binary image 
where the " 0  state corres onds to the background: ml 

1 0  

If we adopt the principle of 4-connectedness (a 
point is considered adjacent only to its immediate 
neighboring points, left, right, above, and below it) 
then the four objects, "I", d o  not form a closed 
curve, yet the background cell in the center is not 
connected to the rest of the background. We thus 
have two background regions without a closed 
curve. O n  the other hand, if we adopt 
8-connectedness (a point is also considered adja- 
cent to its diagonal neighbors) then the four object 
cells form a closed curve but there is now only one 
background region because the center cell is now 
connected to the other background cells. One 
solution is to use the 4-connectedness principle for 
objects but the 8-connectedness rule for back- 
ground (or vice versa). Horn (1986) suggests a type 
of 6-connectedness. In addition to up, down, left, 
and right, he  considers cells to be neighborsif they 
are diagonally above and to the left or below and to 
the right. Of course, he could have arbitrarily 
chosen the diagonal directions above and to the 
right and below and to the left. If one had a hexag- 
onal array, all six cells touching a particular cell 
would be considered neighbors. This would be 
much simpler, but standard hardware gives only 
rectangular arrays. 

Data Structures for Digital Images 

High-resolution images require considerable 
amounts of storage (a standard 480x512 &bit 
image requires 245,760 bytes). That makes it 

important to use efficient methods for the storage 
and retrieval of images. The basic approach is to 
take advantage of the fact that the brightnesses of 
adjacent pixels are not independent of one another 
but are usually similar (the phenomenon of spatial 
coherence). There are two aspects to efficiency: 
compactness of storage and speed of retrieval of 
information. Both aspects are important. The 
techniques described below emphasize compactness 
of storage, since that is usually the limiting factor on 
the microcomputers most often used in morpho- 
metrics. 

Run length encoding This is a simple, and often 
very effective, technique for the efficient storage of 
images that have only a few levels of brightness 
(e.g., binary images). The image is stored as a 
continuous stream of bytes but with the start of 
each row marked with a special code (or else the 
byte offset of the start of each row stored in a sepa- 
rate array). The lengths of each of the runs of 
identical brightness values along each row are 
stored rather than the actual brightness values. For 
example, a row of brightness values might be: 

[ 0 ~ 1 ~ 1 ~ 1 ~ 1 ~ 0 ( 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 1 ~ 0 ~ 1 ~ l ~ 0 ]  

The runs would then be (1, 4, 6, 1, 1, 2, 1). Note: in 
order to recover the brightness values each row 
must begin with the same brightness value, say 0. If 
a line happens to begin with a brightness value of 1 
then an initial run of length 0 is inserted at the 
beginning of the row. Some image operations can 
be performed on the image in this compressed 
format. For example, the area of the object (the 1's 
in the image) is simply the sum of the even- 
numbered runs. Ballard and Brown (1982, pp. 
58-61) show how to compute the horizontal and 
vertical projection5 of an image and its center of 
gravity from this storage representation. 

Pyramids In some applications it is useful to be 
able to process an image at  varying degrees of reyo- 
lution. One method is to partition the digitized 
image into non-overlapping regions of equal size 
and shape and then to replace each of these regions 
by the average pixel density in that region. This 
step is called consolidation. This is repeated recur- 
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sively until there is only a single region with a quad-tree based upon the medial u i s  transforma- 
brightness value equal to the average brightness in tion (see below). 
the original image. Using the average brightness 
value for a region rather than a value from the Filters 
center of the region tends to reduce the aliasing A filter is a function which produces new images 
effects that one would expect if one were just to that are of an i n p u t  image. ~h~ 
redigitize the image at a lower resolution. Ballard is to images in which particular 
and Brown pp. 109-111) show an example aspects of an image are accentuated or enhanced. 
(fromTanimot0 and pavlidis. 1975) of an algorithm ~ h ,  results can sometimes be quite impressive 
for edge detection using data stored in a pyramid. (such as revealing details hidden in shadow areas of 
Quad-trees Quad-trees (Samet, 1980) are an effi- 
cient method to store binary images. To  convert 
data stored in a pyramidal data structure to a 
quad-tree one recursively searches the pyramid 
from top to bottom. If an element is "black or 
"white" then form a terminal node in the quad-tree 
of the corresponding type. Otherwise, form an 
internal "gray" node with pointers to the results of 
the recursive examination of the 4 elements at the 
next level in the tree. Samet (1981a) gives an 
algorithm to directly convert a raster image (the 
usual storage is by rows) to a quad-tree. The 
method is efficient in that the image is read and 
processed a row at  a time and the resulting quad- 
tree is of minimal size. Less space is needed by the 
algorithm than would be required if the entire 
image were read at once. There are many algo- 
rithms to perform image processing operations 
directly on images stored as quad-trees. The com- 
putation of the area of an  object is easy. Samet 
(1981b) gives a n  algorithm for computing the 
perimeter of regions from a quad-tree representa- 
tion. Samet (1983) shows how to perform a medial 
axis transformation from a quad-tree. A number of 
papers have been published describing the compu- 
tation of various geometrical properties of objects 
from a quad-tree representation. Pavlidis (1982) is 
a convenient source of many of these algorithms. 

One problem with quad-trees is that they are 
not translation independent-if an  object is shifted 
in position by one pixel the quad-tree can be very 
different in structure. Scott and Iyengar (1986) 
developed a translation invariant version of the 

a photograph, or the apparent sharpening of an  out- 
of-focus image). Of course, the desired information 
must already be present in the image. What the 
enhancements do is transform the information so 
that the desired features of the image are more 
obvious to a human observer. It is useful to imag- 
ine an image as a surface where height represents 
the brightness at each point in the image. An 
example is shown in Figure 4 above, where each 
horizontal curve corresponds to a column in the 
digitized image. A transformation of such an image 
surface might, for example, smooth out the part of 
the surface corresponding to the background but 
steepen the sides of the hills corresponding to the 
object, so that it appears to have sharp vertical 
cliffs. The published literature on methods of 
enhancement is extensive and growing rapidly. 
Some standard methods are described below. 
These transformations cannot perform "magic." A 
great deal of effort can be saved by starting with 
simple images of well-illuminated scenes. 

Contrast Enhancement 

One of the first adjustments to consider is contrast 
enhancement. Brightness values are rescaled so 
that they cover the full dynamic range of the display 
device. For example, in a very low contrast image 
the brightness values may range from 150 to 200. 
Rescaling them to range from 0 to 255 will result in 
an image that humans find easier to interpret. If 
the digitizing hardware can perform this operation 
as it is acquiring the image, the researcher is able to 
make more efficient use of the resolution of the 
digitization of the brightness values. This is espe- 
cially important if the digitizer cannot furnish at 
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least 256 brightness levels. Contrast enhancement 
is useful even when working with an  already digi- 
tized image. However, spreading out a range of 
150-200 to 0-255 does not increase the number of 
distinct brightness values; they are simply spaced 
further apart. The operation is still useful, how- 
ever; the image is more pleasant to look at  even 
though it contains no more information than the 
original. 

Histogram Transformations 

Histogram enhancement techniques include 
contrast enhancement, as described above, but also 
make a non-linear transformation of the brightness 
values so that the brightness values not only cover 
the full dynamic range but have a frequency distri- 
bution of brightness values that take on a particular 
form. In theory, a uniform distribution can be 
obtained using the following transformation 

where M is the number of gray levels, N the number 
of pixels, and h(p) the observed histogram of the 
number of pixels with each level of brightness p. 
The practical problem with this algorithm is that 
the input brightness values are discrete, so that the 
most we can do is to obtain a more even spacing of 
the values. The histogram need not be uniform 
since some classes may have many more entries 
than others. The results can be rather disappoint- 
ing when the important information in the image is 
best represented by only a few distinct brightness 
values. 

Hummel (1977) suggested a transformation 
called histogram flattening in which the histogram 
is made more uniform by randomly assigning pixels 
in the most abundant classes to other brightness 
classes. H e  suggested that the choice of pixels to be 
reassigned could be  based upon the average 
gray-level in their local neighborhoods. O n  the 
other hand, Frei (1977) suggests that, for images to 
be interpreted by humans, the goal should be to 
produce a picture in which there is a uniform distri- 

bution of perceived brightness levels. To  do this, 
the distribution of displayed brightness levels 
should be hyperbolic rather than uniform. But this 
seems to apply only to images of objects that the 
viewer expects to see represented by continuous 
brightness levels. Simple high-contrast images 
(such as bone or shells laid on a sheet of black 
paper) are not improved by such transformations. 

Adaptive contrast enhancement methods 
adjust the degree of contrast enhancement of a 
pixel depending upon the distribution of brightness 
of its neighboring pixels. Peli and Lim (1982) 
proposed a method in which the final image is a 
weighted combination of a smoothed image and the 
difference between the original image and the 
smoothed image. The weights can be a non-linear 
function of the brightness in the smoothed image so 
as to give greater increase in contrast to certain 
ranges of brightness values. An examination of the 
gray-level histogram can also be useful when trying 
to find a suitable threshold level to segment the 
image into regions. If the scene consists of just an 
object and background, then one would hope to 
find two peaks and the threshold would be placed in 
the valley between them. The results are not as 
clear-cut as one might expect. One problem is that 
pixels on the boundary of an  object are expected to 
have intermediate gray values dependent upon their 
degree of overlap with the object versus the back- 
ground. Other problems are shadows, uneven 
illumination, and noise. 

Smoothing 

Smoothing is a useful technique to eliminate 
unwanted fine detail in an image by averaging each 
pixel's brightness value with those of its neighbors. 
Such methods are sometimes referred to as low 
pass filters since they remove high-frequency details 
(fine undulations in the image surface) while 
preserving the low frequency information (large 
scale changes in the surface). Often the general 
form of an object is of interest rather than its fine 
details (texture). A simple analog method of 
smoothing is to digitize the image when it is slightly 
out-of-focus. Mathematically, smoothing corre- 
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sponds to the convolution of the image function 5 x 5  region centered on each pixel) and the one . . 
with a point-spread function; the brightness at each possible orientation of the third. 
pixel is spread-out and averaged with adjacent 
pixels. This results in a linear, space-invariant (the 
same function is used over the entire image), 
moving average (each pixel is some type of average 
of its neighbors) filter. This can be implemented 
using the following equation: 

g(xy) = h@f  

= h(u-x, v-y) f(u,v)' 

where h is the point-spread function (the kernel of 
the convolution), f is the input image function, and 
the summations are overall alignments at which the 
kernel overlaps the given pixel, at xy. 

There are many choices for h depending 
upon the type and degree of smoothing desired. A 
common choice is the values in the following array. 

1 1/16 1 2/16 1 1/16 1 

Usually this filter does not remove much 
noise from an image. To  produce a stronger effect, 
one could either use a larger array of constants or 
else apply the filter repeatedly. Such simple local 
smoothing applied to the entire image often 
removes some important details in the image since 
the brightness values along the outline of an object 
will also be averaged with those of the background. 
This makes the boundaries of an object more diffi- 
cult to detect by the human eye. A solution is to 
limit the smoothing to regions of relative homoge- 
neous brightness levels. Nagao and Matsuyama 
(1979) proposed that one examine subregions 
around each pixel and then average its brightness 
value only with those in the most homogeneous 
subregion (an edge-preserving smoothing transfor- 
mation). The procedure computes the variance in 
regions corresponding to the x's in the 4 possible 90" 
rotations of each of the first two patterns (within a 

Nagao and Matsuyama (1979) suggested 
using the ordinary variance as a criterion of homo- 
geneity. I have found slightly better results by 
weighting the center point when computing the 
mean and variance. One could also include a toler- 
ance so that no averaging would take place if even 
the most homogeneous region was too heteroge- 
neous. The method is time-consuming since nine 
variances must be computed at each pixel. If one 
knows that the gray-values in a particular region of 
an image should be uniform, one can limit the 
smoothing operation to that particular area and 
thus avoid the smoothing of edges. 

Background Subtraction 

In some applications it is possible to get rid of some 
of the complexity of the image (dirt spots on the 
lens, etc.) by subtracting out a constant background. 
If the images are correctly aligned, one can simply 
subtract the gray-values of the background image 
from that of the image under study. 

Template Matching and Cross 
Correlation 

A very common operation is that of matching a 
template pattern against an image. O n  a 
1-dimensional image one might slide the template 
pattern, t = (-1, 0, I), across an image, looking for 
the position of greatest match (which, in this exam- 
ple, is the position of the largest linear increase in 
image intensity). The distance between the image 
and a template (aligned at pixel y) is 
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where the summation is over all pixels in the image 
for which the template is defined in this alignment. 
Finding the location that minimizes d is equivalent 

Y 
to finding the location that maximizes the cross 
correlation function, Rft, for f and t. 

Rfi = t'f 

Note the similarity of this function to the convolu- 
tion operation [in the convolution t(x-y) is replaced 
by tCy-x)]. The same operation can be applied to a 
2-dimensional image. The 2-dimensional template 
is "rubbed over the entire image and a value is 
computed for each alignment tested. The continu- 
ous form of the 2-dimensional cross-correlation 
function is 

Edge Detection 

The regions of rapid change in brightness values in 
an image, which often correspond to the boundaries 
or edges of objects, seem to convey much of the 
information about the shape and locations of 
objects in the image. Thus methods that enhance 
this aspect of an  image are of particular interest. 

Gradients The most obvious operation to consider 
is the computation of the magnitude of the gradient 
of the image surface at  each pixel. If the result is 
viewed as an  image, pixels located in regions of 
rapid change in brightness in the original image 
would appear as bright points. An object such as a 
dark leaf against a light background would thus 
appear as a set of bright pixels around the perime- 
ter of the leaf. Such a transformed image may h e  
simpler to process by computer program so as to 
obtain particular features of interest (e.g., the 
number of pixels brighter than a certain threshold 
could be used as a n  estimate of the perimeter of the 

leaf). However a ~ i m p l e  gradient computation may 
fail since it is very sensitive to  noi\e in the image. 
Thus one may wish to use the gradient of a 
smoothed image or to use more complex algorithms 
such as those of Machuca and Gilhert (1981). 

Horn (1986) shows a simple model for an 
edge in an image as a straight line separating two 
regions of different brightness. 

E ( x ~ )  = B1 + (B2-BI) U(X sin 6 - y cos 6 + p )  , (19) 

where B1 and B2 are the brightness values in the 

two regions, x sin 6 - y cos 0 = p is the equation of 
the separating line, and u(z) is the unit step 
function: 

1 for z > 0 

0 for z < 0 . 

The gradient of this surface is the vector 

where 

dE/dx= sin O (B2-B,) 6 (x sin O - y cos 6 + p )  

aE/ay =-cos O (R2-B,) 6 (x sin O - p  cos 0 + p)' (22) 

It is important to note that the gradient is 
coordinate system independent in that it maintains 
its magnitude and orientation relative to the under- 
lying edge when the separating line is rotated or 
translated. 

Laplacian The Laplacian of the surface defined 
above is 

V ~ E  = a2E/ax2 + a2E/ay2 
= (B2-B,) 6' (x sin 0 - y cos O + p) (23) 

where 6' is the unit doublet, the derivative of the 
unit impulse 6(u). The Laplacian has the desirable 
properties of retaining the sign of the brightness 
difference across the edge, so we can determine 
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which side is brighter and thus reconstruct the 
original edge, and it is a linear function of s and y. 

- 1 

Approximations for Digital Images From this 3 by 3 array of pixels we can also 

ne simplest approximation is to estimate the estimate the second partial derivatives as 
derivatives of the surface at each point in the image 1 
by the differences in E.. at adjacent pixels. Let the a2E/dc2 = $Ei-lj-2Eij + Ei+l j )  

'I 
pixels around a point be represented by the follow- 1 , (25) 

a%/ac2 = + E ; ~ +  l) 
ing table. 

so that the Laplacian can be estimated as 
Note that the order of subscripts corresponds to the v2E = 
x and then t h e y  dimension, not the usual row and 
then column convention with matrix algebra. The 2 ( z ( ~ i - l j  + E+le+  E i + l j  + Eij+l)-Eij 
derivatives at the center of this 2 x 2  array can be 
estimated as This function is zero both in areas of constant 

1 brightness and also in areas where brightness varies aE/ax = ( (Ei+ I j+ ~ - E i j +  1) + (Ei+ I j-Eij)) 
9 (24) 

linearly. It represents subtracting the value of a 
1 

aE/ay = z ( ( E i + l j + l - E i + l j )  + (Eijtl-Eij)) central pixel from the average of its neighbors. This 
corresponds to the application of a template with 

where & is the spacing between the rows and weights I/&' times the values in the following table: 

columns. This formula (from Mero and Vassy, 
1975) is the average of two finite-difference approx- 
imations and is an  unbiased estimate of the slope 
for the point where the four pixels used in the Note that one could just as logically rotate 

above formula meet. The squared gradient can be the coordinate system by 45" before approximating 
used to produce a map of the location of high rates the derivatives. Linear combinations of this and the 

of change in brightness in the image. T~ get the rotated template also produce estimates of the 

actual direction of change one must refer back to states that the 
2 the gradient itself. A more refined estimate of the template, times I/@ , is popular and produces a 

slope of the surface can be obtained using the particularly accurate estimate of the Laplacian. 
information from a 3 x 3 arrays of pixels. 

Kirsch O~erators 
The Sobel estimate the gradient (Shawt The Kirsch operator (Kirsch, 19'11) is a method for 

1979) is computed by cross the classifying the properties of small regions in an 
submatrix of E..'s with the weights in the following ilnage. ~t can be used to detect whether a region 'I 
two tables (the first yields the change in the gives evidence for an edge, a line, or is undifferen- 
x-direction and the second gives the change in they- tiated. For example, to determine the direction of a 
direction). gradient at each pixel in the image one could 

compute 
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max k + l  
= k f(xk)lt 

k-1 

where the f(xk) are the 8 neighboring pixels to x and 
where subscripts are computed modulo 8. The 
value of k that yields the maximum indicates the 
direction of the gradient (with 3 bits of accuracy). 
This method can easily be implemented by match- 
ing (cross correlating) the following four templates 
with a span of n = 1 (similar templates can be used 
for larger values of n). The direction is then indi- 
cated by whichever template matches best. 

Enhancement of Geometric Patterns 

Methods have also been developed that accentuate 
particular geometric patterns in an image, rather 
than performing more general enhancements. 
Special attention has been given to line enhance- 
ment methods. This is both because linear features 
are often directly of interest (e.g., veins in insect 
wings or leaves) and also because linear features 
are useful as boundaries of objects. This does not 
mean that an  object needs to have flat sides-i t  
need only be relatively smooth. Small regions 
around the outline of a bone or a shell, for example, 
can be well approximated by a series of linear 
edges. Paton (1979) proposed several useful 
methods for finding linear features. In these 
methods templates are superimposed at various 

try to fill in gaps along more or less collinear line 
segments. 

Three-dimensional Images 

A detailed discussion of the recovery of 3- 
dimensional information from images is beyond the 
scope of the present review as it involves more 
complex techniques. Information on the 3- 
dimensional orientation of surfaces can be obtained 
from their pattern of reflectance (and thus requires 
information about their surface properties). For 
certain types of objects, one can gain 3-dimensional 
information by projecting stripes of light, perhaps 
from a laser, across the object at  known angles. 
The apparent deflection from a straight line in the 
image can be related to the shape of the object. 

Image Segmentation 

It is usually desirable to break an  image up into 
regions, or segments, corresponding to the logical 
subunits of the original scene. In morphometrics, 
one wishes to separate the image of an object from 
its background and perhaps to isolate different 
components of the image. The regions can then be 
analyzed separately. In some images the objects to 
be located are  lines. One can adapt the line 
enhancement operators described above. Groch 
(1982), for example, used this approach to detect 
roads in aerial photographs. Biological images 
often contain linear features. Once an object has 
been separated from its background, 
contour-tracing algorithms can be used to trace its 
outline (see below). 

orientations over each pixel in the image. The ~ t , , . ~ ~ t , ~ , d i ~ ~  to ~ ~ f i ~ ~  ~~~i~~~ 
templates are such that the presence of a line in the 
region of a pixel will result in a high While a human can usually easily recognize the 
cross-correlation. The maximal value obtained for component Parts of a complex scene (such as back- 
templates centered on a given pixel is used as the ground, outline of a wing, veins of a wing, cells 
o u t ~ u t  value for the given ~ i x e l .  between the veins, etc.) this is often a difficult task 

u 

Groch (1982) proposed a procedure for 
recognizing line-shaped objects in images by trying 
to follow a large number of lines starting from seed 
po in~s  found by searching along transects through 
the image. A regional operator is then applied to 

to perform automatically (Riseman and Arbib, 
1977). With perfect, noise free, images one can 
isolate an  object from a uniform background simply 
by finding a threshold level of brightness such that 
all pixels in the background are  above or below the 
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selected value. Castleman (1979, p. 311) gives a 
simple algorithm that can trace out the boundary 
between the object and the background for such 
images. H e  points out, however, that even small 
amounts of noise can send the tracking algorithm 
temporarily or hopelessly off the boundary. This is 
a problem with mosquito wings, for example, since 
the margin of the wing and the veins are covered 
with scales that can become dislodged and appear 
in unexpected locations when the wing is mounted 
on a slide. An additional problem is the fact that an 
image may not be illuminated evenly so that the 
background may differ in brightness in different 
parts of the image even after some of the standard 
image enhancement techniques have been applied. 
Thus the boundary tracking problem can become 
rather complex and usually must take into account a 
priori information about the geometrical properties 
of the particular class of objects being extracted, or 
else be supervised by someone who knows what the 
expected contour should be and thus can intervene 
and make corrections when necessary. 

Region Growing 

A complementary approach is that of "region 
growing" (Brice and Fennema, 1970) in which one 
first examines small regions in an image and then 
merges adjacent regions with similar properties 
(brightness, texture). This has been used, for 
example, to break aerial photographs into homoge- 
neous blocks each representing a different type of 
forest, farmland, etc. Grainger (1981) reported an 
average accuracy of about 50% when this method 
was applied to 186 sample sites from New Forest, 
Southern England, for which both ground and 
densitometric data were available. This method is 
most often used with multispectral images (grey- 
scale images at each of several spectral bands). 
There is much more information for each pixel, and 
hence higher performance can be expected. 

Contour Tracing 

The most important technique for image segmen- 
tation in morphometrics is that of tracing the out- 
line of a selected object. If the grey-levels of the 

object are distinct from the background, this is a 
relatively straight-forward task. Such images can be 
converted into binary images, where "1" corre- 
sponds to the selected object and "0" to the back- 
ground pixels by thresholding. Pavlidis (1982) gives 
algorithms for finding the overall contour and also 
for finding the contours of any holes that may be 
contained within an object in such a binary image. 
In order to describe the algorithms, we need to 
adopt the following standard numbering system to 
refer to the 8 pixels adjacent to a given point. For 
example, the point above the given pixel, p.., is 

'1 
called the 2-neirrhbor. 

A contour is defined as the set of all pixels 
within the selected object that have at  least one 
neighbor that is not part of the object. The strategy 
is to start with a point in the object whose 
4-neighbor is not in the object, and then to trace the 
outline in a counter-clockwise direction. 

1. Choose a point, A, in the contour such that its 
4-neighbor is not in the object. 

2. Set C = A, S = 6, and set the flagfirst = true. 

3. While C # A orfirst = true, do steps 4 to 10. 

4. Set the flag found = false. 

5 .  While found = false, do  steps 6 to 9 at most 3 
times (the purpose of this limit is to avoid 
looping on objects that consist of only a single 
pixel). 

6 .  If B, the (S-1)-neighbor of C, is part of the 
object, then set C = B and found = true. 

7. Else if B, the S-neighbor of C, is part of the 
object, then set C = B andfound = true. 

8. Else if B, the (S+ 1)-neighbor of C, is part of 
the object then set C = B and found = true. 

9. Else set S = S + 2, modulo 8. 

10. Set first = false. 

11. End. 
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The algorithm must also be applied once for 
each hole in the object. When completed, one 
needs a description of the path traversed. One 
possibility is simply to list the coordinates of the 
points C. Another, more compact representation is 
to store the coordinates of only the first point and 
then store the neighbor code to indicate the direc- 
tion taken when moving from one pixel to the next. 
When the contour is very smooth, further economy 
can be achieved by storing the derivative of the 
chain code. The change in direction will usually 
require fewer bits than the chain code (unless the 
contour often doubles back on itself). When the 
chain code sequence or its derivative contains 
sequences of identical codes, run-length coding can 
be used to reduce the amount of space needed to 
store a contour. In run-length coding one replaces 
a sequence of identical values with a special code 
and the length of the sequence. 

Thinning 

Thinning algorithms simplify the representation of 
the outline of an object by computing an internal 
skeleton that will contain useful information about 
the original outline. Straney (this volume) 
describes several different methods of defining 
what one means by a skeleton and different algo- 
rithms for their computation. They are usually 
applied to binary images (images that have already 
been thresholded). One method is to reduce the 
width of elongated objects in the image by "eating 
away" at the sides of objects while trying to avoid 
the deletion of pixels at the ends of the objects. 
There are several methods for carrying out such 
operations. Pavlidis (1982) gives the classical 
thinning algorithm. He  also presents a simple 
approximate thinning algorithm that may be satis- 
factory for some purposes. Another approach is to 
compute the medial axis transformation, MAT. In 
a MAT skeleton, the pixels are located at centers of 
circles that touch the original outline at more than 
one place. For example, if the original object is a 
circle, then the MAT skeleton will be a single point 
at the center. If one codes each pixel in the MAT 
skeleton by the diameter of the circle that it repre- 

sents, the MAT skeleton has the important property 
that it can be used to reproduce the original outline 
shape (i.e., the medial axis transform has an 
inverse). Blum (1973) describes the geometrical 
properties of MAT skeletons and some implications 
for shape description in biology. Bookstein et al. 
(1985) discuss and give examples of its potential 
application to morphometrics including that of 
Bookstein (1981). Thin figures seem to be repre- 
sented well by MAT skeletons---the skeletons 
seems to have intuitively reasonable shapes. 
Bookstein et al. (1985) observe that, while it uses 
only information on the outline, the skeleton often 
has a structure that seems biologically appropriate. 
However, the skeleton seems less useful for wider 
objects. An important problem is that it is very 
sensitive to noise. Small changes in the outline 
(e.g., small bumps or indentations) can cause 
drastic changes in the form of the skeleton. The 
outline has to be quite smooth in order for a simple 
skeleton to be obtained. 

There also has been some work generalizing 
the MAT to gray-level images. Dyer and Rosenfeld 
(1979) describe a simple algorithm to thin 
gray-scale images. For dark objects, their method 
changes each dark pixel to the minimum of its 
neighbors' levels provided this does not disconnect 
any pair of points in its neighborhood. This process 
can be repeated until the objects are sufficiently 
"thin". Wang et al. (1981) define a gray-scale 
generalization of the medial axis transformation 
(which they call a MMMAT, for min-max MAT). It 
allows one to reconstruct good approximations to 
the original image. 

Texture 

A general discussion of this topic is beyond the 
scope of this review as the complexity and diversity 
of types of surface textures possible in biological 
images is very large. However, the use of fractal 
curves and surfaces has attracted increased interest 
in many fields in the last few years. One type of 
application that seems useful in morphometrics is 
the use of fractal dimension as a description of the 
texture or complexity of an outline of an object. 
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For example, one can digitize the outline of a leaf 
at high resolution and then see how the apparent 
length of the outline changes as a function of the 
step-size (scale) used to measure the length of the 
outline. The fractal dimension of the outline clrrve 
can then be estimated using the relationship 

where S is the step size and N is the number of 
steps. For a line in Euclidean geometry, a division 
of a line into segments of length 1/S results in S 
segments and hence a dimension of D = 1. When 
the outline is highly reticulate its length will be very 
long when one measures it with a small step size 
and as a result its fractal dimension will be greater 
than 1. Vlcek and Cheung (1986) describe the 
computation of the fractal dimension for several 
types of leaves. They show that fractal dimension is 
a useful descriptor of the irregularity of the leaf 
outline. The obtained values range from 1.02 for a 
rather smooth American basswood leaf to 1.28 for a 
white oak leaf. Long (1985) used fractal dimen- 
sionality to describe complex sutures in deer skulls 
and in ammonites. He  found D-values from about 
1.4 to 1.5. Morse et  al. (1985) found D-values of 
about 1.5 for the outlines of a variety of plants 
during early spring. They point out that if insects 
and other arthropods living on these plants perceive 
the amount of space on the plant (for food and 
shelter) in relation to their body size, then small 
insects will perceive a much larger available habitat 
than larger insects when D > 1. They then show 
that the distribution of sizes of insects is in keeping 
with what one would expect if their abundance were 
proportional to the perceived amount of available 
habitat. Katz and George (1985) furnish a program 
in BASIC that estimates the fractal dimension of an 
outline represented by a set of xy-coordinates. 
Slice and Gurevitch (in preparation) used this 
approach and found significant differences between 
species and trees of the genus Acer (Maples) with 
respect to leaf outline complexity. They found that 
the ordering of species with respect to mean fractal 
dimension was consistent with their subjective 

perception of outline complexity. D. Slice has 
developed a program, called FKACTAL-D, that 
performs these computations. 

A sirnilar idea holds for surfaces. In an 
Euclidean plane the subdivision into cells with a 
rnesh size of 1/S will result in a surface area 

2 composed of N = S equal sized cells, and hence a 
dirnension of 1) = 2. As the surface becomes more 
cornplex, the surface area will increase and hence 
the fractal dimension will be larger than 2. 

Boundary Representation 

This is a very important topic. Most applications of 
image analysis to morphonietrics have bccn 
concerned with the comparison and analysis of 
information that can be extracted from an outline 
(often supplemented hy information on locations of 
morphological landmarks). But in order to use an 
outline in a quantitative analysis it is necessary to 
use an appropriate mathematical representation. 
Listed helow are some of the most common 
:ipp~);~tt lcs (sorne h:ive been mentioned above). 
Tliese approaches will not be described in detail 
since rnost of them will he covered elsewhere in this 
volume. 

1. x,y-coordinates. One can simply save enough 
of the coordinates of enough points around 
the outline to capture its form with sufficient 
accuracy. Usually one will have rnore points 
in regions of higher curvature. Some rnethods 
of rnorphornetric arlalysis use these coordi- 
nates dircctly. l'hese raw coordinates can he 
used to derive other representations of the 
outline. [-'or example, the elliptic Fourier 
method uses coordinates as input (rather than 
polar coordinates or tangent angles as in most 
Fourier studies). 

2. Chain codes. The method of using chain 
codes (and differential chain codes) was 
discussed above. 

3. Polar coordinates. If the outline is a simple 
convex shape, then it may be possible to 
describe the shape by giving the radius of 



F. James Rohlf 

equally spaced vectors from some convenient 
origin to points along the outline contour. 
This method has been used in many Fourier 
applications. 

4. Tangent angle. While traversing the outline 
of an  object, one can record the slope of a 
tangent to the outline at  the current position 
and the distance traveled along the outline. 
This has the advantage that one can represent 
tangent angle as a function of arc length for 
any closed outline shape. This has also been 
used in many Fourier studies. 

5. Medial axis skeleton. Since the original out- 
line can be recovered from a skeleton, the 
skeleton can be used as a method to encode 
an outline shape. 

6. Splines. Several studies have explored the 
usefulness of using splines rather than Fourier 
functions to describe the shapes of morpho- 
logical structures. Some examples are Engles 
(1986) and Evans et  al. (1985). 

Fractals. Barnsley et  al. (1986) show that it is 
possible to determine the fractal curve that 
provides a close approximation to a given 
binary image. Remarkably, this representa- 
tion required very few parameters to be esti- 
mated in order to fit the outline of complex 
objects with very complex outlines such as a 
black spleenwort fern frond. 

Feature Extraction 
Feature extraction is the task of obtaining the most 
important descriptive parameters from an image. 
These parameters represent not just an encoding of 
an image, but the isolation of particular parameters 
that can be used to distinguish an  object in one 
image from another. These may consist of the 
usual distance measurements used in morphomet- 
rics (lengths, maximum widths, etc.), often the 
problem is more complex. Traditional measure- 
ments are often selected because they are easy to 
make using hand-held calipers. But with automa- 
tion other types of measurements may be easier to 

program in a computer. For example, once one has 
an outline contour it is easier to measure the area 
or the perimeter of an object than it is to measure 
its width. Thus with the availability of new technol- 
ogy one should not just duplicate conventional 
methods but explore other ways of describ~ng 
differences among organisms. There are a large 
number of ways in which an  object in an image can 
be described. Unless the different methods are 
linearly related, one does not expect them to give 
exactly the same results. Thus the choice of types 
of descriptors used in a morphometric analysis is 
expected to make a difference (see further discus- 
sion below). Unfortunately, it is unclear at this 
point how one should choose among the different 
systems. But in the important special case of 
systems of linear distance measurements, Strauss 
and Bookstein (1982) point out the advantages of 
taking measurements in the form of a "truss" rather 
than in the more conventional pattern that often 
has a lot of redundancy. One of the most popular 
approaches in morphometrics has been the use of 
Fourier coefficients to describe outlines of organ- 
isms. My comments on this topic is very short since 
it is covered elsewhere in this volume. The method 
of moment invariants has been used in a few 
morphometric studies. It is described in some 
detail below since different formulations of the 
method have been used and they raise some inter- 
esting issues. 

Description of an Outline Contour 

A common approach is the fitting of some mathe- 
matical function to the points sampled around the 
outline of an object. The parameters of the fitted 
function are then used in multivariate analyses as 
descriptors of the shape of the outlines. Various 
types of Fourier analysis are the most popular 
examples of this approach in morphometrics, but 
other functions have also been used. A brief out- 
line is furnished below with references to more 
detailed accounts. 

1. Fourier analysis of an outline expressed in polar 
coordinates. In many morphometric studies 
points are sampled along the outline such that 
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vectors connecting them to some point of closed contour (complete outline), regardless 
reference (or origin) are separated by equal of its shape. - - 
angles. The lengths of these vectors 
(distances of each point to the origin) are then 
subjected to a Fourier decomposition (a 
1-dimensional Fourier transformation). The 
resulting coefficients can be expressed in one 
of two ways: either as the coefficients of the 
sin and cosine terms in the Fourier series o r  in 
terms of their amplitude and phase angle. 
Kaesler and Waters (1972) provides an early 
example. When no landmarks are available i t  
may not be possible to specify a unique start- 
ing point for the measurement of the angles 
(i.e., the vector that corresponds to an angle 
of 0). In such cases, only the amplitudes for 
each harmonic are used as descriptors. 
Younker and Ehrlich (1977) provide an 
example. A limitation of the use of this polar 
representation is that the outline of the object 
must be  such that each vector crosses the out- 
line only once. Thus the outline cannot be 
very complex. 

2. Fourier analysis of a n  outline expressed in terms 
of the cliange in tangent angle as a function of 
arc length. Bookstein et  al. (1982) refer to this 
as an intrinsic representation. Zahn and 
Roskies (1972) suggested that an  outline be 
scaled so that its length is equal to 2 and then 
the following function computed for each 
point along the outline 

+*(t) = O(t)4(0)-t, (29) 

where t is the distance along the outline of a 
given point, B(t) is the angle of a tangent line 
at  that point, and O(0) is the angle of a tangent 
line at the starting point of the outline. Thus 
+*(t) is the difference between the cumulative 
change in angle that one observes when 
moving along an outline and the change that 
one would expect if the outline were a perfect 
circle. The values are then subjected to a 
Fourier decomposition. This approach has 
the advantage that it can be used for any 

3. Elliptic Fourier analysis. Kuhl and Giardina 
(1982) proposed the separate Fourier decom- 
position of the differences in the x and y- 
coordinates as a function of arc length corre- 
sponding to the distance along the outline to 
each point (again scaled so the perimeter of 
the outline is 2a). Rohlf and Archie (1984) 
showed that this method has several advan- 
tages over the methods listed above. 

4. Splines and other functions. Any function that 
can be made to pass through an observed set 
of points can be used as a description of an 
outline. Cubic splines and Bezier curves 
represent flexible families of curves that can 
be made to fit arbitrary configurations of 
points. Examples of the use of Bezier curves 
are given by Engles (1986) and examples of 
cubic splines are given by Evans, et  al. (1985). 

5. Eigcn.shupe analysis. Lohmann (1983) showed 
that an  outline, represented in his case by the 
$'(t) function, can be fitted by sets of empiri- 
cal functions derived from the data. The 
advantages of this approach are that fewer 
functions are needed to describe the observed 
diversity among the objects under study, and it 
is not necessary to specify particular families 
of curves to be fit to the outlines (such as 
sums of sines and cosines or various types of 
polynomial functions). The Chapter 6 by 
Lohmann and Schweitzer in this volume is a 
general exposition of this method with 
examples. 

6. Fructuls. As mentioned above, Barnsley et al. 
(1986) have shown that it is possible to solve 
for the fractal curve that best approximates a 
given object outline. In their examples, very 
few parameters were needed to obtain a very 
close fit for objects with very complex out- 
lines. In the case of a black spleenwort fern 
frond, the outline was described by a collage 
of four affine transformations which required 
28 parameters, 8 of which were zero. So few 
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parameters were probably required because 
the frond does seem to be a case where the 
outline shows the property of self-similarity. 
Objects with less regularity may require many 
more parameters. The relevance of these 
functions for morphometrics needs further 
study. An important question is the extent to 
which objects with similar values of the 
parameters (i.e., those that are close together 
in the feature space) are similar morphologi- 
cally. 

In all of these cases, the results are a set of 
coefficients that can be used as measurements of 
descriptive variables for various types of multivari- 
ate analyses. Unfortunately, the results one 
obtains from multivariate analyses need not be the 
same for different types of shape descriptors. The 
descriptors obtained from different methods do not 
represent simple linear transformations of the same 
information. The relationships between some pairs 
of methods correspond to complex non-linear trans- 
formations of the original coordinate data. This 
implies that it is not sufficient for a method to be 
convenient computationally. In order to use a 
method one must be confident that it is appropriate 
for the description of the kinds of variation that 
ones expects to observe. 

Moments of an Image Surface 

One simple approach to the description of an image 
is to transform the image so that the brightness of 
the background is zero and the brightness values for 
the object are positive numbers. Then the bright- 
ness values can be treated as proportional to a 2- 
dimensional frequency distribution (a sample from 
a 2-dimensional probability density function). The 
2-dimensional moments of this function can then be 
computed and used as the parameters of this distri- 
bution. For example, the mean in the x-direction is 

The p, q central moment can be computed as 

The order of a moment is the s u m p  t q .  

A uniqueness theorem (Papoulis, 1965) 
guarantees that if f(xy) is piecewise continuous and 
has nonzero values in only a finite part of the XJ- 

plane (true by definition for brightness surfaces), 
then moments of all orders exist, the moment 
sequence is uniquely determined by f(xy), and the 
moments uniquely determine f(xy). Thus the 
moments can be considered descriptors of the 
image brightness surface and can be used to recon- 
struct an  image brightness surface. Note that this 
method can describe the brightness surface, not just 
the outline of an object. However it is often 
applied to binary images to limit them to a descrip- 
tion of the boundary of an object. 

ILIoment invariants A problem with the use of raw 
moments as descriptors is that they are not invari- 
ant with respect to rotation, translation, and reflec- 
tion of the object within the image. H u  (1962) and 
others have formulated functions called moment 
invariants which have this desired property. While 
useful as descriptors of an image, they have limita- 
tions. A practical problem is their sensitivity to 
rounding errors in the computation of the higher 
moments. 

Average moments have been defined in two 
ways. Most workers suggest dividing the above 
moments by pOO, the total density of the image (the 

volume under the surface). However, Dudani et al. 
(1977) suggest that one divide by n, the number of 
nonzero pixels in the image. These two methods 
are equivalent only for binary images (where f(xy) 
= 1 corresponds to a point within the object and 0 
otherwise). Yin and Mack (1981, p. 138) say that 
the latter method gives weak intensity invariance. 
An obvious property of central moments is that 
their values are invariant to translation of the object 
along the coordinate axes. In most studies the 
central moments are normalized in an effort to 
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eliminate the effects of overall "size" of the image. 
In addition to the position and mass invari- 

As i t  is in morphometrics, this is not as simple as i t  
ance of the p these functions are invariant to 

might seem at first. The most common nornializa- i ~ '  

tion (due to Hu, 1962) is irnage rotation. They have been used in many 
applied studies. l h l l  (1979, p. 423) suggested the 

- ( v + ~ ) l Z + l  
Vpy - ppy 1 FIX) (32) use of the logarithms of the hi in order to reduce 

for all p, q such that p + q  = 2 ,  3, .... This adjusts the 
moments to take into account the overall intensity 
of the image (i.e., the volume under the brightness 
surface). Other normalizations are described 
below. Because of a misprint in I-Iu (1962) the divi- 

( P + Y ) / ~  + *. sor is often, incorrectly, given as p ( ~ ,  

Maitra (1979, p. 697) gives the correct forrnula 
(which is confirmed by Casasent et al., 1081, p. 
127). 

their "dynamic range." He does not state, however, 
hhat one should do when the hi 5 0  (which is often 

the case). As pointed out by Maitra (1979), abso- 
lute orthogonal invariants are sensitive to dis- 
cretization and so are not computationally invari- 
ant. e\pecially if one uses outline images. The 
example given by IIall (1979, p. 423) shows that 
they may v:~ry over several orders of magnitude. 

For practical computation, the formulas for 
the h, can be simplified as follows: 

The above moments are not useful for most I l l  = '720 + v02 
studies since the coefficients are still affected by 2 

h, = A ? +  4vI1 such things as rotation of the image and its degree - 
of contrast. Several methods have been proposed = 132 + (..? 
for obtaining functions that are invariant to such - "2 + 4 - details about an image and thus are expected to 

11, = l3F + ('G 
describe just its form. Hu (1962) proposed a set of 
absolute orthogonal invariants, hl, (based on the ''(1 = A(1)2-112) + 4711DE 

normalized moments, '7py, above): h 7  = CF-RG, 

h~ = '720 + '702 u here 
h2 = ('720-1121~ + 4'711 

h3 = ('730-3'712)~ + (3'721-~03)~ 
A = ~2O-+ll12 

(33) = '730-3'712 
h4 = ('730+ '712)~('721+ '703)~ C = 3'72,901 
h~ = (7~-3'712)('730+'112)[('730+'712)~-3('721 +'70~)'] D = 17)o + '712 

+ (3'/21-'703)('721 + '703)[3('730+ '721)~-('721+ '707)~l = 1721 + 1707 

h6 = (120‘'7112)[('730+ ~12)~-(121+ V O ~ ) ~ ]  F = D(Il2-3E2) 
+ 4711(%0+ 712)('721+'703) G = I:(3D2-T:2). 

and a skew invariant: Dudani et  al. (1977) proposed that Hu's 
(1962) coefficients should be normalized to correct 

h7 = (3'721-'7~3)('730+ '712)[('730+ '712)~-3('721+1703)~1 
for differences in the scale of an image. Since 
magnification (isotropic scale change in both x and 

- ( ~ ~ ~ ~ ~ 1 2 ) ( ~ 2 1 + ~ 0 3 ) [ ~ ( ~ 3 0 + ~ 1 2 ) ~ - ( ~ 2 1 + ~ 0 3 ) ~ ]  y-coordinates) yields an equivalent image, descrip- 

(34) 
tor functions should be insensitive to such a trans- 
formation. By dividing Hu's coefficients by various 
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powers of hl, the normalizations below achieve this 

scale invariance. 

Yin and Mack (1981, p.138) proposed a simi- 
lar normalization but raised the moments to various 
fractional powers. The resulting moments are then 
in a more convenient numerical range. 

1 (intensity) 

Y 1  = { hl/pm (silhouette) 

where an intensity image is one in which the f(x,y) 
are equal to the actual image brightness values. In 
a silhouette image, all brightness equal to or larger 
than a specified threshold have been set to 1 and all 
values less than the threshold set to 0. Since the di 

and the yi are scale invariant, the normalization of 

the C( by division by poO 
P 4  

@ + ' ) I 2 +  has no effect. 

Reddi (1981) proposed slightly different 
adjustments to h2 to h7 which were also intended to 

yield scale invariant functions. 

Contrast invariant moments, mi, were pro- 

posed by Maitra (1979). 

Maitra (1979) does not indicate what should be 
done when h5 is negative (one could, arbitrarily, use 

The problem of the normalization of the 
moment invariants is more complex than one might 
at first expect since the various adjustments 
described above can interact. In a discrete image, 
multiplication of the x and y-coordinates by a 
constant effects a scale change but no change in the 
numbers of rows and columns in an image, and 
hence no change in the "mass" of an  image. On the 
other hand, a magnification of the original image 
implies that the digitized image is spread out over 
more pixels and thus the digitized image has a 
larger mass. Hu's (1962) normalization compen- 
sates by, in effect, reducing the image intensities so 
that the mass stays the same. But this lowers the 
contrast of the image. Radial and angular moment 
invariants were proposed by Reddi (1981). He 
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expressed ti to  h in terms of angular and radial 
1 7 

mon~ents .  While these are  r~~athe~natic;rlIy ecluiv:i- 
lent to the sty-invariants described above, liedcli 
(1481) shoived how the polar form allows one to 
generalire to higher order  rnornent invariirnts more 
easily. 

White and Prentice (1487) cornp;tred the 
effectiveness of moment  invariants, ch;tiri-code 
descriptors, fllliptic Fourier coefficients, and 
corive1itioria1 measurements to i1iscrirniri;ttc 
between (1 prr'ori defined groups. l'hey found the 
chain-code descriptors to perform poorly arid both 
the riioments and the Fourier coefficients l o  

perform well in their tests. [{owever, Iiohlf and 
Ferson (unpublished) found the method of 
rnornents to perform poorly, due in part to  dcpcn- 
dencies among some of the coefficients (tliey ;ire 
not statistically independent) and serisitivitv to 
rounding errors. 

Use of niornents to dcterniine oricnt:~tion Since 
the ordinary moments are  sensitive to the location 
and orientation of a n  otlject within an im:~ge, tlris 
information can he  used to determine a n  ohjcct's 
location and orientation so  one  can niove the ollject 
into a standard position for further processing. 'I'ht: 
first eigenvector of the variance-covaria~~ce rnatrix 
gives the direction of greatest variation. If onc is 
working with a n  elongated object (sucli as a 
rnosquito wing), then the vector is parallel to its 
long axis. Using the notation of Box 15.5 of Sokal 
and Rohlf (1981), the  slope of this line is 

where 

1 2  2 
hl = 2 (sl + s2 + D), ( 4 2 )  

and 

I n  tcrnis of  the notation of the p r e v i o ~ ~ s  sectic>ri, 
2 7 

= p 1  5 = p:,,, ; I I IC~ s; = po2. K11owirig the slope '. 

and position, the o\>ject can be  rotated and trans- 
lated into a s tand;~rd position for subsequent analy- 
5es. 

Reconstruction of Images 

'l'his topic is important for several reltsons. First, i f  
uric can reconhtruct tlie important features of a n  
irn;ige from a set of measured parameters, that 
~lcnionstratcs t1i:lt the parameters used a re  suffi- 
cient to c1escril)e tlie image. Of course, that does 
not ~ I - O V ~  that ariy of the parameters  a re  directly 
intcrprct;~llle t,iologically. O n e  may have to 
~ x r f o r m  v;lrious tr;~nsform:ttions o n  the parameters 
in order  to put tlicm into a form suitable for analy- 
xis and interpretation. T h e  discussion o n  nioment 
in\:~riarlts, al>ove, shows that different assumptions 
can \~rggcst different t ransforr~iat io~is  of the initial 
5c.t o f  raw moments of an  image surface. Recon- 
structed irn;rgcs may also he useful in themselves as 
convenient checks o n  whether the measurements 
are riir~tually corisistent. I f  one measurement  o r  
Inore is in:~ccur:~tc, the reconstructed image sho~11d 
1001; distortecl. Strauss and 13ookstein (1083) point 
tliis out ;LS o ~ l c  of tlie adv:tntages of the truss 
1r1ctl:ocl. 

S~rmni:~ry st:ttistics such as  means, confi- 
clence regions, and principal component axes can be 
expressed in tcrrns of the iriput variables. Fourier 
cocl'l'icients, for ex:~rriple, can be averaged to give a 
description of a n  average outline. 'I'hese coeffi- 
c ie~i ts  can then I)e ~ ~ s e d  to construct a plot of the 
average outline. I'oints within a multivariate confi- 
clcnce region corre\pond to particular combinations 
of values of the input p:~rameters. It is possible, for 
cxarriple, to  show a confidence region for a set of 
rnorphometric shapes by constructing examples of 
various extreme images that still belong to the 
confidence region. Iiohlf and  Archie (1984) show 
cxamples of reconstructions of hypothetical 
mosquito wings representing extremes possible 
along each principal component axis. Thus the 
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morphometrician is able to concentrate on the Bookstein, F. L., B. Chernoff, R. L Elder, J. M. 
geometric aspects of the organisms under study Humphries, Jr., G. R. Smith, and R. E. Strauss. 
without getting distracted by the large numbers of 1985. Morphometrics in evolutionary biology. 
measurements, parameters, and various coefficients The Academy of Natural Science Philadelphia. 
involved in the mathematical and statistical analy- Special Publ. No. 15, 277 pp. 
ses being performed. Bookstein, F. L., R. E. Strauss, J. M. Humphries, B. 
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lntroduction 

From definition of variables through publication of 
findings. a multivariate statistical analysis exploits 
our pre-existing notions of dissimilarities among 
objects. Morphometrics, in particular, is a formal 
treatment of our ideas about dissimilarity of 
geometrical form among biological objects; what 
makes it interesting is the interplay of st;~tistic;~I 
method with biological rules about procedures for 
discerning similarity. 

"Distance" and Distance 

To describe the diversity of morphometric tactics in 
the usual multivariate context, it suffices to discuss 
the variety of dissimilarity measures between 
objects - it is not necessary to discuss 
morphometric "variables" directly. (Just as well: 
there are far too many such variables.) Underlying 
all linear multivariate techniques is one single 
metaphor, the resemblance of these dissimilarities 
to ordinary (physical) distances in real physical 
space. Indeed, the findings of most linear 
multivariate strategies can be restated without error 
in the purely geometric language of vectors and 
angles. In this root metaphor, measured variables 
are considered to specify perpendicular axes of a 
Euclidean space of however many dimensions. 
"Distance" is computed by the ordinary extension of 

the Pythagorean Theorem: the squared distance 
between cases having measured values XI, X2, ..., 

Xk and Y1, Y2, ..., Yk is (XI - Y1)* + ... + 
(Xk - Yk)2, just as for real points on real paper, 

k = 2 ,  or in real space, k = 3 .  In this circumstance, 
both variables and cases are described by 
orthonormal sets of vectors of "loadings" linked by 
one diagonal rnatrix of singular values. Distances 
between cases derive from the crossproducts of 
their loadings with respect to this diagonal matrix, 
and the covariances of the variables are the 
crossproducts of tlwir loadings with respect to the 
same rnatrix. 

In  most applications of multivariate analysis, 
there is no other definition of "distance" at hand 
ercept this metaphorical one. In psychological 
research, for instance, one cannot observe the 
"distance" between two subjects' attitude profiles 
directly (not even in slides of brain tissue); the 

notion of the multivariate "distances" (Xi -- Y,)' 
between profiles (along with the st:itistical 
niachinery of whatever component analyses, cluster 
analyses, and the like are consequent upon them) is 
hence unambiguous. In nearly all applications of 
multivariate analysis outside rnorphometrics, there 
is no possibility of confusion between the statistical 
notion of "distance" and any physical distance i n  the 
real nwrld. 
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The situation is different for the 
morphometric data which are the subject of the 
analyses in this book. Because the objects of our 
analysis co-exist with us in physical space, there is a 
prior notion of distance available which overrides 
that embedded in the fundamental multivariate 
metaphor. The physical distances involved in 
morphometrics are not those between pairs of 
whole organisms (although distances of that sort 
sometimes enter into other forms of analysis, such 
as the ecological, by way of map coordinates). 
~Morphometric distances instead express the 
patterns of relative location among the parts of one 
organism in comparison to those of another. 

In this introduction I will describe the variety 
of ways in which (real physical) distances can be 
brought to bear upon multivariate analyses of 
biological form that are  otherwise conventional in 
their algebra and execution. Indeed, the survey of 
these implementations for the root metaphor of 
physical distance is equivalent to a complete survey 
of morphometric analysis as it applies to whole 
organisms: morphometrics above the tissue level. 

Homology: Biological and Geometrical 

All morphometric implementations of real physical 
distance within a multivariate statistical framework 
are governed by one crucial concept from 
biomathematics, the notion of homology. The ties 
between the morphometric and the 
biomathematical uses of this term are discussed in 
Section 1.2 of Bookstein et al., 1985. 
Morphometricians qua morphometricians have 
nothing much to say about "right" or "wrong" 
notions of homology, and the term will go 
undefined in these pages (see, however, Chapter 
17); but it is necessary to say a few words about the 
semantics of this construct. 

In theoretical biology, homology is a matter 
of correspondence between parts; thus, "the bones 
of the fish's jaw are homologous to the bones of the 
mammalian inner ear," or  "the human arm is 
homologous to the chicken wing." This diction, 
unmodified, empowers only the most rudimentary 

sort of morphometrics, the invocation of variables 
which represent "extents" of homologous parts 
without any additional geometrical content. 
Morphometrics based on this primitive utilization 
of the notion of physical distance is generally called 
"multivariate morphometrics" (cf. Reyment, 
Blackith, and Campbell, 1984). These variables are 
usually measured in cm (or cm2 or  cm3), or log cm, 
or  log ratios (differences of log cm), or  various 
nonlinear transformations of these (such as degrees 
of angle). For instance, one common choice of 
variable in conventional morphometric analyses is 
the volume or weight of a well-delineated organ. 
For such variables, the physical notion of distance is 
present implicitly in the definition of volume as the 
integral of cross-sectional area and area, in turn, as 
the integral of lengths of parallel transects - for 
lengths are physical distances as described just 
above. 

But the lengths, etc., that go into the 
integrals are not claimed separately to be 
homologous as extents upon the organism; they are 
simply conveniences in the computation of multiple 
integrals, which could be taken instead by surface 
integrals around the boundary (Green's Theorem). 
If, instead, the length of a linear structure, such as a 
long bone, is to be taken as a proper morphometric 
variable on its own, then the endpoints of the 
calipers which measure it must be themselves 
located upon homologous substructures: not, for 
instance, measured to the end of a bone spur on 
one form, a condyle on another. The primitive 
biological notion of homology gives us no further 
guidance regarding the precise measurement of 
"length," and, in particular, does not tell us what to 
do with structures that curve inconsistently between 
their "endpoints" over a sample of forms. 

Beginning with D'Arcy Thompson, there has 
emerged an alternative extension of the notion of 
homology into biometrics, one in which the 
biological properties of the objects of study are 
considerably more richly articulated. In this 
replacement for extent-based morphometrics, the 
object of measurement is the relation per se 



Introduction to Part Ill 63 

between forms, not the single form: the same 
domain as for the root concept of homology driving 
this style of measurement. To  pass from the 
biological to the biometrical context, homology 
must be considered as a mapping function, a 
correspondence relating points to points rather than 
parts to parts. This notion of homology can often 
be realized as a mathematical defonnation (i.e., a 
smooth map) which can, in turn, often be described 
efficiently by way of its derivative (Bookstein, 
1978). We will not use this further mathematical 
development here, but only the reduction to a 
point-to-point mapping. 

In this revised version of homology, the 
ordinary integral extents of organs - areas, in two 
dimensions; volumes, in three - carry over 
without change. But the lower-dimensional 
reductions of extended data, such as "lengths" of 
three-dimensional objects, in general cease to be 
acceptable morphometric variables. They presume 
a prior knowledge of homology, that of the points at 
which the endpoints of the calipers are put down. If 
we would assert that prior correspondence directly, 
by recording sets of homologous locations of the 
same points over a sample of forms, then the 
higher-level concept ("length") is made quite 
unnecessary. We can found morphometrics purely 
upon a language of maps sampled by point- 
correspondences, without any mention of 
homologousIy measured "variables" at  all. The 
variables aid in interpretation and publication of 
findings, but are not required for computation. On 
the contrary, much of the intellectual task of 
morphometrics is the explicit computation of the 
variables which best summarize observed findings, 
or best suggest a n  interpretation in terms of 
biological process, a posteriori, after all specifically 
statistical computations are completed. 

T o  proceed in this wise, we represent the 
data base of a morphometric inquiry by samples of 
discrete points which correspond among all the 
forms of a data set. These points are called 
landmarks. That they are to be considered 
biologically homologous is, as it was for parts and 

regions, a primitive concept, not the 
morphometrician's to argue for or against (although 
her experience may be helpful). Our  survey of 
morphometrics then becomes a survey of 
reasonable measures of dissimilarity between 
corresponding sets of mathematical points given 
tl~at they have been previously assigned the sarne 
names. In the notion of the naming ("bridge of the 
nose," "tip of the fin") is embodied the concept of 
biological homology represented by these maps. 
Different versions of homology lead to different 
computations of interspecimen distances. These do 
not necessarily share any common factor: in 
contradiction of the hopes of the early numerical 
taxonomists, there is no "true, underlying" 
morphometric distance between forms. There may, 
however, be factors underlying their covariance 
structure with other domains of measurement, such 
as the ecological or the biochemical. Techniques 
for the computation of such factors are available in 
the general statistical literature under the heading 
of "analysis of covariance structures," especially 
"Partial Least Squares": see Bookstein, 1991, 
Section 2.3.2. 

A morphometric analysis of outline data is 
founded on the knowledge that to a particular curve 
in one form correspond particular curves on all 
other forms of a data set. For the analysis to be 
interpretable in terms of homology, it is required 
further that we know certain points which match 
from form to form upon those curves. The 
mathematical model of homology for curves must 
be founded on the correspondence of the labelled 
landmark points, and only then extended to the 
other points of a continuously curving form (and 
perhaps to the points inside the form as well) by 
one or another computational interpolation. When 
observed point-landmarks make no appearance in 
the interpolation rule, it is impossible to consider 
the computed correspondence as embodying any 
aspect of biological homology; the problems caused 
by this hiatus of meaning will be pointed out in due 
course. 
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I shall survey below the various forms of 
statistical "distance" as they are invoked in 
morphometric computations, and, for each, 
describe and critique the treatment of physical 
distances among homologues on which the 
statistical quantity is based. I will conclude that the 
root metaphor of a single "dissimilarity" between 
forms is inappropriate in morphometric 
applications. Instead, I shall show that 
morphometric dissimilarities need to be considered 
as a conceptual composite of three di.~titzct, 
incommensurate terns: a net "size distance"; a 
classic non-Euclidean shape distance representing 
the logarithm of anisotropy of a uniform shape 
change; and a regionalizable residual that is 
usefully measured in units of inverse physical scale - 
a measure of "deformation per centimeter." At the 
close I will sketch the varieties of multivariate 
analysis to which the elements of this decom- 
position are suited. 

In conventional multivariate morphometrics 
(cf. Reyment, Blackith, and Campbell, 1984), the 
concept of homology is present only implicitly. 
There is usually a tacit assumption that whatever 
scalar variables have been measured - diameters 
of forms or organs, net areas and volumes, angles of 
articulation between substructures, and diverse 
contrasts or ratios among quantities of this sort - 
are taken in a manner not too offensive to the 
biologist's sense of homology. These quantities are 
considered "homologous" from form to form by fiat 
of operational definition rather than according to 
any formal criterion by which the concept of 
homology may be transferred out of the biological 
domain into the statistical. Once the biological 
objects have been reduced to "variables" in this 
manner, the geometry of those objects is discarded. 
The onIy geometry remaining is that of the 

conventional multivariate methodology with the 
themes of systematic exploration, such as group 
discrimination, rather than to any respect for the 
underlying properties of specifically morphometric 
data. 

Outline Data 
I begin this survey of distance-measures with the 
case of curving outlines of forms in two dimensions. 
(Certain extensions to three dimensions will be 
mentioned in the context of their two-dimensional 
equivalents.) These techniques all use landmark 
data relatively weakly: only a point or two is 
involved in specifying an interpolation rule 
extended to whole curves otherwise arbitrarily. 

m 

Figure 1. Variants of distance-measures for curving forms: 
distances. Once a computed homology is assigned relating a 
pair of outlines, their morphometric distance may be taken 
as  the integral of the  squared physical (geometrical) 
distance bctween homologous points around the  outline. 
(a) Homology radial ou t  of some  center,  ordinarily leading 
to radial Fourier analysis. (b) Homology linear in arc- 
length from some  starting point, ordinarily leading to 
ellintic Fourier analvsis. 

Disfances Between Homologous Points - 
measurement space itself, a vector space of as many 

The simplest versions of distance measures between 
Euclidean dimensions as there were originally 

curves rely on ordinary in-plane Euclidean distance 
measured variables. 

between "corresponding" points on the forms. - - 
Such techniques will not be discussed further Figure 1 shows the two principal possibilities, as 

here. Any effectiveness they may have in systematic homology is computed out of a center or instead 
researches owes to the accidental alignment of around the arc. The former possibility, but not the 
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latter, can be directly generalized to three- 
dimensional data. The arbitrariness of these 
analyses is embedded in the unreality of the 
correspondence as it is actually presumed of the 
observed data. Whenever information is available, 
real organisms do not show correspondences which 
are uniform either in arc-length around an outline 
or in angle out of a center. These interpolations 
are defensible only in the absence of all other 
information about homology: in particular, only in 
the absence of all additional landmark information. 
It is no accident that they work wonderfully for sand 
grains. 

There is a further problem with taking these 
distances to express specifically biological 
information. In most approaches the "homology" as 
executed is a function of the distance measure 
chosen, rather than vice-versa. Forms are rotated 
and translated (the radius method), or relabelled 
(the arc-length method), to minimize the integral 
squared distance computed between "homologues" 
over the family of all possible such maneuvers. 
Such a computation makes no sense when the 
purpose of morphometric analysis is to measure a 
biological homology that existed prior to the 
evolution of morphometricians. There is no 
theorem that the evolutionarily correct homology is 
that which minimizes apparent morphological 
distance. The error here is similar to the error 
underlying the thoughtless invocation of parsimony 
methods in phylogenetic reconstruction. 

The caption of Figure 1 refers to "Fourier 
analysis." But, strictly speaking, the analysis of 
forms according to these distance measures is not 
any version of "Fourier analysis" (Chapter 6). 
Multivariate analysis of the integral squared 
distances between corresponding points of outline 
forms leads to ordinations which make no direct 
reference to Fourier coefficients or any other 
features of form. The Fourier analyses are, rather, 
a device for extracting features of a space of 
"variables" which may serve to describe the space(s) 
in which the forms described by these homology- 
free distances are ordinated. Then the Fourier 

coefficients have no particular claim upon our 
attention: the "features" they supply have no direct 
translation into the language of biological form- 
correspondence. At best (Bookstein e t  al., 1982), 
Fourier coefficients may aid a numerical 
discrimination; they are no reliable guide to 
understanding homology or the biological processes 
that have modified form. 

Derivatives 

Two other variants of this general procedure are 
encountered in the literature of outline-processing. 
Both involve taking derivatives of the outline curves 
and measuring dissimilarity between forms in terms 
of squared differences of those derivatives rather 
than distances between the original paired point- 
loci. In one of these methods, Lohmann's 
eigerzshape analysis, it is the first derivative of the 
outline the squared differences of which at 
"corresponding" points are integrated to form a net 
distance. (The distances are then normalized by a 
correction for "shape amplitude" which does not 
concern us here.) This method could be 
generalized to three-dimensional data, as the 
integral of squared angle between "corresponding" 
normals over a pair of surfaces. In another method, 
having historical priority by virtue of its usefulness 
in the early literature of computer vision, it is the 
curvature (essentially, the second derivative) of the 
outline whose differences are squared and 
integrated to generate a net distance between 
forms. In three dimensions, curvature is no longer 
a scalar, and this approach generalizes only with 
difficulty. Figure 2 illustrates these two possibilities 
by re-expressing each functional, the tangent-angle 
or the curvature, as a geometric distance all its own. 

It continues to be the case that these 
methods rely on an  arbitrary assignment of 
"homology" underlying the subtraction. In 
Lohmann's method, homology is taken linear in arc- 
length; in the curvature method, it may usefully be 
taken, depending on the application (handwriting 
analysis, recognition of enemy aircraft), either as 
uniform in angle along radii out of a center or as 
linear in arc-length. 



Figure 2. Variants of distance-measures for curving forms: 
differentials. Each has been visualized by a distance in the 
original physical space of the outline data, to a 
superposition upon one pair of "homologues" at a timc. 
(a) Distanccs based on the tangent angle: cigenshapc 
analysis. (b) Distances based on the curl .iure function: 
classic nattern recornition. 

In genera!. the distance that is based on 
curvature weights smaller-scale irregularities of 
perimeter much more heavily than large-scale 
features. The mismatching of these features is 
given a great deal of credence in the computation 
of distance, but the possibility that the small-scale 
features are merely misaligned under the arbitrary 

homology function cannot be dismissed (Bookstein 
et a]., 1985, Section 2.3). Distances based on simple 
positional separation of homologous points, 
measured either radially or by arc-length, weight 
the largest-scale features most heavily, and so are 
less sensitive (though not insensitive) to 
confounding by incorrect homology. Distances 
based on the tangent angle, such as underlie the 
method of eigenshapes, are intermediate in their 
sensitivity. Nothing in the language of biological 
homology would indicate to us any resolution of 
these disagreements about weighting. I am aware 
of no justification of either of these choices - the 
nature of the computed homology, the order of the 
derivation before subtracting and squaring - in any 
biological terms. Rather, all methods of this class 
seem badly in need of a device for taking homology 
into account in setting the correspondence of curves 
prior to computation of squared distances. In 
practice, such an accounting consists in the explicit 
ohscnwtiotz of homology at  a selection of discrete 
mathematical points. Then any computation of 
distances between curves must begin with the 
computation of distances between landmark data 
sets, the topic to which I now turn. 

Landmark Point Data 

The tie between geometric distance and statistical 
distance is much richer for point data than for 
unlabelled curve data. There are more ways to 
express prior biological knowledge, and more 
possibilities for interpreting findings as features of 
evolutionary interest. 

Methods Ignoring the Spatial Ordering of 
Landmarks 

A first category of distance-measures for landmark 
data accept the fact of labelled points as the subject 
of analysis but ignore everything about the points 
except their pairing. The distance between forms is 
taken to he the sum of squared distances 

I P, -Q, 12 between all pairs of identically 

named points, regardless of the spacing of those 
points in the forms separately. This statistical 
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distance underlies the family of techniques called 
Procwtes analysis, originally developed by Gower 
to describe the distance between alternate 
multivariate analyses of the "same" data. In that 
original application, indeed, corresponding "points" 
shared' nothing but their names (case numbers, 
variable numbers), and had no further meaning vis- 
a-vis each other - there is no equivalent of 
"homology" in general multivariate analysis. 

Procrustes distances are usually taken as a 
minimum over all possible superpositions of the 
forms or according to various arbitrary rules which 
do not concern us here. As already remarked in 
connection with homology of outlines, the concept 
of a "superposition rule" has no meaning in the 
context of comparisons via biological homology. 

Figure 3. Procrustes analysis. The method sums squarcd 
distances between corresponding landmark points at the 
"optimal" superposition without attending to their spatial 
configuration. 

The " t r u s s " A n  early attempt by the 
Michigan group at  tying physical geometry to 
multivariate geometry was the truss method 
(Bookstein et  al., 1985). In this approach, a set of 
landmark locations is divided into neighborhoods of 
four points each, and each neighborhood is 
measured exhaustively by all six interpoint 
distances. For small size variation, the ordinary 

multivariate distance-measure (Xi - Yi)Qased 

on truss data is an oddly weighted approximation to 

the Procrustes distance I Pi - Q, 1 relating the 

same set of forms. For larger size ranges, the 

conventional multivariate distance (X, - Y,)2 

applied to the logan'tllms of the truss length 
measurements approximates a standardization of 
Procrustes distance to forms of varying scale. But 
this distance may be computed more expeditiously 
by the formula of Kendall (1984) making no 
reference at all to trusses. Except as a device for 
collection of data when landmark locations cannot 
be digitized, the truss analysis gains one nothing in 
a multivariate context, and should be superseded by 
the scheme of three distance functions to be 
described presently. When the "landmarks" of the 
truss are instead intersections of arbitrary radial 
lines with an outline, multivariate analysis of the 
truss reduces to that of the ordinary integral radial 
distance for the outlines (again, oddly weighted); in 
the absence of true landmarks, there is no 
advantage to computing a truss at  all. 

Spatially Ordered Landmarks: Triangles 

The remainder of this discussion treats methods 
which take into account the starting configuration 
of landmark locations more explicitly. We begin 
with the simplest case, a triangle of landmarks. 

In various papers over the last few years, I 
have shown the utility for subsequent multivariate 
statistical analysis of a particular concept of 
distance between triangles which explicitly 
separates out size and shape components. By now 
this formalism is perhaps familiar to the student of 
morphometrics (see, for instance, Bookstein, 1986, 
or Appendix 4 of Bookstein et  al., 1985); in any 
case, it will only be sketched here. Suppose we 
have three landmark locations for each of a pair of 
organisms. We can imagine these locations to 
describe a triangle for each form. (The triangle has 
no biological reality but is a convenient way to 
speak of the set of three landmarks as a unit.) 
Compute the sum of the squares of the edge-lengths 
of each triangle (the sum of the squares of the 
distances between the landmarks in pairs), and set 
it aside: it will be our net size measure. 
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For small amounts of 
shape variation, the 
appropriate measure of shape 
distance between the two 
triangles is the scaled distance 
between the two images of the 
moving point in this 
registration, the quantity 6/h in 
Figure 4a. It can be shown that 
this scaled quantity is the ratio 
of principal strains of the 
change between triangles 
treated as a uniform 
deformation: that is, the ratio 
of the axes of the ellipse into 
which this deformation takes a 
circle inside one of the 
triangles (Bookstein, 1991, 
Section 6.2). In this manner 
the distance 6/h provides a 
tight link between multivariate 
statistics and the study of 
deformations by their 
derivatives (the method of 

Figure 4. Analysis of a triangle of landmarks. (a) The two-point registration and the 
distance function 6/h. (b) Shape distance between the forms is invariant to choice of 
baseline for the construction. (c) The same is true for large changcs. (d) Shape variables 
are made commensurate by this distance function. 

biorthogonal grids, which we 
shall not treat here). As a side- 
benefit, it follows immediately 
that this shape distance is 
independent of the edge of the 

Now choose, arbitrarily, one side of the first triangle chosen for registration (Figure 4b), since 
triangle, and its homologous edge in the second the shape of the aforementioned ellipse is not a 
triangle. Rescale the triangles independently so function of any choice of edge. For larger changes 
that this edge has length 1.0 in both forms. (In this of shape (Figure 4c), the appropriate distance 
step, size information is lost; but we have already between forms is really the .'iganthm of the ratio of 
set it aside for later retrieval.) Now place the the principal strains of the transformation; the 
second triangle down atop the first triangle so that quantity 6 / h  is an approximation for small 
the two edges of unit length lie precisely upon one distances. The finite ratio is the integral of the 
another. All the information about the shapes of infinitesit~zal ds/h over "straight lines" in this triangle 
the triangles then inheres in the positions of the space when the lines are construed in the 
third landmark (Figure 4a), the one still free to appropriate non-Euclidean geometry as circles 
move. We call the coordinates of the third vertex to perpendicular to the baseline (cf. Bookstein, 1991, 
this registration upon the other two the shape Appendix 2). 
coordinates of the triangle to the specified baseline. When distances are measured between 

triangles in this way, all conventional shape 
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measurements of the same triangle - ratios of 
sides, angles, and the like - can be shown to 
reduce to directions in this space in the vicinity of a 
"mean form." The shape metric here thus provides 
a means of rendering all these alternate shape 
measures commensurate: they are represented by 
their gradients in shape space, with equal lengths 
corresponding to equal variances under a null 
model of circular noise of landmark locations 
(Bookstein, 1086) and angles corresponding to 
correlations under the same model. For instance, 
for the triangle in Figure 4d, a change of 2.7" in the 
angle at  vertex C represents the same amount of 
shape distance as a change by 0.05 in the ratio of 
sides through that vertex, and these two shape 
variables have gradients at 90" in shape coordinate 
space (Bookstein, 1991, Section 5.1.3), and so may 
be expected to be uncorrelated under the null 
model specified. 

Already, in this simplest instance of three 
landmarks, we have a way of modelling allotnctly 

that supplants the usual investigation in the space of 
"extents" (multivariate n-vectors in units of log 
centimeters). Allometry, the correlation of size 
measures with shape measures, may be seen in that 
space as the inconstancy of coefficients of the first 
principal component of the logarithms of measured 
distances (Jolicoeur, Teissier) or as the angles 
between ratio variables and the manifold of 
constant size however defined (Mosimann); see 
Bookstein 1989c. In the present context, this same 
phenomenon is viewed as the correlation of shape, 
measured by position of the moving point C in 
Figure 4, with the a size variable sequestered at the 
outset. That variable exists in another space (in this 
case, a one-dimensional space, a line). For a 
triangle of landmarks, atlometry is observed quite 
simply in the multiple correlation between size 
(summed squared edge-length), on its line, and 
shape, in its plane. That is, we have a size distance 
between objects, and, separately, a shape distance; 
allometry is the correlation between these two 
distances when shape distance is projected along 
the direction of maximum correlation. 

Figure 5. The uniform component of change for many 
landmarks. (a) Picture to  an arbitrary bascline. (b) Two 
changes of  a square of landmarks showing the same 
Procrustcs distiince. (left) Uniform; (right) Purely 
inhornogcncous. (c) For more landmarks. (left) Uniform; 
(rirrht) Growth-gradient. 

Spatially Ordered Landmarks: The General 
Case 

These two aspects of landmark change each 
generalize directly to the case of more than three 
landmarks. Size is again best taken as the summed 
squared distances among all the landmarks in pairs, 
or, equivalently, the summed squared distances 
from all the landmarks to their comnlon centroid 
case by case (Bookstein, 1091, Section 4.1). This 
single cluantity will be referred to below as Centroid 
Size. The eq~~ivalent  of circle-to-ellipse distance for 
triangles is now a bit more complicated; it is the 
length of the appropriate average (taken at unit 
height) of all the little vectors V in Figure 5a when 
two of the landmarks are fixed and all the others 
imagined to move "with respect to them." The 
complexity arises from the requirement that this 
"average" must be independent of the choice of 
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those fixed landmarks. One appropriate 
computation, which involves generalized least 
squares, is explained in Bookstein, 1991, Section 
7.2; for another, see Rohlfs affince Procrustes 
algorithm in this volume; for a third, try out the 
formula corresponding to Figure 5a, in Chapter 11. 

The existence of this uniform component as 
a separately meaningful aspect of the general shape 

Inl.sY.1 b.ndlr.8 norm 0 0151 

(b) 

Figure 6. Bending-energy distance between a pair of forms. 
(a) A thin metal plate over a non-planar armature. (b) The 
same viewed as the deformation of the square into a kite. 
The metal plate adopts the position which minimires the 
net bendin ener . 
change indicates a major problem with the 
Procmstes distance measure (Bookstein, 1989a). 
Procrustes distance conjlates two sorts of sllape 
change that should be kept separate. In each of 
Figures 5b and 5c, we show a starting shape and two 
others at the same Procrustes distance. But these 
changes correspond to completely different 
biological descriptions. In one, the changes cannot 

be localized: they are the same at  every landmark - 
a uniform change of vertica1:horizontal proportion 
by 1.2:l. In the other, different changes are 
observed in different parts of the form, and a 
regional description is not only possible but 
required. The Procrustes distance formula sums 
these two components in a relative weighting which 
is a highly artificial function of the landmark 
spacing. The two components need instead to be 
ordinated and interpreted separately. 

After size distance is estimated, as the log 
ratio of summed squared interlandmark distances, 
and after the uniform component of shape distance 
6/h is estimated by the construction of Figure 5 %  
the information that remains is entirely local. It is 
best formalized by an algebraic approach that I 
have recently borrowed from the mathematics of 
interpolation. It is explained in greater (but still 
inadequate) detail in Chapter 11. There is a family 
of landmark-based morphometric distance 
functions which are identically zero for all uniform 
transformations. The most suitable of these 
distance functions, the bending energy of the thin- 
plate spline, corresponds to a certain physical 
energy associated with the landmarks according to 
the metaphor shown in Figures 6 and 7, the change 
of shape between two landmark configurations 
interpreted as a "four-dimensional bending" of one 
onto the other. Just like any other statistically 
useful distance measure, the bending energy from a 
standard (or mean) form is a quadratic form in the 
landmark coordinates of the variable form. I t  
differs from other formulas, such as the Procrustes, 
in that the formulation is a highly nonlinear 
function of the landmarks' mean configuration. 
Shifts of a landmark inconsistent with shifts at its 
neighbors are weighted heavily in this distance 
measure; the nearer these neighbors, the more 
heavily the discrepancy of shifts is weighted (the 
smaller the armature of Figure 6a for a given 
vertical discrepancy, the greater the bending energy 
required to accommodate the metal to its arms). 
By virtue of this incorporation of mean landmark 
configurations in extenso, the bending-energy matrix 
has a spectrum of great biological interest. The 
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eigenvectors of the matrix of bending energy, which respect to Procrustes distance and with respect to 

I , bending energy. That is, the cross- 

n e t  c h a n g e  c o o r d i n a t e  2 

I n e t  c h a n g e  c o o r d ~ r l a t e  1 

Integral  b e n d l u g  norm 0.0430 

Figure 7. Bending-energy distance bctween a pair of forms. (a) A "four- 
dimensional" plate: arbitrary changes of landmark location separately in x and y 
directions. (b) The equivalent deformarion. Bending encrgy 15 independent of 
translation, rotation, change of scale, and any un~form component of shape change 
as previously defined. 

I call principul warps, are orthogonal both with 

product of landmark shifts in any 
fixed Cartesian direction is zero 
between any two of these features, 
but also the energy of the sum of 
two is the sum of their energies 
separately, with no cross-spectrum. 
This situation is exactly analogous to 
the familiar fact that principal 
components are orthogonal in 
Euclidean n-space and also with 
respect to the sample covariance 
matrix, so that the variance of a sum 
of prinkipal components is the sum 
of their variances separately. In 
fact, the principal warps are 
computed by the same subroutines 
which compute ordinary principal 
components outside morphometrics. 
Each eigenvector may be assigned a 
(real physical) scale, in c m d ,  and 
observed changes have components - 
"features" - on each scale. In this 
way the general approach to 
morphometric distance I am 
suggesting continues to incorporate 
our emphasis on properties based in 
real physical distance; for the 
nonlinear part of shape change, the 
bending energy incorporates that 
emphasis in a manner that is both 
mathematically elegant and 
statistically quite unprecedented. I 
know of no analogue to so natural a 
distance function anywhere else in 
applied multivariate analysis. 

In most applications with 
substantial numbers of landmarks, 
the bending energy is seen to be a 
superposition of diverse processes 
like those in Figures 6 and 7 at 
different physical scales. Each 
process is identified with a vector 
coefficient -so much of it in the x- 
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coordinate, so much in the y-coordinate; the rest of 
the observed change is a single uniform 
transformation, and this decomposition is unique. 
The basic component of nonlinear distance, then, is 
something like rigid motion of one (geometrically 
arbitrary) subset of landmarks with respect to 
another; the different components correspond to 
the diverse spacings characterizing such pairs of 
subsets. Again, to fill out this very brief sketch, the 
reader should examine the examples in Chapter 11 
below and in Bookstein, 1991, Section 7.5. 

Information about curving of outlines does 
not add any additional channel of integrated 
physical distance to this scheme. Rather, any 
remaining discrepancies between curves after 
interpolation of scenes via the thin-plate spline 
formula that matches up  the available landmarks 
are to be resolved, up to a predetermined tolerance, 
by specification of additional non-landmark point 
pairs upon the curves. These new "landmarks" are 
deficient, lacking one coordinate each; but the 
expression of morphometric distance remains the 
same. See Appendix 1 of Bookstein, 1991, or 
Bookstein, 1989b. 

Thus the proper multivariate analysis of a 
homology map, whether the data be of landmark 
points only or involve outlines as well, very nearly 
ignores the sums or integrals of physical distance 
between corresponding points underlying the 
outline methods or the Procrustes landmark 
analyses. These sums of squared distances in real 
space are relevant to landmark morphometrics only 
at one single step, for the computation of Centroid 
Size. Otherwise, good morphometrics is more 
subtle than that. The multivariate distance which 
ought to underlie shape analysis in accordance with 
a homology function is not at  all a simple 
invocation of the Euclidean distances to which we 
are accustomed in the other, metaphorical 
applications of multivariate statistics. 

Yet another overview of the method of 
bending energy, emphasizing a critique of its 
divergence from Procrustes distance, may be found 
in Bookstein, 1989b. 

Features and Multivariate Analysis 

Landmark data support a joint language for talking 
about geometry, homology, and multivariate 
statistics all at once. In my view, "multivariate 
morphometrics" should comprise not the syllabus of 
books presently going by that phrase in their titles 
but instead the following few themes: 

(1) Size change is described by a single 
quantity, usually most usefully taken as the 
logarithm of the ratio of net Centroid Size scores. 

One often encounters, in practice, shape 
changes which can be described with only a very 
few parameters which apply to the entire form or to 
large regions of the form. These most-global 
transformations include (2) the uniform component 
of shape change introduced above, with distance 
measured as log-anisotropy. They also include (3) 
the rigid motion of one subset of landmarks with 
respect to another (translation and rotation without 
change of shape of either separately). The best 
description of rigid motion is by the Euler 
parameters of kinematics; we will not go into these 
here. 

A special case of rigid motion is the 
displacement of a single landmark point over a 
background of a configuration of many others not 
changing their shape. In this special case, 
morphometric distance is equivalent to the scaled 
distance moved by that point, and Procrustes 
programs like RFTRA arrive at  the same 
ordination as the methods recommended here. 
(For more on this condition of agreement, see 
Chapter 10.) Otherwise, distance measures 
supplied by Procrustes-type programs are unusable 
(Bookstein, 1991, Section 7.1), even though their 
graphics may be suggestive. 

The description of other aspects of shape 
change, those which are not identical over half or 
the whole of the form, generally expresses the 
homology map by expansion in an  orthonormal 
series of functions defined over the form. These 
functions may apply only to outline points, in which 
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case they are best viewed as varieties of simple an example, see Chapter 13 of this volume), and my 
displacement, the counterexample of eigenshape relative warps nonlinear (scale-specific) principal 
analysis notwithstanding; or else they apply to components for the variation remaining after 
landmark points "dragging along" entire bounded partialling out all linear (uniform) changes. The 
regions of organisms in two dimensions or three. nonlinear principal components (Bookstein, 1991, 
These functions may be considered in three large Section 7.6) are features orthogonal both according 
categories. to covariance, i.e., statistically according to bending 

(4) Some functions underlying a 
decomposition of homology maps incorporate no 
information from the actual form under study or from 
its observed variation. These include, for outline 
data, Fourier expansions (in three dimensions, 
spherical harmonics); and, for landmark data, the 
growth-gradient models fitted by projection methods 
as in Bookstein 1991, Section 7.4. 

Each of the methods (1)-(4) mentioned 
thus far is a projection into a feature space defined 
a-priori, before the onset of computation. Each 
should be computed as a statistical least-squares or 
robus, least-squares fit in a manner independent of 
all arbitrary assumptions beyond the list of 
landmarks involved. Notice that the "feature space" 
of no shape change, the basis for analysis by the 
Procrustes methods, is the one-dimensional space 
of size changes; the residuals from a Procrustes 
analysis are not projections, i.e., measurements. 

(5) Other functions into which homology 
maps may be decomposed incorporate information 
about the "typical" form under study, but not about 
its variability. The only example of this sort of 
decomposition known to me is that using my 
principal warps (eigenfunctions of the bending- 
energy matrix introduced here and in Chapter 11). 

(6) A final class of functions, presenting a 
different analogy to ordinary principal components, 
are orthogonal statistically as well as geometrically, 
and so depend upon the entire matrix of shape 
differences under study as well as upon the mean 
landmark configuration. This class of 
decompositions includes eigenshapes (for outlines), 
the (computationally trivial) factor analysis of a 
scatter of shape coordinates for triangles or of the 
uniform component derived from more numerous 
configurations (Bookstein, 1991, Section 5.3.3 for 

energy -just as ordinary principal components are 
orthogonal both statistically and geometrically - 
and are computed by the same sort of algorithm, 
one involving simultaneous diagonalization. 
Whereas the principal warps (feature style 5, no 
reference to variances) are gotten from a joint 
diagonalization of the bending-energy matrix and 
the identity (Procrustes) matrix, the relative warps 
are extracted via simultaneous diagonalization of 
bending energy and the observed covariances of the 
shape coordinates. I intend this technique to wholly 
supplant principal component analysis of arbitrary 
variables of extent as applied to landmark data. 
(Recall that the use of truss lengths for studies of 
allometry has already been superseded by direct 
inspection of correlations of shape coordinates with 
size.) Each relative warp expresses the summation 
of correlated distributed effects of larger and larger 
geometrical import, all over the form. For example, 
the first relative warp of a set of landmarks with 
respect to bending energy is usually found to have 
the appearance of some sort of growth-gradient or 
other systematic disproportion graded one- 
dimensionally across some transect of the form; the 
last few are highly local. Demonstrations are 
presented in Chapters 13 and 14 of this volume. 

When all these features have been computed 
and inspected, they empower the usual two grand 
multivariate strategies, the study of patterns of 
covariation within and between domains of 
measurement. 

(7)  Analysis of the correlations atnong the 
separate morphometnc feature spaces. There is no 
single distance measure for morphometric analysis, 
and there is no single statistical analysis of any 
morphometric data set; as we explained in the 
Preface, all good analyses of landmark data are 
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"hybrids." After a set of landmarks is analyzed or 
ordinated according to each of the methods ( 1 4 )  
separately, one combines the analyses as one would 
any other collection of incommensurable 
information: by the study of two-dimensional and 
higher-dimensional scatterplots of the features with 
respect to each other and in the light of biological 
understandings. For instance, allometry is the 
examination of correlations of size change with 
components of uniform and nonuniform shape 
change; growth-gradients may be aligned with 
known biomechanical constraints or with properties 
of cell division; and so on. 

(8) Analysis of the strui:ure of covariation of 
all of these morphometric descriptors with other 
measurement schemes exogenous to 
morphometrics, including descriptions of group 
differences, ecophenotypy, changes over 
evolutionary time, changes over ontogenetic time, 
apparent selective value, and so on. The principal 
import of morphometric analyses in the larger 
context of the biological sciences is borne by the 
covariances of morphometric descriptors with 
measurements outside the rnorphometric domain 
(Bookstein, 1991, Section 6.5.3 and Appendix 3). 
The technology I have surveyed in this short 
introduction incorporates my best current 
understanding of the role which geometric 
information can play in the understanding of 
biological processes. 
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Part I I I 
Section A 

Multivariate Methods 

Multivariate statistical methods have played 
different roles in niorphometrics. A number of 
years ago canonical variates analysis of a suite of 
linear distance measurements for two or more 
groups of samples was the basis for the field of 
"multivariate morphometrics" (Blackith and 
lieyment, 1971). This method of analysis has the 
desirable property that it "takes into account" levels 
of variation and covariation found within the groups 
lxing studied when it makes comparisons among 
groi~ps and it does this for a number of measure- 
ments simultaneously. Since the largest component 
of variation found within a sample is usually due to 
size, the method has the fortunate effect of greatly 
reducing the effect of size differences arnong the 
specimens in the different groups being compared. 

not the information about pattern of connections 
among the edges. Thus multivariate statistical 
methods do not take into account the geometrical 
pattern of the measurements on the organism. 
'I'hey are only able to take into account the empiri- 
cal covariances between pairs of variables. 

Rut multivariate methods are not limited to 
the analysis of such data. In recent years the 
approach has been to record x, y (and sometimes z) 
coordinates of landmarks and then use various tech- 
niques to derive variables that capture important 
aspects o f  the differences arnong two or more 
organisms. These methods (the subjects of 
Chapters 6 through 16) take the geometrical 
configuration of the sample data points into 
account. 7'he multivariate statistical analyses 

Important early examples of this approach described in Chapters 4 and 5 can then be 

are Jolicoeur (1959) and Blackith and Reyment performed on these derived variables. This 

(1971). In Chapter 4 Marcus gives a broad survey approach is expected to result in more powerful 

of the application of multivariate techniques to the tests since fewer variables will be used and they will 
focus more sharply on specific aspects of shape analysis of linear distance measurements in 

morphometrics. Chapter 5 by Reyment covers differences, rather than representing the use of a 

similar ground but with the emphasis on what to do rniscellaneous collection of somewhat redundant 
measurements. "when things go askew" -when there are bad data 

points (outliers) and/or the assumption of a But the use of such derived variables means 
multivariate normal distribution docs not hold. that the results of the analyses will seem a bit more 

']The problem with this "conventional" abstract and harder to interpret directly from the 
numerical results. For this reason the effective use approach is that suites of linear distance 

measurements usually do not capture much of graphics becomes even more important as a tool 

information about the overall shape of the in data analysis. It is especially important to take 

organism. This is true even when a very complete advantage of the fact that most of the suites of 

set of measurements is used. For example when the derived variables emphasized in this proceedings 

pattern of rncasurenients corresponds to a truss allow one to reconstruct the outline or the 

(Strauss and Bookstein, 1982) only the lengths of configuration of landmarks. In such cases the 
geometrical meaning of principal component axes the edges in the truss are entered into the analysis - 



or a discriminant functions, for example, can be 
seen from plots of hypothetical organisms 
representing various positions along an axis. Rohlf 
and Archie (1984) and Ferson et al. (1985) are 
examples using multivariate analyses of elliptic 
Fourier coefficients as variables. The clear 
differences in shape were difficult to appreciate 
from an examination of the numerical results by 
themselves. 

Ferson, S., F. J. Rohlf, and R. Koehn. 1985. 
Measuring shape variation of two-dimensional 
outlines. Systematic Zool., 3459-68. 

Jolicoeur, P. 1959. Multivariate geographical 
variation in the wolf, Canis lupus L. Evolution, 
13:283-299. 

Rohlf, F. J. and J. Archie. 1984. A comparative 
study of wing shape in mosquitoes. Systematic 
Zool., 33:302-317. 
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Chapter 4 

Traditional Morphometrics 

Leslie F. Marcus 

Department of Biology, Queens College 
City College of New York, Flushing, NY 1 1367 

"It is no more use trying to be traditional than trying to be.originaLW 

T. S. Eliot 

Abstract 
Classical multivariate statistics applied to morpho- 
metrics is reviewed in terms of exploratory and 
confirmatory analysis. Brief explanations are given 
of principal component analysis (PCA), principal 
coordinate analysis, factor analysis, canonical vari- 
ate analysis, use of Mahalanobis 0 2 ,  and discrirni- 
nant analysis. Statistical assumptions are given for 
each method and some of the difficulties in appli- 
cation and interpretation are discussed. The 
methods are illustrated using two data sets: 1) 
twelve skull measurements for 574 mice of the 
genus Zygodontomys distributed over fifteen collect- 
ing localities, with special emphasis on one locality, 
Dividive, with 68 specimens; 2) seven external mea- 
surements of skins for 129 species of birds from 
Mediterranean climates. The complete data for the 
latter example are published in Blondel et al. 
(1984). The mouse example serves to illustrate 
applications of multivariate methods to geographic 
variation and low-level taxonomic studies; the bird 
example, based on species means, serves to illus- 
trate a larger-scale comparison of faunal realms 
and ecomorphological variation. The Dividive data 
are given in Appendix 1 and the complete Zygodon- 
tomys data set is on a supplied disk. 

Path models are illustrated with Wright's 
classical fowl example and several alternative 
models given. A separate analysis of a Brizafina 
data set, is given in Appendix 3. 

The Jackknife and Bootstrap re-sampling 
techniques for estimating standard errors in princi- 
pal component analysis are applied to the fowl data 
(Wright, 1968) and mouse data from Dividive. 
These results are compared with the asymptotic 
standard errors for the two data sets, and an exper- 
iment on the effect of sample size in re-sampling, 
using the fowl data set, is discussed for the asymp- 
totic and re-sampling methods. 

Most of the computations discussed were 
done using the Statistical Analysis System (SAS) 
software package on an  IBM PC A T  or clone. 
Some of the re-sampling experiments were done on 
a main frame computer using main frame SAS. 
When a SAS procedure was unavailable for doing 
an analysis, programs were written in the SAS 
matrix language called Interactive Matrix Language 
(IML). These programs are included on an accom- 
panying disk and include: Bootstrap Analysis for 
PCA; Jackknife Analysis for PCA; asymptotic stan- 
dard errors for PCA; confidence limits, F-test and 
correction for bias for Mahalanobis 0 2 ;  and mini- 
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mum spanning tree. A short SAS program for 
reading in the complete mouse data set and produc- 
ing the Dividive subset is given as well. 

Introduction 

The word "traditional" is used here to mean a body 
of statistical techniques available for morphometric 
analysis which have been widely applied in the past 
20 or 30 years. They include among others, princi- 
pal component analysis, principal coordinate anal- 
ysis, factor analysis, discriminant analysis, canonical 
variate analysis, and multivariate analysis of vari- 
ance. Most of these will be reviewed from the 
viewpoint of descriptive and inferential statistics. 
Tests of hypotheses and confidence intervals tradi- 
tionally have been based on methods derived from 
assumptions of multivariate normality-and this is 
the classical multivariate statistics discussed in 
many texts. The users of these classical techniques, 
however, did not pay close attention to the shape or 
geometry of the biological ohjects being studied. 
Instead, measurements of form ~ ~ s u a l l y  were ana- 
lyzed as distances. The multivariate techniques 
used were those that could be applied to any . . 
assemblage of continuous variates. The recent 
emphasis on landmark data and statistical methods 
that take the geometry of the biological objects into 
consideration has lead to a new morphometric 
perspective discussed in many contributions in this 
volume (Bookstein, 1982, and this volume). 

I will review the more traditional or classical 
techniques that have been applied largely to mea- 
surement or distance data. Exploratory and con- 
firmatory analysis will be contrasted in this discus- 
sion. Exploratory analysis includes the search for 
pattern, use of descriptive statistics, and graphs; 
confirmatory analysis involves models based on 
biological concepts and uses classical inferential 
statistics for testing the fitted models. Inferential 
statistics depends on probability models for data 
and observed variation. 

The single most important requirement in 
statistical inference is random sampling, though this 
may be extremely difficult to achieve in practice, 

and more often difficult to evaluate or verify for 
samples commonly used in morphometrics. A 
recent attempt to model data analysis without the 
requirement of random sampling is discussed in 
Diaconis (1985). 

Confirmation of biological models, formu- 
lated before or after we collect data, requires that 
biological hypotheses be translated into statistical 
hypotheses. Most often descriptive tools are used 
to present a simplification or summary of data 
without specification of a model. For example 
principal component analysis is used for ordination 
or pattern description, and sometimes for confir- 
mation of prior notions, but without rigorous 
hypothesis testing. However, inferential statistics 
for realistic probability models are frequently not 
available because the probability model is unspeci- 
fied or we don't have enough a priori information 
or data to construct or fit an adequate model. 

In my discussion of traditional multivariate 
techniques used in biological research, I will point 
out, where I can, how inference and confirmation 
may or may not be possible or appropriate. 

Morphometrics 

Morphometric questions come from a variety of 
studies including: analysis of form related to growth- 
both as summarized by carefully measured ontoge- 
nies and cross-sectional data; the nature and origin 
of polymorphism-sexual dimorphism, life stages, 
and other within-population polymorphisms; taxon- 
omy-geographic variation in centroids and covari- 
ance structure, variation within and differences 
among taxa, assignment of individuals to taxa; 
adaptation and origins of adaptation-relation of 
form to environment and habitat, ecomorphological 
convergence, evolutionary sequences; functional 
ques t ionss ize  in relation to physiological limits, 
allometric relations at different levels in the taxo- 
nomic hierarchy and their meaning, and so on. I 
will include indirectly some discussion of species 
recognition and boundaries, but I will not discuss 
descriptive and inferential phylogenetic analysis. 
For two good discussions of morphometrics see 
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Reyment (1985) for a more traditional view and 
Bookstein (1982) for the newer geometry-based 
morphometrics. 

Most of my discussion will be about mea- 
surements taken on a continuous scale, including 
distances among well-defined landmarks (the 
"distance" of Bookstein et al., 1985), or minimum 
and maximum diameters, distances between 
tangents and points, tangents and tangents, as well 
as angles, areas and volumes. All of these will, it is 
hoped, be repeatable and carefully described in the 
methods part of a particular study. I also include 
appropriate common transformations such as 
logarithms, sums of distances, for example over 
parts, or ratios of distance measures between parts. 
The recently proposed use of homologous land- 
marks, sometimes summarized in the form of a 
truss, for recovering information about form for 
many evolutionary taxonomic studies is attractive 
for rigid two-dimensional or three-dimensional 
objects. The truss, however, can only be applied to 
individual parts of a jointed skeleton or to whole 
organisms such as fish treated as static (or dead). 
"Dynamic morphometrics" dealing with articulated 
or mobile parts has yet to be developed. The need 
for strict homology depends on the purpose of the 
study. For example, in functional problems, such as 
the study of weight bearing in bipedal organisms, 
measures of minimum supporting long bone shaft 
diameter are appropriate, or, for studies of flight, 
measurements of wing area and aspect ratios are 
the necessary ingredients for physical modelling. 

Sampling Requirements 

In a higher level taxonomic study we may include 
relatively few specimens per taxon, perhaps even 
only one as an  exemplar for each taxon, if within- 
taxon variability is very small relative to among- 
taxa differences. For example, within-sample 
skeletal coefficients of variation are rarely more 
than 3 in birds, and this variation may be insignifi- 
cant in the context of comparisons anlong higher 
taxa. If we are interested in detailed geographic 
variation or covariance structures, we need rela- 
tively large samples from single localities, from one 

sex if there is sexual dimorphism, controlled for age 
of the individuals and time of collection. All of 
these potential sources of variation and others need 
to be carefully examined and explained, and then 
taken into consideration in the context of the 
specific problem or analysis being undertaken. 

Many rules of thumb have been offered for 
determining sample size. For descriptive statistics 
the biological variability realized as individual or 
sampling variability and the required size of confi- 
dence intervals or standard errors should determine 
sample size. One can use as a rough guide the fact 
that the standard error of most commonly used 
statistics is inversely proportional to the square root 
of the sample size (Sokal and Rohlf, 1981). Note 
that for measures of variability (e.g., standard 
deviations and coefficients of variation), the 
constant of proportionality is greater than for mea- 
sures of location (e.g., means and medians), and 
these statistics will require larger sample sizes to 
get acceptable standard errors. For statistical 
inference one must consider power of tests, i.e., the 
level of difference that one is trying to detect and 
the probabilities of Type I and Type I1 errors (op. 
cit.). 

Types of Data 

I will not discuss frequency type categorical data, or 
continuous data viewed as categorical data, whose 
study requires huge numbers of individuals if the 
number of categories is large even though the data 
might be relatively easy to score and collect. Some 
ordered discrete data such as fin ray counts in fish 
are often dealt with as continuous data. 

I will mostly emphasize measurements in 
terms of linear dimensions and distances or their 
transforms. Proportions are popularly used (for 
example all measures divided by a standard length) 
in some fields, but have come into disfavor more 
recently (Atchley et a]., 1976). However, a simple 
ratio or proportion might suffice to answer a simple 
question. Univariate and bivariate graphs or plots 
are descriptive tools that should be included in any 
analysis of data, but not necessarily published. 
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Always examine bivariate plots or scattergrams of 
the relations of the two variables to see if ratios 
may be appropriate. Furthermore, variables that 
satisfy statistical assumptions for inferences will not 
satisfy those same assumptions in the form of ratios. 

A logarithmic transformation is often used. 
Natural logarithms using a base e or base 10 are 
most popular, and the choice makes no difference 
in most analyses. Logarithms have been justified 
partially from the multivariate generalization of the 
bivariate allometric equation (Jolicoeur, 1963) and 
the frequently observed greater homogeneity of 
coefficients of variation compared to variances for 
different sized characters in the same taxon, and 
over taxa for the same character. When coefficients 
of variation are similar for different sized variables, 
then a log transformation will usually make their 
variances more similar. Variances and covariances 
of logged data are unit free. Again, if the probabil- 
ity distribution assumptions are satisfied for the 
original data, they will not be satisfied for non- 
linear transformations such as logs; and if the 
logged data satisfy assumptions, the original data 
will not satisfy those same assumptions. For exam- 
ple, data whose logarithms have a normal distribu- 
tion are distributed according to a log-normal 
distribution before the log transformation. How- 
ever, either the raw data or logged data or both may 
satisfy the not very powerful tests of assumptions 
for sample sizes frequently used in systematic 
studies. 

Size and Shape 

The search for "size" adjustments has been a long 
one, especially in studies of organisms with differ- 
ent "shapes" where one is interested in size and size- 
related shape differences. Mass is one natural size 
measure which has some physiological and func- 
tional importance; but in the typical systematic 
study of linear dimensions, where a useful value of 
mass is unknown or unobtainable in preserved 
material, it may be difficult to compute a widely 
useful size measure and more than one may be 
relevant (Mosimann, 1970, and Mosimann and 
James, 1979). Bookstein (1989) has recently 

published a valuable essay on the semantics of "size 
and shape", and Rohlf and Bookstein (1987) discuss 
the "shear" and other methods of size adjustment. 
Thorpe (1988) has developed Multiple Group 
Principal Components Analysis, or  MGPCA, which 
is equivalent to one form of the Burnaby size 
adjustment in Rohlf and Bookstein (1987). See also 
Reyment, Blackith and Campbell (1984). 

Data Analysis, Distribution Assumptions 
and Exemplar Data 

When variables are well defined, in the sense of 
being accurately determined and verified, and mea- 
sured with some required precision on similar 
biological objects, their distributions are most often 
summarized in terms of means, variances, and 
covariances or correlations. We will ignore statis- 
tics involving higher moments such as univariate 
skewness and kurtosis in this review of multivariate 
analysis. This results from the pervasiveness of 
normal theory in traditional morphometrics, since 
sample means, variances, and covariances are 
sufficient statistics for estimating the parameters of 
a multivariate normal probability distribution. 
Multivariate normality is sometimes justified empir- 
ically (though samples are rarely large enough to be 
very sure) or sometimes we depend on the simplic- 
ity and availability of the theory and statistical 
methods developed from that theory. Frequently 
there aren't enough data, and the alternative non- 
parametric and re-sampling methodology is as yet 
not widely available in software packages. 

There have been some good applications of 
distribution-free or empirical discriminant functions 
(Howarth, 1971 in geology; see SAS Statistics, Ver- 
sion 6.03 for the PC). This author feels, however, 
that, in many circumstances, normality assumptions 
are appropriate for biological samples. Reyment 
(this volume) discusses some robust techniques 
which control for non-normality, especially in terms 
of influential and outlying observations. I will 
discuss later some recently popular distribution-free 
inferential techniques, the Jackknife and the Boot- 
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strap, based on re-sampling, that do  not depend on 
multivariate normal assumptions. 

In studies where one is using measures on an 
exemplar to represent a taxon-or on centroids to 
particularize tam--there may be no probability 
theory available, and the results must be descrip- 
tive. A probabilistic point of view may take the 
form: "what we see is one of a number of poten- 
tially possible outcomes of the historical processes 
leading to our observations." Beyond this state- 
ment, probability models are difficult to apply and 
inferential statistics in these circumstances should 
be used with great care. 

Vectors of Means and Variance-Covariance 
Matrices 

The minimal basic statistics required for classical 
multivariate analyses are means and sums of 
squares and cross-products. Vectors of means and 
variance-covariance matrices or distance matrices 
are derived from them and are easy to represent in 
geometrical terms for two and three dimensions; 
and the algebra extends to any number of dimen- 
sions. 

Individual organisms representing one sex 
and one age class randomly drawn from a locally 
panmictic population over a short period of time I 
will call a "homogeneous sample." These will be the 
basis of many studies, though frequently with less 
homogeneity than desired. A set of measurements 
on many variables for such a homogeneous sample 
may be conceptually described as a cloud of points, 
one point for each individual, plotted in a space of 
as many dimensions as there are numbers of vari- 
ables. Figure 1 is a bivariate example for a large 
data set. The centroid (vector of means), and vari- 
ances and covariances (in the form of a symmetric 
matrix) are sufficient to model this cloud as a mul- 
tivariate normal distribution. The cloud is most 
dense at the centroid and thins out in ellipsoids of 
decreasing concentration as one moves away from 
the centroid. Small data sets even if actually from 
normal distributions may not show this pattern 
clearly. 

If the data do not in fact come from a multi- 
variate normal distribution, then that summary will 
not be adequate. For example, the data may not be 
symmetrically distributed about the centroid, but 
rather be strung out or skewed more in one direc- 
tion or another, or may not be represented by a 
linearly arranged concentration of points, implied 
by normal theory. They may be better represented 
instead by curved lineaments of concentration and 
thus not be representable by ellipsoids of concen- 
tration. Again, these patterns may be difficult to 
discern without lots of data. If polymorphisms are 
present there may be several regions of dense 
concentrations of points. Always plot your data in 
the form of scattergrams and histograms to see if 
univariate and bivariate normality are plausible if 
you are going to use techniques based on that 
model. These are necessary, but not sufficient 
conditions for multivariate normality, however. 
Since linear combinations of normally distributed 
data are also normal, all plots of derived linear 

FEM 

Figure 1. Plot of skull length, ordinate, against femur 
length, abscissa, for 276 female fowl skeletons (Dunn, 1922). 
Both were measured in millimeters. 
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combinations such as principal components and axes to be a t  angles other than 90 degrees do distort 
canonical variates should produce normal-looking distances. 
plots as a further check. However, linear combina- 
tions may tend to be more normal than the original 
data because of a central limit kind of effect, recall- 
ing that the sum or mean of independent observa- 
tions from any distribution will tend to normality as 
the number of observations increases. Additional 
plotting techniques based on distances for individ- 
ual specimens from the centroids are also useful for 
looking for outliers (see Reyment, this volume). 

These simple operations may seem to form a 
narrow framework within which to recast data and 
they sound deceptively simple. However, they have 
provided a powerful methodology for examining 
many biologically interesting questions. Even three 
dimensions are difficult to depict using two- 
dimensional graphs on paper and screens. More 
than three are impossible to display except as 
projections in two dimensions. Even in two dimen- 

Exemplar data may represent each taxon as sions there is no natural ordering of individual 
a point; or the entire data matrix of individual observations, as there is in univariate analysis 
specimens combined over several taxa may be where we can order our original measurements 
thought of as clouds of points of varying density uniquely on each axis. We may find that these 
and separation; or perhaps as a scatter of more or conceptually simple methods are as much as we 
less clustered points (Figure 2). In this case normal may safely apply given the small amount of data 
theory is irrelevant. frequently available. 

In either case, when we summarize data in 
terms of centroids each surrounded by ellipsoids of 
concentration, most of the classical statistical tech- 
niques may be described algebraically and geomet- 
rically in terms of linear transformations of carte- 
sian coordinate axes, even if the data do not justify 
the multivariate normal model. In that case, many 
of the methods whose derivation depends on that 
model will not have optimal properties; or if infer- 
ential statistics are used, reported probabilities will 
be incorrect. However, modest departures from 
normality and other violation of assumptions may 
not be too important, as in the analysis of variance, 
which is quite robust to non-normality and moder- 
ate inequality of variances for balanced designs 
(Sokal and Rohlf, 1981). Transformations, such as 
to logarithms, sometimes make the data more 
nearly normally distributed. 

All of the classical methods find new axes 
which are determined by rigidly rotating the old 
axes about an  origin (usually put at the centroid of 
all the data). Some, in addition, then place the axes 
at angles different from 90 degrees with respect to 
each other. Rigid rotations do not distort the 
distances between points or specimens, while those, 
such as canonical variates analysis, that allow the 
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surements for the largest sample from the locality 
Recasting Data Through Rigid Rotation Dividive is given in Appendix 1. The specimens 
(Principal Component Analysis and represent both males and females collected from an 
Related Techniques) area no more than 10 kilometers in diameter and 

Principal component analysis (PCA) has been the 
most popular way of examining biological multi- 
variate data arrays. I will follow a convention of 
representing each specimen's data as a row in the 
data array or matrix; and each column will repre- 
sent all of the specimen or taxon values for each 
variable. PCA is basically a model-free and distri- 
bution-free technique for rigidly transforming data 
according to a simple maximization principle. We 

during less than six months' time. The rodent skulls 
grow throughout life. Voss defined five tooth-wear 
classes, of which only stages 2, 3 and 4 are included 
here (see Voss et al., in press for further details). 
The investigator would like to see how the 12 
cranial measures vary and co-vary and if the varia- 
tion and covariation structures can be simplified 
and are similar over the fifteen localities. We will 
use principal component analysis to do this. 

- 
can, however, represent the data in the form of In another study, Blondel measured 8 tradi- 
eqllations which will become useful when we tional characters, weight and 7 standard skin mea- 
contrast PCA to factor analysis. surements as distances, for 100 species of birds 

In order to make inferences about the popu- 
lations from which we are sampling, dis-tribution 
assumptions are necessary. I reemphasize that if we 
are going to make inferences, no matter what the 
technique, our sample must be a random sample 
from the population or populations of interest. 

from Mediterranean climates that breed in Chile, 
Provence or California (Blondel et  al., 1984). Data 
for an additional 29 species that breed in the 
temperate bio-climate of Burgundy were also 
included in the study. Each observation published 
in Blondel et a1 (1984) represents the mean of five 
male birds, except in rare cases where fewer than 

Two quite different examples are discussed: five were available. Blonde1 et al. wanted to 
one where there is some hope of drawing statistical present the pattern of differences among families, 
inferences; and another where biological hypo- habitats, food categories, foraging strategies and 
theses can be formulated, but where it is difficult or geographic regions in a simple graphical form. 
perhaps impossible to draw statistical inferences. Principal components were used and are described 
The Brizalina data are analyzed separately in an below and in greater detail in Blondel et  a1 (1984). 
Appendix. In a study of the rodents belonging to Bivariate scattergrams for both examples are 
the genus Zygodontottzys (their 
species assignment is undergoing 
revision), fifteen samples are avail- 
able over a major part of its 
geographic range (Figure 3). From 
29 to 68 suitable specimens are 
available from each locality. Robert 
Voss, Department of Mammalogy, 
American Museum of Natural 
History, measured 12 skull charac- 
ters (Figure 4 and Appendix 1) to 
the nearest 0.05 mm. using hand- 
held dial calipers. All of the data for 
the 574 specimens are  supplied on 
the accompariying disk. The mea- 
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given in Figures 5 and 2. We see in 
the Zygodontomys data, presented 
here for Dividive, that there is high 
correlation between growing parts 
(Figure Sa: Condylo-incisive length 
[CIL] and Length of the Diastema 
[LD]); less for some parts than 
others (Figure 5b: CIL and Brain- 
case breadth [BB]); while tooth 
dimensions do not change after 
eruption and show weak or no rela- 
tion to the growing parts (Figure 5c: 
CIL and Breadth of Molar One 
[BMl]). On the other hand, there is 
a great deal of variation among the 
taxa in the bird study as the species 
breeding in these areas represent 
many orders of birds included in the 
study. 

I will first describe principal 
components for bivariate data and 
then generalize to the 12 variable 
rodent and 8 variable bird examples. 

In Figure 6a, I have plotted a 
line through the scatter of points, the 
same data shown in Figure Sa, and 
have dropped perpendiculars, some 
labeled h, from the data points to the 
line and marked them with an x on 
the line. This line has the property 
that the amount of variance (or 
standard deviation) along the line 
among the x's is the greatest for any 

Figure 4. Diagrammatic descriptions of characters measured for the Zygodor~lo- 
,,,Js data,  

line we can pass through the scatter 
of points, no matter how the data are distributed. ellipses for a hivariate normal model fit to the data 
At the same time, the sums of squares of the (whether the data follow a normal distribution or 
lengths of the subtended lines labeled h from the not). 
points perpendicular to the fitted line will be In terms of the original axes, now moved to 
smaller than for any other line we can draw. This the of the data, we have merely found a 
line and a line perpendicular to i t  through the new set of (it can be thought of as a rigid rota- 
centroid (joint means of the two variables) and t i o n  about the on which project our  
parallel to the lines labeled h form new axes called 'iata so th;it for =is, or f i r s t  principal  
principal axes. They are also the major and minor axis, the data have mzvt imurn  variance, and for the 
axes of the family of concentric concentration ,inor =is, or second principal axis, 
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to the first, they have least variance. The variances Principal Component Scorel = fll xl + f21 x 2 ,  
along these new axes and along the old axes still 
add up to the same total variance (Table 1) and this Principal Component = f12xl + f22Y2. is easily shown using the Pythagorean theorem. 
When we plot the data using these new axes (Figure We summarize this in vector and matrix 
6b), we have defined new variables, called principal form more compactly as: 
components, that are  uncorrelated. Principal com- 

s. = F'x. ponents are variables whose values, called principal 1 9  

component scores, represent linear or weighted where 3 is the vector of scores for an  individual 
combinations of the original variables. The weights specimen, is the data vector for that specimen, 
or coefficients, the f values in the equations below, and FI is a matrk ofcoefficients. 
represent the cosines of the angles by which the 
axes are rotated (see Jolliffe, 1986, or Neff and At the same time we may represent each 

Marcus, 1980, for a fuller explanation). vector of observations x as: 

Either set of equations is like 
multiple regression equations where 
the coefficients are  regression coeffi- 
cients, and the principal components 
are regressed on the original data, xl 

and x2 for each specimen or taxon; or 

vice versa. However, there is no 
error term in these principal compo- 
nent equations, and the principal 
component scores are not directly 
observable. The lack of an  error 
term emphasizes the non-statistical 
nature of this principal component 
analysis in two dimensions. The 
method of finding the f s  and the 
variances for the scores is that of 
finding eigenvectors and eigenvalues, 
respectively, of a square symmetrical 
matrix (the matrix of variances and 
covariances, or for standardized data 
with means 0 and standard deviations 
1, the correlation matrix). The eigen- 
vectors as rows of F' or columns of F 
are constrained to have length 1, i.e., 
the sums of squares of their elements 
must add to 1. In this formulation, 
the eigenvalues represent the vari- 
ances of the scores, and the columns 
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Figure 5. Bivariate scattergram for pairs of Zygodontoi?tys skull measurements 
for the locality Dividive with 68 individuals. CIL = condylo-incisive length is 
plotted on the abscissa for all three plots and measurements are in millimeters. 
A) LD = length of the diastema against CIL; B) BB = braincase breadth against 
CIL; and C) LM = length of the molar tooth row against CIL. 
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of the eigenvector matrix F are  the  partial regres- variables and the  scores. Using this definition, 
sion weights o r  coefficients for a specific principal loadings a r e  obtained by a scaling which multiplies 
conlponent and : ~ t  the sarne time a r e  the cosiries of the coefficients by the s tandard cleviation of the 
tlie ;~tlgIes be tueen  the principal conlponcrlt axes scores (the scl~lare root of the  eigenvalue = I, ) and 
and the original variable axes. divides them by the s tandard deviation ( =  sd;) for 

"Loading" is a pop~r la r  term for the coeffi- their respective variable (like stand-arclized partial 
cients scaled in one  or  another  way, a term regressioncoeffi-cients): 
borrowed from factor analysis. I like to think of the  
loadings as  the correlations between the  original 

loadingb = hj 4 /illi . 

f.'igr~tc 0. I I I L I S I S ~ I I ~ I I ~ ~  of I ' r i ~ i ~ i ~ ~ i t l  C ' o n ~ ~ ~ i ~ n c r i I s  [or :I I I ~ \ ; I I ~ ~ I I C  C C I ~ ,  u\ing ~ l i c  dirtti 
[>lilllcii in f'ig~lre 5;r: A )  7'hc srrnis of scluarcs or llic vcrlicals, 11. :lrc mininiuni. 
r l l i p \ c ~  :ire I)c.\t lit tlivari;i[c nor nlal cllipscs as 50'5. 75'1; atiil !)5',;, contour$, and 
inajor and rilinor axes a rc  shown; B)  sarnc tlirlrl plotlcil on ncw principal conlpo- 
ncni iixc$-(tic Pigurc in  a),  i <  ju5t rotatcd to  niakc thc niiiior ant1 minor axes thc  
princip;~l axcs and thc  origin is at thc ioint mcans  (centroid) of the data; C:) 

I have avoided using the term 
"loading." Others, however, have 
found tlie term convenient Lvhen not 
as  rigidly defined and may use it for 
different scalings of the eigenvectors. 
It is important to note that the prin- 
cipal components for standardized 
da ta  obtained from the matrix of cor- 
relation coefficients a re  not the s:lme 
as  principal components  for the vari- 
ance-cov;~ri;~rice riiatrix even ~ i h e ~ i  
both a re  preserlted in terms of loacl- 
ings as dcfincd here. I:or the corre- 
lation matrix, since the data  a re  stan- 
dardizetf to have st:~nclard deviation, 
sdi= 1 ,  then the  formula above for the 

loading simplifies. 

It hehooves every researcher 
~ v h o  p~~l ) l i shes  :I PCA to specify the 
form of the data  analyzed. Any trans- 
form:~tion or  st:~ndarclizatiori should 
be  specificci ill :I cliscussio~l of 
rnethods along with the forni in \vhich 
the loadings a r e  given. 

When we cornpute the eigen- 
values and eigenvectors of the full 
12 x 12 and 7 x 7 variance-covariance 
matrices of the  logged data  for the 
two data  sets, \vc define principal 
components (as many as there a r e  
\~arial,les), :IS linear conilbinations of 
the variables, tlie first llaviiig the 
largest variance of any linear conlbi- 
nation on  the  data ,  the second having 
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variance is left in the data, and so on down to the 
last which is the most invariant combination of our 
data, that is, i t  has the least variance. 

We may then represent a data vector as: 

where we have introduced a vector of residuals e. 
Unlike our 2 variable model above, we may retain 
only 2, 3 or r of the p (the total number of charac- 
ters measured) principal components in our 
summarizatio~l of the data. Then the matrix F will 
have p rows and r columns. There will only be r 
scores for each individual, and the portion of x not 
summarized by the components retained will reside 
in the e vector. The ei can similarly be expressed in 

terms of the last p-r principal components not used 
in the presentation. If p components are used, then 
of course e will be 0. 

A two-dimensional plot or three- 
dimensional projection of the principal component 

Table 1. Principal component analysis Tor two varial~lcs f r o n  
Dividive data. r 
Untransformed data Log tr;~nsrormcd data 

Simple statistics 
CIL LD LO<;- LO<;- 

C:IL CIL 
Mean 27.44 7.77 Mean 3.31026 2.03730 
s 1.65 0.61 s 0.06002 0.08039 

Covariance matriccs 
CIL LD LO(; LOG 

CIL LD 
CIL 2.7071 0.9652 LO(;-CII, 0.0371 14 0.004695( 
LD 0.9652 0.3757 LO<;-LD O.OO4'195h 0.00046(,3< 
Total variance = 3.08W Total variance = 0.0101750 

Correlation matriccs 
CIL LD LO(;- LO<;- 

CIL LD 
CIL 1.0000 0.0570 LO(;-CI L 1.0000 0.0587 
LD 0.9570 1.0000 LO(;-LD 0.9587 1.0000 

Eigcn- Cumu- Eigen- Cumu- 
value lative % value lative (% 

PRINl 3.0549 99.1 PRlNl 0.009081 08.1 
PRIN2 0.0280 10H.O PRIN2 0.000104 100.0 
Total 3.0828 Total 0.010175 

Eigcnvcctors 
PRINl PRIN2 PRINl PKlN2 

scores in the plane or volume defined by their 
respective principal axes will then provide displays 
summarizing the most variability (in terms of vari- 
ance) we can display using new axes in two or three 
dimensions. The principal component scores are 
uncorrelated and their respective eigenvectors are 
at right angles to each other or  orthogonal, that is, 
their inner product is 0. 

The coefficients, as the elements of the 
eigenvectors (columns of the matrix F), will contain 
information on the relative contribution of the 
original variables to the principal components 
derived from them; and also, as rows in the matrix 
of column eigenvectors, the coefficients will tell us 
how the variance of each variable is distributed 
over the components. 

It has sometimes been found useful to name 
a component in terms of its dominant set of coeffi- 
cients or the pattern of coefficients. For example, i f  
all the coefficients of the first component have the 
s:me sign i t  is sometimes called a "size" component. 
It is size only in the sense that the correlation of this 
principal component with all of the variables has 
the same sign, i.e., if an  individual is larger in any 
variable on the average its score on the first princi- 
pal component is larger. Then the others are 
sometimes called "shape" components as they 
reflect contrasts in measurements or differences of 
weighted sums of variables for non- logged data, 
and products of weighted ratios for logged data. 
However, one must be careful in making too facile 
an interpretation, because if the first component is 
"size" as described above, then all other compo- 
nents must be "shape". This comes from the 
requirements that the scores be uncorrelated over 
components and that the eigenvectors are orthogo- 
nal. This means that their inner products, the sum 
of products of corresponding elements, are 0. So if 
one eigenvector has all signs the same, then all 
others must have plus and minus signs, and be 
"shape" components. 

A useful way of graphically showing the 
eigenvector coefficients is to plot them on the PC 
scores plot, in the form of a "biplot". A vector 
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corresponding to each original variable may be Gnanadesikan (1977). 
projected onto the principal component scores 
display (Krzanowski, 1988; Gabriel, 1971), using the 
eigenvectors for coordinates. The biplot will be a 
best two-dimensional representation of the mean 
centered data in PC terms. The plot of the first two 
eigenvectors for the Zygodontornys data from 
Dividive is given as an inset on Figure 6c. When 
there are a lot of data points, plotting the scores 
and eigenvectors on the same graph may be messy. 
For data well summarized by two principal compo- 
nents, the data can be nearly reconstructed from a 
biplot; as each specimen's observed value for a vari- 
able will be nearly the product of the vector to the 
point representing the specimen and the vector for 
the variable, both vectors originating at the origin. 

For logged data, the first component of the 
covariance matrix may sometimes be interpretable 
as a vector of allometric coefficients (Jolicoeur, 
1963), which also reflect shape differences. Isome- 
try is represented by each coefficient being equal to 
(llp)0.5. Coefficients less than this amount reflect 
negative allometry and those greater, positive 
allometry. Bivariate allometric coefficients may be 
determined from ratios of eigenvector coefficients 
(see Shea, 1985, for an up-to-date discussion in the 
context of growth allometry). Frequently, however, 
beyond the first few components, the coefficients 
are near 1 for only one variable on a component 
and near 0 for all of the rest. This implies that the 
component is highly correlated with that variable, 

Other display techniques in low-dimensional or just summarizes information for that single vari- 
space are discussed in Reyment, Blackith and able and tells us nothing about association of 
Campbell (1984), Neff and Marcus (1980) and variables for interpreting variability and 

covariability. 

Table 2. Principal component analysis of logarithms of Dividive data. 

Variance-covariance matrix x 100 
CIL LD LM BM1 LIF BR BPB BZP LIB BB Dl LOF 

CIL ,371 1 .46% ,0575 ,0255 ,3636 ,4254 ,4928 ,4695 ,2241 ,1185 ,4904 ,3447 
LD .46% .6464 ,0292 ,0217 ,4979 ,5381 ,6486 ,5877 ,2795 ,1509 ,6016 ,4360 
LM ,0575 ,0292 ,1575 .0831 ,0174 ,0951 ,0445 ,1031 ,0826 -.(I04 .I&% ,0444 
BM1 ,0255 ,0217 .0831 ,1762 .01% .0902 .OW0 ,0504 ,0491 -.001 ,0618 ,0167 
LIF ,3636 ,4979 .0174 .01% ,5453 ,4044 ,4974 ,4836 ,2195 ,1449 ,4663 
BR ,4254 ,5381 .0951 .0992 ,4044 ,7536 ,6705 ,5822 ,3343 ,1396 ,6263 ,3995 
BPB ,4928 .6486 ,0445 ,0280 ,4974 ,6705 ,9362 ,7023 ,3226 ,1832 ,7267 ,4462 
BZP ,4695 .5877 ,1031 ,0504 ,4836 ,5822 ,7023 ,9718 ,2893 ,1298 .G42 ,4282 
LIB ,2241 .2795 ,0826 ,0491 ,2195 ,3343 ,3226 ,2893 ,3093 ,0800 ,2869 .I952 
BB ,1185 ,1599 -.W -.@I1 ,1449 ,1396 ,1832 .I298 .0800 .I021 ,1601 ,1239 
Dl ,4994 ,6016 ,1066 ,0618 ,4663 ,6263 ,7267 .h402 .2tW)9 ,1601 ,9293 ,4712 
LOF ,3447 ,4360 ,0444 ,0167 ,3486 ,3995 .4462 ,4282 ,1952 .I239 .4712 .3GY6 
Eigenvectors of variance-covariance matrix of l o g e d  data 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 
CIL ,2742 -.074 ,0614 -.002 .I585 -.Ix -.067 ,3045 .0203 -.I13 ,0784 ,8692 
LD ,3519 -.271 ,1210 ,1585 ,1400 -.030 -.098 ,4712 -.262 -.313 ,4132 -.417 
LM ,0441 .4482 -.I41 -.OX ,2932 -.I17 ,3031 ,1952 ,6726 -.I32 ,2404 -.I37 
BM I ,0292 .4537 -.054 ,1187 ,2676 ,6202 ,2189 ,2574 - . a 3  ,1480 -.I39 ,0497 
LIF ,2845 -.421 .0476 ,2708 .4323 .3376 ,2201 -.SO0 ,2091 -.I29 -.077 .0232 
BR ,3564 ,4344 .I527 .3291 -.215 .I682 -.613 -.250 ,1618 -.043 ,1076 ,0019 
BPB ,4135 -.060 .I161 .0193 -.690 ,1741 ,4867 ,1406 ,1580 -.030 -.I52 ,0034 
BZP ,3914 -.OW -.a85 -.I38 -.042 -.(I44 -.089 -.086 -.I09 .I071 ,0257 -.027 
LIB ,1798 ,2704 .0490 ,4691 ,0912 -.622 ,3172 -.I93 -.332 ,0387 -.I64 -.031 
BB ,0932 -.I21 .I332 .0859 .0166 -.010 .0842 -.008 ,0584 ,8398 ,4847 ,0195 
Dl ,3987 ,2038 .3247 -.728 ,1641 -.OX2 ,0590 - . a 4  -.I96 -.015 ,0445 -.073 
LOF ,2570 -.I19 ,1084 -.029 ,2271 -.I19 -.257 ,3509 ,2395 ,3348 -.664 -.204 

It is important to emphasize 
that the pattern of coefficients repre- 
sents the peculiarities of the sample 
of data at hand and there can be 
considerable sampling variability for 
small samples. At worst, it may 
represent introduced variability due 
to measurement error by the 
researcher. One wants to see biolog- 
ically interpretable patterns which 

Table 3. Principal component analysis of 
logarithms of Dividive data. 

PC Eivenvalue 
1 0.456573 
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are relatively stable over repeated sampling. Since be constructed as: 
no biological model is used to generate the 
components, there is no special reason to search for Xresidual = (I-F F') 

biological sources of variation and covariation where X is the mean centered data matrix, and I a 
explained in a principal component analysis. diagonal matrix of ones. This is just an extension of 
Gibson et al. (1984) have recently provided some formula 23 for more than 1 vector in Rohlf and 
data to indicate that, in their systematic morphome- Bookstein (1987). VARCOVreSidual can also then be 
tric study of a series of homogeneous data sets, little formed as: 
past the first principal component was interpretable 
for the birds they studied due to sampling error VARCoVresidual = X'residual Xresidual/(n-l) 

alone. 1 will discuss this point later in detail and As another way of looking at the residuals, BMDP 
present some new results. provides a useful partition of the distance from 

~f the first few principal components usefully each observation to the centroid of the data into 

summarize and display your data, always look two parts, one based on the components retained, 

further and see what is not summarized by the corn- and a residual part CDhon, 1983). The residual 

ponents retained, E~~~~ principal  components part can be used for detecting outliers in homoge- 

analysis should include an analysis of the residual neOusdata sets (I-Iawkins, 1974 and 1980). 

variances and covariances of the data not so sum- The variance-covariance matrix, the princi- 
marized, and also the residual values represented pal component variances (eigenvalues) and coeffi- 
by the vector e for the data itself. 

variance matrix may be computed by 
forming that part of the covariance 
matrix explained by the principal 
components retained and subtracting 
this from the original covariance 
matrix: 

 hi^ is seldom done i n  actllal 
applications. While the standard 
statistical packages may present us 
with residual covariance or corre- 
la t ion  that I am aware 
of partition the data itself into a part 
contained in the components re- 
tained or displayed, and a residual 

part' It is difficult obtain such 
residuals  in a package like 
(using matrix routines such as PROC 
IML in version 6). The residual co- 

VARCOVresidual = V A R C O V O r i g i n a ~  - 
F L F '  , 

Table 4. "Loadings" = correlation coefficients between original variables and PC 
scores. 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 
CIL ,9617 -.073 ,0584 -.002 ,1260 -.082 -.039 ,1506 .0084 -.044 ,0228 .I303 
LD ,9354 -.203 ,0873 ,0997 ,0843 -.014 -.043 .I766 -.082 -.093 .0910 -.047 
LM ,2375 ,6802 -.206 -.045 ,3576 -.I08 ,2702 ,1482 .4278 -.080 ,1072 -.032 
BMI ,1486 ,6510 -.075 ,1429 ,3086 ,5433 ,1845 .la@ -.242 . o w  -.058 ,0108 
LIF ,8233 -343 0374 ,1854 . a 3 4  ,1681 .I055 -.204 ,0715 -.042 -.019 ,0029 
BR ,8773 ,3014 ,1020 ,1916 -.I20 ,0712 -.250 -.087 ,0471 -.012 .0219 ,0002 
BPB ,9133 -.(I37 ,0696 .0101 -.335 .Oa2 ,1780 ,0438 .0412 -.008 - .0B .COO3 
BZP ,8483 -.024 -.520 -.071 -.020 -.016 -.(I32 -.OX -.028 ,0261 ,0046 -.002 
LIB ,6907 ,2929 ,0512 ,4264 ,0794 -.411 .2018 -.I04 -.I51 ,0167 -.052 -.005 
BB ,6235 - . 2 ~  ,2419 ,1360 ,0252 -.OII . o m  -.ma ,0461 ,6313 . m 5  .m56 
Dl ,8837 ,1274 ,1954 - 3 2  ,0824 -.031 ,0217 -.089 -.051 -.004 .0082 -.007 

where F contains the r eigenvectors 
retained as columns, and L is a diag- 
onal matrix of the r eigenvalues. 
Similarly a residual data matrix may 

Residual covariance matrix x 100 after removal of PC1-3. 
CIL LD LM BM1 LIF BR BPB BZP LIB BB DI LOF 

CIL ,0246 ,0192 ,0173 .0023 -.005 -.012 -.029 -.GO3 ,0053 -.004 -.MI1 ,0175 
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cients (eigenvectors) for the logarithms of the 
Zygodontonzys data are given in Tables 2 and 3. 
The correlations between the principal components 
and original variables (loadings) together with the 
residual covariance (after the first three compo- 
nents) are given in Table 4. The original correla- 
tion matrix and residuals to the correlation matrix 
(both after the first and first three components) are 
given in Table 5. The residual analysis for 
Zygodontomys does not point to any exceptional 
data. While the variance-covariance matrix was 
used in the original data analysis, it is very difficult 
to examine residuals in that form. It is far easier to 
look at the residuals in terms of the correlation 
matrix. 

Stem and leaf diagrams of the residuals 
before and after extraction of the first principal 
component is instructive for the Dividive data 
(Figure 7). Note that for the residual data, the 
mean has been added back in so that we are look- 
ing at similar sized variables as raw data. For CIL, 
condylo-incisive length of the skull, most of the 
variation is in the direction of the first principal 
component and the histogram of the residuals is 
more symmetrical than for the raw data. Appar- 
ently much of the age-related growth variation has 
been removed from the data (Voss et al., in press). 
Width of the first molar, BMI,  however, retains 
essentially all of its variability as would be predicted 
from the value of the coefficient, 0.029, for BMI in 
the first eigenvector. Note in the residual matrix 
from correlations after removal of PC1 (Table 5 )  
that most of the molar variance and much of the 
variance for some other characters such as brain- 
case breadth is retained. However, the only size- 
able portion of covariance retained is for the rela- 
tion between tooth row length and first molar 
width, again apparently because these characters do 
not change with growth. The residual matrix after 
removal of PC1-3 (Tables 4 and 5) still shows half 
of the variance for the tooth characters and still 
some for the braincase measures but little remain- 
ing covariance. The second and third eigenvalues 
are very similar, so there is not any clear pattern of 

Stem Leaf 
30 017 
29 112224688 
28 000012222234445666678 
27 001222557778 
26 00226889 
25  022357899 
24 26889 
23 0 

- - - - + - - - - + - - - - + - - - - + -  

Variable=Resldual CIL after removing PC1 

Stem Leaf Y 
277 0 1 
276 013469 6 
275 01122333345568889 17 
274 00111223355566777788 20 
273 023445566888999 15 
272 1246678 7 
271 711 2 

- - - - + - - - - * - - - - + - - - - +  

Multiply Stem.Leaf by 10.'-1 

Stem Leaf Y 
14 00 2 
13 5555555555 10 
13 00000000000000000000 20 
1 2  555555555555555555555555 2 4  
12 00000000000 11 
11 5 1 

- - - - + - - - - + - - - - + - - - - + - - - -  

H t i l t  lply Stern.Leaf by 10.'-1 

Variable=Residual DM1 after removing PC1 

Stem Leaf I 
14 00 2 
13 5555566 7 
13 000~1U00U000000011444 20 
12  55555555555555555666999 23 
12 0UOUOU011114444 15 
11 6 1 

- - - - + - - - - * - - - - + - - - - * - . -  

HultIply Stem.LeaE by l U * * - i  

Figure 7. Residuals after removing the contribution of 
Principal Component one from the data for Divide using all 
12 variables. Note: for CIL the range of the data has been 
reduced from 23.0-30.7 to 27.2-27.7; while for BbI1 with a 
small cocfficien~ on principal component one the residuals 
have e5sentiallv rhc same distribution as for the raw data. 

relation among the variables past the first principal 
component. 
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BR -.039 - a s 0  ,0678 ,1418 -.o91 ,2303 -.o113 -.oo4 ,0806 - . o u  -427 -.035 character sums of square and cross- 
BPB -.042 -.020 -.I01 -.067 -.056 -.003 ,1659 -.I138 -.(I31 .0233 - . 0 2  -.0(16 products matrix, or  K matrix, of the 

Blonde1 et al. (1984) discuss the important components past the second, and that result is not 

individual species' data which are not well summa- expressed in the plane of the first two principal 

rized by the two-dimensional principal component components. 

plot presented in their paper (reproduced here as 
Figure 8). In that analysis, some individual species 

Principal Coordinate Analysis 

were clearly distinct as determined for principal If our data are in the form of distances or similari- 
ties among individuals or taxa we 

Table 5. Correlation matrix. 

CIL LD LM BM1 LIF BR RPB BZP LIB BB DI LOF 
CIL 1.000 .9587 ,2379 .OW8 .8082 ,8043 ,8360 ,7817 ,6614 .00W .8504 .!I319 
LD ,9587 1.000 ,0914 ,0642 ,8387 ,7711 ,8338 ,7415 ,0252 ,0224 ,7702 ,8033 
LM ,2379 ,0914 1.000 ,4989 ,0592 .2761 ,1159 . x 3 5  ,3741 -.031 ,2785 ,1833 
BMI ,0998 ,0642 ,4989 1.000 ,0633 ,2722 .(K)90 .I219 ,2103 -.010 ,1527 ,0653 
LIF ,8082 ,8387 ,0592 ,0633 1.MX) ,6309 ,6062 .CL);bl ,5345 .6142 ,6551 ,7775 
BR ,8043 ,7711 ,2761 ,2722 ,630) 1.000 ,7082 ,0803 .0020 .SO32 .7W5 .75SO 
BPB ,8360 ,8338 ,1159 .Of,90 ,6902 .7082 1.000 ,7303 .5005 .59X ,7702 .7590 
BZP ,7817 ,7415 ,2635 ,1219 . 6 6 4  ,6803 ,7313 1.000 ,5277 ,4123 ,6737 ,7155 
LIB ,6614 ,6252 ,3741 ,2104 ,5345  GO^(> ,5005 ,5277 1.ooo .4501 ~ 3 5 2  .5782 
BB ,6088 ,6224 -.031 -.010 ,6142 5032 , 5 0 2  ,4123 ,4501 1.000 .5109 .6388 
DI ,8504 ,7762 ,2785 ,1527 ,6551 .7#5 ,7792 ,6737 .5352 .5109 1.000 ,8052 
LOF ,9319 ,8933 ,1843 ,0654 ,7775 ,7580 ,7506 ,7155 5782 .h388 ,8052 1.000 
Residual matrix from correlations after removal of PCI. Note high residual vari- 
ance and covariance for LM and BM1. 

CIL LD LM B M ~  LIF BR B ~ B  BZP LIB BB ~1 LOF ' 
CIL ,0751 ,0591 ,0005 -.043 .0165 -.039 -.(I42 -.034 -.003 .0001 ,0005 .Oh21 
LD .0591 ,1250 -.I31 -.075 .M -.050 -.020 -.052 -.021 ,0302 -.050 ,0473 
LM ,0095 -.I31 ,9436 ,4636 -.I36 ,0078 -.I01 ,0621 .2101 -.I70 ,0687 -.030 
BM1 -.043 -.075 ,4636 ,9779 -.059 ,1418 -.Oh7 -.004 ,1077 -.I03 ,0213 -.009 
LIF ,0165 .068C) -.I36 -.059 ,3222 -.001 -.05h -.034 -.(I34 .1000 -.072 ,0329 

CIL LD LM BMl LIF BR BP BZP LIB BU Dl LOF 
CIL ,0663 ,0392 ,0714 ,0089 -.011 -.(I23 -.049 -.I105 ,0157 -.(I22 -.002 .0474 
LD ,0302 ,0763 ,0252 ,0638 -.(Dl ,0026 -.034 -.01 1 ,0340 -.O3 -.(I42 ,0133 
LM ,0714 ,0252 ,4386 ,0053 ,1049 -.I16 -.001 -.(I28 ,0214 ,0250 ,0222 ,0713 
BM1 ,0089 ,0638 ,0053 ,5484 ,1673 -.047 -.(I37 -.(I27 -.(I79 ,0035 -.017 .ill58 
LIF -.011 -.W ,1049 ,1673 ,2000 .(XI83 -.071 -.023 ,0645 .01U; -.03( -.012 
BR -.023 ,0026 -.I16 -.047 ,0083 ,1290 ,0012 -.003 -.007 ,0001 -.085 -.010 
BPB -049 -.034 -.MI -.037 -.071 ,0012 ,1597 -.003 -.024 -.002 -.037 -.I378 
BZP -.005 -.011 -.OW -.027 -.023 -.003 -.003 ,0089 -.024 ,0037 ,0289 -.Oil1 
LIB ,0157 .OW ,0214 -.079 ,0645 -.007 -.024 -.024 ,4346 .0738 -.I22 -.017 
BB -.022 -.OW ,0259 ,0635 ,0136 .0001 -.002 ,0037 ,0738 ,5007 -.049 .02X 
Dl -.002 -.042 ,0222 -.047 -.OX -.085 -.037 ,0280 -.I22 -.049 ,1647 .0007 
LOF ,0474 ,0143 ,0713 ,0158 -.012 -.010 -.(I78 -.001 -.017 ,0228 ,0007 ,1573 

may wish to use the method of prin- 
cipal coordinates, one of  a series of 
methods called multidimensional 
scaling (Kruskal and Wish, 1978). 
Principal coordinates can provide the 
same displays and the method has 
the same summary characteristics as 
principal components for data as a 
matrix of distances 
squared between individuals or t u a .  
The distances among objects are 
maximally summarized by the first, 
then the second, down to the last 
principal coordinate as in principal 
components analysis. The method is 
sometimes called "dual" to principal 
components analysis  (Gower, 196(ja), 
i n  that principal components analysis 
is based on the character-by- 

BZP -.034 -.052 ,0621 -.OM -.OM -.OO4 -.038 .2304 -.058 -.I17 -.07h -.052 
LIB -.MI3 -.021 ,2101 ,1077 -.034 .08<6 -.03 1 -.058 .5230 .0195 -.075 -.041 
BB ,0091 ,0392 -.I79 -.I03 .1lX)9 -.OU ,0233 -.I17 ,0105 ,6112 -.(I31 ,0748 
Dl ,0005 -.050 ,0687 ,0213 -.072 -.a27 -.OW -.076 -.075 -.(I31 ,2101 ,0050 
L ~ F  ,0621 ,0473 -.OX) -.MY ,0320 -.035 -.o66 -.052 -.o% ,0748 ,0059 ,1820 
Residual matrix from correlations after removal of PC1-3. Note still high residual 
variance proportions for LM, BM1, LIB, and BB. . - 

1984). The R and 0 matrices have 
the sarne eigenvalues, and the eigen- 
vectors of one can easily be obtained 
from the eigenvectors of the other 
(op. cit.). 

mean-centered data; while principal 
coordinate analysis is based on the 
individual-by-individua' distance 
squared matrix, which can be trans- 
formed to a sums of squares and 
cross-~roducts or 0 matrix (Pielou. 

A generally useful result, not 
taken advantage of much in applica- 
tions (however, see Reyment, this 
volume) is that any data matrix, 
whether mean centered or not, can 
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be represented as the matrix product 
of the eigenvectors of the among- 
variables sums of squares and cross- 
products matrix (R analysis), the 
square root of the diagonal matrix of 
eigenvalues, and the eigenvectors of 
the sums of squares and cross-prod- 
ucts matrix among individuals (Q 
analysis). This most powerful result 
in matrix theory is called the singular 
value decomposition theorem (Jore- 
skog et al, 1976, Krzanowski, 1988, 
and Reyment, this volume). How- 
ever, if one mean centers the data, 
say by variables or columns as one 
would do in an R analysis, then this 
duality is only true for this mean 
centering; and not true if one mean 
centers by columns as is commonly 
done in a Q analysis by rows. 

Principal coordinate analysis 
is especially useful when one has 
only association data or distance 
data, as in DNA annealing or im- 
munology studies. Then principal 
coordinate analysis provides the best 
reduced-dimension display of the 
data in the least squares sense de- 
scribed above. However, to faith- 
fully display useful relations among 
the data points, the data must have 
properties of a metric. Some data 
are not well behaved, and negative 
eigenvalues may occur. Still, useful 
plots may be produced from the 
principal coordinates corresponding 
to the positive eigenvalues. 

Non-Metric Multidimensional 
Scaling 

Non-metric multidimensional scaling 
is a further generalization, with prin- 
cipal coordinate analysis as a special 
metric case. Among the best-known 
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Figure 8. Figures of Principal Component Scores for PC1 and PC2 from Blondel 
et al. (1984; original Figure 7). "Envelopes" have been placed around subsets of 
the daca on a priori grounds: A) Regional envelopes; B) Taxonomic envelopes- 
some families are outlined; and C) habitat stratum envelopes. 
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approaches is that of Joseph Kruskal (Kruskal and ment data, and other means of controlling for size 
Wish, 1978). A variety of programs and algorithms need to be explored with these data. 
is available in a number of statistical packages (for In summary, principal components analysis 

as an to mainframe and allied procedures are powerful methods for 
and NTSYS by Rohlf (19") Ro"if ordination and exploration of homogeneous syste- 

this technique to principal conlponents matic data sets, as well as those for which a 
and principal coordinates as ordination techniques. maximum variance Ordination is informative as in 
Non-metrical multidimensional scaling provides the Mediterranean bird study. It summarizes vari- 
"best' low-dimensional displays or coordinates in ances, covariances (or correlations) and distances, 
terms of distances in the display that are as nearly and may be used to motivate insightful questions in 
as possible monotone functions of the distances analysis of data onstruction. Other 
among individuals or faXa As the  name multi-sample applications will be discussed later. 
data do not have to have metrical properties, and 
the method provides plots of relations among enti- I have emphasized some of the inadequacies 

ties, which may prove useful.  hi^ technique has of principal components analysis related to biologi- 

not been used much in ordinations in systematics. cal hypotheses. The fact that principal components 
are uncorrelated may lead to data summaries which 

Correspondence Analysis may or may not be biologically relevant. If one is 
trying to find a causal or functional basis of varia- 

Another form of eigenvalue-eigenvector analysis is 
correspondence analysis (Greenacre, 1984), 
widely known to ecologists as reciprocal 
averaging (Pielou, 1984). As used in ecology, 
its attraction has been that counts or frequen- 
cies for both quadrats and species are scaled in 
the same way. One finds the eigenvalues and 
eigenvectors for the sums of squares matrix 
formed from this doubly scaled matrix. It is 
claimed by its proponents (see Reyment, this 

for further references) that One low- 
dimensional plot shows structure relating to 
both quadrats and species, and the relation of 
one to the other. This is another form of prin- 
cipal components analysis on a specially scaled 
matrix displayed as a biplot (discussed above). 

Table 6.  Wright fowl analysis - 276 female crossbred chickens. Pub- 
lished results (Wright, lYh8). 

Mean SD CV Correlation 
mm. mm. % L B H U F T 
31(,77 1.26 3.25 0.584 0,615 O,Cfil 0,570 0,600 

B 29.81 0.93 3.13 1 0.576 0.530 0.526 0.555 
1 74.64 2.84 3.80 1 0.5540 0.875 0.878 

68.74 2.73 3.')7 1 0.877 0.886 
F 77.34 3.20 4.14 1 0.924 

,14,84 5,00 4,35 1 
Components of variables in White Leghorn population by ~ o t e l l i n ~ ' s .  
mcthod with complete apportionment of self-correlations to six factors. 

pxl px2 p b  px4 px.5 px6 
L 0.7426 0.4536 0.4922 -0.0205 0.0073 -0.0007 
B 0.6975 0.5886 -0.4085 -0.0008 0.0021 -0.0144 
H 0.'!477 -0.1583 -0.0259 0.2182 0.0472 0.1623 
u 0.9403 -0.2125 0.0071 0.2033 -0.0423 -0.1654 

~h~ scaling or data is 
motivated from data and is 
akin to contingency table analysis. This row 
and column scaling is not very intuitive when 
applied to continuous measurements. Applica- 
tions of correspondence analysis using measure- 
ment data have been made in systematics by 
Petit-Maire and Ponge (lg79) and more re- 
cently by Werdelin (1983, 1988). The column 
and row scalings are a kind of "size" adjustment. 
However, this is a peculiar scaling for measure- 

F 0."7 -0.2351 -0.0382 -0.2139 0.1841 -0.0323 
T 0.0407 -0.1008 -0.0296 -0.1950 -0.1945 0.0446 

4.5677 0,7141 0.4122 0.1731 0,0758 0.0569 5.1)Y9981~ 
% 76.1 11.0 6.9 2.9 1.3 0.09 lm,O 

* Note this sum should be as given here, but is 0.SCM8 in Wright. 
Ahove as eigcnvcctors. 

el  e2 e3 e4 e5 e6 
L 0.3745 0.53CA 0.7666 -0.0493 0.0265 -0.0029 
B 0.3624 0.6954 -0.6363 -0.0019 0.0076 0.0604 
H 0.4414 -0.1873 -0.0403 0.524.1 0.1714 0.6804 
u 0 . ~ 0  -0.2515 0.0111 0.4886 -0.1516 -0.6914 
F 0.4345 -0.2782 -0.0595 -0.5141 0.6687 -0.1154 

0.4402 -0.2258 -0.0461 -0.4687 -0.70h5 0.1870 
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tion and covariation, principal component analysis 
may be inadequate. If on the other hand one is 
looking for clusters, cluster analysis would be more 
appropriate. PCA should be recognized for what it 
is, a data projection and rotation technique sum- 
marizing most of the variability in the data, where 
one may search for patterns and clusters in displays 
and get some idea of influential and associated 
variables giving rise to these displays. 

Factor Analysis, Path Analysis and LlSREL 
If we want to summarize morphomet- 
ric data as weighted combinations of 
variables, i.e., latent variables, moti- 
vated by our biological understanding 
of the morphology, the context of the 
study should determine whether these 
latent variables are to be correlated 
or not. Factor analysis provides a 
richer modeling framework for doing 
this. Factor analysis incorporates 
variance and covariance summarizing 
features found desirable in principal 
components, but it also requires 
additional assumptions. We may fit 
models to data using factor analysis or 
path analysis. Sewall Wright invented 
path models and path analysis, a part 
of which is closely related to the 
factor analysis methodology 
independently developed in the social 
sciences. 

Wright (1921, 1954, and 1968) 
was thinking in terms of causal mod- 
els which could be  quantified for ex- 
plaining morphometric relationships 
of variables and could be fit to data. 
Factor analysis, too, depends on a 
model that expresses observed vari- 
ables in terms of underlying "causal" 
factors or latent variables. Cause is 
used here both in its more formal 
sense of "cause and effect," or in a 
weaker structural sense to relate the 
correlations we see among measured 

variables in terms of a path diagram of 
interrelations among variables. We may or may not 
know in advance how many factors (causes) or 
latent variables there are, or  how they relate to the 
measured variables. In other words, we cannot 
draw a correct path diagram in advance of our 
analysis. This corresponds to an  exploratory factor 
analysis and the intention is to get some idea of the 
factors or latent variables, or to test weak 
conceptions of what is going on causally or 
structurally in our data. A preliminary principal 

Table 7. Results computed from Dunn's data. 
Mean S D Correlation 
mm. mm. L B H U F T  

L 38.78 I .25 1 0.583 0.621 0.603 0.569 0.602 
B 29.80 0.93 1 0.584 0.526 0.515 0.548 
H 74.68 2.83 1 0.937 0.877 0.874 
U 68.89 2.73 1 0.878 0.894 
F 77.36 3.21 1 0.926 
T 114.95 4.99 1 

Eigcnvcctors and cigcnvalucs for correlation matrix above with asymptotic stan- 
dard errors. 

e l  e2 e3 e4 e5 e6 
L 0.348 + .021 0.525 + ,083 0.774+ .057 0.046 + ,054 0.028 + .028 -0.012 + ,022 
B 0.324 + .024 0.704 + ,068 -0.626+ .076 0.028 + ,049 -0.016 + .028 -0.071 + .020 
H 0.443+ ,009 - 0 . 1 ~ +  ,028 -0.057+ .023 -0.546+ ,041 0.350+ ,070 0.593+ ,095 
U 0.440+.010 -0.250+.026 0.004+.046 -0.474+.043 -0.358+.102 -0.625+.059 
F 0.434+ .012 -0.289 + ,028 -0.057+ ,051 0.502 + ,052 0.613 + ,062 -0.311 + ,096 
T 0.440+ ,010 -0.232-t ,027 -0.040+.046 0.471 + .052 -0.610+ ,070 0.395+ .095 

Vals 4.568+ ,389 0.716+ ,061 0.412t ,035 0.168+ ,014 0.079+ ,007 0.053+ .005 
% 76.1 12.0 6.9 2.8 1.3 0.09 

Results based on logarithms of Dunn's data. 
Mean SD Correlation 

L B H U F T  
L 3.657 0.032 1 0.586 0.621 0.602 0.569 0.603 
B 3.394 0.031 1 0.585 0.528 0.518 0.551 
H 4.312 0.037 1 0.937 0.878 0.873 
U 4.231 0.039 1 0.879 0.894 
F 4.347 0.041 1 0.925 
T 4.743 0.043 1 

Eigenvectors and eigenvalues for correlation matrix above. 
e l  e2 e3 e4 e5 e6 

L 0.3482 0.5303 0.7711 0.0438 0.0294 -0.0131 
B 0.3257 0.7001 -0.6307 0.0261 -0.0135 -0.0711 
H 0.4437 -0.1690 -0.0558 -0.5459 0.3372 0.5998 
U 0.4401 -0.2533 0.0050 -0.4724 -0.3503 -0.6294 
F 0.4341 -0.2885 -0.0548 0.4999 0.6202 -0.3012 
T 0.4401 -0.2294 -0.0379 0.4757 -0.6147 0.3848 

Eig. 4.571 0.717 0.410 0.168 0.080 0.053 5.999 
Vals. 
% 76.2 12.0 6.8 2.8 1.3 0.09 
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components analysis would accomplish some of this 100 (Skull breadthlskull length) , 
intent, but without implying a more formal factor 
analysis or path model. we may then be able to and a sum of all the length measurements for each 

produce a path model for further testing (Voss et bird in his table Of measurements. These serve as 

al., in press). checks (like parity checks) for the data, and 
inconsistencies between these indices and those 

If we have stronger ideas about relationships computed from the raw data point to obvious 
among our measured variables, for example related typographic errors. This is a good reason, almost 
to ontogenetic or genetic causal mechanisms always forgotten in recent publications, to present 

1987 and 1988), then we can fi t  an a ratios or redundant information in tables of data. 
priori factor model, which is relatively easy to The results of Wright,s original analysis are given in 
visualize using Wright's path modelling. We can Table 6. give the correlation of the raw 
estimate the relative influence of the factors on the data and the covariance matrix of the logged data in 
meas~lred variables and their mutual inter- 'I.ables and 8 and plotted skull length against 
correlations. In addition we can partition out the femur in Figure 
uncorrelated residual part of the variables, due to 
unspecified causes and perhaps to measurement The variances for the six principal 
error, which are unique to those variables and not COmPOnents (eigenvalues) and the eigenvectors or 
shared through the factors with other variables. regression coefficients for the variables are given in 

Tables 7 and 8, for the correlation matrices, and 
I use Wright's 19543 and 1968) covariance matrices respectively. Note that the 

which has been using and number of cases (276) is 46 times the number of 
factor analysis in many textbooks and manuals variables; a much larger sample size than is usually 
including Bookstein et al. (1985). In the early available in most taxonomic studies. 
1920's the poultry laboratory of the University of 
Connecticut at Storrs, raised large numbers of Wright (1968) comments on the lack of 

individuals of inbred and cross-bred lines of poultry. economy of this presentation. Starting with 15 

D~~~ (1922) measurements on several correlation coefficients among the variables and 

hundred skeletons of these birds. The morphomet- 'emembering that the variances have been re- 

ric variables were length and breadth of the skull, 
length of the femur, length of the humerus, length 
of the  tibia and length of the 'Ina' The chickens 
varied in age from 159 to 2513 days from hatching, 
but since chickens complete their growth early, 
there are no detectable age trends in any of the 
variables. 

Wright analyzed the correlation matrix of 
these 6 measurements for a sample of 276 females 
from a cross-bred line. I have reanalyzed the raw 
published data, but have not been able to obtain 
quite the same correlation matrix as produced in 
Wright's papers. I attribute this perhaps to 
different round-off rules in our computations. 
There are some obvious errors in the published 
data. Most of these can be found because Dunn 

.T"'lc '. matrix of logs. 
L B H U F T 

L 0.001052 0.000594 0.000764 0.000776 0.000767 0.000852 
B 0.000978 0.WO694 0.000656 0.000674 0.000751 
14 0.001440 0.001413 0.001385 0.001444 
U 0.001580 0.001452 0.001547 
F 0.001728 0.001676 
T 0.001898 

Eigenvectors and cigenvalucs for covariance matrix above. 
c 1 e2 e3 e4 e5 e6 

L 0.2733 0.6220 0.7276 -0.0827 0.0448 -0.0114 
B 0.2430 0.12337 -0.6806 -0.0307 -0.0029 -0.0969 

0,4334 -0,0745 -0,0413 0,5454 0.2369 0,6718 
u 0.4537 -0.1813 0.0496 0.5255 -0.2499 -0.6.183 
F 0.4717 -0.2631 -0.0477 -0.4401 0.6813 -0.2194 

0.5001 -0.1951 -0.0312 -0.4742 -0.6434 O.ml 
Eig. 0.00697 0.00080 0.00042 0.00027 0.00013 0.00008 
Vals, 

80.3 9,2 4.8 3.2 1.6 1.0 
also included the ratio percentage, 
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scaled to one in the correlation matrix, there are 6 
eigenvalues or variances for principal components, 
and 36 coefficients (of course, with similar scaling 
constraints). We  have replaced the six 1's on the 
diagonal and 15 correlation coefficients with 41 
numbers, albeit presenting different and interes- 
ting aspects of the data. "The analysis does, 
however, bring out clearly the pattern of relations 
on focusing on the components with absolute values 
greater than 0.05. " (from Wright, 1968; note 
"components" should read coefficients in the 
terminology used here). 

Wright found several more economical and 
satisfactory ways to express the relationships among 
the variables in terms of biological models. H e  was 
aware that many models were possible, but 
presented two and preferred the relatively simple 
one shown in the path diagram below (Figure 9a) 
which relates to overall growth and relations of 
parts. 

All six variables regress with the same sign 
on a factor for "general size" which explains most of 
the variability and covariability. Growth toward a 
larger size is reflected in the linear measurements. 
The relative values of the 
coefficients do measure how closely 
they are associated with this 
tendency and the limb bones have 
larger coefficients than the skull 
measures. Wright then provided 
three other uncorrelated factors-a 
"head" factor, a "wing" factor, and a 
"leg" factor--and six special factors, 
one for each original variable. The 
factor coefficients not included in 
the path model are set to 0, a priori. 
The variance not explained by the 
four factors is left as residual 
variance for each variable in the 
special factors. A small amount of 
residual correlation also remains as 
a residual correlation matrix. 
Wright was not fully satisfied by the 
fit, although he thought this was the 

best that could be done for this kind of 
measurement data. Most of the correlation among 
the original variables is explained by these factors, 
and all of the variance. A variation of Wright's ad 
hoc fitting technique is available in a FORTRAN 
program in the Appendix of Bookstein et al, 1985. 

In terms of a modern factor model we would 
express the vector of measurements xi  for the ith 

individual on the 6 variables as: 

x l i  = fll.yil + f12yi2 + f l ~ i 3  + flksi4 + eli 

Note that all of the terms in bold are 0 in Wright's 
model. The model, like the PCA equations above, 
is written more compactly in matrix form as: 

Tal~le 9. Jockknifc results for eigcnvcctors and eigenvalues o f  correlation matrix 
hated on original Dunn data. 

e 1 e2 c3 c4 e5 e6 
L 0.349+ ,012 0.526+ ,071 0.773+ ,044 0.045+ ,053 0.029+ ,027 -0.012+ ,022 
B 0.325 + ,015 0.703 + ,059 -0.627+ ,061 0.029+ ,043 -0.014+ ,027 -0.071 + ,019 
H 0.;1U+ .Oil4 -O.I(i+ ,023 -0.057 + .041 -0.541 + ,043 0.329+ .I39 0.608+ ,089 
U 0.440 + ,004 -0.252 + ,021 0.004 + .044 -0.470 + ,045 -0.331 + ,124 -0.636 + ,065 
F 0.434 + ,004 -0.290-t ,027 -0.057 t ,054 0.499+ ,065 0.623+ ,086 -0.289+ .I15 
T 0.441 + ,005 -0.232-t ,022 -0.039+ ,041 0.406+ .OCi -0.627+ .080 0.370+ ,136 

Cosine of anglcs hctwecn all original and jackknife eigcnvectors < 0.9992 
Vals. 4.570+ ,101 0.715-t ,066 0.413 + ,041 0.168+ ,023 0.079+ .011 0.055+ ,010 
5% 76.1 12.0 6.9 2.8 I .3 0.09 

Bootstrap rcsults for cigenvectors and cigcnvalucs of correlation matrix based on 
original Dunn data (Ilascd on 1000 samples). 

e l  c2 e3 e4 e5 e6 
L O.347t ,012 0.522+ ,075 0.770-t ,037 0.046-t ,053 0.027+ ,028 -0.014+ ,021 
B 0.323 + ,015 0.703 + ,061 -0.620 + .Oh5 0.029 + ,045 -0.015 + ,028 -0.069 + ,020 
I-i 0 . W +  ,004 -0.164+ ,022 -0.057t ,043 -0.541 + ,043 0.353+ ,134 0.568+.101 
U 0.441+.004 -0.21Xt.021 0.002+.046 -0.470+.045 -0.363+.129 -0.603+.086 
F 0.434 + ,004 -0.286+ ,028 -0.057+ ,054 0.499 + ,065 0.589 + ,095 -0.314+ ,119 
T 0.441+.005 -0.129t.021 -0.039+.046 0.406+.066 -0.583+.103 0.401+.130 

Cosine of anglcs hclwcen all original and bootstrap eigcnvcctors < 0.9997 
Vals. 4.562+ ,102 0.727 + .Of36 0.412+ ,041 0.169 + ,023 0.079 + ,011 0.052+ .009 
(3, 76.1 12.0 6.9 2.8 1.3 0.09 
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xi = Fsi+ei  , 

where xi is the vector of measurements for chicken 

i, F is the 6 x 4 matrix of coefficients relating the 
factors to the si vector of scores on the four factors 
for chicken i, and ei is the vector of residuals not 

explained by the factors for chicken i. The factors, 
which are usually scaled to have variance one in 
factor analysis, are uncorrelated with each other 
and with the residuals, and the residuals are further 
not correlated with each other (if they were we 
might want to describe more factors). 

Contrast these constraints to PCA, where 
the residuals are not constrained to be 
uncorrelated. In factor analysis the goal is to 
reproduce the correlations as closely as possible 
with few factors. The factors are not ordered in 
terms of variance explained as in PCA. Rather the 
goal is interpretation of "causal" relations among 
the variables, and additional constraints must be 
added to arrive at  a unique solution. The stringent 
requirement that the factors be uncorrelated may 
even be relaxed as the latent variables or "causes" 
may be reasonably correlated. 

Wright's factor model provides both a 
powerful explanatory model for data and a compact 
representation. Wright's path model was refit using 
the program LISREL (LInear Structural 
RELations; Joreskog and Sorbom, 1985), which 
allows one to specify models in a path diagram and 
then translate the path diagram into systems of 
equations which can be fit to the data in the form of 
covariance or correlation matrices. Using the 
Maximum Likelihood method of fitting the model, 
which makes an  assumption of a multivariate 
normality for the data and which I feel is 
appropriate here, a chi-square goodness of fit 
statistic is 11.88 with 3 degrees of freedom and the 
model fits fairly well. LISREL essentially produced 
Wright's original results. A fit of the same model to 
the correlation matrix computed from the published 
raw data, and to the covariance matrix of the log 
data, is also presented (Tables 7 and 8). The model 
is based on a biological hypothesis and fits the data 

Figure 9. Path diagram fitted by Wright and LISREL. Chi- 
squared is 11.88 for models a through d, but the degrees of 
freedom (d.f) differ. All unlabeled terms are for errors: A) 
Wright's original path diagram with four factors and 3 d.f. 
freedom; B) an alternative model suggested by Wright and 
fitted by him, with three correlated factors and 6 d.f.; C) a 
one factor model with correlated errors and 6 d.f.; D) a two 
level factor model with 6 dl. ;  E) an inadequate model using 
only one factor with a chi-squared of 131.37 and 9 degrees of 
freedom. 

with an economy of parameters. An alternative 
model presented in Wright (1968) that fits three 
correlated factors gives exactly the same chi-square 
value, but requires three fewer parameters (Figure 
9b for path diagram). Two other models, one with 
correlated residuals, and a two-level factor model 
(Rindskopf and Rose, 1988; see Figure 9c and d) 
also fit with the same chi-squared value with 6 
degrees of freedom. 
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Rindskopf and Rose introduce the concept 
of discriminability to deal with examples like this 
where several models fit equally well, and point out 
that this situation can be avoided by careful design. 
Unfortunately data like the fowl data with only two 
variables per factor produce models that are not 
discriminable. More variables would have to be 
measured per factor to avoid this problem. The 
choice among the different models is a choice based 
on one's biological understanding of the problem 
and data. 

Zelditch (1987, 1988) has recently applied 
these techniques to data on a series of 
measurements of rat skeletons taken from Olson 
and Miller (1958). A careful consideration of 
growth and ontogeny in relation to the measured 
variables is required to apply such models. 

The LISREL program includes least-squares 
techniques as well as maximum likelihood methods 
for fitting models. The maximum likelihood 
technique provides two goodness-of-fit measures 
and an asymptotic chi-squared goodness-of-fit test 
which provides an  approximately correct probability 
level for large data sets from a multivariate normal 
distribution. A hierarchical set of models shows 
how much better a less specified model fits relative 
to a more specified model. For example, a single 
factor fit to the fowl data gives a chi-squared value 
of 131.37 with 9 degrees of freedom. The 
improvement of fit can then be estimated by the 
change in chi-square, which is also a chi-square with 
degrees of freedom equal to the difference in 
degrees of freedom between the two models. In 
this case, adding Wright's three skull, femur and 
tibia factors reduces chi-squared value to 11.88 with 
3 degrees of freedom, a highly significant change of 
chi-squared equal to 119.49 with 6 degrees of 
freedom. 

Confirmatory factor analysis through 
LISREL is a tool for modeling relationships 
between variables based on a developmental or 
function model. Attempts to fit models to the 
Zygodontonzys data have not been successful. We 
had hoped to see if a single model applies over the 

range of the species. We anticipate that this 
technique, richer than principal components or 
exploratory factor analysis, may allow us to identify 
more than one factor even though our sample sizes 
are far smaller than those used in the social 
sciences. The LISREL program is powerful, but is 
not easy to use. Very large data sets, of the order of 
the number of fowl specimens, are required to get 
stable solutions. 

It would be inappropriate to look at the 
Mediterranean bird data using factor analysis as we 
cannot provide a probability model for the data, 
and all relevant species are  in the data set. 

Multivariate Analysis of More Than One 
Sample 

The complete Zygodontomys data set consists of 
samples from fifteen geographic localities. The 
bird data set has species from different geographic 
realms and habitats and may be divided into subsets 
according to a number of criteria (Blondel et al. 
1984 and Figure 8). For Zygodontomys we want to 
compare samples of organisms from the localities. 
For the birds we want to compare different 
subgroups of taxa. 

In the bird example, since the data analyzed 
is based on means or centroids for species the 
problem is inherently a multiple sample problem. 
However, data for variation within species were 
unavailable, and the questions being considered 
were at a higher level-the comparison of different 
faunal realms. We wanted to "test" whether the 
collective morphologies of the birds that live in a 
similar climatic regime were similar when collected 
from widely separated geographic regions. 

In the Zygodontomys data we have data from 
a large part of the range of the taxon (Figure 3). 
Some are mainland and some are insular. We 
could summarize the data as was done with the 
birds, e.g., compute centroids for each locality and 
then do principal components on these centroids to 
summarize and display our data in reduced 
dimensions. Or  we could combine all of our data 
over localities in one grand matrix including all 
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specimens and do a principal components on this may not see it expressed quite that way in print. 
array "to see what happens" (Figure 10). There are This is sometimes a marvelous way to learn that the 
major problems with both of thece approaches. For methodology "does w o r k  in capturing and sum- 
the rodents, the variability arnong individuals within marizing distances among specimens, and this does 
samples is a large part of the total variation among have pedagogical value. We need to do somewhat 
samples. In addition, the precision in ectimating better in research. 
the centroids is a function of locality sample size I frequently hear the point raised that prin- 
and covariance structure within each population. If cipal component analyses are more objective as we 
samples sizes are different, precision differs. We 
would also ignore patterns of vari- 
ation and covariation within samples 
in our evaluation of the relations 
among samples if we had only done 
a principal component analysis on 
the centroids. Both within- and 
among-sample variation and covaria- 
tion patterns must be considered. 

An analysis of the total vari- 
ance-covariance matrix confounds 
within- and among-sample variabil- 
ity, especially in the interpretation o f  
coefficients in principal components, 
and we have no idea of the relative 
contributions of among-sample and 
within-sample variability to the ordi- 
nations we see when we plot princi- 
pal component scores. I have seen 
studies where this approach was 
taken and the plots display no 
interpretable structure. There is too 
m~ich overlap of samples and too 
many points in the plots of the 
hundreds of cases. If the groups are 
very different, far apart in the sense 
of gaps between samples or groups 
in ordinations, we may then get 
"useful?" displays. However, the 
loadings may only give us a clear 
indication of the variables contribut- 
ing to the separations if the differ- 
ences are parallel to one or more of 
the PC axes.  hi^ type of approach 
too often leads to the following 
statement: "The Pattern 1 tho"&ht 
(or knew) was there, is!", though we 
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have not prejudiced our analyses with the subjective 
hypotheses that use of a priori groups implies. In 
one way or another, we always use what we know 
and I am advocating using such a priori knowledge 
about group or  locality membership when we can. 
There are genuine circumstances when we cannot 
separate mixed samples and do not have a clear 
understanding of a priori groups. In that case prin- 
cipal component analysis as an  ordination may be 
informative and other techniques such as cluster 
analysis should be explored. 

The bird data consisting of species centroids 
include a wide array of sizes and types of birds from 
several orders (Figures 2 and 8). The variation is 
presumed small within-species relative to that 
among higher taxa. We  are ignoring the within- 
species variance and covariance. Geographic vari- 
ation is also likely to be small relative to among- 
species differences. Sexual dimorphism is not 
relevant for the bird data as only males were 
measured. 

Graphical demonstrations of the required 
transformations are given in two useful papers by 
Rempe and Weber (1972) and Campbell and 
Atchley (1981). A brief description of the analysis 
is given in Reyment (this volume) and here. 

The data are pooled within samples to esti- 
mate a common within or pooled sample 
covariance matrix and its principal components. All 
of the data are rotated and represented relative to 
the within principal axes, with the coordinates 
arbitrarily centered at the centroid of all of the 
data. Each principal axis is then put on the same 
scale by dividing through by the within standard 
deviation along its axis. This standard deviation is 
the square root of the eigenvalue of the pooled- 
within principal component corresponding to that 
axis. This re-scaling of axes moves the original 
coordinate axes so they are no longer at  right 
angles, which distorts distances between data 
points. The pooled sample covariance matrix can 
be used to estimate the contours of the average 

Mahalanobis Distance and Canonical 
concentration ellipse or ellipsoid for each sample. 
This rotation and re-scaling transforms the ellipse 

Variates Analysis or ellipsoid to a circle or spheroid. 
Multivariate distance measures are available to Mahalanobis distance is then the Euclidean 
compare centroids that take into 
consideration the variance and 
covariance of variables within a 
priori designated subsets of the data, 
such as samples from different lo- 
calities as in the Zygodontornys data. 
Mahalanobis distance or Maha- 
lanobis distance squared, D or D2, 
use the within scatter for calibration. 
This can be visualized in two 
dimensions and generalized to more. 
Differences among centroids are 
weighed more heavily in the direc- 
tions along minor PC axes within 
samples than differences among 
centroids in the direction along the 
major PC axes within 
Correlation within is taken 
into account. 
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Figure 11. Plot of canonical variate one and two means for each locality for the 
Zygodotitotnys data. A minimum spanning tree connects the closest means in 12 
space and Mahalanobis is given for each link of the tree. Note the crossing and 
distortions in this two-dimensional figure. Slight distortion is also introduced by not 
making the scales quite the same. 
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distance between sample centroids in this trans- 
formed data space. It may be measured with a 
ruler, when there are only two variables, or calcu- 
lated using the Pythagorean theorem for any num- 
ber of variables or dimensions. Visualization is not 
possible past three variables. What is usually pub- 
lished or displayed is that two- or three-dimensional 
projection which collectively maximizes the dis- 
tances among the centroids (Figure 11 for Zygodon- 
ton~ys). This corresponds to doing a principal com- 
ponents analysis of the centroids (weighted by their 
sample sizes), which have been rotated and re- 
scaled as described above. The new variables are 
called canonical variates which are plotted on 
canonical axes. 

Many program packages provide canonical 
variate analysis as a multi-sample or multi-group 
ordination technique. It is important to notice that 
canonical variate analysis involves the among- 
centroids sums of squares and cross-products matrix 
as well as the pooled-within matrix. The among 
matrix is like the among sums of squares in an anal- 
ysis of variance, where the contribution of each 
mean to the sum of squares is multiplied by its 
sample size. Gower (196611) has suggested that, in 
many biological analyses, sample size differences 
are not due to design but rather to sampling vari- 
ability alone and that an ordination of un-weighted 
centroids is more informative. When the sample 
sizes are equal the results are the same. The ordi- 
nation of centroids can be done through a principal 
components analysis of the variance-covariance 
matrix of the unweighted canonical variate cen- 
troids, or from the matrix of Mahalanobis D2 using 
a principal coordinates analysis. The results are the 
same. 

I have introduced canonical variate analysis 
from the viewpoint of inter-centroid distances, but 
it can also be discussed from the goal of displaying 
data in a reduced space of uncorrelated variables 
which maximally separate the samples or taxa, 
relative to the within variation and covariation. 
These variates are the canonical variates and the 

Mahalanobis distances are Euclidean distances in 
the space of these variates. 

Canonical variates, like principal compo- 
nents, are linear functions of the original variables 
weighted by coefficients. There is a strong tempta- 
tion to interpret these coefficients as one interprets 
principal component coefficients or loadings. This 
is more difficult, more akin to, but more compli- 
cated than interpreting principal component coef- 
ficients from a covariance matrix where the differ- 
ent variables may have markedly different vari- 
ances. While the vectors of coefficients in principal 
components analysis are orthogonal, this is no 
longer true for canonical variate coefficients, even 
though the canonical variates themselves are uncor- 
related. 

In order to make the canonical variate coef- 
ficients more interpretable, they are usually stan- 
dardized by multiplying them by the pooled-within 
standard deviation of their respective variable. This 
renders them unit free. Another transformation 
frequently used for interpretation is the correlation 
coefficient between the canonical variate and the 
original variate. This is analogous to a "loading" in 
principal component or factor analysis. Rencher 
(1988) has recently shown that such correlations are 
merely functions of the univariate F's for the sepa- 
rate variables, and therefore the correlations add 
no additional multivariate information for interpre- 
tation of the coefficients. Rencher's result is only 
given for one of the three possible ways of comput- 
ing these correlations, that based on the pooled- 
within sample variability. The second is based on 
the total variability, and a third uses the among 
variability to transform the canonical variate coef- 
ficient into a correlation coefficient. I suspect that 
Rencher's result holds for all three choices. 
Nevertheless, SAS presents the user with all three 
of these uninformative scalings in its canonical 
variate procedure CANDISC. 

Bargmann (1970) has gone so far as to say 
that we should not attempt to interpret the canoni- 
cal coefficients. The purpose of canonical variate 
analysis is separation of populations in terms of 
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within-group variability, not interpretation of coef- Discriminant Analysis 
ficients in a causal, structural or path framework. 
This argument harkens to my earlier criticism of 
principal components relative to path modeling or 
confirmatory factor analysis. In other words, if our 
goal is to find interpretable models that explain 
group differences as a function of the within- and 
among- group covariance patterns, then we should 
construct our analyses with this in mind. Bookstein 
et al. (1985) and Rohlf and Bookstein (1987) have 
discussed this problem and offer the ad hoc method 
of shear, and some others, as ways of taking into 
consideration within structure when a major part of 

When the purpose is identification or assignment of 
specimens of unknown affinity to a priori groups, 
then classical discriminant analysis corresponds to 
computing the Mahalanobis distance from our 
unknown to each of the a priori centroids and 
assigning the unknown to the group with the small- 
est distance. If we feel justified in pooling the 
variance-covariance matrices over samples, we can 
use the pooled data within to compute our 
distances. Even if there is heterogeneity in 
variance-covariance structure within groups we can 

the pooled-within variance- 
covariance structure is sum- 
marized by a "size" factor. 
Computational schemes to 
estimate multiple group 
path or factor models are 
not currently available, ex- 
cept in some special forms 
as discussed in Zelditch 
(1988) and Joreskog and 
Sorbom (1985). 

When the desired 
result is data reduction, 
e.g., finding a reduced set 
of variables for expressing 
the relationships among 
samples, or discrimination 
(see below) then stepwise 
procedures may be more 
appropriate. However, 
stepwise procedures do not 
guarantee an optimal sub- 
set of the variables, and too 
many researchers interpret 
the order of the variables 
entering the analysis in 
terms of their relative im- 
portance. This is to be 
avoided, and alternative 
variable selection methods 
are to be recommended 
(Hocking, 1983). 

Table 10. Number o f  observations classified into LOC: based on pooled variance-covariance 
matriccs. 

Bus Cer Div EIF Fvu IsC Kay Lim MOB Par RiC SMi Tuk Ura Val Tot 
BushBush W 0  0  0 2  0  0  0  0  0  0  0  0  0  0  30 
CerroAru 2  8  2 1  3  0  1  0  5  1  1  0  5  5  4  38 
Dividivc 0 2 3 9 3 5 1 4 0  2 2 0 0 3 7 0 6 8  
ElFrio 0 1 2 3 1 4 0 0 1  3 3 1 0 0 0 2 4 8  
Fvuclta 1 0 1 5 1 8 0 0 0  1 2 1 0 0 0 1 3 0  
IslaCeba 0  0  0  0 0  50 0  0  0  0  0  0  1  0  0  51 
Kayserbc 1 0  1  0  0  0  40 0  0  0  0  0  1  0  0  43 
Limao 0 0 0 2 1 0 0 3 0  1 0 2 0 0 0 1 3 7  
MontijoB 0 5  1 0  0  0  0  0  25 0  1  0  1  0  0  33 
Parccla2 0 0  3  3  2  0  0  1  0  12 4  0 0  2  2  29 
RioChico 0  0  2 2 0  0  0  2  0  6 16 0  0  2  3  33 
SanMigue 5  0  0  0 0  0  0  0  0  0  0  34 0  0  0  39 
Tukuko 1 3 3 0 1 0 3 0  6 0 0 1 1 3 4 1 3 6  
Urama 0 3 3 0 0 0 0 1  2 2 1 0 2 1 3 3 3 0  
Vallcdup 0  2 0  2  3  0  0  0  1  1 1  0  1  7  11 29 
Total 38 24 57 49 39 51 48 35 46 29 28 35 27 40 28 574 
Number of observations classilied into LOC: based on locality variance-covariance matrices. 

Bus Cer Div EIF Fvu IsC Kay Lim MOB Par RiC SMi Tuk Ura Val Tot 
BushBush 29 0  0 0 1 0  0  0  0  0 0  0  0  0  0  30 
CerroAzu 1 24 2  0 2  0  0  0 2  0  0  0  1  4  2  38 
Dividive 0 4 4 9 1 1 1 1 0  1 0 0 0 4 3 3 6 8  
ElFrio 0 0 0 4 2 2 0 0 0  1 0 2 0 0 0 1 4 8  
FvucltaL 0  1 0  0 2 6  0  0  0  0  2  0  0  0  0  1 3 0  
IslaCeba 0  0  0 0  0 50 0  0  0  0  0  0  1  0  0  51 
Kayscrbe 0  1  0  0  0  0  42 0  0  0 0  0  0  0  0  43 
Limao 0 0 0 1 1 0 0 3 2  0 2 0 0 0 0 1 3 7  
MontijoB 0  0  0  0 0  0  0  0  31 0  0  0  1  0 1  33 
Parcela2 0  0  1  0 2  0  0  1  0  20 2  0  0  1 2  29 
RioChico 0  0 2  1  0 0  0  0  0  1  26 0  0  1 2  33 
SanMigue 0  0  0 0 0  0  0  0  0  0  0  39 0  0 0  39 
Tukuko 0 2 2 0 1 0 0 0  2 0 0 0 2 5 3 1 3 6  
Urama 0 1 0 0 1 0 0 0  1 2 1 0 3 2 1 0 3 0  
Valledup 0 2  0 I 3  0  0  0  1  0  0  0  1  0  21 29 
Total 30 35 56 4 40 51 43 33 39 27 31 39 36 33 35 574 
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compute the Mahalanobis distance of the unknown 
to each centroid, using the variance-covariance 
matrix for that group, and assign the unknown to 
the closest group, or make no assignment at all if it 
is too far from any one of them. These rules 
derived from a multivariate normal model also 
involve the determinant of the variance-covariance 
matrix when these are presumed different over 
samples (Hand, 1981 and SAS Statistics Manual). 

The procedure which pools the within- 
sample variance-covariance matrices, assumed or 
judged to be homogeneous, may he sunirnarized in 
the form of the few canonical variates as displays 
which depict the best low-dimensional plots of the 
overall discriminating power. However, the less 
important canonical variates may have considerable 
discriminating power for some groups, and multiple 
discriminant analysis is to be preferred for identifi- 
cation. Sometimes hybrid terminology is used for 
these methods, e.g., "canonical discriminant analy- 
sis" in PROC CANDISC of SAS, but I feel that this 
jargon adds confusion to an already complicated 
subject (Neff and Marcus, 1980). Too often canoni- 
cal variates analysis, really an ordination procedure, 
is treated as a discrimination procedure. The con- 
fusion arises because the mathematical treatment is 
essentially the same. 

The use of Mahalanohis distances a$ 
descriptive statistics, canonical vari:itcs for ordina- 
tion, Multivariate Analysis of Variance for hypoth- 
esis testing, and classical discriminant analysis for 
assignment of unknowns, involves a m:~jor con- 
straint and a difficult to validate assumption, 
namely, the homogeneity of the within-covari:ince 
matrices used to estimate the comrnon ellipsoid of 
concentration. If there are sizable differences 
among samples in covariance structure, 1 know of 
no way to display data in reduced dimensions taking 
into consideration simultaneously the within and 
among variability and co-variability structure. 
tIowever, different orientation of the ellipsoids, 
that is different correlation structure, is worse than 
differential inflation (Dempster, 1969). 

The appropriateness of pooling can be 
determined by comparing the covariance matrices. 
For our Zygodontotnys data, for example, the first 
principal axes all of the samples point in directions 
that differ by no more than 15 degrees from each 
other (Voss et al., in press). The major component 
of variation is pretty much in the same direction for 
all of our samples. However, Bartlett's test for 
equality of covariance matrices indicates that the 
localities are heterogeneous, apparently differing 
largely in inflation. Furthermore, discrimination is 
improved for some localities by using the separate 
covariance matrices for assignment of the original 
samples to their respective populations (Table 10). 
I Iowever, we obtain nearly as good discrimination, 
and useful ordinations as well, using Mahalanobis 
distance statistics and ignoring the heterogeneity. 

Acceptable distance statistics have not been 
defined for the case of heterogeneous covariance 
matrices, except for some special cases when two 
samples are compared, or when the covariance 
matrices differ mainly in terms of inflation 
(Dempster, op. cit.). Many suggestions have been 
rnade over the years for such measures, but there is 
no good solution to this problem that I am aware of, 
and a matrix of distance statistics, one for each 
between group difference, does not suffice to 
describe the distances among samples or taxa. 

There are good alternatives to multivariate- 
normal-based discrimination in the identification or 
assignment problem. If it is unreasonable to accept 
normality assumptions, or when covariance matri- 
ces may not be sufficient statistics to represent the 
probability distributions, then there is a rich set of 
available procedures. More-or-less ellipsoidal data 
with not too dissimilar covariance structures are 
already taken care of by looking at  distances from 
individuals to all group centroids as mentioned 
above. If the differences are large enough, the 
classical methods may be found to be relatively 
robust. In any case, if  a large enough set of test 
unknowns (samples whose identity is known, but is 
submitted to the procedures as unknown) gives 
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correct identification, don't worry too much about length. If the minimum spanning tree is superim- 
the underlying assumptions. posed on a two- or three-dimensional display, then 

O n  the other hand, where the data structures 
are non-linear, or  populations exist in several inter- 
spersed clumps, then the methods derived from 
normal theory cannot work well. A sensible non- 
parametric solution has been offered based on 
relative frequency of nearest neighbors in the mea- 
surement space. It is implemented in SAS, but I am 
unaware of any published morphometric applica- 
tions. 

Another more powerful method is that of 
empirical discriminant functions. This amounts to 
smoothing the data in multivariate space to esti- 
mate empirically the multivariate probability 
density functions for each a priori group. An 
unknown is assigned to the population with highest 
density at its location, or to none at all if all densi- 
ties are too small. While these methods have been 
applied to geological data (Howarth, 1971), I am 
unaware of published morphometric applications. 
See Hand (1981) for a discussion of this methodol- 
ogy and further references. The implementation of 
SAS (Version 6.03 for the PC) and accompanying 
Statistics manual give an  extensive discussion of 
these techniques and apply them to data for three 
samples of iris specimens using four variables. 
There are the data which R. A. Fisher (1936) used 
when he invented classical discriminant analysis. 
These data are widely reproduced in many texts. 
They are not as non-normal nor heterogeneous as 
the data described in Howarth (1971); and not a 
good example to test this methodology. 

Some Useful Graphical Techniques 

A minimum spanning tree provides an especially 
useful supplement to canonical variates and 
distance displays as well as to displays of principal 
component scores in two or three space. It provides 
a way of depicting distortions in the low-dimension 
display relative to the entire set of canonical 
variates, distances or principal components. The 
minimum spanning tree is the non-rooted connec- 
tion among the centroids which has minimum 

each centroid is connected to its nearest neighbor in 
the space of all of the variables (12 space for the 
Zygodontomys example, and 8 for the birds). 
Centroids that are far apart in the high-dimensional 
space may appear close together in the low- 
dimensional graph as the display is a projection, 
and the minimum spanning tree will demonstrate 
some of these discrepancies (Figure 11 for 
Zygodontomys). If the canonical variates are all 
scaled the same in a plot, and the links of the tree 
labeled with the numerical D values in the full 
space, then comparing the actual distances on the 
two-dimensional graph to the multidimensional D 
values can give an  idea of the magnitude of the 
distortions. One can also compute and tabulate 
residual distances not displayed and these will be 
informative as to what is not summarized by the 
graphs. This type of residual analysis should be 
routine, but is seldom done, though published 
displays including minimum spanning trees are 
quite common. 

Inference and Confirmation 

Multivariate Analysis of Variance 

When the data reasonably can be  assumed to come 
from multivariate normal distributions with homo- 
geneous variance-covariance matrices, there are 
tests of hypotheses for equality of group centroids, 
and tests of linear contrasts among groups. Also 
confidence ellipsoids may be found for centroids 
and functions of centroids. In other words, analysis 
of variance can be generalized as multivariate anal- 
ysis of variance or  MANOVA. The multivariate 
generalization of the one and two sample t-tests are 
Hotelling's T2 tests of the hypotheses that the 
sample centroid equals a known centroid and 
equality of centroids respectively. 72, multiplied by 
a function of sample size(s) and number of 
variables, has Fisher's F-distribution when the Null 
Hypothesis is true. However, there is no universally 
accepted MANOVA test statistic for more than 2 
groups corresponding to F in ANOVA. The several 
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alternative tests proposed 
(for example SAS GLM 
offers four different test 
statistics) are powerful 
against different kinds of 
alternatives (see for example 
Harris, 1975, and Morrison, 
1976). All of these statistics 
may be stated in terms of 
canonical variates and Maha- 
lanobis D2, which like, tests in 
ANOVA, may be related to 
various biological hypothesis 
of interest. 

Multiple comparisons 
and contrasts available for 
ANOVA are more compli- 
cated for MANOVA since, in 
addition to comparison of 
centroids two or more at a 
time, one may also consider 
the many possible combina- 
tions of variables for finding 
homogeneous subsets of po- 
pulations for different subsets 
of variables. This problem is 
addressed in some of the 
general multivariate texts (for 
example Morrison, 1976; 
Harris, 1975, and Johnson 
and Wichern, 1982). 

The test that the popu- 
lation Mahalanobis A2 (the 
population parameter estima- 
ted by 0 2 )  equals 0 is 
equivalent to testing equality 
of centroids for two groups 
using the Hotelling T2 test. 
Note that Mahalanobis D2 is 
a biased estimate of A2 (Sjo- 
vold, 1975). An approximate 
confidence interval algorithm 
for ~2 is given by Bargmann 
(1970) and is given here as a 

Table 11. Mahalanobis D ~ ,  correction for bias, F test and confidence bounds for Zygodon- 
tornys data. 

Values above diagonal are D2, those below unbiased D2. 
Bus Cer Div EIF Fvu I s C  Kay Lim MOB Par RiC Smi Tuk Ura Val 

Bus 0.00 13.7 16.1 17.7 11.3 16.6 17.4 38.5 22.7 22.1 24.8 9.62 13.9 21.7 13.4 
Cer 12.7 0.00 3.37 8.77 6.96 12.8 10.8 16.4 3.76 8.37 8.56 29.8 .826 2.77 2.10 
Div 15.2 2.80 0.00 8.32 5.32 15.1 11.8 21.5 8.85 6.42 8.71 31.3 3.24 5.44 5.31 
EIF 16.5 7.85 7.55 0.00 3.34 20.9 29.0 11.8 9.62 4.13 6.05 31.4 10.9 12.6 6.56 
Fvu 10.4 6.23 4.77 2.61 0.00 21.0 21.2 14.2 11.9 4.16 7.49 24.6 7.68 10.5 5.18 
I s C  15.5 11.9 14.3 19.8 20.1 0.00 17.1 47.5 15.5 29.4 28.4 16.7 11.4 18.2 15.8 
Kay 16.3 9.95 11.1 27.7 20.2 16.2 0.00 45.5 20.6 30.9 34.1 30.4 8.56 17.9 16.2 
Lim 36.9 15.3 20.5 10.8 13.3 45.9 43.8 0.00 13.5 9.34 10.9 64.1 20.0 18.3 13.5 
MOB 21.4 3.02 8.13 8.Ch 11.1 14.5 19.5 12.6 0.00 11.8 11.1 40.1 5.38 7.89 6.87 
Par 20.8 7.50 5.74 3.27 3.45 28.1 29.5 8.43 10.8 0.00 1.28 42.1 11.1 8.50 5.75 
RiC 23.4 7.63 7.92 5.09 6.65 27.1 32.6 9.90 10.1 .476 0.00 44.7 12.2 7.22 5.62 
Shli 8.64 28.5 30.0 29.9 23.5 15.7 29.0 61.9 38.5 40.4 42.8 0.00 28.2 40.7 30.2 
Tuk 12.9 ,183 2.68 9.98 6.94 10.6 7.78 19.0 4.61 10.2 11.2 26.9 0.00 3.49 3.26 
Ura 20.4 1.99 4.74 11.5 9.61 17.1 16.8 17.1 6.97 7.54 6.24 39.0 2.70 0.00 3.48 
Val 12.3 1.32 4.60 5.59 4.39 14.8 15.2 12.5 5.96 4.84 4.66 28.7 2.47 2.59 0.00 
Values above diagonal are F values, below are probabilities. 

Bus Cer Div EIF Fvu I s C  Kay Lim MOB Par RiC SMi Tuk Ura Val 
Bus 1.00 18.8 27.4 21.7 17.0 25.6 25.1 52.1 30.3 28.3 29.9 12.4 19.3 26.6 16.1 
Cer 0.00 1.00 6.72 12.0 12.1 22.8 17.8 25.0 5.68 12.1 11.5 43.0 1.30 3.80 2.82 
Div 0.00 0.00 1.00 14.2 12.2 35.9 25.5 42.1 17.0 11.7 14.5 56.8 6.56 9.26 8.83 
EIF 0.00 0.00 0.00 1.00 5.04 32.3 41.9 16.0 12.9 5.30 7.29 40.3 15.2 15.5 7.90 
Fvu 0.00 0.00 0.00 0.00 1.00 42.5 39.3 24.2 20.0 6.64 11.1 39.4 13.5 15.8 7.64 
I s C  0.00 0.00 0.00 0.00 0.00 1.00 32.7 83.3 26.7 48.1 42.9 27.4 20.7 28.1 23.9 
Kay 0.00 0.00 0.00 0.00 0.00 0.00 1.00 73.9 32.9 47.1 48.2 46.3 14.3 25.8 23.0 
Lim 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 20.2 13.3 14.5 91.4 31.1 24.7 18.0 
MOB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 16.5 14.5 56.4 8.23 10.5 9.01 
Par 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.62 56.7 16.2 10.9 7.25 
RiC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .083 1.00 56.3 16.6 8.70 6.66 
SMi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 41.2 52.3 38.1 
Tuk 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 4.84 4.43 
Ura 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 4.19 
Val 0.00 ,001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
Values above diagonal are upper confidence bounds, below lower bounds for 99% 
confidence. 

Bus Cer Div EIF Fvu Is C Kay Lim MOB Par RiC SMi Tuk Ura Val 
Bus 0.00 22.0 23.6 29.2 17.6 25.2 27.1 60.2 36.1 35.6 40.7 16.0 22.2 35.6 22.4 
Cer 6.67 0.00 5.32 14.4 10.9 19.2 16.7 25.3 6.34 13.6 14.1 46.1 1.45 4.90 3.78 
Div 9.26 1.19 0.00 12.6 7.93 21.1 17.0 30.7 13.1 9.79 13.2 44.6 5.11 8.46 8.30 
EIF 8.50 3.75 4.13 0.00 5.63 31.6 44.6 19.1 15.8 7.24 10.6 50.2 17.7 21.1 11.4 
Fvu 5.58 3.18 2.60 .839 0.00 30.3 31.1 21.4 18.2 6.82 12.0 37.0 11.9 16.4 8.49 
I s C  9.00 6.97 9.32 11.7 12.8 0.00 25.1 69.1 23.2 43.6 42.7 25.2 17.2 27.6 24.2 
Kay 9.16 5.46 6.89 16.3 12.5 10.0 0.00 67.6 31.2 46.9 52.4 46.1 13.3 27.9 25.5 
Lirn 21.5 8.67 13.2 5.50 7.71 29.6 27.4 0.00 21.3 15.1 17.8 98.3 30.7 29.1 21.9 
MOB 11.9 1.05 4.68 4.18 6.24 8.61 11.5 6.83 0.00 18.9 18.2 62.1 8.82 13.1 11.5 
Par 11.3 3.64 3.01 1.01 1.37 17.4 17.8 4.18 5.57 0.00 2.38 66.0 17.7 14.3 9.92 
RiC 12.5 3.59 4.34 1.91 3.22 16.4 19.4 4.91 4.98 -.28 0.00 71.3 19.7 12.5 9.91 
SMi 4.06 16.7 19.6 16.8 14.2 9.26 17.5 37.6 22.8 23.5 24.4 0.00 43.5 64.8 48.6 
Tuk 6.86 -.26 1.13 5.07 3.66 6.13 4.10 11.0 1.99 5.31 5.77 15.8 0.00 6.04 5.70 
Ura 10.8 .416 2.29 5.61 5.10 10.0 9.46 9.35 3.18 3.42 2.54 22.3 .797 0.00 6.30 
Val 5.97 ,080 2.18 2.18 1.85 8.46 8.38 6.47 2.55 1.85 1.64 16.0 .653 .586 0.00 
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PROC IML routine for SAS. The program also 
corrects D2 for bias, and gives the F statistic for the 
test of equality between centroids, and the corres- 
ponding probability of exceeding the observed F. 
The results for a run of this program for the 
Zygodontomys data are given in Table 11. 

Asymptotic Tests 

All of the tests of hypotheses in MANOVA (except 
for two groups and a few other special caws) and 
all, for principal components as well, even when 
multivariate normal assumptions are plausible, are 
asy~nptotic. That is, the tests' reported signific:~nce 
levels are only correct in the limit (as the sample 
sizes approach infinity). Thus, the significance 
levels are essentially correct only for very large 
samples. 

Morrison (1976) gives asymptotic standard 
errors for eigenvalues and eigenvectors from which 
one can find confidence intervals and ellipsoids for 
large samples using standard normal tables. 
Maximum likelihood factor analysis produces 
goodness-of-fit tests that are asyn~ptotically chi- 
squared tests for path models. 'They give 
approximately correct significance levels for large 
sa~nples, again if the variables have a multivariate 
norlnal distribution. For smaller samples, the chi- 
squared statistic can serve as a goodness-of-fit 
criterion, whose probability level is uncertain, 
though other goodness-of-fit criteria may be more 
satisfactory for evaluation of the model. 

Thus, when our data are samples from 
multivariate normal distributions there are a few 
special exact tests (most are not useful) such as 72, 
and all others are approximate or asymptotic tests. 
Other approximate or  asymptotic tests are not 
difficult to formulate; for example Reyment (1060) 
has developed a test for the equality of two 
eigenvectors from different data sets. 

One of the main problems with multivariate 
analysis in morphometrics, especially when we have 
measured many variables, is that we seldom have 
enough data to adequately assess the form of the 
distribution that generated our sample. We know 

that we have little power for detecting non- 
normality. Or  even if multivariate assumptions are 
correct and our data is homogeneous with respect 
to age, sex and other sources of differences, it is 
difficult to verify the correctness of the distri- 
butional assumptions. 

There are other problems with some of the 
common tests available. For example, Van Valen 
(1978) pointed out that Bartlett's test for equality of 
covariance matrices is as sensitive to non-normality 
as to heterogeneity, the thing it is suppose to be 
testing (the SAS Manual does point out this 
problem). Therefore, Van Valen recommends that 
this test not be used. 

Re-Sampling Principal Components - the 
Jackknife and the Bootstrap 

'I'he problem of distribution assun~ptions, especially 
for small samples, has been addressed by a class of 
procedures called re-sampling schemes. The data 
thenisclves are repeatedly sampled to generate 
standard errors and estimate probabilities for 
confidence intervals, or to test hypotheses. Re- 
sampling schemes require intensive computation 
and only became a practical choice with the wide 
availability of fast, relatively cheap-to-use com- 
puters. 

'I'wo recently pop~11ar re-sampling tech- 
niques are the Jackknife and the Bootstrap. Gibson 
et al (1084) applied the Jackknife to principal 
component analyses of morpliometric data on 
samples of common myna birds from 11 recently 
introduced populations in EIawaii, Fiji, Australia 
and New Zealand. 1:ourteen skeletal variables 
were measured on sample sizes varying from 17 to 
50 birds of the same sex. Their results and a similar 
analysis of the Zygodontotny.~ data are discussed 
below. Chatterjee (1984) presents the results of a 
Bootstrap applied to principal components in the 
social sciences. 

It should be pointed out that all of these 
results, and the new ones given below, apply to 
"homogeneous" data sets, such as the fowl example, 
the Zygodontotnys data, and the data studied by 
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Gibson et al. Samples of mixed taxa may behave 
quite differently. 

Gibson et al (1984) estimated sample 
statistics using the Jackknife technique, where 
eigenvalues and eigenvectors in a principal com- 
ponent analysis are computed for all possible sub- 
samples generated by leaving one specimen out in 
each repeated computation. For a sample of 30 
individuals one does a principal component ana- 
lysis, i.e., computes the eigenvalues and eigen- 
vectors, 30 times; once for each sub-sample of 29. 
Gibson et al. (1984) following Mosteller and Tukey 
(1977) show how to combine the statistics from the 
analysis of each sub-sample into a single estimate of 
the population parameters, each population eigen- 
value and eigenvector element in this example; and 
how to find the standard error for all of these 
statistics. One computes the mean of the estimates 
from the sub-samples and applies a correction for 
bias (an equivalent but slightly modified formula 
from Gibson et  al, 1984; and closer to the 
presentation in Efron, 1982) as follows: 

Jackknife estimate = mean of sub-sample 
estimates + bias correction . 

The bias correction for a total sample of n is: 

Bias = n x (total sample estimate-mean of sub- 
sample estimates) . 

The standard error is computed by 
calculating the standard deviation of the sub-sample 
estimates over the n sub-samples and then 
multiplying by (n-1) and dividing by the square root 
of n (in my reformulation). 

There is a broader class of Jackknife 
techniques which consider all samples of k out of n. 
This requires yet more computation. These vari- 
ations have not been used much. In  my discussion k 
will always be n-I .  

The Bootstrap procedure samples n out of n 
with replacement. For a sample of thirty indi- 
viduals, each replicate sample selects 30 of the 
original observations with replacement. For tz =30 
individuals there are 3030 patterns. One only need 

generate a relatively small number of these possible 
patterns to reliably estimate a parameter and its 
standard error. The Bootstrap estimate and its 
standard error are just the mean and standard 
deviation of the relevant statistic over the repli- 
cated samples. One can get a good approximation 
to a 95% confidence interval using 1000 replicates 
(several techniques are given in Efron, 1982). For 
example, the 2.5 and 97.5 percentiles of the 
Bootstrap distribution provide one such set of 
estimates for the confidence limits. For 1000 repli- 
cates, the Bootstrap requires computation of the 
covariance matrix and its eigenvalues and eigen- 
vectors 1000 times. Then the mean and standard 
deviation for all of these statistics are computed 
over the 1000 replicates. In order to estimate 
confidence limits from the percentiles, each of the 
p(p+ 1) distributions of 1000 eigenvalues and 
eigenvector coefficients would have to be partially 
sorted to find the appropriate percentiles. This 
latter step was not done. All Bootstrap results 
reported here used 1000 replicates. Perhaps 100- 
200 replications would be sufficient to give an 
adequate estimate of a parameter and its standard 
error. Diaconis and Efron (1983) provide a clear 
description of the Bootstrap with applications and 
Efron (1982) has written a monograph on re- 
sampling which discusses both the Jackknife and 
the Bootstrap, as well as other re-sampling 
schemes. 

I have run both the Jackknife and Bootstrap 
on all 276 observations of the fowl data, and then 
for various sized random samples to get an idea of 
the stability of the eigenvalues and eigenvectors as 
a function of sample size when sampling from a 
population; 276 is a vastly larger sample size than 
is usually available in most systematic studies. 
However, small random samples of 8, 15, 30 and so 
on can give some idea of what to expect for small 
samples of data as well-structured as the fowl data, 
as we observe more and more individuals. 

I present the results for both the Jackknife 
and Bootstrap. Programs written in SAS PROC 
IML that generated these results are given in the 
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software on one of the provided disks. This work 
was done on a large main-frame computer. It 
would be time-consuming on a PC, even on a fast 
one. The programs perform moderately well on the 
newest fast PC's. A compiled program written 
directly in a programming language such as Basic, 
Pascal, Fortran or  C would be more efficient on a 
slower PC. 

Asymptotic theory was also applied to the 
same data to see how well it performed compared 
to the Jackknife and Bootstrap. The asymptotic 
results are given first (Table 7). Calculations were 
done, using a P C  SAS Version 6.03 PROC IML 
program, based on the formulae given in Morrison 
(1976). The asymptotic standard errors for the 
eigenvalues and eigenvectors are easily and rapidly 
obtained. They may give an adequate indication of 
the standard errors with far less computation time. 
The asymptotic standard error of an eigenvalue L is 
just L (2/n)0.5 and the estimates of the eigenvalues 
are independently distributed (Morrison, 1976) if 
the population eigenvalues are different. An 
approximate standard error for the log of an 
eigenvalue is just (2/(n-1))o.S and is the same for all 
eigenvalues (Jolliffe, 1986). The formula for the 
asymptotic standard errors for the eigenvector 
elements is more complicated and involves all of 
the eigenvalues and eigenvectors. The eigenvectors 
are uncorrelated with the eigenvalues, but the 
elements of an eigenvector are correlated (formula 
(4) Section 8.7, Morrison, 1976). Eigenvector 
estimates for different principal components are 
also correlated with each other. However, only the 
standard errors for individual coefficients are given 
here in order to compare the results with the 
Jackknife and Bootstrap. 

I follow Gibson et  al. (1984) in studying the 
re-sampled statistic divided by its standard error, 
here designated T. T is used rather than the 
identically defined t they describe, so as not to 
confuse it with Student's t (see below). This 
provides a quick indication of the possible 
significance of our Jackknife estimate, for example, 
to test that an eigenvector element = 0. However, 

for the Jackknife the distributions are highly 
skewed, more for the eigenvalues than the eigen- 
vectors. As pointed out by Efron (1982), these T 
values will therefore not have a student's t- 
distribution as suggested by Mosteller and Tukey 
(1977). The distribution of the eigenvalue esti- 
mates using the Jackknife are a little less skewed 
when they are log transformed. If we construct t- 
like confidence intervals or use T in a student's t- 
test, the significance levels will be very unreliable. I 
use instead a very conservative probability state- 
ment derived from Chebyshev's inequality (Dixon 
and Massey, 1969) that says that for any probability 
distribution of x with mean p and standard devia- 
tion a: 

Translated to our eigenvalue problem, if li is the ith 
eigenvalue for a sample estimating Xi. SE li is the 

standard error of the ith eigenvalue and T is the 
number of standard errors for which one wants to 
make the probability statement, then: 

1 
P( I li-Xi I > TSE li) < 3 

Thus for T= 5 and hi = 0, the probability is less that 

.@I that li is more than 5 standard errors different 

from 0. We don't know the value of Xi or the true 
standard error of li, but we can construct approx- 

imate confidence intervals for Xi using the formula 

above substituting our estimate of the standard 
error for S E  li. Then if the confidence interval 

contains 0 we accept the null hypothesis that Xi = 0 

(equivalent to using T to test the null hypothesis 
that Xi=O). Chebyshev's inequality provides a lower 
bound to a confidence coefficient and therefore an 
upper bound to the significance level for a 
corresponding test. It is very conservative, for 
example, even for a highly skewed distribution like 
a chi-squared distribution with 1 degree of freedom 
(Dixon and Massey, 1969). However, it would be 
incorrect to use Student's t ,  which may provide 
something closer to a lower bound for the 
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probability. Neither approach is very satisfactory 
and my approach will have very little power for 
detecting true differences from 0. 

The results were as follows: 

For the fowl data (based on 276 individuals), Table 
8 gives the eigenvectors and eigenvalues of the 
covariance matrix for the logged data. The corre- 
lations for the raw data are slightly different from 
Wright, but the pattern of coefficients is very 
similar, except for a coefficient for femur on the 
second component. Also the variances of the fowl 
measurements are not quite the same. However, 
the principal components are very similar, with 
minor discrepancies in coefficients. 

The standard errors of the eigenvalues and 
eigenvector coefficients for the original chicken 
data (logged) based on asymptotic theory are given 
in Table 7.  A ratio of the estimate to its standard 
error of T = 5 is probably not applicable here, and 
the sample is large enough that Student's t or 
normal z theory should apply. All coefficients for 
the first eigenvector have a T value greater than 12. 
For the second eigenvector all the T values are 
greater than 5 except for one at  T=2.11. It has a 
smaller coefficient than in Wright's analysis. For all 
the rest of the components all of the coefficients 
have T >  6 for the potentially interpretable contrasts 
and some are much larger. Small coefficients with 
absolute values less than .07 have T values less than 
1.05. 

When we look at the Jackknife and 
Bootstrap eigenvector element estimates, they 
differ only by a small amount in the third place for 
principal components one and two (Table 9). The 
third through sixth components differ in the second 
decimal place, but the patterns are the same and 
the interpretations would be  the same. For 
principal component I the T values are mostly 
larger for the asymptotic results. All values greater 
than 5 for the asymptotic result are larger than 5 for 
the other methods except for the fourth component 
where the femur element is 4.62 on the Jackknife 
and Bootstrap and 6.97 for the asymptotic result. 
They are comparable for PC 111 and PC IV, but 

occasionally a little larger. The results are again 
quite comparable. 

It appears that the asymptotic standard 
errors give comparable estimates of the standard 
errors as compared to the Bootstrap and Jackknife, 
which require fewer assumptions, for the complete 
fowl data. They tend to be smaller for the first 
component and similar for the second; and then 
conservative or larger for the remaining com- 
ponents--but the results are very similar. 

Single experiments were run for very small, 
medium and large sub-samples from the fowl data, 
in the range of those commonly used in systematic 
studies--up to 163 of the 276 in the sample, or 
approximately 60% of the complete data set. Only 
one method was used on each sample, but 
comparable sized san~ples were run for all three 
methods. An expanded study is planned. The 
asymptotic results are discussed first. For samples 
of n = 12, 15, 17, 28 and 33, principal component I 
was similar to the complete data, though with some 
different emphasis of variables. The I TI values 
were >5 for n > l 5  except for the head 
measurements where they were >3 for n =33. For 
n< 17 some I TI values were as low as 2. For 
components past the first, the patterns of 
coefficients were different from those for the 
complete data. I TI values were only occasionally 
greater than 5, and not many were greater than 3. 
For n=59 and 77, the pattern of coefficients is 
similar to the complete data, and IT1 values are 
greater than 3 or 4; with many greater than 5 for 
those greater than 5 for the complete data. 

The sample for n =59 gave results closer to 
the complete data than that for n=77. Many 
duplicate random samples would have to be run for 
the same sample size to see clearer patterns, and to 
allow generalization of the results from this single 
set of experiments. 

For n =  108, 143, and 159 the coefficients 
come closer to those for the complete data. The 
largest discrepancies are in the second component 
coefficients for limb measurements. 
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The Jackknife for n = 1 1 ,  12, 16, 21, 32 and 
49 were similar to the asymptotic results for 
principal component I. However, the absolute 
value of T was typically in the range 2-5 for skull 
characters. Twill be used as the absolute value of 
T, IT/, in the following discussion. The skull 
breadth coefficient T value was .30 for n = 12. 

For tz =49, the T values were occasionally > 5 
and even if one used a cutoff of T = 2 ,  the original 
pattern of the components past PC I was not 
recovered. 

For n=75 the pattern of coefficients is 
similar to the complete data, however those with T 
values > 5  past the first are typically only > 3  here, 
and some are smaller. For n = 108, 139, 156 and 163 
there is some difference in results from the pattern 
based on the complete data, and values are judged 
to be significantly different from 0 if  one bases this 
decision on T = 4  (with some minor discrepancies). 

The Bootstrap for n = 12, 13, 16, and 24 
showed similar results to the Jackknife, but with 
smaller T, much less than 5, o n  components 2 
through 6. Head characters are sometimes not 
significant (T<5)  on principal component one. 

For n =53, T values are greater than 5 for all 
coefficients of eigenvector one. flowever, they only 
reach 4.5 and 7 on the Humerus and ulna variables 
for PC VI; similar to the pattern on VI for the 
complete data. The coefficients do not have quite 
the same pattern on the other components. For 
n=88, principal component 2 has some significant 
coefficients; PC 3 and PC 6 are similar to the entire 
data; and 4 and 5 are not. For larger s:imple sizes 
PC I,  V and VI show the same pattern of large T 
values; and the pattern of coefficients is similar to 
the complete data set. 

Overall, it seems that a sample size in excess 
of 8 to 10 times the number of variables was 
req~iired to recover the original interpretation of 
the principal components for the larger fowl data 
set. The Bootstrap appears to be the most 
conservative technique, the asymptotic method a 

little less so, and the Jackknife finds more 
significant coefficients for smaller sample sizes. 

A graphical summary of the results of the 
sampling experiments is given in Figure 12. The 
number of T values greater than 5 out of 36 are 
plotted as upper case letters (A=Asymptotic; J =  
Jackknife and B=Bootstrap); while the number of 
T < 2  are plotted with the same lower case letters. 
The difference between these two entries for a 
specific sample size are then the number of T 
values between 2 and 5. There is a near linear 
increase of "significant" T > 5  for n < 1 0 0  as a 
function of sample size. Note that the asymptotic 
method5 tend to give more large T values, the 
Bootstrap the least, and the Jackknife tends to be in 
between. For the "non-significant" T values <2, the 
rewlt? are consistent with the patterns above; 
however, the number fall off more rapidly and not 
linearly with sample size. 

For the Zygodontomys data, asymptotic 
standard errors, Jackknife estimates and standard 
errors as well as Bootstrap estimates and standard 
errors were obtained for every sample. The results 
are summarized below and tend to agree with those 
of Gibson et a1.(1984) especially for the elements of 
the eigenvectors. Some differences between these 
results and those of Gibson et  al. will be pointed 
out. Programs written in SAS IML and on the 
accompanying disk can be used for analyses of 
other data sets. 

Two points not dealt with by Gibson et al. 
should be mentioned. As eigenvectors are only 
defined up to a scale factor of + 1 or - 1, any given 
Jackknife or Bootstrap iteration may produce a 
vector which may have a pattern of signs that point 
i n  the opposite direction from that of the vector for 
the complete data. In that case, it is necessary to 
multiply the sub-sample vector by -1 to reverse the 
signs and to make it coincident. Therefore, the 
following rule was adopted: If the inner product of 
an eigenvector from the complete solution with the 
eigenvector from a Jackknife or Bootstrap sample 
was negative (the cosine of the angle between them 
would indicate they were in different quadrants), 
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then the Jackknife or  Bootstrap vector was are too small, unlike the complete fowl data. The 
multiplied by -1 to put it in the same quadrant. more conservative cutoff of T = 5  is used for 

Secondly, the average eigenvectors 
presented in Gibson et al. have values such that 
some of the coefficient values are clearly impossible 
as eigenvector elements. Some absolute values are 
larger than 3. The sum of squares of eigenvector 
elements conventionally sums to one, which means 
that all elements must be between plus one and 
minus one. We obtained numbers as large as those 
reported in Gibson, especially for the Jackknife. 
This effect was removed by standardizing the final 
bias-corrected Jackknifed eigenvector to have 
length one (by dividing the elements by the square 
root of the sum of squares of the elements). The 
standard errors were similarly corrected. This 
produced results comparable over the three 
techniques for the complete fowl data (see above), 
and this was used as a justification for the 
procedure in all subsequent analyses. The 
Bootstrap values stray less from the complete data 
values then do those for the Jackknife. They were 
similarly re-standardized, I am not sure why this 
happens and detailed examination of 

interpretation. 

The eigenvector, coefficients of the first PC 
had T values > 10 for coefficients greater than .I7 
with very rare exception and most T values were > 5 
for coefficients >.lo. The exceptions occurred 
mainly for samples with n <35. In the analysis of all 
of the 15 locality data sets, the two molar 
measurements (LM and BM1) and braincase 
related measurements (LIB and BB) had smaller 
coefficients for PC1 than the other characters, and 
therefore contributed less to PC1 as a "size" 
component. Based on their small absolute values 
and small T values, these are the variables that do 
not contribute significantly to "size." Exceptionally 
a T value is >5 for these four variables. This occurs 
for relatively larger values of the coefficient (e.g., 
.08 for BM1 at El Frio). These coefficients were 
"not significant" (T<5)  for most samples. 

When we look at the remaining principal 
components, values of T > 5  are very rare, seldom 
more than a few per data set from a given locality 

- .  
the effect of individual observations 
on the Jackknife results would be 1 
very time-consuming but worth 
while. This is akin to Krzanowski's 
search for outliers (discussed and 
cited in Reyment, this volume). 

Asymptotic Results 

10 --. 

i5 - 

The asymptotic standard errors for 
the eigenvalues and for the logs of 
the eigenvalues were computed for 
all of the Zygodontomys locality 
samples. The log results will be 
discussed here as they are 
comparable to the Jackknife and 

The standard 
error for the log of any eigenvalue is 
(2/(n-1))0.5, All of the T values are 
large. s tudentts  or would be 
inappropriate here as the samples 
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and there is no obvious pattern. The larger T 
values tend to occur for single variable coefficients 
for specific components. One curious feature of the 
analysis is that Condylo-Incisive Length (CIL) 
dominates the last eigenvector for aimost every 
locality sample. Its T value is frequently very large, 
as much as 52, larger than any other T value 
observed. 

Results for the Jackknife on 
Zygodontomys Samples 

The Jackknife estimates of the eigenvalues were 
never monotonic, decreasing from largest to 
smallest as a function of principal component 
number, though they decreased on the average with 
increasing principal component index. Frequently 
the third Jackknifed eigenvalue would exceed the 
second. Disparities of this type are common for the 
various locality samples. The ratio of the largest to 
smallest eigenvalue standard error for a locality was 
4.95 for one sample, and for all others this ratio was 
less than 4. The approximate asymptotic standard 
error (2/(n-1))O.s is always contained within the 
range of the standard errors for the different 
Jackknifed estimates of eigenvalues for one locality. 
The results for the Jackknife eigenvector elements 
are consistent with the asymptotic results. For 
example, all Tvalues >5 on PC1 for the asymptotic 
results are here also > 5 .  The occasional values > 5  
for other principal components past one again form 
no obvious pattern, and tend to occur for single 
variables' coefficients for individual principal 
components. The larger T values do tend to occur 
for the same coefficients in both analyses, and they 
tend to be larger for the Jackknife results. The 
same large T value for CIL on the last eigenvector 
is also present here. I have no explanation for this 
result. 

Bootstrap Results 

The Bootstrapped eigenvalues always formed a 
monotonic decreasing series as a function of 
eigenvalue number as must occur for the complete 
data, and in contrast to the results for the Jackknife. 

The logarithms of the eigenvalues tend to have 
smaller standard errors than those for the 
Jackknife. The average value is much closer to, and 
even less in some cases, than the approximate 
values given above under the asymptotic results, in 
contrast to the Jackknife results, which are larger. 

The Jackknife and Bootstrap results are very 
similar for PCl's eigenvector. However, for PC2- 
PC12 the T values tend to be smaller for the 
Bootstrap. They very rarely exceed 5 except for the 
same curiously large coefficient for PC12 for CIL 
for most samples. The T values exceeding 3 for the 
Bootstrap frequently exceed 5 for the Jackknife. 

Conclusions for the Zygodontomys 
Analysis and Comparison to Gibson et a/. 
(1 984) 

'The Tvalues for all of the eigenvalues for all three 
analyses, asymptotic, Jackknife and Bootstrap, are 
large, almost always greater than 10. The T value 
can be thought of as a test statistic for the null 
hypothesis that an eigenvalue is 0. This null 
hypothesis would be rejected in all cases. This is 
just a verification that our data matrices are of full 
rank. This is not surprising as the number of cases 
is always roughly 2.5 to 5.7 times larger than the 
number of variables. Also the carefully selected 
measurements are not redundant and the variables 
are measuring different features of the skull. This 
result is in marked contrast to some of the results 
for the logs of the eigenvalues in Gibson et al. 
where the T values for the first eigenvalues 
exceeded 10 for only 2 out of their 11 samples. For 
the 2nd and 3rd principal component, T only 
exceeded 2 three times out of 22, and only exceeded 
one 10 times out of 22 for Jackknifed eigenvalues. 
In other words, eigenvalues past the first would 
generally be judged to be not significantly different 
from 0, in marked contrast to our results. I do not 
know why our results are so different, and do not 
believe that it is just because the data are different. 
We are probably computing something differently. 
We both, however, find similar discrepancies in  the 
ordering of the eigenvalues. Gibson et al. only 
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present results for the first three principal 
components and 4, out of their 11 third eigenvalues 
are larger than the second. I agree with them that 
this indicates an indeterminacy in the direction of 
components past the first. The Bootstrap results 
are different in that the eigenvalues always 
decrease monotonically as for the complete sample. 
However, adjacent eigenvalues are frequently very 
similar. An asymptotic chi-squared test for equality 
of consecutive eigenvalues is given in Morrison 
(1976:294). For the complete data set from each 
locality, eigenvalues 1 and 2 are always significantly 
different, eigenvalues 2 and 3 are not significantly 
different for any locality, and the hypothesis of 
equality of eigenvalues 2 to 6 is rejected for only 2 
of the 15 localities. 

The three methods agree very well for the 
eigenvector associated with the first principal 
component. However, for principal components 2 
and beyond, the Jackknife finds the most significant 
coefficients and the Bootstrap the least. The 
asymptotic results fall somewhere in between. 
These results are somewhat different from the fowl 
sampling experiment, where the asymptotic results 
had more significant coefficients and the Jackknife 
fell in between. Thus, a person using one of these 
methods would possibly attempt to interpret more 
principal components using the Jackknife than the 
Asymptotic results or Bootstrap for our data. 

Our results are similar to those given by 
Gibson where consistent patterns of coefficients (in 
terms of T values) are not obtained based on the 
Jackknife for principal components 2 and 3 for their 
comparable sample sizes and similar numbers of 
variables. Principal component 2 does show more 
large coefficients (as measured by T values) than 
does 3 for Gibson et al. However, in both studies 
we could not define a consistent pattern of 
associated variables over samples beyond the first 
principal component based on the coefficients 
assessed by the T values. This result is consistent 
with near equality of eigenvalues 2 and 3 for many 
localities. 

None of these results for principal 
component analysis precludes the possibility of 
finding more than one significant biological pattern 
of association of variables, for example finding two 
or more correlated latent variables in a 
confirmatory factor analysis. The techniques are 
different in intent and therefore expected result. 
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Appendix: 1. 

Data for Zygodonton~ys from Dividive. See Figure 4 for diagram of measurements. 

OBS SEX AGE CIL LD LM BM1 LIF BR BPB BZP LIB BB DI LOF 
1 F 2 23.00 6.20 4.05 1.30 5.05 4.05 2.25 2.55 11.50 4.25 1.20 8.50 
2 F 2 24.20 6.45 4.30 1.25 5.25 3.90 2.50 2.75 11.45 4.50 1.25 9.00 
3 M 2 24.90 6.95 3.90 1.15 5.70 4.15 2.50 2.50 11.95 4.20 1.30 9.65 
4 F 2 24.65 6.75 4.10 1.20 5.65 4.25 2.60 2.35 11.80 4.20 1.30 9.05 
5 M 3 24.75 7.00 4.00 1.20 5.30 4.15 2.50 2.90 11.20 4.50 1.30 9.05 
6 F 2 25.50 7.15 4.10 1.20 5.60 4.45 2.75 2.85 11.65 4.45 1.40 9.85 
7 F 2 25.30 7.35 4.05 1.30 5.85 4.35 2.55 2.70 11.95 4.25 1.40 9.40 
8 F 2 24.75 6.85 4.10 1.20 5.55 4.90 2.65 2.60 12.30 4.55 1.35 9.35 
9 M 2 25.05 6.85 4.35 1.35 5.50 4.65 2.65 2.50 11.85 4.80 1.40 9.40 
10 M 2 25.15 6.85 4.10 1.25 5.65 4.40 2.45 2.65 11.70 4.45 1.45 9.40 
11 F 2 25.20 6.90 4.20 1.25 5.80 4.30 2.50 2.60 12.80 4.60 1.45 9.90 
12 F 2 25.70 7.45 3.90 1.30 6.05 4.35 2.60 2.55 11.95 4.30 1.40 10.05 
13 F 3 26.15 7.30 4.30 1.35 5.60 4.85 2.85 2.90 11.70 4.65 1.45 9.55 
14 M 2 26.05 7.20 4.50 1.40 5.75 4.70 2.50 2.90 12.15 4.90 1.25 9.65 
15 F 2 26.00 7.15 4.40 1.30 6.15 4.35 2.60 2.80 11.95 4.85 1.60 9.60 
16 F 3 25.75 6.95 4.60 1.35 5.60 4.70 2.75 2.85 11.45 4.65 1.45 9.40 
17 F 3 25.90 7.35 4.25 1.25 6.30 4.50 2.65 3.05 12.35 4.50 1.50 9.90 
18 M 3 26.25 7.25 4.15 1.25 6.05 4.50 2.65 3.20 12.35 4.65 1.45 9.70 
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Appendix: 2. each of samples 3 and 4 appear to be outliers- 
. . 

perhaps wrongly assigned microspherics to the 
Programs used to generate some of the results in 

supposed megalospheric data set. 
the paper and some additional routines are on a 
supdlied disk in the directory LESWARE. All of Of course the landmark-based shape com- 
the files in that directory are ASCII files. parisons do not require the magnification correc- 

List of programs: 
tions, as they are scale free; but contamination by 
wrong morphs will not make a clean analysis. 

PRIMER SAS SAS on a page Another problem with the data is that 
LESWARE DOC Documentation file sample 1 is considerably more homogeneous than 
ZCONFD FIN CI's for Mahalanobis D2, etc. the other four samples. From the published 
ZDISTOUT FIN Example of output from above statistics in a paper on the same material by 
ZBOOTIML FIN Bootstrap for Eigenvalues- 

vectors 
ZDIVIN FIN Getting Zygo. Dividive data in 
ZJACKIML FIN Jackknife for Eigenvalues- 

vectors 
ZMST FIN Minimum spanning tree 
ZASYMP FIN Asymptotic SE's for 

Eigenvalues-vectors. 

Appendix: 3. Traditional Analysis of 
Brizalina Data 

Bookstein (1991) has undertaken some analyses of 
a series of samples of fossil foraminifera, comparing 
standard distance techniques to some landmark 
analyses. I analyzed these data in the spirit of the 
present paper using the coordinates supplied in his 
book. There are 10 specimens from each of 5 
stratigraphic levels from a bore hole in the 
Cameroons. These are benthic foraminifera and we 
would like to see how they differ or change at 
different level. The samples, 5 to 1, start at a depth 
of 1810 meters and occur approximat ,iy every 23 
meters to 1716 meters. 

Bookstein digitized 6 landmarks on scanning 
electron micrographs of the specimens (Figure 1). 
Two magnifications were used, and so the data with 
a magnification factor of 171 have to be multiplied 
by 1.71 to put them on the same scale. Two plots of 
landmark distance AB, AC, AF, CF, D - AC, and 
E AF before and after correction are given in 
~ k u r e s  2 and 3. There is considerable hetero- 
geneity before correction, and one specimen in 

Figure 1. Landmarks on Brizal~na. From Bookstein (1991). 

Reyment and Bookstein (1989), it can be seen that 
samples 2-5 all have coefficients of variation similar 
to those obtained for the larger samples measured 
directly by Reyment. Bookstein had selected the 
material to digitize from the larger samples and 
apparently selected a very unlikely homogeneous 
sample of 10 from the larger sample available to 
Reyment. 

Therefore, I have chosen to compare only 
samples 2-5 and have left out specimens 30 and 40 
as potentially different polymorphs. Some of the 
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Figure 2. Plot of inter-landmark distances for Brizalir~a coordinates. Data not corrected for magnification. Units are 
arbitrary digitizing units. Specimens marked as 7 should be enlarged by 1.71. 

methods described in Reyment's contribution to this and D AC and E A F  as the heights of the triangles 
volume would be worthwhile to try as well. formed by DAC and EAF, respectively, as putative 

I used the 6 landmarks to generate 6 heights for these chambers. 

distance measures, namely AB, and C F  as the A canonical variates analysis and the 
nearest things to length and width, AC and A F  as Mahalanobis 0 2  computed for the four samples (2-  
the ultimate and penultimate chamber diameters, 5) indicated that there were no significant 
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Figure 3. Plot of inter-landmark distanccs for Brizulirtu coordinates. Data corrected for magnification. Arbitrary 
digitizing scale increased due to magnification correction for specimens markcd 7. 

differences among the vectors of means. Therefore population. In other words, the effects of sampling 
whatever differences are seen are those that would cannot be ruled out as the cause of the differences. 
occur by random sampling from one biological In two experiments, I mixed up the 
population. It is not necessary to explain the remaining 38 specimens and actually did a random 
differences as random changes since all of the sampling of four samples, 2 random samples of 10 

Occur random from One specimens each and 2 random samples of 9 

specimens each. The results were similar to those 
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observed. The only indication in the original 
analysis of possible real differences among the 
samples was Roy's largest root criterion which was 
significant at  the 10% level. 

A robust fit of the specimens using Rohlfs 
G R F  program, both to a consensus specimen for 
each sample separately and to the entire group of 
50 specimens (no correction for magnification is 
necessary here), pointed to good conformity for the 
landmarks A,C and F. The most variable landmark 
is B, the position of the proloculus; followed by D 
and E, the two chamber height landmarks. 

As the number of chambers is variable in 
these foraminifera, and one really does not know 
how many they have, there is biological support for 
the variability of proloculus position. We might 
suggest that the position, A, of the orifice relative to 
the sizes of the last two chambers is rather stable. 

O n  the other hand, as pointed out by Bookstein 
(Reyment and Bookstein, 1989), the positions of D 
and E are the poorest landmarks, and they are 
somewhat arbitrarily determined as kinds of 
maxima. Therefore the variability may reflect this 
fact and also variability in attempting to locate a 
similar point over the specimens. 

Note that I have hesitated to analyze the 
data stratigraphically. I see no reason to spend 
additional time on this set of data. I would have 
liked to have had more data, and feel the original 
larger data set of Reyment may have been more 
informative had all specimens been digitized. 

In conclusion, this would not be a good data 
set to invest a lot of time in. Any analysis 
comparing methodology would have limited or no 
value. 
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Reification of Classical Multivariate Statistical Analysis 
in Morphometry 
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Abstract concerned with finding a mathematical description, 

The rapid spread of multivariate statistical methods 
in morphometrics, the study of morphological vari- 
ability in living and fossil organisms, resulting from 
the ubiquitousness of computer programs for stan- 
dard procedures, has created difficulties for the 
reification of vectors in principal component and 
canonical variate analyses. This is particularly so 
for situations in which the data diverge significantly 
from multivariate normality. Questions of stability 
of eigenvectors and the correct analysis of compo- 
sitional data are taken up as well as the comparison 
of results of analyses obtained by different methods. 
An overview of multivariate procedures is given in 
which more important procedures are compared 
and contrasted. The methods are illustrated by 
means of data on microfossils. 

Introduction 

Reyment, Blackith and Campbell (1984) have given 
a detailed review of the history and conceptual 
background of Multivariate Morpllomefrics. I refer 
the reader to that volume for a general presentation 
of the subject, as well as a comprehensive bibliog- 
raphy. 

The basic geometrical concepts underlying 
multivariate statistics are quite simple. One is 

albeit idealized, of clusters of points in a space of 
two or more dimensions. For one population, we 
are interested in describing the geometrical prop- 
erties of a sample forming a single cluster of points. 
In morphometric analyses on continuous variables 
it is usual to assume that these are multivariate 
normally distributed. The property of multivariate 
normality is a necessary requirement if hypotheses 
are to be tested, since the relevant statistical theory 
has been built around the requisite of normality. If 
the testing of hypotheses is not central to the inves- 
tigation, then the nature of the distribution of the 
points is not decisive. In Numerical Ecology, for 
example, abundancy data (frequencies) are anal- 
ysed by all the standard multivariate methods with- 
out untoward concern for theoretical niceties, since 
the principal aims of such studies are  graphical 
displays. 

Many problems arise in morphometrical 
work in which it is necessary to compare two or 
more clusters of points. This is a more complicated 
situation than for one sample, for we must consider 
not only the statistical properties of each cloud of 
points, but also relate the clusters to each other. 
This added element introduces further geometrical 
consequences. 
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The main theme of the present article is to 
discuss what can be done when the data do not 
conform with the theoretical requirements of multi- 
variate-normally distributed variables in Cartesian 
space. Such data are far more common than is 
generally recognized. The most familiar deviation 
is when one or more outliers occur in a sample. 
This topic has attracted much attention of late, to 
which attests the growing number of articles and 
books on the subject. The structure of multivariate 
data can also be conclusive in an analysis. We shall 
be concerned with assessing the stability of eigen- 
vectors in multivariate work, particularly in appli- 
cations in which the elements of a vector are 
reified, that is, furnished with a morphometrical 
interpretation. 

If our interest lies with ordinating our data, 
then the problems I have just outlined are usually 
not serious and for most purposes can be applied to 
"unsuitable" data without crippling effects. Ordina- 
tion is basically graphically oriented with the end in 
view of representing the properties of a multivariate 
sample in just a few dimensions. 

X 2  

We shall also be taking a close look at the 
multivariate analysis of closed data sets, i.e., sets of 
measurements with a constant sum. Compositional 
data do not arise naturally in morphometrics but 
there are some special situations in which they do 
occur. As an example, consider the procedure 
known as "standardization" in which the measure- 
ments are reduced to a common scale of reference 
by dividing through by some constant. 

A 

.. * 

. 
* 

. 
B 

. 
* ' c 

The goal of this review is to present the 
various methods in general terms, to indicate the 
main assumptions, and to interpret (reify) results. 
We shall begin by taking a guided tour through the 
field of multivariate methodology. 

1 
Figure 1. Three outlying points in relation to a set of bivari- 
ate normally distributed observations. 

The Panoply of Multivariate Methods 
I give here a general overview of the entire field of 
multivariate statistical analysis in order to demon- 
strate the natural relationships occurring between 
the various methods. The subject can be 
approached by reference to Figure 1. This 
schematic diagram illustrates the connections 
between the most commonly employed statistical 
methods. 

The Single Sample 

The most popular methods have been devised for 
the analysis of a single sample of multivariate 
observations. The data will usually be in the form 
of a data matrix, here denoted as X, consisting of N 
rows (the number of observations) and p columns, 
the number of variables. The mean vector or 
centroid is the name applied to a vector composed 
of the means of each of the p variables. The analog 
of the variance of univariate statistics is called the 
covariance matrix, S; the principal diagonal of this 
matrix contains the variances of the p variables. 
The off-diagonal elements are the covariances for 
each possible pairing of the variables. Correspond- 
ing to this matrix there is the correlation matrix, R. 

The most widely used method of multivari- 
ate analysis is that known as principal component 
analysis, based on the simple extraction of eigen- 
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values and eigenvectors of the correlation matrix or 
the covariance matrix. This is the most typical case 
of an R-mode analysis (R signifies the correlation 
matrix, the usual starting point for psychometrical 
studies). Principal component analysis is directed 
towards reducing multivariate data to a smaller 
number of composite dimensions, producing a 
graphical display of the transformed points, and 
attempting to interpret the elements of the eigen- 
vectors. 

Closely related mathematically to principal 
components is the procedure called Factor Analy- 
sis. Factor analysis saw the light of day in psycho- 
logical connections to which the very name bears 
witness-the factors of the nzind. In the form in 
which factor analysis is practiced in psychology, a 
good case can be made for the validity of the 
procedure. However, biologists, geologists, paleon- 
tologists, mining engineers, technometricians, etc., 
began to use the packaging of factor analysis in a 
quite different analytical situation from that of the 
psychometricians. Jiireskog et  al (1976) devoted an 
entire book to the semantic confusion attaching to 
attempts to use factor analysis in descriptive natural 
science, but to little avail. The factor analysis of 
natural science is a variant of principal component 
analysis and was termed principal component factor 
analysis by Jiireskog et al. (1976). 

Still within the framework of the analysis of 
a single sample, we have methods that can be use- 
fully thought of as being inverse forms of principal 
component analysis and its surrogates. These are 
the Q-mode methods (so named by psychometri- 
cians because Q precedes R in the alphabet). 
Briefly, an R-mode method employs associations 
between variables, whereas a Q-mode method uses 
associations between individuals. Thus, when we 
speak of R-space, it is the space mapped out by the 
p variables to which reference is being made. 
When the allusion is to Q-space, it is the space 
formed by the N observations that is meant. 

An early procedure put forward is that 
known as Q-mode factor analysis, in which the 
general methodology of inverted principal compo- 

nent analysis, with divers factor-analytical appurte- 
nances, is applied to a matrix of pseudo-correlation 
coefficients computed between the individual 
specimens of the sample. Principal coordinate 
analysis was developed by Gower (1966) in an 
attempt to stabilize Q-mode usage. It is, in essence, 
inverted principal component analysis and, 
although it can be applied to a standard matrix of 
correlations, it is most applicable in situations 
where some kind of similarity matrix linking the N 
specimens is involved. Gower (1971) proposed a 
quite general similarity matrix for use with principal 
coordinates which has the advantage of allowing the 
simultaneous treatment of data comprising obser- 
vations on continuous, discontinuous, dichotomous, 
and qualitative characters. 

We need to establish an  important point of 
statistical procedure concerning the way in which 
the results of R- and Q-mode analyses can be used. 
The eigenvalues and eigenvectors of principal com- 
ponents are used in many aspects of multivariate 
work, including tests of significance and in develop- 
ing statistical models. The eigenvalues and eigen- 
vectors of Q-mode analyses do not have the same 
scope and it is not legitimately possible to attempt 
to reify the elements of the vectors. The aim of 
Q-mode analysis is graphical, with the end in view 
of providing an appraisal of the inter-relationships 
between the individual specimens of the sample and 
the possible existence of clustering in the data. An 
example will serve to illustrate this point. A biolog- 
ically homogeneous sample (i.e., a sample compris- 
ing specimens from a single interbreeding species) 
can, on analysis, display groupings into several 
separated entities due to size and shape differences. 
Such a situation arises naturally in many species of 
marine ostracods. The separations indicated by the 
Q-mode analysis can supply a starting point for the 
recognition of sub-samples for further study. 

Is there a simple mathematical relationship 
between Q-mode and R-mode? The answer is yes. 
The basic work on the subject is that of Eckart and 
Young (1936) who enunciated the theorem for the 
singular value decomposition of a matrix. This 
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theorem states that any rectangular matrix can he 
decomposed into three matrices. In factor-analytical 
connotations, the singular value decomposition is 
usually known as the basic structure of a matrix. 
By means of a simple transformation, one can pass 
from a representation in Q-space to one in R-space, 
a facility that can be exploited for computational 
purposes. 

There are two popular methods of multi- 
variate data-analysis that make use of the singular 
value decomposition of a data matrix. The more 
widely known of these is the method called corre- 
spondence analysis. The basic features of corre- 
spondence analysis were recognized by M. 0. 
Hirschfeld (later Hartley) in 1935. Since then the 
concept has been rediscovered many times and can 
be found as the discriminant analysis of contingency 
tables and, in ecological work, as reciprocal averag- 
ing. Later, the method was derived independently 
in France in an environment of its own so that the 
terminology of Benzecri (1973) is quite alien to 
Anglophones. This fact can give the impression that 
something quite new has evolved, but, as proved by 
Hill (1974), this is not so. Correspondence analysis 
is a useful graphical technique which allows simul- 
taneous representation of Q- and R-mode relation- 
ships on the same plot. Greenacre (1984) shows 
how the method can be worked into standard 
multivariate connections, particularly canonical 
correlations, and ter Braak (1986) has produced a 
broadly conceived procedure for ecological work 
which he calls canonical correspondence analysis. 
The hallmark of correspondence is the method of 
scaling the axes used in the plots. 

Gabriel (1968) produced a Q-R-mode 
development called the biplot in which the 
Q-R-mode duality forms the basis as in the forego- 
ing case. The biplot is similar to correspondence 
analysis in the general approach used, but the 
graphical aims are different and there is an asym- 
metry in the way the rows and columns of the data- 
matrix are treated which is not found in correspon- 
dence analysis. 

One of the ideas central to the graphical 
aspects of one-sample studies is that the distances 
between objects should not be seriously distorted by 
the reduction in dimensionality. An informative 
way of gauging distances between two-dimensional 
representations of a highly multivariate situation is 
to superimpose a minimum spanning tree on the 
plot. A good reference for trees is Gordon (1981). 

Two Samples 

The best known of all the multivariate methods is 
that known as the linear discriminant function, 
proposed by Fisher (1936) in answer to a taxonomi- 
cal problem in botany. While Fisher in England 
was looking at the problem of distinguishing 
between two populations on the basis of multivari- 
ate samples, Mahalanobis, in India, was attempting 
to find a means of measuring multivariate statistical 
distance between two or more populations. Inde- 
pendently of British and Indian work, Hotelling in 
the United States was producing a test for ascer- 
taining whether two multivariate samples were 
statistically different, an analogue of the univariate 
t-test. Surprising as it may seem today, the close 
connections between all of these methods, intro- 
duced about the same time, was not recognized and 
much printers' ink was expended and chauvinistic 
polemics vented before all the difficulties were 
ironed out. Briefly, the Mahalanobis generalized 
statistical distance measures the distance between 

two populations. Hotelling's ? tells us whether this 
distance is significant, and Fisher's linear discrimi- 
nant function computed between the two popula- 
tions provides a means of assigning a new specimen 
to either of the populations, with the understanding 
that it really belongs to one of them. The alge- 
braical connections between the three procedures 
are straightforward. 

The linear discriminant function and the 
generalized statistical distance, as originally 
proposed, take no account of structure in the data, 
apart from the requirement that the samples be 
drawn from multivariate-normally distributed popu- 
lations. Thus, little attention was paid to geometri- 
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cal considerations concerning the orientations of 
the sample ellipsoids and their inflations, robust- 
ness, etc. Anderson and Bahadur (1962) considered 
the generalized distance when the covariance 
matrices are unequal and proposed a multivariate 
version of the Behrens-Fisher univariate procedure. 
Non-linear observations require some special tech- 
nique such as the quadratic discriminant function but 
the usefulness of this method for general work is 
not great as it does not yield a vector of reifiable 
discriminant coefficients. 

Can the analysis of two samples by discrimi- 
nant functions be related to the methods of the first 
section? There is one obvious connection, to wit, a 
geometrical interpretation in terms of the eigenval- 
ues and eigenvectors of the individual samples. The 
information held in principal components can be 
applied to the interpretation of the geometry of 
clusters of points forming the data-ellipsoids. This 
is one good reason for letting principal component 
analyses form the basis of a large-scale study. To 
opt for a factor-analytical solution exclusively cuts 
you off from a wide range of developments that 
would otherwise be open to you. 

Several Populations 

The step from two to three or more samples is not 
as straightforward as one might hope. The reason 
for this is that the methods of calculation become 
more complicated, and it is no longer possible to 
use simple matrix manipulations for producing the 
analogs of discriminant function coefficients, for 
example. The method used for studying samples 
from k populations is conveniently referred to as 
canonical variate analysis, a set of interlocking 
techniques that encompass the multivariate analysis 
of variance, the graphical display of results 
(discriminant coordinates) and the properties of the 
eigenvalues and eigenvectors of the sum of within- 
groups matrices of sums of squares and cross- 
products, W, and the corresponding between-groups 
sums of squares and cross-products matrix, B. The 
sum of these two matrices gives T, the total sum of 
squares and cross-products matrix. There are 

simple relationships between the eigenvalues of all 
combinations of any two of these matrices. 

MANOVA, the multivariate analysis of 
variance, asks whether the centroids of the popula- 
tions differ significantly; this is a simple generaliza- 
tion of one-way ANOVA. Multiple discriminant 
analysis looks to differentiating between samples 
and assigning new individuals to one of the 
constituent populations. The elements of the signif- 
icant eigenvectors are the coefficients of the 
discriminant functions. For two samples, the linear 
discriminant function of the preceding section is 
obtained. 

Relationships Between Sets 

One may wish to ascertain whether a set of 
morphological measures is correlated with a set of 
ecological factors. Many attempts at doing this are 
made by means of principal components or one of 
its surrogates in which morphological and ecologi- 
cal measures are mixed in the same matrix. The 
technique of canonical correlation is more directly 
applicable, however (Cooley and Lohnes, 1971; 
Pimentel, 1979). Canonical correlation produces a 
set of correlations between various linear combina- 
tions of the variables of the two sets. As already 
noted, canonical correlations can be conveniently 
worked into the method of correspondence analysis 
(Greenacre, 1984; ter Braak, 1986). 

When Things Go Askew 
All that has been said in the foregoing sections 
applies strictly only when the data conform with the 
multivariate Gaussian model. Much morphometric 
material does just this and any deviations that occur 
are so slight as to be of no importance for the out- 
come of an  analysis. Principal component analysis 
tends to be robust to minor deviations from the 
theoretical distribution. Canonical correlation is, 
on the other hand, sensitive to deviations; this is 
also true of canonical variates. 

The question that now arises is, when do you 
know that your data are "dicey"? My advice is to 
start every investigation with a careful graphical 
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appraisal of the data: histograms of each of the the development of a strongly extended posterior in 
variables, scatter diagrams of all pairs. Explicit both males and females. 
tests for multivariate normality are available, but 
these tend to be rather extravagant with respect to 
computing time and can only be realistically 
performed on a main-frame computer. A useful 
graphical technique is the Q-Qprobability plot, 
which can be applied to multivariate data via the 
Mahalanobis generalized distance. If the prelimi- 
nary study indicates that your data conform reason- 
ably well with the multivariate normal distribution, 
there is probably no need to become involved with 
any of the techniques discussed in the following 
pages. But please keep in mind that the fact that 
data can be shown to be univariate normal for each 
variable is no guarantee that they are together 
multivariate normal. For multivariate data, obser- 
vations are often only found to be atypical when 
some value is considered in relation to the other 
values of the sanze samnple. 

Atypical Values 

We begin by asking what is meant by an "atypical 
value." An atypical value is one that deviates 
markedly from its fellows but is not alien to the 
sample to which it belongs, in the sense that it is not 
a wrong observation. In other words, an atypical 
value can be biologically perfectly acceptable but 
inadmissible in the eyes of the statistician. The 
performance of a statistical procedure may be 
adversely affected by atypical values to the extent 
that a misleading result is yielded. As a conse- 
quence of this, analyses of different samples of the 
same material can suffer from poor repeatability. 

The most immediate source of atypical 
values in a biologically homogeneous sample is 
polymorphism. Polymorphism in ornamental 
features is sometimes accompanied by polymor- 
phism in the outline of the shell. This is particularly 
common among ostracods in which pleiotropic 
relationships occur frequently. For example, in the 
Paleocene species Leprninocythereis lagaghi- 
rohoemis Apostolescu, regular reticulation of the 
lateral surface of the carapace is accompanied by 

Campbell and Reyment (1980) analyzed 
polymorphism in a Late Cretaceous benthic 
foraminifer Afrobolivina afra Reyment. I t  was 
found that pseudomegalospheric individuals tend to 
distort bivariate scatter diagrams, principal compo- 
nent plots and canonical variate graphs. 

Some statisticians advocate "trimming" of 
data, whereby markedly atypical values are deleted 
from the sample. This is not to be recommended in 
biological studies for the reason that important 
specimens may be removed from the analysis. 
However, the solutions available for "robustifying" a 
multivariate analysis can hardly be claimed to 
supply a perfect answer to the problem. 

Robustifying procedures are usually 
constructed so that full unit weight is given to 
reasonable observations and reduced weight to 
atypical values. In multivariate work, this is done 
by utilizing the individual generalized statistical 
distances for each observation in relation to the 
centroid of the sample for assessing the weights and 
a robust average value and a robust estimate of the 
covariance matrix. Rhoads (1984, p. 248) pointed 
out that the main weaknesses in most multivariate 
analyses is their reliance on standard packages, 
which leads to a sterotyped treatment of morpho- 
metric problems. Seber (1984) has reviewed this 
question in the light of the reluctant acceptance of 
robust procedures by statistical practitioners. 

Influential Observations 

An influential value is one that does not show up as 
a multivariate outlier but which, nonetheless, would 
bring about a substantial change in the results of an 
analysis if it was omitted. This subject has been 
given close attention by Krzanowski (1987a, 1987b). 
This subject is taken up in the section on principal 
component analysis and cross-validation. 
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Reification and the Stability of Eigenvectors 

In most analyses of morphometric distance- 
measures, the analyst wishes to provide the compo- 
nents of the eigenvectors with a biologically mean- 
ingful interpretation. This desire stems from a 
paper by Teissier (1938), who applied an early 
variant o f  principal component factor analysis (c.f. 
Jiireskog et al., 1976) to the s t ~ ~ d y  of sexual dimor- 
phism in the crab M~iu scpinmfu. H e  interpreted 
the first principal component in terms of variation 
in size and shape, an idea that was resuscitated by 
Jolicoeur and Mosimann (1000). That the first 
principal component can often betlave as an indica- 
tor of variation in size has been suggested by many 
other workers. Jolicoeur and Mosimann (1960) also 
claimed that the second principal component for 
distance-measures on an organism is a descriptor of 
differential changes in shape. 

As far as my experience goes, the principal 
component interpretation of size and shape can be 
reasonable if the first two eigenvectors extract 
almost all of the variation in the covariance matric 
of logarithmic:dly transformed variables. This 
implies that the covariance matrix is of rank two. If, 
however, the eigenvalues trail off slowly, the princi- 
pal component method is not useful. Rao (1964) 
tried to provide the principal component approach 
with a theoretically satisfactory accoutrement but 
was only partially successful because of the diffi- 
culty in reconciling biological reality with statistical 
facts. 

What happens if we do not have an ideally 
constituted data-set? This is a really difficult point 
and one that is not greatly loved by the main host of 
users of multivariate procedures. What is to be 
done with the myriad of data-analyses that are 
flawed in some manner and how can we judge 
whether one of these analyses is defective to such 
an extent that the reifications proposed are 
misleading? I regret to have to say that there is no 
patent answer to these vexing questions for the very 
reason I have already mentioned, namely, that 
standard packages take little or no account of 

deviatory data (Rock, 1987). Fortunately, the 
effects of non-conformability with statistical theory 
on the ordination of multivariate data-points is 
much less severe. As Maurice Bartlett once said, 
any linear combination will ordinate multivariate 
data to some degree providing there is structure in 
the set of observations. 

Campbell (1979, 1980a, 1980b) and Camp- 
bell and Reyment (1978) examined the question of 
stability in the coefficients of principal components 
and canonical variates. In canonical variate analy- 
sis, the question asked is, how stable are the 
elements of the canonical vectors in biological work 
if there is overweighting of redundant or near- 
redundant directions of within-group variation? 
One might ask what does it matter if the elements 
of the vectors are not stable. The answer to this is 
that if we sample repeatedly from the same source, 
we have a right to expect that a statistical method 
applied to these samples yields the same results 
within the limits of sampling variation. If some- 
thing is unduly influencing the results, we can place 
little confidence in what we are doing. A good idea 
of the health of a sample can be obtained by a 
jacknifed principal component analysis, which will 
give indications as to the stablity of the eigenvec- 
tors. This has been used by Krzanowski (1987a, 
1987b). 

Canonical Variates and Ridge Regression. For the 
purposes of discussing stability, it is convenient to 
regard canonical variate analysis as a two-stage 
rotational procedure. The first rotation produces 
the principal components of the pooled samples via 
the within-groups covariance matrices. It is useful 
to transform the within-groups concentration- 
ellipsoid into the corresponding concentration- 
circle by scaling each eigenvector by the square root 
of the corresponding eigenvalue. The second rota- 
tion corresponds to a principal component analysis 
of the group means in the space of the orthogonal 
variables. 

Consider now the variation along each 
orthogonalized value, i.e., principal component. 
Where there is hut little variation between groups 
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along a particular direction, and the corresponding 
eigenvalue is small, marked instability may result in 
some of the coefficients of the canonical variates. 

The use of so-called shrinkage or ridge- 
regressional constants overcomes the instability in 
the coefficients. The shrinkage constants are added 
to the eigenvalues before they are used for 
standardizing the corresponding principal compo- 
nents. This maneuver has the effect of greatly 
expanding the variances of the orthogonalized 
variables. 

Steps in the Calculations: 

1. Begin with the usual within-groups matrix 
of sums of squares and cross-products matrix 
(SSQPR) W and the between-groups matrix of 
SSQPR, B. Matrices W and B are then standard- 
ized to the corresponding correlation matrices Rw 

and RB by computing 

and 

1 1  R, = S- BS' , (2) 

where the diagonal matrix S is the square root of 
the diagonal elements of W. 

2. Compute the eigenvalues, ei, and eigen- 

vectors, ui, of Rw. 

3. The eigenvectors are scaled by multiply- 
ing them with the square root of the corresponding 
eigenvalues. This results in within-groups sphericity. 

4. Shrunken estimators are introduced by 
adding shrinking constants ki to the eigenvalues ei 

before the scaling exercise has been carried out. 
Thus, 

K = diag(kl, ...., $1 
and 

5. Construct the between-groups matrix in 
the space of the within-groups principal compo- 
nents: note that the matrices Q and U are 
subscripted as in (3) ,  to wit, (kl, ....., . 

kP) 

The ith diagonal element of Q in (4), qi, is 

the between-groups SSQ for the ith principal 
component associated with RB. The diagonal 

elements, qi, play an important role in the interpre- 

tation of the stability status of the canonical vectors. 

6. Compute tr Q and then perform 
(0, ..., 0) 

the eigen-extraction for Q. This yields the usual 
canonical roots, f, and canonical vectors for the 

principal components, a". These canonical vectors 
are given by the relationship 

7. The shrunken estimators are found 

directly from the eigenvectors as of Q with 

for the full range of ki. 

Equation (6) yields the desired canonical 
vectors. 

It is often found that marked instability is 
associated with a small value of e together with a 

P 
small value of the corresponding diagonal element 
of Q, qp. If the eigenvector corresponding to e 

P 
contains one or two dominant loadings, these vari- 
ables tend to be the ones that are unstable under 
repeated sampling. A reasonable idea of possible 
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instability in canonical vectors can therefore be 
obtained by inspecting the smallest eigenvector of 
the within-groups matrix of correlations. 

Illustration 

In order to illustrate the concepts involved in the 
foregoing account, I shall analyse data on a species 
of ostracods from the Cretaceous of the sub-surface 
of the Tarfaya Basin, Morocco. The measurements 
consist of length and height of the carapace and the 
distance of the adductor muscle field from the 
anterior margin and the dorsal margin on the 
species Veeniu rotunda. There are four samples 
comprising sample-sizes 18, 8, 31, and 24 individu- 
als. The hasic statistics for these data are listed in 
Table 1, to wit, the between-groups SSQCP-matrix, 
the within-groups correlation matrix, the within- 
groups standard deviations and the sample means. 

Let us first examine the eigenvalues and 
eigenvectors of the within-groups correlation 
matrix, listed in Table 2. As is usually the case in 
morl~hometric work, the first eigenvector has 
approximately equal elements. The second and 
third eigenvectors contain positive and negative 
elements, with some large loadings. The smallest 
eigenvector, which is connected to a very small 
eigenvalue, contains two quite large loadings, to 
wit,that for length of carapace and that for dorsal 
distance of the adductorial field; moreover, these 
loadings bear opposite signs. Bearing in mind a 
previous remark, we can begin to suspect that these 
elements will be unstable in the canonical variate 
analysis. This feeling is reinforced by the fact that 
q4 is very small (Table 2). 

The results of the standard canonical variate 
analysis are listed in Table 3 together with the same 
analysis, with the addition of a shrinkage constant 
to the contribution of the fourth principal compo- 
nent. Tr(Q) for the usual canonical variate analysis 
is 1.768 and for the adjusted analysis, 1.721, so the 
loss of discriminatory information is negligible. 
Consider now the standardized vector-elements. In 
the case of the first canonical vector, there is a drop 
from about 0.6 to 0.1 for length and a 

Table 1. Basic statistics for four samples of Veenia rofunda. 

Between-populations matrix (upper diagonal) and within- 
groups correlation matrix (lower diagonal). 

varl  var2 var3 var4 
varl 1800.0 341.8 370.0 1403.0 
var2 0.8354 393.9 174.5 656.2 
var3 0.4755 0.4871 95.65 288.3 
var4 0.9255 0.7694 0.4302 1095.0 
Standard Deviations 

Table 2. Principal component analysis of within-groups 
correlations and values of diae 0. 

eigenvectors 
vector 1 vector 2 vector 3 vector 4 

length 0.5510 -0.2293 -0.2154 0.7729 
height 0.5233 -0.2323 0.8233 -0.1800 
adductor-1 0.3714 0.9226 -0.1021 -0.0195 
adductor-2 0.5335 -0.2845 -0.5143 -0.6081 
eigenvalues 3.0100 0.6841 0.2407 0.0652 
diag Q 0.82W 0.1484 0.7433 0.0474 

tr Q = 1.7681. 
N.B. adductor-1 denotes the distance from the anterior 
margin to the adductorial tubercle; adductor-2 denotes 
the distance from the dorsal margin to the adductorial 
tubercle. 

corresponding increase for the fourth variable. The 
changes in the second and third elements are slight. 
Instability evidenced in the second canonical vector 
is not of any consequence. 

l ~ a h l e  3. Canonical variate analyses for the first two1 
canonical roots. 
A. Usual analysis. 

I canonical vectors (standardized)l 
vector 1 vector 2 

length -0.5~)8 0.3420 
height 
adductor-1 0.1608 -1.1440 
adductor-2 -0.1344 0.0964 
canonical roots 1.6318 0.1332 0.0031 
B. Analysis using shrinkage constant. 

I canonical vectors (standardized)l 
vector 1 vector 2 

length -0.1033 0.1457 
height 1.3420 0.5248 
adductor-l 0.1492 -1.1440 
adduetor-2 
canonical roots 1.5877 0.1327 
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We can also briefly consider the example A robust estimator can be defined by intro- 
published by Campbell and Reyment (1978). Here, ducing a weight-function which depends on the 
only the main points of the analysis are taken and discrepancy between an observation and some 
for the full details, the reader is referred to the robust average value relative to a robust measure of 
work cited. scatter. This can be done by means of the influence 

Nine variables were measured on the test of 
the Maastrichtian foraminifera1 species Affobolivina 
aka.  The smallest eigenvalue of the within-groups 
correlation matrix accounts for only 1.7% of tr RW. 

The corresponding eigenvector contains two large 
elements for characters 2 and 4. The corresponding 
between-groups SSQ for these principal compo- 
nents is q9 = 0.21, which is relatively small. These 

three conditions are strongly indicative of the 
possibility of instability in the canonical vectors. 
This could be shown to be the case. Shrinkage of 
the contribution of the ninth principal component 
led to greatly improved stability in the canonical 
variate coefficients without marked loss of discrim- 
inatory information (Campbell and Reyment, 1978, 
p. 355). 

In many canonical variate analyses of 
morphometric variables, an attempt is made to reify 
the coefficients, usually in terms of variation in 
shape and size. This idea carries over from what is 
often done in principal component analyses. 
Despite the fact that I have been guilty of attempt- 
ing just this, I find it difficult, on mature considera- 
tion, to provide the reification of canonical vectors 
with an acceptable rationale unless all covariance 
matrices are equally inflated and identically 
oriented. This is almost never the case. Numerous 
examples of canonical variate reifications are 
reviewed in Reyment, Blackith and Campbell 
(1984). 

Robust Estimation Procedures 

Robust multivariate procedures are a simple modi- 
fication of the standard methods of univariate anal- 
ysis. The contribution of an observation to the 
statistic of interest is given full unit weight if it is a 
reasonable value; otherwise its contribution is 
downweighted. 

function (cf. Hampel et  al., 1986, p. 40) and 
bounding the influence of observations with unduly 
great discrepancies. The influence function allows 
a comparison of the results of an  analysis with, and 
without, a suspected atypical observation. For 
multivariate data, the fundamental expression of 
discrepancy is the Mahalanobis Generalized Statisti- 
cal Distance. If we let x represent the p x 1 vector 
of sample-means, and S the sample covariance 
matrix, then the squared distance of the mth obser- 
vation from the centroid of the observations is: 

Q-Q probability plots of the d i  may be used to 

examine the assumption of a multivariate Gaussian 
distribution. The way in which the plot works is 
that atypical observations tend to deflate the 
covariances and inflate the variances, which will 
affect the generalized distance for that observation 
and hence distort the remainder of the plot (Seber, 
1984, p. 165). 

The robust estimation of multivariate loca- 
tion and scatter can be made efficiently by the 
method of M-estimation (Hampel et al., 1986, pp. 
37, 100). The name derives from "generalized 
Maximum likelihood estimation." The appropriate 
measure of discrepancy is, again, the generalized 
statistical distance. Inasmuch as M-estimators have 
begun to appear more and more frequently in the 
statistical literature, I give below the main features 
of the methodology. 

The usual method of estimation 

We require the squared Mahalanobis statistical 
distances as in (7). A fixed proportion, z, (say 0.1) 
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of the xnl with the greatest distances, are temporar- 

ily removed from the sample and the values of K 

and S recomputed (based thus on N(1-z) individu- 
als). One then iterates to a final estimate of S: this 
procedure is known as multivariate trimming. It 
suffers from several drawbacks because it produces 
a biased estimate. 

M-estimators offer a better approach. The mean 
can be estimated iteratively from 

and the covariance matrix from 

Here wl  and w2 are the appropriate weight- 

functions estimated by the method proposed by 
Maronna (1976). 

The weak point of M-estimation is that there 
is a low level of "breakdown," that is, the proportion 
of outliers tolerated (Seber, 1984, p. 156). The 
method of estimation I use is that developed by 
Campbell (1979, 1980a, 1982), namely, the 
redescending psi-function. According to this proce- 
dure, one estimates the covariance matrix as in: 

Table 4. Robust analysis for samples 1 and 2 of Veenia 
fawwaret~sis from the Santonian of Israel. Usual correlations 
in upper diagonal, robust correlations in lower diagonal. 
Sample 1 

var 1 var 2 var 3 var 4 var 5 var 6 var 7 
v a r l  1.000 0.617 0.270 0.892 0.816 0.836 0.616 
var2 0.583 1.000 0.347 0.727 0.896 0,692 0.868 
var3 0.209 0.338 1.000 0.157 0.320 0.417 0.222 
var 4 0.875 0.636 0.059 1.000 0.883 0.812 0.737 
var5 0.850 0.746 0.255 0.869 1.000 0.818 0.828 
var6 0.806 0.500 0.372 0.735 0.726 1.000 0.624 
var 7 0.547 0.569 0.095 0.629 0.568 0.352 1.000 
means 
usual 1.030 0.557 0.221 0.451 0.428 0.481 0.439 
robust 1.035 0.564 0.221 0.454 0.435 0.486 0.445 
ratio of robust to usual variance 

0.87 0.27 0.99 0.75 0.46 0.71 0.35 
Sample 2 

var 1 var 2 var 3 var 4 var 5 var 6 var 7 
va r l  1.000 0.753 0.539 0.871 0.938 0.885 0.680 
var2 0.760 1.000 0.760 0.952 0.863 0.604 0.703 
var3 0.526 0.710 1.000 0.776 0.521 0.278 0.299 
var4 0.934 0.846 0.487 1.000 0.912 0.683 0.653 
var 5 0.955 0.800 0.529 0.945 1.000 0.851 0.757 
var 6 0.917 0.732 0.649 0.857 0.870 1.000 0.691 
var 7 0.587 0.668 0.551 0.578 0.568 0.547 1.000 
means 
usual 0.996 0.549 0.228 0.444 0.413 0.468 0.466 
robust 0 . W  0.548 0.216 0.441 0.415 0.472 0.469 
ratio of usual to robust variance 

0.73 0.13 0.10 0.27 0.48 0.81 0.58 

A comprehensive account of the field of 
robust statistics is given in Hampel et  al. (1986). 

Robust Canonical Variate Analysis 

Details of how to program robust procedures of 
estimation in canonical variate analysis are given in 
Campbell and Reyment (1980, pp. 209-211). In the 
example illustrated in Figure 2a-c and Table 4, use 
is made of probability plots to unveil atypical 
values; here, the Wilson-Hilferty cube-root trans- 
formation of a gamma variable to Gaussian form is 

used. The ordered values of d? are  plotted 

against the ordered quantiles of a Gaussian distri- 
bution. 



134 Richard A. Reyment 

It is necessary to be on the watch for the 
absolute influence of a differing observation, even if 
the divergent point may seem to have a large rela- 
tive influence. Looks may deceive the eye and it is 
often found that such a point may have little effect 
on the statistics of interest. Figure 1 shows a tight, 
elliptical concentration of points with three outlying 
observations A, B, and C. The effect of point A is 
to inflate the variances of x l  and x , but i t  does not 

2 

markedly influence the correlation between these. 
Point 13 reduces the correlation and inflates the 
variance ofxl but has little effect on the variance of 

x2.  Point C exerts little influence on the variances 

t 3 ~ 1 t  it reduces the correlation. 

1 shall illustrate robust canonical variate analysis by 
reference to a Santonian (Upper Cretaceous) 
species of ostracods frorn Israel, Vr.er~icr fuwwurensis, 
reccntly studied in detail by Abe et al. (1988). The 
data comprise seven distance measures on the 
cnrap:ice of the ostracod (cf. Abe et al., Figure I) .  
l'llese variables are (1) length of the carapace, (2) 
height o f  the carapace, (3) distance from the eye 
tubercle to the adductor tubercle, (4) distance from 
the adductor tubercle to the postero-ventral angle, 
(5) posterior carapace-height, (6) length of the 
hinge, (7) breadth of the carapace. There are three 
samplcs consisting of 32, 26 and 24 specimens, 
respectively. The analysis summarized in Table 4 
and Figure 2a-c has the following points of interest: 
The first sample is reasonably multivariate normal, 
apart from one atypical value (Figure 2a). The 
second s:irnple is also multivariate normal with the 
exception of two atypical values (Figure 2b). There 
are no atypical values in  the third sample (Figure 
2c). 

I low serious are the effects of atypical values 
o n  correlations and means? It will be seen in Table 
4 that all means are influenced and the correlations 
more \o. In the first sample, the ratio of the robust 
variance to the usual variance for variables 2, 5, and 
7 differs in  each case greatly from unity. We also 

-'. 
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Figure 2. a. 0-0 probability plot for sample 1 o f  Veeniu 
Jawwarcr~.sis showing one atypical example. This example 
was identificd as rare ccomorph of the spccics. Abscissa = 

normal ordcr statistics; ordinate = ordered observations. 
N=32 .  b. 0-0 probability plot for sample 2 of the ostracod 
spccics Vecriia Jawwaret~si.~ displaying two atypical observa- 

I tions. These wcrc idcntificd as the rare ecomorph of the 
spccics found in samplcl. Abscissa and ordinate as in figure 
2a. c. The 0-0 probability plot for the third sample. The 
procedurc did not indicate any atypical values to occur in the 
data. N =  24. 
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observe that correlations with variable 7 tend to be number of atypicalities, if the data are otherwise 
influenced quite strongly. The ratios between multivariate Gaussian. Canonical roots tend to be 
robust and usual variances for sample 2 are strongly more markedly influenced, as for example in the 
perturbed throughout. The estimates for robust case of Dicathais. 
and usual correlations, variances and means are 
identical for sample 3, which, as you will recall, Robust Principal Components 
contains no atypical values. Campbell (1980a) took up the subject of robust 

principal component analysis. Various technques 
are available such as the jacknife and the bootstrap 
(Efrom, 1979; Efrom and Gong, 1983). Robust 
estimation can be a useful complement to such 
procedures (Hampel et al., 1986). 

A principal component analysis of the 
covariance matrix S (or associated correlation 
matrix R) seeks a linear combination, 

of the original variables xnl such that the sample 

variance of y,, is a maximum. The solution is given 

by the eigen-reduction of S, 

Clearly, a direction ui should not be deter- 

It is instructive to see to what extent the 
atypical values influence the canonical vectors. The 
first two canonical vectors and canonical roots are 
listed in Table 5. It will be seen that the robust and 
usual estimates hardly differ from each other. This 
is not always so, however, as can be seen from an 
analysis for 14 samples of a species of the preda- 
ceous gastropod Dicathais from Australia and New 
Zealand analysed by Campbell (1979). Four 
morphologically diagnostic variables were 
measured on the shell of the species. The first two 
canonical roots and vectors are listed in Table 6. 
Both vectors are changed by robust estimation. In 
the first vector, variable 2 is fairly strongly affected. 
In the second vector, it is the fourth element that is 
most strongly altered. 

It has been my experience that the canonical 
vectors are only slightly influenced by a small 

mined by one or two atypical values. This argument 
is well known from the computation of correlation 
coefficients. In a situation in which all observations 
but one, an atypical value, form a tight ellipse, this 
rogue-observation may well determine the direction 
of the first eigenvector (cf. Figure 1). The first few 
principal components are sensitive to outliers that 
inflate variances and covariances and hence, corre- 
lations; the last few are sensitive to outliers that add 
"spurious dimensions" (Seber, 1984, p. 171). 
Although the subject does not seem to have been 
studied in the literature, it seems reasonable to 
assume that small atypicalities along the direction 
of the first principal axis will have little influence on 
the stability of the eigenvectors. 

An obvious way of robustifying a principal 
component analysis is to replace S by its robust 

estimator s', which is the solution by M-estimators. 
This procedure weights an  observation according to 
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c should reasonably agree with those obtained by a its total distance d,, from the robust estimate of 
principal component analysis of the within-groups 

location, which can be decomposed into matrix of SSQCP, although there is no intrinsic 
constituents along each eigenvector. Thus, if an justification for this belief. 
atypical observation has a large component along 
one direction and small ones along the other direc- 
tions, this situation can be accounted for by apply- 
ing robust M-estimation of means and variances to 
each principal component. The result is that the 
direction cosines will be chosen to maximize the 
robust variance of the resulting linear combination. 

illustration 

The example chosen here to illustrate robust 
principal component analysis is a sample (N = 28) 
of the Santonian ostracod species Veenia fuwwaren- 
sis upon which seven distance-measures are avail- 
able (Abe et al., 1988). The results of essential 
parts of the analysis are listed in Table 7. The 
calculations were made on the mean-centered 
covariance matrix of the variables. It  was found 
that there are no differences at all in the elements 
of the first eigenvectors, but increasingly strong 
differences in subsequent eigenvectors. Thus, the 
effects of an atypical value (a rare morph) have 
been to leave the direction of the first principal axis 
of the ellipsoid of scatter untouched, but to influ- 
ence the orientations of the other axes to varying 

Table 7. Usual and robust principal cornponcnts for ostracod 
data: selected rcsults (N = 28). 

vector 2 vector 3 vector 4 vector 6 
us. rob. us. rob. us. rob. us. rob. 

varl  0.16 0.08 -0.26 0.14 -0.05 0.26 -0.10 0.35 
var2 -0.11 -0.17 0.63 -0.54 -0.14 -0.27 -0.27 0.29 
var3 -0.79 -0.55 0.11 0.23 0.35 -0.64 -0.03 -0.01 
var4 0.29 0.01 -0.06 -0.14 -0.22 0.39 -0.48 0.25 
var5 0.09 0.01 0.09 0.15 -0.20 0.13 0.83 -0.85 
var 6 -0.03 0.37 -0.60 0.71 0.43 -0.16 -0.04 0.03 
var7 0.48 0.73 0.39 -0.30 0.76-0.50 0.06 0.01 

degrees. 

Procrustean Methods 

It is natural to enquire how well different methods 
of multivariate analysis applied to the same data 
duplicate each other. It is sometimes assumed that 
the scores produced by a canonical variate analysis 

Because of indeterminancies in the results 
yielded by some scaling techniques, any attempt at 
comparing scores obtained by different methods 
must allow some kind of transformation of one of 
the sets of coordinates in order to seek as close a fit 
as possible to the other set of coordinates, which is 
held fixed- hence the nomenclatorial analogy to the -. 

activities of the mythical Prokroustes. A good 
account of Procrustean analysis is to be found in 
Gordon (1981, pp. 106-112). In the present connex- 
ion, we shall only be concerned with orthogonal 
Procrustean analysis: there are other varieties 
(Gower, 1987, p. 57). 

Here we consider two ordinations, Y1 and Y2, 

which are two sets of points, PI, ....., PN and Q1, ...., 
ON in r-dimensional space. The goal of orthogonal 

Procrustean analysis is to fit Y2 to Y1, using the 

translation and rotation appropriate to the rotation 
of rigid bodies such that 

is minimized. The translation requires that the 
centroids of the two configurations be superim- 
posed, which is realized by subtracting the column 
means from Y1 and Y2. 

where S has zero elements except for along its 
diagonal, where we have that sl > = s2 > = .... > = 

0, and is the matrix of singular values of Y (cf. 
Joreskog, Klovan and Reyment, 1976, chapter 2, 
section 11). The ordination will, however, usually 
be on different scales, so that it may be necessary to 
estimate some scaling factor to be applied to Y2. 
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The scaling for fitting Y1 to Y2 is not the 

same as for doing the reverse fitting. Hence, the 
2 2 

value of m12 in (11) is not the same as nz 21. If, 

however, both Y1 and Y2 are normalized so as to 

have unit sum-of-squares, then 

which is independent of the order of matching. 
This is sometimes referred to as Cower's nz2 statis- 
tic (Gordon, 1981, p. 110). 

Procrustean methods have a useful part to 
play in multivariate morphometrics: firstly, for 
contrasting ordinations of the same data by differ- 
ent multivariate methods (cf. Gower and Digby, 
1084, p. 22) and, secondly, for ascertaining how well 
distance-matrices for two, or more, different 
functional entities of an organism can produce an 
ordination. A useful theoretical paper is that of 
Sibson (1978) in which the goodness-of-fit between 
two configurations is treated. Procrustean analysis 
can sometimes provide an illustration of how 
answers differ for the same set of data and hence 
give a clue as to why this is so. 

lllustra tion 

A simple application of the technique to scores of 
principal component analyses obtained by robust 
estimation and by the usual method serves to illus- 
trate the method. The data analysed are, as before, 
28 specimens of the ostracod species Veenia 
fuwwarensis from the Santonian of Israel, used in 
the example on robust principal component analy- 
sis. Seven variables were measured on the cara- 
paces of the ostracods. These data are multivariate 
Gaussian, apart from the presence of an  atypical 
value. The scores were computed in the usual 
manner. 

Visual inspection of the scores (Table 8) 
might lead one to suspect that these coordinates 
differ markedly, although the patterns of signs are 
the same. The results listed in Table 8 (first 10 

specimens only) show that the coordinates of set 1 
on best-fit in two dimensions after Procrustean 
rotation differ only slightly from the coordinates of 
set 2 on best-fit on set 1 in two dimensions after 
Procrustean rotation. The close agreement in the 
two sets of coordinates is further documented by 
the small values of the residuals after fitting. This is 

Table 8. Procrustean analysis of first 10 observations for 
sample analysed in Table 7: Veenia fawwarensis from the 
Santonian of Israel. 

Usual scores Robust scores 

I coordinate pairs coordinate pairs 
1 2 1 2 I 

specimen 
1 0.07 0.20 0.41 
2 0.20 0 .  1.13 
3 -0.13 -0.14 -0.70 
4 0.35 0.03 1.94 
5 0.23 -0.14 1.25 
6 0.13 0.23 0.72 
7 0.25 0.06 1.38 
8 0.11 0.05 0.65 
9 0.40 -0.17 1.22 
10 0.37 0.26 2.08 

configurations 

1.10 
0.34 

-0.78 
0.19 

-0.23 
1.30 
0.35 
0.30 
0.65 
1.43 

residuals 
timed fitted 

1 0.0258 0.0975 0.0310 0.0907 0.0085 
2 0.0843 0.0354 0.0882 0.0275 0.0088 
3 -0.0641 -0.0544 -0.0622 -0.0600 0.0056 
4 0.1502 0.0241 0.1539 0.0147 0.0101 
5 0.0960 -0.0558 0.0971 -0.0189 0.0370 
6 0.0509 0.1139 0.0566 0.1068 0.0091 
7 0.1046 0.0367 0.1084 0.0281 0.0094 
8 0.0446 0.0331 0.0483 0.0257 0.0083 
9 0.1278 -0.0666 0.0959 0.0527 0.1419 
10 0.1615 0.1243 0.1673 0.1145 0.0114 

a trivial demonstration, but it serves to make clear 
the utility of the method. 

Compositional Data 
Any vector x with non-negative elements xl, ... 

"P' 
representing proportions of some whole is subject 
to the constraint 

In morphometric work, such a vector can 
arise if the observations have been constrained for 
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the purpose of "standardizing" in the hope that this 
will make the observations size-equivalents. The 
classical reference is Weldon's appendix to Pearson 
(1897), dealing with the analysis of "spurious" 
shrimps. 

Almost everybody will proceed to a routine 
multivariate analysis of compositional data, includ- 
ing many professional statisticians, sad to say. It is 
indeed lamentable that even quite recent statistical 
textbooks fail to present the perils attendant on the 
analysis of closed data-sets. 

Another morphometric example concerns 
semi-qualitative observations on size. Eggs are 
graded into classes on their slipping through holes 
that provide the grounds for the grading. Bivalves 
are classified into size-ranges on a roughly adminis- 
tered sieving procedure (see Aitchison, 1986, pp. 
18, 371). 

Harking back to (13), we note that the 
compsosition indicated by this vector is completely 
specified by a d-part subvector (xl, ..., xd) where d 

= D - 1. Thus, 

Hence, a D-part composition is essentially a 
d-dimensional vector. For the purposes of statisti- 
cal work, Aitchison (1986, p. 27) defines the space 
appropriate to this d-dimensional vector as a d- 
dimensional simplex, embedded in D-dimensional 
real space. In terms of the standard notation of 
sets, this may be stated as 

Ad = ((x xD):xl>O ,..., xD>O; 

The natural sample-space of an N x D com- 
positional data-matrix X is the d-dimensional 
simplex Ad. Each row of X is a D-part composition 
which is represented by a point in hd. Hence, the 
compositions in X appear as N points in Ad. 

Another geometric representation for X takes 
account of the fact that each column of X is an N- 
vector of positive numbers and so can be repre- 

sented as a point in &?. Thus, the compositional 

data in X are represented by D points in IRV. These 

two definitions are of consequence in applied 
multivariate work (R-mode versus Q-mode). 

Aitchison (1986) provides a definition of 
covariance structure that is free from the deficien- 
cies of the crude covariance structure for composi- 
tional data, to wit, the negative bias, diffficulties 
with respect to subcompositions and basis, as well 
as treatment of how to treat the problem of null 
correlation. His solution is to use the log-ratio 
covariance matrix. The sample log-ratio covariance 
matrix is defined as 

"' 4 S=cov( log- , log  ); i , j = l ,  ..., d 
XD "D (14) 

For the principal component analysis of 
compositional data, the centered log-ratio 
covariance matrix is to be recommended, since it 
allows a symmetric treatment of all D parts. This 
matrix is obtained by replacing the single compo- 
nent divisor xD by the geometric mean 

to give the D x D covariance matrix 

C = C O V ( ~ O ~  [%I ,  log [&J ); i. j ..... D . (15) 

This matrix is singular. 

Log-contrast principal component analysis 
may be expressed in terms of the d positive eigen- 
values of the centered log-ratio covariance matrix, 
aligned in descending order of magnitude, and with 
their corresponding eigenvectors (Aitchison, 1986, 
p. 190). 

Illustration 

An example of the analysis of compositional data is 
given in Table 9 in which the results obtained for 
correlations and principal components by the usual 
method and Aitchison's method are compared. The 
data used are artificial (N=27) and simulate 
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standardized morphometric measures on an 
organism. 

It will be seen that there are considerable 
differences in some of the correlation coefficients 
listed in Table 9. The only correlation coefficient 
to escape appreciable change is r24 'I'hese 

differences carry over to the principal components 
but to a less marked degree. The angle between 
the first eigenveetors or the two matrices is about 
loo. IIenee, in the present example, the effects of 
closure on the principal component analysis are not 

'l'nblc 0. Exrirnplc of compositional data-;in;~lysis. 
N o r ~ n s l  correlation matrix (uppcr d i ;~gon;~l)  and simplex 
corrcl;~lions (lower di;~gon:~l): princip;tl coml~oncnts  of tllcac 
matrices. 

var 1 var 2 var 3 var 4 
var 1 1. -03040 -0.2473 -0.356.5 
v a r 2  0.1376 1. 0.1210 -0.hlOl 
var 3 0.2169 0.4553 1. -0.48 I 8 
var 4 -0.6238 -0.7675 -0.7546 1. 
(Significantly different corrcl;~lions markctl in I)old print.) 
PRINCIPAL C O M P O N E N T  ANALYStS  

Simplcx Ilsual 
vari;rble PC1 PC2 PC3 P(:l l'C2 PC3 

1 0.2423 -0.7974 0.2354 0.1335 -0.8358 0.1824 
2 0.3472 0.5701 0.5423 0.4755 0.4915 0.5313 
3 0.2740 0.1588 -0.8060 0.2287 0.1569 -0.8204 
4 -0.8635 0.0505 0.OW3 -0.8387 0.1874 0.1068 

alarming and would not disturb the satisfactory 
reification of the eigenvectors. 

Gower (1087) makes the point that for the 
p~irposes of ordination by principal components, the 
question of closure is immaterial, particularly if the 
data are not continuously distributed and multi- 
variate Gaussian. For the ecological problems with 
which he was concerned, this is indeed so. 
However, the theoretical status of the a r g ~ ~ m c n t  
given by Gower (1987) is flawed (Aitchison, 
personul comrnunicution, 1988). 

Principal Component Analysis and 
Cross-Validation 

We shall now pose the following questions: 

1. Can one say anything more about atypical 
values, over what has already been men- 
tioned? 

2. What can be done about influential values? 
Injuential values do not show up as multi- 
variate outliers but nonetheless bring about a 
substantial change in the results of an  analysis 
from which they are omitted. 

3. Can one be  specific about identifying impor- 
tant variable.~ and, by the same token, 
rcdundunt variahlcs? 

4. Can the dimensionality of a principal compo- 
nent analysis he determined? 

'I'he best way of approaching the foregoing 
questions is to introduce the morphometrically 
relevant aspect? of the topic by reviewing the steps 
in the calculations (Krzanowski, 19873, 1987b). 
'I'he techniques involved are not new, being well 
known in psychometry and chemometrics 
(Kvalheim, 1987). The novel aspects brought in by 
Krzanowski concern the isolation of subtle atypi- 
cality, determining the dimensionality of a principal 
component analysis, and the multivariate recogni- 
tion of influential values. 

Steps in the Calculations: 

1. Compute the eigenvalues and eigenvec- 
tors of the correlation or covariance matrix of the 
data matrix, X. 

S = V L V ' ~  
and 

or by the singular value decomposition 

X = UDV', 

where d: = (N - l)li. 

2. Compute the scores of the principal com- 
ponents 

z = xv. 
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3. For selecting the best number of principal 
components, one proceeds by means of the 

Table 10: Principal components of the correlation matrix for 
31 specimens of the Santonian ostracod species Veeriia 
jawwarerisis for seven distance-mcasures on the carapace (Abe 
et a1.,1989). 
Eigen- 1 2 3 4 5 6 7 
vcclors 
var 1 0.435 0.078 -0.291 0.144 -0.291 0.779 0.091 
var2 0.375 -0.104 0.462 -0.674 0.345 0.237 -0.077 
var3 0.154 -0.894 0.180 0.233 -0.236 -0.040 -0.181 
v a r 4  0.436 0.258 -0.151 0.004 -0.159 -0.295 -0.780 
var 5 0.444 0.035 -0.052 -0.261 -0.474 -0.463 0.540 
var6 0.391 -0.195 -0.492 0.178 0.687 -0.180 0.179 
var 7 0.323 0.279 0.634 0.608 0.138 -0.051 0.146 
Eigcn- 4.4584 1.0455 0.7206 0.3986 0.1803 0.1080 0.0886 
valucs 
S i x  of the component-spaces being compared: residual sums 
o f  squares. 

I 
Variable PC1 PC1 + PC1 + 
deleted PC2 PC2 + 

criterion I.VI,,, which is computed from the average 

squared discrepancy between actual and predicted 
values of the data-matrix by the method of cross- 
validation. 

a) Subdivide X into a number of groups; 

b) Delete each group in turn from the data 
and evaluate the parameters of the predictor from 
the remaining data and then predict the deleted 
values. 

For practical reasons, the group deleted in 
the above procedure should be made as small as 
possible. In the illustration given below, I have 
made each group to be no more than a row of X. 
The method promulgated by Eastment and 
Krzanowski (1982) recognizes the need for allowing 
deletion of variables as well as of objects in order to 
manage the estimation of the data-matrix. 

4. For determining the influence of each of 
the observations, one may proceed by computing 
critical angles between sub-spaces of a common 
data-space. The critical angle used here is inter- 
pretable as a measure of influence of each individ- 
ual in the sample, with t = cos-Id, where d is the 
smallest element of the diagonal matrix D of step 1. 

Large values of the angle are taken to indi- 
cate highly influential observations in the sample 
and hence observations deviating in some manner 
or other. 

5. For scanning the data-matrix for variables 
supplying most information, one proceeds by the 
two-dimensional representation, whereby the 
variables are deleted one by one and the resulting 
residual SSQ examined. Small residual SSQ have 
slight effects on the principal component analysis; 
such a variable should be considered for removal 
from the analysis. 

Table 10 lists the eigenvalues and eigenvec- 
tors of the correlation matrix for sample 1 of Veenia 
fawwarensis, with the obvious outlier removed. On 
the grounds of the Q-Q probability plot, we should 
hope that we have successfully identified all atypi- 
calities in the data. In the case of the first vector, 
all variables are equally weighted, apart from the 
third element which, therefore, might conceivably 
be a candidate for deletion. The same table also 
contains the residual sums of squares when the 31 
points on the first principal component are matched 
successively by Procrustean analysis, deleting each 
variable in turn. Thus column 1 of the latter repre- 
sentation signifies that the deletion of each variable 
in turn gives a relatively small residual sum of 
squares for variable 3 which indicates that this 
variable has least effect on the first principal 
component. The second column displays the situa- 
tion in the first two planes, and the third column, 
that pertaining in the first three planes. All sums of 
squares are small for column 2 with the exception 
of the entry for variable 3. The column for the first 
three planes includes a fairly high entry for variable 
7 in adddition to the high residual SSQ for variable 
3. 
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Table 11. Choosing number of principal compo- 
nents to keep. 
Fittcd in the order 1 2 3 4 5 6 7. 

Number of Valuc of test-statistic 
components PRESS-statistic 

0 0.9677 0.0000 
1 0.4695 5.1288 
2 0.4276 0.433 
3 0.3304 0.8644 
4 0.2965 0.3856 
5 0.2798 0.1064 
6 0.2706 0.0314 

Table 12. Maximum angles for principal component planes: 
sample of Veertia fawwaretlsis from thc Santonianof Shiloah, 
Israel. 
Spcci- 1 2 3 -3 -2 - 1 
men 

deleted 
1 0.562 2.552 5.810 5.072 8.912 16,432 
2 0.748 2.199 2.077 2.063 4.423 13.341 
3 0.948 6.515 5.811 6.260 7.715 7.750 
4 3.385 3.051 2.405 2.431 7.721 9 . 7 4  
5 1.573 17.182 7.545 5.401 6.586 10.993 
6 1.630 8.991 6.544 6.696 15.636 0.567 
7 0.906 1.268 1.841 2.750 6.261 10.865 
8 0.395 1.308 1.917 2.087 3.675 14.669 
9 1.801 2.290 2.311 5.291 5.300 5.919 
10 0.085 5.883 10.482 9.115 10.933 29.142 
11 1.620 1.857 2.555 2.892 15.703 14.936 
12 2.617 17.821 2.761 1.462 1.252 1.660 
13 7.362 18.777 9.683 4.695 4.889 12.564 
14 0.385 3.132 1.779 1.775 3.077 15.351 

15-31 contain no markedly divergent values 

What does this analysis tell us? It leads to 
the conclusion that it would not be admissible to 
remove variable 3 from the analysis on the grounds 
of its performance in the first principal component. 

We now turn to the question of the "correct" 
number of principal components to maintain in the 
analysis. Krzanowski (1982b) advocates the use of 
the W,,,-criterion, computed as indicated above. 

The aim is to estimate the number of statistically 
useful components, the rule being that values much 
less than unity are not likely to be associated with 
much information. In the present illustration, the 
test-statistic gave 5.1288 for one component, 0.4033 
for two components, and 0.8644 for three compo- 
nents (Table 11). One could conclude here that 

three principal components are probably 
significant. The reason why we find a non- 
significant value of the test-statistic sandwiched 
between two significant values is due to the fact that 
several eigenvalues do not differ greatly from each 
other. 

The third topic we shall consider concerns 
the identification of atypical values by means of 
critical angles. Table 12 lists the largest critical 
angle between the plane defined by the first two 
principal components computed from the full 
sample and the planes defined by the first two 
principal components on deleting each sample 
member in turn. This information is listed in Table 
12 under the heading "2". The column headed by a 
"3" gives the largest of three critical angles between 
the three-dimensional spaces defined by the first 
three principal components computed from the 
entire sample, deleting each observation in turn, 
and with subsequent replacement. The highest 
values in these columns indicate those individuals, 
the omission of which cause the greatest distur- 
bances in the principal component analysis. These 
specimens are outliers of location or dispersion. 
The columns headed by negative numbers in Table 
12 betoken the three smallest principal 
components. Thus, the column bearing the heading 
"-2" defines the plane of the two smallest principal 
components and analogously for the column headed 
by "-3". The values listed in the negative columns 
can usually be seen to encompass correlational 
outliers. 

In the present illustration, we see that in the 
plane of the first two principal components, speci- 
mens 5, 12 and 13 (bold type in Table 12) deviate 
from the main corpus of the sample. These devia- 
tions seem to be connected with polymorphism in 
size, and they were not unveiled by the other 
method used earlier on, based on the generalized 
statistical distance as a measure of discrepancy. 
Directing our attention to the column headed "-2", 
we perceive that specimens 6 and 11 deviate from 
the rest of the material. The situation represented 
by point C in Figure 1 seems to occur here. The 
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indications of the present example, which was not 
selected because of any special didactic properties, 
are that the method of cross-validation brings to the 
fore the need for a careful appraisal of the data-set 
before the full cannonade of multivariate analytical 
methods is brought to bear on a problem. No 
amount of intricate analysis can amount to anything 
much if the data are not suitable for the analyses 
performed upon them. It seems that the proce- 
dures recommended by Krzanowski (1987a, 1987b) 
hold promise for the future study of polymorphism 
in shape and size. 

Concluding Comments 
In the present note, I have been concerned with 
promoting a feeling for awareness of accuracy in 
analysing morphometric data. Obviously, one 
should begin with the measurements themselves. 
There is also the question of choosing the right 
multivariate technique for a particular analysis. 
Assuming that both of these questions have been 
attended to, there is a clear necessity of making a 
careful study of the empirical properties of a set of 
measurements, as almost all statistical methods in 
morphometrics stand or fall on this point. There 
can be little purpose in carrying out complicated 
computerized calculations if the outcome is 
doomed to absurdity from the word go. 

My advice is to start, always, with a complete 
set of univariate analyses involving normality, atypi- 
calities and standard statistics. Move then to 
graphical displays of the data on a painvise basis. A 
scatter diagram can disclose much about the nature 
of a set of observations but cannot, of course, be the 
final court of appeal for multivariate observations. 
The next phase in the initial scanning of the data is 
to carry out a qualified search for atypical observa- 
tions, as indicated in the present article. If you have 
biologically valid atypicalities, it is recommended 
that robust estimational procedures be used. It is 
important to avoid rushing into a standard analysis 
with scant regard for the nature of the data to be 
treated. In this connection, cross-validation has 
proven to be a valuable technique. 

It is more difficult to be intuitive about the 
problem posed by instability in the elements of 
eigenvectors, especially if the aim of the investiga- 
tion is to reify morphological variables. Notwith- 
standing the decision to embark forthright on a 
"robustified" analysis, it is good statistical practice 
to make an accompanying analysis by the corre- 
sponding standard procedure. It is only in this way 
that the existence of important differences can be 
brought to the fore. 
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Part Ill 
Section B 

Methods for Outline Data 

There are several approaches that can be 
used to deal with outline data (either complete 
closed outlines or open curves between two 
landmarks). They involve fitting some type of curve 
to the outline and then using the parameters of the 
curve for subsequent analysis. 

The most common approach is to fit some 
convenient, but arbitrary, function to the 
outline such as polynomials, trigonometric 
series (Fourier analysis of various types), 
splines, etc. and use resulting coefficients as 
variables for statistical analysis. Chapter 7 by 
Rohlf reviews some of the possibilities and 
points out that, while different methods can 
lead to different results, it is difficult to know 
how to choose among the alternative 
methods. 

Eigenshape analysis (Lohmann, 1983) repre- 
sents what seems like a very different 
approach from that described above. In this 
case we do not fit a curve to the data--the 
function is constructed as a linear function of 
the observed data across one or more 
specimens. Lohmann (1983) calls it an 
"empirical function." Relatively few vectors 
(the parameters are just the projections of 
each object onto eigenvectors) are usually 
needed to obtain a good degree of fit--but 
each function is represented by as many num- 
bers as one has data points. An interesting 
aspect of this method is that an  ordination 
analysis is performed as part of the fitting 
process. Chapter 6 by Lohmann and 
Schweitzer revie~vs this method and its 
relationships to other methods for dealing 

with outline data. Chapter 9 by Ray is an 
example of eigenshape analysis and also 
furnishes a critique of some of the operations 
performed in eigenshape analysis. 

Alternatively an a priori defined coordinate 
system can be used. For example, rather than 
using simple rectilinear coordinates to 
describe shell shape, Raup (1966) used 
parameters that reflected his understanding of 
the way in which shells grow. The advantage 
of the use of such coordinates is that it is 
easier to give direct geometrical and 
biological interpretation to the measurements. 
Chapter 18 by Ackerly in Part IV is in this 
tradition. 

The median axis methods described in 
Chapter 8 by Straney represent a very 
different approach. The outline is represent- 
ed by line segments making up an internal 
line skeleton in the center of the figure 
together with the distance from each point on 
the skeleton to the nearest point on the 
outline. This information is sufficient to allow 
the original outline to be reconstructed. In 
morphometrics, however, this method is 
usually used simply because the structure of 
the line skeleton often provides suggestive 
information about homologies and can 
provide useful constructed landmarks. 
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Chapter 6 

On Eigenshape Analysis 

G. P. Lohmann and Peter N. Schweitzer 

Woods Hole Oceanographic Institution 
Woods Hole, MA 02543 

Introduction 

Paleontologists and biologists frequently encounter 
situations in which homologous regions of different 
specimens can be identified but homologous points 
cannot be specified. The margins of ostracode 
shells, for example, occupy the same general posi- 
tion and are produced by the same organ in many 
different taxa, but the shape of the margin varies 
considerably, forming a basis on which species and 
subspecies are classified (van Morkhoven, 1962). 
Statistical methods for treating these shapes 
provide a way to make systematic interpretations 
more objective and more easily understood by non- 
specialists. For the methods that have been 
commonly used, the most troubling aspect is how to 
incorporate homology into an otherwise purely 
geometrical description of form. In this paper we 
review one method that allows some information on 
homology to be preserved in a shape description 
and carried through the shape analysis. 

The term "eigenshape analysis" was origi- 
nally coined to call attention to the fact that collec- 
tions of observed shape functions can be repre- 
sented by a set of orthogonal shape functions 
derived from an analysis of the observations them- 
selves (Lohmann, 1983). This decomposition of 
data functions into empirical orthogonal functions 
has been usefully applied in many different fields 
(Lorenz, 1959; Davis, 1976; Aubrey, 1979; 

Lohmann and Carlson, 1981; Aubrey and Emery, 
1986; Mix et  al., 1986). 

Since it was introduced, eigenshape analysis 
has taken on a much broader meaning than was its 
original, limited intent. It has been misunderstood 
to include the choices, judgments, sampling strate- 
gies and technical details that were either required 
by the nature and aims of particular studies or 
dictated by equipment limitations. Here we wish to 
explain all aspects of this extended definition of 
eigenshape analysis, of which eigenfunctions them- 
selves play a small part. 

The methods that follow were chosen from 
among many possible ways to solve particular 
research problems, problems whose primary 
concern was the description of growth histories and 
developmental pathways from measurements of 
fossil populations. The validity and suitability of 
these methods should be evaluated in that context. 

Description of an Individual Shape 

We consider shape to be every aspect of an object's 
outline except its position, orientation, and scale. 
Size, however, is a fundamental quantity in our 
studies and an integral part of the way we have 
chosen to measure outlines, so we include scale in 
our description of their shapes. 

Our studies deal with the incremental 
growth of three-dimensional objects, and we can 
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expect them to have grown and 
changed their shape differently along 
different dimensions. With the tech- 
nology currently available to us it is 
only practical to measure two- 
dimensional projected outlines of 
these objects. T o  approximate their 
full three-dimensional s1i:ipe we use 
the expedient traditionally employed 
by taxonomists: we cornhine descrip- 

tions of their two-dimensional pro- 
jections (Figure 1). These views are 
conventionally used I)y t:lxonomists 
to illustrate the three-dimensional 
morphology of these organisms. In  a dimensional outline projected from an object of 
similar way, we ~ ~ l ~ l ~ r o x i ' n a t e  their t h e e -  interest is described by calculating its net 
dimensional shape by conlhining measurements of bend (4*) as a Of the distance along its 
the outlines of these views. perimeter (I) (Figures 2 and 3). Note that there is 

An individual object is typically digitized at an implicit 90" angular change in Figure 3 between 
over 1500 points, including the two views needed the last point measured on one view and the first 
for a quasi-three-diniensiotial representation. Since point measured on the other. 
we expect to measure ant1 study the shape of a great This transformation is as complete a 
many objects, we need our sliape descriptions to be description of the shape of an object's outline as are 
as compact as possible. We achieve this in  two rectangular of from 
ways, by reducing their detail and by adopting which i t  was calculated. It allows us to 
certain conventions. three distinct attributes of an individual's outline, 

The detail of the descriptions can be which we refer to as form, size, and angularity. 
reduced considerably, to a few hundred points, Form. In  our usage, the form an individual 
without changing 'lie O u r  lirst refcrs to all aspects of its outline that do change 
convention is to interpolate every outline t o  a fixed as one varies the scale of its perimeter or the 
number n of equally sp;~ced poillts. 'nlis number is amplitude tile angular change its Zahn and 
usually much smaller t1i;is the noslber of points KOskies. function. Our of the 
generated by automatic tligitizers (typically n =  100). 

Of an individual,s outline is its standardized 
While suitable interpolation methods can be found 4*(t) shape function; i.e., one that has been 
for even the most convoluted shapes (e.g., the measured at  n equally spaced points around an 
methods presented 1)y Lv:l~ls el  a 1  1985), nlost perimeter and that has had the amplitude 
biological outlines may be treated with simple (or variance) of the values of 4* rescaled to 1.0. 
linear methods. 

Size. We measure size in two different ways, as the 
The 4*(!) outline transformation of Zahn length of the perimeter around the outline and as 

and Roskies (1972) pernlits us to reduce shape the area endosed by the outline. 
descriptions still further and  to distinguish various 
aspects of the outline's shape. Each closed, two- 
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We also measure size as enclosed area or volume. 
The area enclosed by a two-dimensional polygonal 
outline is simply and accurately calculated from its 
rectangular coordinates (Eves, 1972). The area A 
of a polygon defined by points ( x l y l ) ,  ( x ~ \ Y ~ ) , . . . ,  

(xn#n>l is 

, 
0 500 1000 1500 2000 

Position along outline (pm) 
Figure 3. Outlines of the edge and spiral views of G. trun- 

catulirloides transformed to +*( l ) ,  angular change f as a 
function of outline perimeter I. The three-dimensional shape 
of the shell is approximated by combining the shape func- 
tions for the edge and spiral views. There is an implicit 90" 
angular change between the last point measured on one view 
and the first point measured on the other. 

Figure 2. Angular change 4 as a function of perimcter 1 
around an outline of the lettcr H (after Zahn and Roskies, 
1972). The net angular bend 4* is the difference bctween 
the shape of the measured closed curvc and a smooth circle. 

Varying this parameter changes the size of which we measure it. A simple approximation 

an outline by changing the length of its perimeter. satisfies our needs. Volume V is approximated 

The first measure of size (perimeter !) is an 
integral part of the Zahn and Roskies' shape func- 
tion, +* ( I ) .  Because measurements are equally 
spaced around the outline, we can ignore the ! part 
of d*(I), further reducing our shape description. By 
convention, we known, the number of points on the 
outline. We only need to remember one other In contrast, the accuracy with which the 
number to replace distance between volume enclosed by a three-dimensional surface can 
adjacent, equally spaced measurements of 4%. be calculated depends on the complexity of the 

S = e / n  object's surface topography and on the detail with 
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from the areas enclosed by our selected two- 
dimensional projections, as 

Usually the value for the coefficient G is set 
at 1.0, but if the object can be modelled as a simple 
geometric form, G can provide a closer approxima- 
tion of its enclosed volume. 

Angularity. Angularity refers to those aspects of 
an object's outline that change only by varying the 
amplitude of the angular part d(*) of its shape 
function (Figure 4). Amplitude is calculated as the 
standard deviation of the observed values d*, 
before they are standardized. We refer to the 
resulting differences in their shape as differences in 
their "angularity." 

Figure 4. Outlines of the edge and spiral views of a \inglc 
\hell of G. trurlcut~~lb~oides. All arc constructed from the 
same @*shape function (i.e., they have the same form), but 
each is scalcd by a different amplitude ( a h  Lohmann, 1983, 
Figure 3). We refer to resulting diffcrenccs in their shapc as 
differences i n  their "aneularilv." 

Objects become more angular as their 
surface features become more pronounced, increas- 
ing the amplitude of +*. They becomes less angular 
as surface features are smoothed, decreasing the 
amplitude of d*. As the amplitude of $* 
approaches zero, the angularity of a shape 
approaches zero and the object's outline becomes a 
smooth circle. 

Since changing form can be expected to 
change the amplitude of +*, the angularity attribute 
has useful meaning only when comparing objects of 
the same form. Our usage of angularity refers to 
the degree to which the features of a particular 
form are accentuated, not to their spatial scale. A 
uniform change in the spatial scale of features 

changes an object's size; disproportionate changes 
in their spatial scale affect its form. 

In summary, we measure the shape of an 
outline at n equally spaced points around its 
perimeter, representing a three-dimensional object 
by combining the outlines of selected projections. 
Each outline is described by three attributes: (1) 
Form is the angular part of its $*(!) shape function, 
standardized to unit variance. (2) Size is measured 
two ways, as the distance between the uniformly 
spaced points along the outline's perimeter and as 
the area or volume enclosed by the outline. (3) 
Angulurity is the amplitude of the observed $*. 

As long as measurements are comparable 
among outlines (i.e., as long as measurements are 
made at points that can be reasonably compared), 
any shape function can be subjected to an eigen- 
analysis. Likewise, choosing to use eigenshape 
analysis does not dictate the shape function one 
must use. 

Comparison of 4*(e) with r(e) 

The radius function is one alternative representa- 
tion of an object's outline. Points on the outline are 
represented by their polar coordinates from some 
center. One can subject the radius function to 
eigenshape analysis in exactly the same way as with 
the Zahn and Roskies' qh*(t) function; the results of 
such an analysis are shown as pictograms by Scott 
(1980, 1981). 

We know of no theoretical advantage for 
choosing r(6), other than that one shape function 
may emphasize some aspects of shape differently 
than another. If these differences are understood, 
they may be desirable in some applications. We do 
not discuss these situations in detail. 

There are two reasons why we declined to 
use the r(8) shape function in our work: 

Rerrron I .  The radius function requires that one 
choose a center from which to measure the lengths 
of r as a function of angle 8. This is either calcu- 
lated or chosen as a landmark in the interior of the 
outline. The position that is determined becomes 
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critical when the radius functions (or some trans- 
formation of them) are used to compare the shape 
differences among the outlines of several objects. 
Any variation in positioning the centers becomes an 
additional source of shape variation. 

Suppose we calculated or chose a center 
whose position relative to the outline was highly 
variable in the sense that it lies on different biologi- 
cal structures on different specimens. Then the 
shape variations we describe statistically are largely 
attributable to the variable position of the center, 
though we have described them as changes in the 
outline. The resulting confusion becomes evident 
when we compare the outlines of specimens that 
(the analysis tells us) look different. In some cases, 
the outlines will visibly differ, while in others, the 
outlines look alike, but only the position of the 
center varies. 

If our center were indeed a homologous 
biological landmark, we could simply make a more 
complicated figure to portray the situation. But if 
the center we chose were some mathematical 
quantity (like the centroid or the point that mini- 
mizes the first Fourier harmonic), we could not 
make a valid biological interpretation at all. In 
effect, the analysis is of shape alone, though we 
might wish to impute biological meaning to the 
results. 

100 -. 

0 -- 

-100 -. 

Reason 2. For convoluted outlines, r is not a 
single-valued function of 0 (Figure 5). This limits 
application of the radius function to simple outlines 
or to outlines that can be trimmed to a simpler 
shape. 

. . . . . . 

. . . . . . 
. . .  . . .  . . .  . .  , . 

. . . . . . . . 

. . . . 

In summary, there are two reasons for 
choosing the 4*(1) shape function over r(0): +*(f) 

does not require a center and it is not limited to 
simple outlines. But these arguments are not moti- 
vated by a limitation of eigenshape analysis; in 
practice, either shape function can be submitted to 
an eigenshape analysis. 

-100 0 100 200 300 

100 -. 
m 

LZ 
50 -. 

4 - 1 . 5 7  .OO 1 . 5 7  3 . 1 4  

Angle i n  r r d l a n r  

Figure 5. Description of the letter H by the r(0) shape func- 
tion. The joint mean of the x,v-coordinates was taken as the 
centerfrom which to measure the radius r. Notice that r is 
frequently a multivalued function of 6'. 

Comparison of ,$*(I) with the Elliptical 
Fourier Transform 
The elliptical Fourier transform has been shown to 
be an efficient means for measuring the shape of 
outlines (Rohlf and Archie, 1984). We see no theo- 
retical advantage for choosing this representation 
over Zahn and Roskies' b*(I). However, each may 
offer practical advantages in certain situations. 

For example, the trace of any outline 
measured with a video digitizer becomes noisier at 
the spatial scale of the pixels. This can be removed 
by simple smoothing or by constructing a filter 
tuned to the scale of the pixel noise. If the outline 
is collected as or transformed to a Fourier series, 
one might simply truncate the series at terms 
smaller than the scale of the pixels. This applies to 
all shape functions, but filtering might be more 
efficiently incorporated into an  outline measure- 
ment procedure that begins with the outline's 
elliptical Fourier transform. 
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We effectively remove pixel noise and other 
small scale variations in a similar way, but in space 
rather than in the frequency domain. This happens 
when we interpolate outlines from the pixel scale in 
which they were collected to a lesser number of 
more widely spaced points, typically a reduction 
from 1000 to 100 points. 

As pointed out by Rohlf (1986), eigenanaly- 
sis of a collection of shape functions or of the 
Fourier transforms of the same shape functions 
yields the same results. This holds true only ifnone 
of the data are discarded-nothing from the trans- 
formation of the shape functions to a Fourier series 
can be discarded (neither the phase associated with 
the amplitude of each harmonic term nor any of the 
terms themselves). However, because different 
shape functions can be expected to weight aspects 
of a shape's outline differently, eigenanalysis of 
different functional representations of the same 
shapes should not generally be expected to yield the 
same results. 

Comparing Shapes 

Our own research objectives do not require that we 
analyze or decompose the shape of an isolated, 
individual object into simpler elements as an end in 
itself. Rather, we need to determine the relation- 
ships among a collection of objects on the basis of 
similarities and differences in their shapes. 

In our view, individuals are alike only if they 
are identical in form, angularity and size the corre- 
lation between their shape functions must be 1.0 
and the amplitudes of d* and spacing between the n 
measured points around each outline must be the 
same. In evaluating the similarities and differences 
among individuals that are not identical, each of 
these attributes of shape can be considered sepa- 
rately. 

Comparing Size and Angularity 

Ways of comparing differences in the size and angu- 
larity attributes among a collection of objects need 
no elaboration other than to point out that such 

comparisons are most useful when comparing 
objects of similar form (since changing form can, by 
itself, change our measures of size and angularity). 
Consider the following examples: 

Example 1.  Within a population of individuals of 
the same species (and therefore of similar form) 
there is often a strong relationship between overall 
size and developmental stage. Where this applies, 
the size attributes of shape can be used to arrange 
individuals along their developmental pathways and 
to measure the associated allometries that produce 
changes in form (Figure 6). The joint mean and 
covariance between size and edgelspiral ratios for 
each of 10 size fractions is indicated in Figure 6 by 
the 95% confidence ellipses. The shape of the 
shells from each size fraction is illustrated. This 
figure shows the allometric growth that accompa- 
nies the overall increase in size during develop- 
ment. 

I I I 
-6 -5 - 4 -3  -2 - 1  

SIZE ( I n  mm3) 

Figure 6. Size (plotted as the logarithm of approximate 
enclosed volume) versus.the ratio of the areas enclosed by 
outlines of the edge and spiral views of G. tnmcafulinoides. 
All shells are from one sample. The joint mean and covari- 
ance between size and edge/spiral ratios for 10 size fractions 
is indicated by the 95% confidence ellipses. The shape of the 
shells from each size fraction is illustrated. This figure shows 
the allometric growth that accompanies the overall increase 
in size during development. 

Example 2. An ecophenotypic (environmentally 
induced) phenomenon we are studying, the 
secondary encrustation of the shell wall of 
foraminifers, changes the shapes of shells simply by 
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0 

- 
Figure 7. Histograms of the average density (shcll 
weight/volume) of shells of C;. tnirtcatulir~oidi~s. Shells are 
from different size fractions of the same samplc. Addition of 
a calcitic crust over the shells inereascs their density and 
smoothes their outline. This figure shows thc change from 
predominantly less dense, more angular shells in the smaller 
size fractions to predominantly more dcnsc, smoother shells 
in the larger s i x  fractions. 

shells increases their density and smoothes their 
outline. The change is from predominantly less 
dense, more angular shells in the smaller size 
fractions to predominantly more dense, smoother 
shells in the larger size fractions. This smoothing is 
measured as a reduction in the amplitude of the 4' 
shape function, the angularity attribute (Figure 8). 
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Although most useful among objects of simi- 
lar form, comparisons of size or angularity do not 
require that one identify comparable features or 
regions among the objects. In contrast, meaningful 
comparisons of form depend critically on the corre- 
spondence of features, point for point. 
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Figure 8. Measure of shell "angularity" (amplitude of 4 * )  
vs. their average density. Addition of a calcitic crust both 
smoothes the shell's outline (reducing its angularity) and 
thickens the shcll wall without appreciably increasing its 
volume (thercby increasing its density). 

We use either the correlations or the covariances 
among shape functions as measures of their simi- 
larity in form. For these measures to make sense, 
shape functions must be comparable point for 
point, a condition that often does not occur in 
practice. In our studies on ostracodes and 
foraminifera, we have found that homologous 
regions along the outlines can be easily identified, 
but homologous points cannot. This distinction is 
important because it allows us to determine which 
situations will be best described by the shape func- 
tion we have chosen. The 4' shape function is best 
applied to the regions between homologous land- 
mark points. Where there is only one consistently 
locatable landmark, the shape function simply 
describes the shape, but the information contained 
in that landmark is preserved. 

Consider our studies of the shape changes 
that accompany growth in foraminifera and ostra- 
codes. We can expect comparable points that are 
measured among individuals at the same stage of 
growth to closely approximate biological homology. 
On the other hand, since foraminifera grow by 
adding new chambers over old shell and ostracodes 
discard their old shells entirely and grow a new, 
larger one, we cannot expect all the measurements 
among different growth stages to be biologically 

smoothing their outlines (Figure 7). This figure homologous. With this qualification clearly in 

shows that the addition of a calcitic crust over the mind, comparable points among growth stages may 
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specified and the shape differences measured 
between them may prove useful for exploratory 
analysis. 

We treat the measurements of similarity in 
form among objects, the correlations among their 
shape functions, in different ways: 

1. Designated 'Type Specimens." If one has the 
insight to create or designate certain individuals 
from a collection as reference types T, one can 
measure the similarity of all the other objects Z to 

from a wide range of sizes (125-800/~m sieve size) collccted 
at one locality. Clustering was based on similarities in shape 
among the shell outlines. Shape similarities were measured 

these types by calculating the correlation C between 
the reference shape functions and all the others. 

C = T r z  

One might then use these correlations as 
criteria for classification of the objects from the 
collection with one of the various types. 

2. Cluster Analysis. Correlations among the objects 
in a collection can serve as the basis for a conven- 
tional cluster analysis (Figure 9). 

3. Eigenshape Analysis. The matrix of correlations, 
R, among the objects, Z, can serve as the basis for 
an eigenanalysis. Note carefully how the shape 
functions are arranged in Z. Each column in Z 
contains a shape function that describes the form of 
an individual's outline with measurements of +* 
made at each of n points. Each row j in Z contains 
the values of r$* that were measured at the jth point 
on each and every outline. Each column in Z, 
containing the values of +* that are associated with 
a single individual, is standardized to unit variance. 
In the terminology of Cooley and Lohnes (1971), 
columns of "standardized test scores" are our 
"standardized shape functions" and rows of 
"subjects" are our "homologous or comparable 
points among individuals." This procedure is 
computationally identical to the R-mode principal 
components analysis described by Cooley and 
Lohnes (1971). 

R is a matrix of correlations among the 
standardized 4 *  shape functions Z, so that 

R is decomposed to its eigenvectors, V, and eigen- 
values, S, (with Cooley and Lohnes' recoding of 
Matula's subroutine HOW), so that 

R = V S V  . 

The elements in the eigenvectors, V, 
weighted by SIR are the correlations (loadings) 
between the observed shape functions, Z, (test 
scores) and the eigenshape functions, U (principal 
factor scores), so that 
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U J Z  = s l n v r  . from the singular value decomposition 
Y = U y S I W .  The advantage of this alternative is 

From this expression, the eigenshape func- that the eigenshapes are optimized to account for 
tions, U (scores), are calculated from Z, S, and V, both form and angularity (i.e., both the shape of d* 
rearranged as and its amplitude). The disadvantage is that speci- 

mens with higher angularity are given more influ- 
U = Z V S-'n . ence in determining the direction of the eigenfunc- 

Because of the limits imposed by our avail- 
able computer memory, we calculate our eigen- 
shape functions from R following this procedure of 
Cooley and Lohnes, as just outlined. However, U, V 
and S can all be computed directly (and more 
precisely) as a singular value decomposition of the 
observed shape functions, Z (Golub and Reinsch, 
1970), 

Z = U S ' n V " .  

This direct approach avoids the potential 
imprecision introduced by accumulating large sums 
of squares in the calculation of R. We present it 
here because it shows more transparently just what 
an eigenshape analysis is: Observed shape func- 
tions, Z, are decomposed into a set of empirical 
orthogonal shape functions (eigenshape functions), 
U, and associated set of weights S I n V .  These 
weights are the correlations between the eigen- 
shapes and the observed shapes, 

V Z  =S"2\"' . 

The eigenshape functions, U, account 
successively for the maximum possible proportion 
of variation in the collection of observed shape 
functions analyzed. No other set of shape functions 
can account for the variation more efficiently 
(Davis, 1976). 

The column standardization is not strictly 
necessary. Alternatively, one can simply calculate 
the singular vectors of the covariance matrix 

Y = ( X - m ) ,  
where m is the mean of the columns of X. The 
eigenshape functions are then calculated as 

tions. Note that the first eigenfunction of Y 
describes the variation among shapes rather than 
the mean shape. This latter approach was used in a 
study of the evolution of ontogeny in ostracodes 
(Schweitzer 1990; Schweitzer and Lohmann in 
press). 

We use the eigenshape functions in three 
different ways: 

1. As an average shape. In situations where 
measurements can be easily made and where the 
number of objects available for measurement is 
unlimited, it may be desirable to increase analytical 
precision by making repeated measurements on the 
same objects and to increase accuracy by measuring 
more objects. In either case, the measurements are 
usually summarized by their mean value. To  
summarize repeated measures of size, weight, or 
angularity we use the arithmetic mean. We  can use 
the first eigenshape to summarize repeated 
measures of shape. 

In accepting the mean as the best estimate of 
a population of values one assumes that the values 
averaged are roughly normally distributed about it. 
One expects the mean to describe the central 
tendency of a population, not an  intermediate value 
between distinct subpopulations. The mean of 
repeated measurements of the same object is the 
best estimate of its value and the variation about 
that mean is noise associated with the measurement 
procedure. For a group of many objects, it may be 
difficult to show that the mean is the best summary 
(though it is usually clear when it is a poor one) and 
to distinguish noise from signal in the variation 
about the mean. 
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Aside from such considerations, one can use 
the mean in a different way, as a device to selec- 
tively emphasize variation among groups by ignor- 
ing variation within groups. Figures 10 and 13 are 
the first eigenshapes of shell outlines from different 
size classes. The starting reference point is shown 
for each plot. Since the first eigenshape accounts 
for most of the variance among a collection of simi- 
lar objects, it describes features they all share, 
features that make them look the same, and it 
approximates the mean shape. The other eigen- 
shapes account for the remaining variance 
contributed by features that make the objects look 
different. Our intention was to examine the shape 

C. n8brsscmnsir C. r d a i r t o n s r  

Adult 0 Adult 

0 0 
A-1 i n s t a r  A - i  i n a t a r  

0 0 
A-2 i n s t a r  A-2 i n s t a r  

0 0 
A-3 i n s t a r  A-3 i n s t a r  

0 0 
A-4 i n s t a r  A-4 i n a t a r  

Figure 10. The average outlines of ostracode shells from 5 
instars (growth stages) in each of two rclated species of 
CaveNitta (from Schweitrer et al., 19%). The outlines are 
plotted to the same scale, the starting reference point is indi- 
cated, and each outline is drawn bctwccn 128 equally spaced 
points. 

changes that accompany development. Not 
knowing at the outset how to distinguish develop- 
mental stages by shape, we have used size. For an 
individual, growth is a good measure of develop- 
ment and we can hope that this approximation 
extends to the population. The differences between 
the first eigenshapes of the size classes emphasize 

!'E:?/[ 
,I :i 
Figure 11. Zahn and Roskies' $ * ( l )  shape functions (on the 
left) of the ostracode outlines shown in Figure 10 and their 
first 5 eigenshape functions (on the right). The values of $*, 
the net angular bend around each outline, are plotted on the 
horizontal axis. The vertical axis orders the 128 comparable 
points located around the perimeter of each outline. Each 
observed shape function is rescaled to unit variance. Each 
eigenshape function has been rescaled by its associated 
eigcnvalue, the portion of the total shape variation it repre- 
sents. The first eigenshape function approximates the mean 
of the shape functions, and its large amplitude reflects the 
overall similarity among the shapes. The remaining eigen- 
functions describe differences among the shape functions 
along various orthogonal dimensions and are ordered by the 
decreasing amount of the shape differences (variance) they 
explain. Computed with programs OUTLINE and EIGENS. 

Figure 12. Shape oulines constructed from the 15 eigcn- 
shape functions plotted in Figure 11 (rebuilt and plotted by 
program CSHAPE). Only the first eigenshape resembles 
the ostracodcs that were analyzed. Since it accounts for 
most of the "variance" among a collection of similar objects, 
it describes features they all share, features that make them 
look the same, and it approximates the mean shape. The 
other eigenshapes account for the remaining "variance" 
contributed by features that make the objects look differ- 
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development. Figure 16 shows how well the first shape space, searching for trends, subpopulations, 
eigenshapes describe the shapes of G. truncatuli- end-members, and such (Figure 17). The projec- 
noides in each size class. The minimum at inter- tions shown in Figure 17 are three of many possi- 
mediate sizes reflects the increased variability bilities. Used in this way, as a method for 
associated with shell encrustation. constructing a reduced shape space, there is no 

T o  study development, we chose to ignore 
the shape variation within size classes and focus on 
the changes in shape that accompany changes in 
size. Lohmann and Malmgren (1983) used a similar 
strategy to study geographic changes in shape of G. 
truncatulinoides. Shells were selected from a 
narrow size range to minimize developmental 
sources of shape variation and from a wide range of 
oceanographic environments to maximize biogeo- 
graphic sources. The shape at  each locality was 
summarized by a first eigenshape, and the differ- 
ences between the first eigenshapes emphasize 
biogeographic changes in shape. 

These uses of group means to focus on 
between-group variation does not deny that 
meaningful within-group variation exists, of course. 
It can be examined separately, as follows. 

2. As a basis for examining the relationsllips among 
objects in a reduced shape space. As described, each 
threedimensional object has 200 measurements of 
form, 1 of size and 1 of angularity. Together, these 
attributes locate each object in a really big hyper- 
space. Because there is typically a great deal of 
similarity in form among the objects (they are 
usually the same or related species), there is a large 
degree of redundancy in the form measurements 
and most of the variation in form can be repre- 
sented by a few eigenshape functions. No other 
basis functions preserve more of the original varia- 
tion in as few dimensions. 

As a reduced basis for examining the rela- 
tionships among objects in shape space, the first few 
eigenshape functions preserve most of the observed 
shape variation while permitting the visual evalua- 
tion of the relationships among the objects. This is 
a particularly valuable feature when used in 
conjunction with dynamic computer graphics and 
projection pursuit tactics (Friedman and Stuetzle, 
1982). These techniques enable one to "fly" through 

Figure 13. The average outlines (edge and spiral views) of 
the shells of G. tnrrlcatuli~~oides from 10 size-fractions of a 
single sample. The outlines are plotted to the same scale, 
the starting reference point is indicated, and the outline of 
each view is drawn between 100 equally spaced points. 

Figure 14. Zahn and Roskies' 4*(t) shape functions (plotted 
on the Icft) of the combined edge and spiral views of G. 
tnrncat~~lirloides shown in Figure 13 and their first 5 eigen- 
shape functions (plotted on the right). See Figure 11 for 

D o o Q  
Figure 15. Shape outlines constructed from the 5 eigen- 
shape functions plotted in Figure 14 (rebuilt and plotted by 
program CSHAPE). The implicit 90" turn between the 
combined outlines separates the edge and spiral views of 
the eigenshapes. 
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need to assume normality of the data distribution or 
to fear the orthogonality constraints placed on the 
eigenshape functions. The eigenfunctions simply 
provide a basis for viewing as much of the data as 
possible all at once. 

3. As components for modeling shape variation. 
While the eigenshape functions may or  may not 
parallel actual trends in shape variation or  coincide 
with end-members or groups, those that do or that 
can be rotated near such positions (as in a 
VARIMAX rotation scheme) can be used to model 
continuous shape variation along such trends or 
between such groups. This is simply done by adding 
portions the higher order eigenshapes to the first 
One (Figures 18, l9 and 20). The point is to gain 
some insight into the character of the shape differ- 
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modeled variation reflects the ten-,  
dency for the shell to open its 

during development, from 
more compact juveniles to more 
open adults. 

Cifelli (1965) determined that 
most of the morphologic variability 
he observed among living popula- 
tions of G. truncutulinoides could be 
explained by the changes in shape of 
the shell that accompany their 
growth through ontogeny. By using 
eigenshape analysis in the three ways 
just described, we have characterized 
this developmental history from 
measurements of fossil populations 
(Figure 21). 

Comparison with Fourier 
Harmonic Functions 
The Fourier transform of an object's 
outline is a description of its shape 
(Figures 22 and 23). Shape analysis, 
meaning the procedure used to 
reduce and summarize observations, 
discards part of that description. 
~~~~i~~ shape analysis is optimized 
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Figure 16. Shape variation explained by the first eigenshape 
of each of 10 size classes of G. truncatulinoides shells. The 
minimum at intermediate sizes reflects the increased vari- 
ability associatedwith encrustation. 
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Figure 17. Shape variation among shells of G. truncatulitloides from the 212-850 
pm sicve size in a single sample. The initial hyperspace that their shape differences 
define was reduced using eigenshape analysis, then rotated using dynamic graphics 
program MacSPIN. The projections shown here are three of many possibilities. 
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neither for explaining the variation among shapes discriminant functions. 
nor for discriminating among groups of shapes. For most studies, the choice of eigenfunc- 
Note that we use efficiency and optimality inter- tions over harmonic functions is simply one of effi- 

(see Lohmann3 1983; Aubrey and ciency. One can use the harmonic functions from 
1986b); the first  eigenfunctions portray Fourier transforms of individual shape functions as 

the relationships among the shapes better than the references by which to measure and to model their 
first n of any other set of basis functions. By shape differences in the same that we use 
"portray the relationships better" we mean that the eigenshape functions. 
distances between shaoes in the reduced mace are 
(on average) closer to their distances in the original 
data space. For optimal explanation we must turn 
to eigenfunctions; for optimal discrimination we use 

Figure 18. Synthetic variation in shape modeled along the 
dimension of the second eigenshape. The upper figures 
show the first eigenshape function (approximating thc mean) 
and its reconstructed outline. The lower figure shows shape 
functions and the reconstructed outlines synthesized by 
adding and subtracting small amounts of the second eigen- 
shape to the first. 

Figure 19. Synthetic variation in shape modeled as in Figure 
18. These are edge and spiral views of the shell of G. 
tmncaltulinoides and the rnodclcd variation rcflects the 
tendancy for the shell to open its umbilicus during develop- 

The usual procedure in a Fourier shape 
analysis is to decide which harmonic terms are 
important for describing the observed shape varia- 
tion (or discriminating among groups). For each 
harmonic selected, the harmonic amplitudes asso- 

Figure 20. Same as Figurel9, but modeled shells are not 
superimposed. 
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Figure 21. Growth and development of G. tmncatulinoides, 
determined from their fossil shells. The shapes of the size 
classes are described by first eigenshapes. The second eigen- 
shape function of these is a measure of their shape differ- 
ences, the shape differences between size classes. This is 
modeled in Figures 18, 19 and 20. Cifelli's (1965) illustra- 
tions of juvenile and adult shells are shown. 
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ciated with the individual shapes are plotted against 
each other or some covariate. Zahn and Roskies 
(1972) used the Fourier amplitude coefficients from 
transformed 4*(!) shape functions to characterize 
the shapes of written numbers and position them in 
a reduced space defined by harmonic functions. In 
a similar way, Schweitzer et al. (1986) used Fourier 
harmonic functions as a basis for viewing ontogeny 
in ostracodes, the shapes of their shells also having 
been described by Zahn and Roskies' +* ( I ) .  

These studies illustrate some of the advan- 
tages and disadvantages of harmonic shape func- 
tions over eigenshape functions: Eigenshape func- 
tions describe shape variation among a collection of 
individuals most efficiently. They are able to do 
this because they are defined by an analysis of the 
data they are meant to describe and are tailored to 
do just that. This was demonstrated by Schweitzer 
et al. (1986). The shape functions that most effi- 
ciently decompose the shapes of the ostracodes 
(Figure 12) are not harmonic functions (Figure 23) 
both the spacing and amplit~ide of the nodes on the 
outlines are irregular. In contrast, Zahn and 
Roskies (1972) desired a measure of shape that 
could be defined hcfore i t  was to be applied, could 
be counted on to describe any shape, and was 
insensitive to the location of the points on the out- 
line at which measurements would be made. The 
Fourier transform offers all this in its harmonic 
functions and power spectrum. 

Most studies that have used harmonic func- 
tions to measure shape differences have employed 
the r(6) radius function rather than Zahn and 
Roskies' +*( f )  to describe the shapes themselves. 
This difference, introduced at the level of the data 
description, complicates direct comparison between 
the results of these studies and those that have used 
eigenshape analysis. One can, however, be confi- 
dent in two expectations: (1) An eigenanalysis of 
either the shape descriptor functions themselves or 
their complete Fourier transforms will yield the 
same results (though most studies discard most of 
the Fourier transform and all but the first few 
eigenshape functions). (2) Fourier harmonic shape 

functions cannot represent the observed shape 
functions more efficiently than eigenshape func- - 
tions; usually they will be much less efficient. 

Figure 22. First five harmonic shape functions of the ostra- 
code shell outlines shown in Figure 10, each scaled by the 
avcragevariance it accounts for. Calculated from the Fourier 

u 
Figure 23. Shape outlines constructed from the first five 
harmonic shape functions. 

While all studies that use Fourier shape 
analysis begin with a Fourier decomposition of 
observed shapes, they differ from each other and 
from eigenshape analysis primarily in the way they 
use those measurements. 

Eigenshape Analysis of Frequency 
Distributions (Histograms) 
Mathematically, this is essentially identical to the 
first step in the factor analysis of histogram plots of 
harmonic amplitude values shown, for example, by 
Healy-Williams et  al. (1985). We object to this 
procedure only when it is applied to frequency 
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distributions of similarity measures (such as assumptions arise when a researcher seeks statisti- 
harmonic amplitudes, correlations, and factor cal justification for ignoring the higher-order eigen- 
loadings). functions (those associated with small eigenvalues) 

If H is a matrix of the frequency values from 
a number of histograms, with each column in H 
representing a different histogram and each row in 
H representing a separate bin of comparable values 
among the histograms, then the matrix of covari- 
ances R among the histogranis is 

R = H I H  

(R is a matrix of correlations if the histogram 
frequencies are standardized to unit variance). 

As above, eigenfunctions and eigenvalues 
can be calculated eithcr frorn K or from a singular 
value decomposition of H, 

U is a set of ernpiric:~l orthogonal histograms 
(eigenfunctions or principal components of the 
histograms) and S'"V'l' are the correlations between 
them and the observed histograms. These can be 
rotated in a number of ways (e.g., the VARIMAX 
scheme used in the original CAI3FAC program by 
Klovan and Inihrie or its elaborations by 
EXTENDED CABFAC and EXTENDED 
QMODEL) to designate end-member histograms, 
and as long as the rotation scheme maintains the 
orthogonality of the cornponcnts, they provide a 
suitable reduced basis for viewing the interrelation- 
ships among shapes of the histograms. 

In principle, we have n o  quarrel with the 
orthogonal rotation of principal components (or 
eigenshapes, in the context of analysis of shape 
functions, of which a histogram is one). As 
discussed below, our objection t o  the work that has 
applied this procedure is in the construction of the 
histograms themselves. 

Caveats 
First, do not uttrcc,h ~t~ti.sti(.ul ~ignificutzce to tile 
eiget~shupe.~. T o  compute the eigenfunctions of a set 
of shapes does not require probabilistic assurnp- 
tions about the distribution of the shapes. Such 

or  for using the first eigenshape as the best estimate 
of the population mean. If all that we require is a 
way to plot the data that does not sacrifice much of 
its variance, statistical tests are inappropriate. 
Rather we can derive from the analysis quantitative 
measures that tell us how well our reduced space 
describes each shape. Practically speaking this is 
the ratio of a shape-function's Euclidean length in 
the reduced space to its length in the full space. 

Second, do not uttuch biological significunce 
to the c>igetzrkr~pe functions themse1ve.s. They provide 
a basis on which to plot the shapes and a compact 
description of the shape variation subtended by that 
basis, hut nothing in the procedure guarantees that 
they emhody biological phenomena. Like shapes 
constructed frorn harmonic functions, they are a set 
of orthogonal elements that can be added in various 
proportions to represent observed shapes. Unlike 
the shapes reconstructed from harmonic functions, 
they are derived empirically from an analysis of the 
ohserved shapes they are meant to represent. 

Interpretations of the meaning of eigenfunc- 
tions can be made only by considering information 
that was not explicitly included in the shape analy- 
sis: hy looking at the covariation between the eigen- 
shapes and biological, geographical, or chemical 
information. 

Third, do not rrzuke Ilistograms of sitnilurity 
t~zemures (lor~dir~g.~ or corrr.lation~) between individ- 
~1ul.s and tile eig<,n.shupe functions. This objection 
applies equally to harmonic functions (the ampli- 
t ~ ~ d e s  of a single Fourier harmonic associated with a 
collection of shape functions) or any other refer- 
ence shape functions. We know of no valid use for 
such histograms. 

Consider the following example: Suppose we 
wish to examine the structure of a large collection 
of objects of many different sizes and shapes and 
search for subpopulations. First consider size. A 
size frequency distribution of the objects, a 
histogram o f  their sizes, provides a n  excellent visual 
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description of the size structure of the collection. 
One might debate the optimum interval over which 
to sum the size frequencies, one might argue over 
what constitutes a distinct mode or subpopulation, 
or one might question whether the collection faith- 
fully reflects the population from which it was 
drawn, but there should be no misunderstanding 
what a histogram of sizes is. It shows clearly and 
unambiguously the number of large and small 
objects in a collection. 

Histograms of similarity measures, in con- 
trast, are inherently misleading. Measures of shape, 
expressed as the degree of similarity of each shape 
with some reference shape, cannot be treated like 
size. Unlike measures of size, measures of shape 
do not have the same information content through- 
out their measured range. Values of shape similar- 
ity that approach identity (correlations approaching 
1.0) tell us a lot about the shape of the measured 
object. Those approaching zero tell us very little. 
A histogram of similarities skewed toward 1.0 gives 
us a good idea about the shape of the objects in a 
collection the objects look like the reference shape 
they are compared to and they look like each other. 
A histogram of similarities skewed towards zero not 
only does not give us much information about the 
shape of the objects but, by careless analogy with 
size histograms, can misleadingly suggest that they 
comprise a subpopulation of similar-looking objects 
that do  not look like the shape they are compared 
to. In fact, they may not look at all like each other. 
All we can say from such a histogram is that the 
objects in the collection it represents do not look 
like the reference shape to which they have been 
compared. As a subpopulation, their only common 
attribute may be  their lack of similarity to some 
reference shape. 

Most histograms constructed of shape simi- 
larity measures consist of values that fall some- 
where between no similarity and identity. Typical 
studies using these constructions show patterns of 
variation among samples portrayed as a collection 
of histograms, some of which are skewed to the left, 
others skewed to the right. But these patterns 

formed by the distributions reflect differing contri- 
butions from measures which tell us a lot and from 
others which tell us almost nothing, and those that 
tell us nothing tend to associate objects which may 
have no shape similarity with each other at all. 
There is no valid procedure for picking more than 
one subpopulation from such a collection of 
histograms because the histograms can identify only 
one subpopulation. 

A practical example is shown by Healy- 
Williams et  al. (1985). How is one to interpret their 
figure 7? End-member 1 identifies samples that 
contain shapes that are somewhat triangular, since 
end-member 1 is a histogram of amplitude coeffi- 
cients with high loadings on the third harmonic. In 
contrast, end-member 2 identifies samples whose 
only common characteristic is that they are not 
triangular. What interpretation can be made of a 
series of samples that progresses from having very 
little in common to having something in common? 
What interpretation can be made of end-member 3, 
which identifies samples whose shapes have less of 
harmonic 3 than end-member 1 but more than end- 
member 2? It is not an end-member at all, yet the 
factor analysis of the histograms has identified it as 
such. The pattern of variation in these histograms 
is misunderstood because the lack of shape similar- 
ity indicated by the amplitude histograms has been 
ignored. 

This misleading use of histograms, while 
most often seen in studies that follow the methods 
of Ehrlich et al. (1980) for using Fourier harmonic 
functions to measure shape, applies to histograms 
of any similarity measure. Histograms of eigen- 
shape amplitudes typically appear to be normally 
distributed about zero (for an example, see Malm- 
gren et al., 1983, figure 7). In fact, this tendency 
only indicates that most of the individuals measured 
do not look like that eigenshape. The values for 
harmonic amplitudes where phase has been ignored 
are reported as positive numbers. When these 
values tend toward zero, the histogram is skewed to 
the left. Because phase is an integral part of the 
eigenshape function, the sign associated with its 
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amplitudes has meaning and its values are reported 
as signed numbers. When these values tend toward 
zero, their histogram is skewed toward zero and 
appears normally distributed around zero. Like 
histograms of harmonic amplitudes, we claim that 
such constructions are misleading and uninter- 

r Growth of N. pachyderm Stlifted cxponenrial growth curvc 

Figure 24. Growth curves lor N. oucl~ydennu and a simple 
model to explain them. Diffcrcnccs in the sire of the initial 
chamber determine the point on a common growth curvc at 
which an individual begins to grow, in cffccl, shifting Ihc 
growth curve. The need to accommodate fewer chan~bcrs of 
similar size produces a wide range in external morphology. 
The shifted curves are all thc same curvc. From unpublished 
work with Michael Spindlcr (All'rcd Wcgcncr Instilut, 

pretable. 

Finally, do not msurne just hecause the exter- 
nu1 morphology of an it~dividual is ddetcrmincd by tllc 
processes by which it grew, tllat tllese processes can he 
recovered from a shczpe mrzczly.si.s. Figure 24 shows 
growth curves for Neoglohotluadrina pachyderma, a 
species of planktonic foraminifera with a variable 
external morphology. Differences in the size of the 
initial chamber determine the point on a common 
growth curve at  which an individual begins to grow, 
in effect, shifting the growth curve. The need to 
accommodate fewer chambers of similar size 
produces a wide range in external morpholoby. The 
shifted curves are all the sarne curve. Any kind of  
shape analysis will attribute most of that variability 
to the number of visible chanibers, i.e., the number 
of chambers in the outer whorl. This amounts to a 
redescription of the shapes that gives n o  insight into 

their cause. The growth curves, constructed from 
internal measurements, suggest that variability in 
the external morphology of N. pachyderrna can be 
explained by a simple mechanism: All individual N. 
pachydenna follow a common growth curve. But 
there is variation among individuals in the size of 
their initial chamber (their proloculus), and the size 
of this chamber determines where on the growth 
curve an individual begins to grow. While the 
growth curve is the same for all individuals, those 
that follow it from different points have different 
numbers of chambers when compared at  the same 
size. The differences in chamber arrangement that 
are needed to accommodate this produce the 
differences we see in their external morphology. 
Shape analysis of the wide variation that this simple 
mechanism can produce will give no clue to its 
origin. 

An Alternative to the Use of Covariance 
Matrices in Eigenanalyses of Shapes. 

All of the published work to date that used eigen- 
\hape analysij has either followed Lmhmann (1983) 
in fully standardizing the columns of the data matrix 
or has followed Schweitzer (1990) in u\ing the 
covariance matrix. I iere we present yet another 
method for coping with shape amplitudes in a way 
that empha5i~es the differences between the 
covariance and the correlation matrices of shapes. 
Let X be a n x p  matrix of 4*  shape functions whose 
columns have zero mean (because the mean of +* 
corresponds to the orientation of the rhapes) but 
not unit variance. The transformation of the 
columns to unit variance is Z = XA-1 where A is 
the p x p  diagonal matrix whoce elements ul, ..., up 

are the amplitudes (standard deviations) of the 
1 

columns of X. Note that while X1' X i  is the matrix 
1 

of covariances among shapes, Z'I' Z; is the matrix of 

correlations among shapes. 

In the original formulation of eigenshape 
analysis, eigenvectors U are the left singular vectors 
of the matrix Z, and are derived from the eigen- 
analysis of the matrix Z'IZ: 
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since VTV = I and S is diagonal. 

One might ask why the eigenvectors are not 
computed from the singular value decomposition of 
X instead, as X = USlnVr. Then the reduced space 
would optimally describe the sum of squares of the 
shape functions X rather than that of the normal- 
ized shapes Z. 

By considering the geometry of the data 
space we can see why the shapes might be normal- 
ized prior to computing eigenfunctions. Each shape 
is described by 100 numbers (the angles of the +* 
function), and so each shape is a point in a 100- 
dimensional hyperspace. Some of the shape func- 
tions have more variance than others, because some 
of the shapes are more sharply angular than others. 
These are represented by points that are farther 
from the origin, since variance is directly related to 
the square of Euclidean length in vectors that have 
zero mean: 

Standardization to unit variance has the 
geometrical effect of projecting all of the points 
(each of which describes one shape) onto a sphere. 
Then all points are equidistant from the origin, and 
consequently each shape exerts the same influence 
on the directions of the eigenvectors. Shapes tend 
to "pull" the first eigenvector towards them in 
proportion to their amplitude, and by giving all of 
the shapes equal amplitude we release the first 
eigenvector from this bias. 

But when we projected all of the shapes onto 
a sphere, we distorted the distances among them. 
Since the eigenvectors just rotate the data space, we 
can restore the original lengths of the vectors 
describing the shapes merely by multiplying the 
correlations between the shapes and the eigen- 
shapes by the appropriate shape amplitude: 

z = m-1 
X = Z A  

= USlnVA . 
LJ% = S1nVA 
XW = AVS1" 

This is the matrix equivalent of converting a 
correlation to a covariance when one of the vari- 
ables has unit variance: 

aq = p a  a  where ay = 1. 
X y X Y  

In summary, the eigenvectors that define the 
reduced space in which we view the data can be 
computed so that each shape has equal weiglzt in the 
analysis. When we plot the data to see the relation- 
ships among shapes, we can plot the covariances 
between the shapes and these eigenvectors. By 
using covariance we restore to the points their 
original lengths. This allows us to distinguish 
among shapes that differ only in amplitude. 
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Abstract more compact form. This paper surveys methods 

This paper reviews methods for describing the 
shape of a structure, either a complete outline 
contour or a segment between two landmarks, hy 
fittirig a function to the outline. The parameters of 
the fitted function are often used as variables in 
subsequent multivariate analyses in order to study 
patterns of variation and covariation in shape. 
These methods are of interest when there are few 
(if any) homologous landmarks on a structure or 
when the outline shape itself is of interest rather 
than its relationship to various landmarks. Compu- 
tational forrnulas, plots, and sirnple numerical 
examples are given for most methods. 

Introduction 

When few or no landmarks are available, the shape 
of a structure is often captured by the coordinates 
of a sequence of points along its outline. The 
points may be equally spaced or else spaced more 
densely where there are more rapid changes in the 
curvature of the outline. But a large number of 
coordinates along an outline is not a very compact 
or efficient way to describe a shape since raw coor- 
dinates are expected to be highly correlated with 
each other. Thus they contain large amounts of 
redundant information. One solution is to trans- 
form the information in these coordinates into a 

for fitting a function to the sequence of points and 
then using the parameters of the fitted function as 
descriptive variables for further multivariate analy- 
sis. A related approach is that of eigenshape anal- 
ysis (Lohmann, 1983). It is not covered here 
because it is discussed elsewhere in this volume. 
Rohlf (1986) discusses some of its relationships to 
other methods. 

Two major classes of outlines must be 
distinguished since they require different methods. 
First, there are outlines that correspond to open 
contour curves curves along an outline of a structure 
between two landmarks. An example would be the 
curve corresponding to a vein in an  insect win: 
The landmarks might be the origin of the vein and 
its intersection with the margin of the wing. 
Second, there are outlines that correspond to 
complete closed contour cunJes. An example would 
be the curve representing the entire outline of an 
insect wing. In most applications it is assumed that 
the closed contour begins with a homologous land- 
mark. In some cases there is also an additional 
landmark that can be used as a reference point for 
the origin of a coordinate system or  to rotate the 
structure into a standard orientation. 

The account given below is organized 
according to whether one has an open or closed 
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contour and with respect to aspects of the complex- 
ity of the curves. But these considerations are not 
sufficient to determine uniquely the most appro- 
priate function to use in a given application. This 
review will be limited to only those functions that 
have been proposed for use in morphometrics. 
Thus it is a survey of what has been done rather 
than a compendium of all the functions that could 
be used in a morphometric study. 

A simple example is furnished for most 
methods. The results are shown both graphically 
and as tables of numerical results. These should 
both provide a better understanding of the methods 
and serve as test data for the development of soft- 
ware to implement the methods. 

Open Curves 
Many functions are available which can be used to 
fit data points along a curve between two reference 
points. The choice among them depends, in part, 
upon the complexity of the outline. An important 
special case is when one coordinate, e.g., y, can be 
expressed as a single-valued function of the other 
coordinate, x .  It may be necessary to rotate the 
objects into a standard orientation such as by plac- 
ing the x-axis through the two reference points. 
Such data permit the use of especially simple 
methods. More complex curves require more 
complex methods. 

Simple Open Contours 

The following methods assume that a curve can be 
oriented in a standard way such that the p y- 
coordinates along the outline of a structure 
correspond to a monotonically increasing set of x-  
coordinates. Figure 1 is a plot of the simple set of 
artificial data given in Table 1. These data will be 
used in a number of examples given below. 

l ~ a b l e  1. Artificial data and solutions to 4th degree I 
I polynomial regression. I 

Observations 
X Y 
1 1 
2 5 
4 7 
7 8 
9 11 

12 12 

Solution 
i hi 
0 -6.73478 
1 10.14688 
2 -2.69606 
3 0.29935 
4 -0.01119 

Polynomials The simple polynomial equation, 
JJ = ho + blx  + hp? +.-+ bp-lx~-l can be fitted to a 

sequence of y-coordinates along a curve. If all of 
the p parameters, hi are to be found, then the 

computations simply involve the solution of a set of 
simultaneous linear equations. In practice, many 
fewer parameters are usually sufficient to give a 
satisfactory fit. In such cases, the following least- 
squares procedure can be used to estimate the 
parameters: 

1. Form a p x  1 matrix, Z, containing the y- 
coordinates of the p points along the curve. 

2. Construct a p x k  matrix, X, with the second 
column containing the x-coordinates of the p- 
points along the curve. The first column is a 
vector of all Is and the other columns, j, 

i 
contain x,., As many columns, k,are included 

as parameters one wishes to fit. 

3. The vector of parameters, B, is computed as 
B = TZ, where T = (XtX)-lXt.  The details of 
the computations are described in many 
statistical textbooks (e.g., Sokal and Rohlf, 
1981). 
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If the xi are equally spaced, then simpler methods 

are available. For example, the columns of X can 
be filled with coefficients of orthogonal polynomi- 
als. 

A simple example is shown in Table 1 where 
a fourth degree polynomial is fit to an artificial 
example with 6 data points (these same data points 
are used for the other examples furnished below). 
The R2-value is 0.999997. While the fit is very 
good, the path taken by the curve between the 
obsewed data points seems unlikely (see Figure 1). 

The parameters, R, correspond to a linear 
transformation of the original y-coordinates. If the 
higher order terms are ignored (since they usually 
have very small coefficients), then the transforma- 
tion corresponds to a nonrigid rotation followed by 
a projection onto a lower dimensional subspace. 
The effect of ignoring the higher order terms is to 
fit a smooth curve to the observed data. This is 
often desirable since at least some of the local 
irregularities of the curve correspond merely to 
digitizing error. 

Cubic Splines A cubic spline is a series of 
cubic polynomial functions pieced together in such 
a way that the fitted function passes smoothly 
through all of the observed data points and is 
constrained so that their first and second derivatives 
are continuous throughout the range being fitted. 
Cubic splines can be fitted to data in which the x- 
coordinates of the points being fitted are monotoni- 
cally increasing (the next section describes para- 
metric cubic splines which do not have this limita- 
tion). Atkinson and Harley (1983), de Boor (1978), 
and Press et al. (1986) give helpful introductions to 
cubic splines. Atkinson and Harley (1983) provide 
a Pascal procedure that can be used to compute 
cubic splines. Press et  al. (1986) furnish programs 
in both FORTRAN and Pascal. 

Let yi for i = 1, ...,p be a set of y-coordinates 

along an outline for a set of monotonically increas- 
ing x-coordinate values. Then for any interval, e.g., 
xi to xi+*, we can interpolate for y using the cubic 

polynomial 

where A = (x,+l-x)/Axi) , C = (A3 - A)(h i )2  , 

1 
D = i; [(1 - A)3- (1 - A ) ] ( A X ~ ) ~ ,  and Axi = xi+l  -xi. 

The b i  (second derivatives of the interpolating poly- 

nomial function) are the parameters of the curve. 
By adding the equations hl = 0 and bp = 0, it is 

possible to express the spline equations as CB = A 
where 

C = 
1 0 0 ... 0  

Ar, 2 ( h l  +h2) Ar2 ... 0  

0  Ax2 2(h2+Ar3) ... 0  

0  0  0 ... 2(Arp+ilx I).l) Axp 
0  0  0 ... 0 1 

( 2 )  

Ayi = yi+l - yi, and B is the column vector of 
parameters. This tridiagonal system of equations 
can be easily solved as B = C-1 A .  

Table 2. Fitting a cubic spline to the data of Table 1. A and C 
matrices used to estimate the coefficient vector B. 

C 
1 0 0 0 0 0  
1 6 2 0 0 0  
0 2 1 0 3  0 0  
0 0 3 1 0  2 0  
0  0  0  2 10 3  
0 0 0 0 0 1  

A 
0  

-18 
-4 
7 

-7 
0  

B 
0  

-2.97519 
-0.0744 
0.89926 

-0.87965 
0  
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A simple example of a cubic spline is shown 
in Table 2 and plotted in Figure 2. The path of the 
function seems more reasonable than that shown in 
Figure 1. 

Note that the use of cubic splines always 
results in as many parameters as one has data 
points. This is expected since the spline function is 

1 ~ i ~ u i - e  2. Plot of cubic spline using parameters shown in I 

required to pass through all of the data points. 
Thus there is no reduction to a more compact set of 
parameters. However, one can resample the curve 
with fewer points and then check that the new 
interpolated function stays fairly close to the origi- 
nal points. 

, *  
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Complex Open Contours 
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When the outline curve is complex, the y- 
coordinates cannot be expressed as a single-valued 
function of the x-coordinates. In such cases other 
methods are needed. One approach is to express 
the x and the y-coordinates each as parametric 
functions of the cumulative chordal distance of each 
point along the contour. Parametric cubic splines 
are one example. Another approach is to fit a more 
complex function such as the Bezier curve (see 
below). 

A - 
,Y' ~ 
I 
i 

i 

2 I 1. 
3 - - - -- . - --7- T- - - - -- - . -. -. .. - - 

0 2 4 5 R 1 0  1 2  

Figure 3. Plot of parametric cubic spline using parameters 
from Table 4. 

Parametric cubic splines This method is as 
described above for cubic splines but with x and y- 
coordinates (or even z-coordinates) fitted 
separately with the cumulative chordal distance, ti, 

of the ith point used as the abscissa. That is, in the 
equations of the previous section, replace Axi with 

Ati and then generalize the matrix, Z, to a p x n  
matrix with the columns corresponding to the x, y, 
and possibly z-coordinates of the p points along the 
outline. The solution matrix, B, will also have n 
columns. 

Using the same artificial data as before, the 
vector, T, of chordal distances from the first point is 
shown in the first column of Table 3. The C matrix 
shown in the table is the same for both x and y- 
variables. The vector, A, is now a matrix with 

columns corresponding to the 
x and y-variables. The solu- 
tion matrix, B, is shown in 
Table 4. The parametric cubic 
spline is plotted in Figure 3 
for comparison with the pre- 
vious figures. 

Table 3. T, C, and A matrices for the computation of a parametric cubic spline for the data 
of Table 1. 

Evans et al. (1985) 
describe parametric cubic 

T 

0 1 0 
4.12311 4.12311 13.90307 
6.95153 0 2.82843 

10.11381 0 0 
13.71930 0 0 
16.88164 0 0 

C 

0 0 0 0 
2.82843 0 0 0 

11.98141 3.16228 0 0 
3.16228 13.535M 3.60555 0 
0 3.60555 13.53566 3.16228 
0 0 0 1 

A 
X Y 

0 0 
2.78743 -1.57821 
1.44944 -2.34527 

-2.36390 3.09494 
2.363W -3.09494 
0 0 
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splines and furnish examples of their application to 
n~icrofossil outlines and to rock folds. Some useful 
general references include Spath (1974) and 
deBoor (1978). <;asson (1983) describes its 
application to computer graphics. 
Tahlc 4. Solution matrix H, for a parametric cuhic spline fittcd 
to the m;~triccs given in Tablc 3. 

X Y 

I 
0 2 4 6 8 10 1 2  14  16 

Plot of Bc /~cr  curvc , ~ n d  tlic B ~ / l c r  vcrtlcLs 
b i lml lc rcd  points) for the ex:~rnplc tli~ta set. 

Ikzier curves A Uezicr polynomial (Bezier, 1970) 
of degree q is a function that can be made to pass 
tllro~lgh an arbitrary ordered sequence of p = (I+ 1 
points in a 2 or .?-dimensional space. The parame- 
ters of a Ikzier curve are sirliply the locations of 
q + 1  constructed points that correspond to the 
vertices of an open polygon that forrns a convex hull 
around the observed data points. The first and last 
vertices are the s:lrne as the first and last data 
points and should correspond to morphological 
lanclmarks. The coordinates of the other 
vertices are parameters to he estimated. These 
vertices define a unique polynomial function 
that interpolates smoothly between the first 
and last vertices. As in the case of parametric 
cubic splines, the sequence of points can have a 
very complex trajectory since the polynomial is 
a function of an intrinsic parameter, t, which is 

the chordal distance along the curve (scaled to go 
from 0 to  1 as one goes from the first observed 
point to the last). 

The vector of coordinates, B, of the Bezier 
vertices can be constructed as solutions of the 
equation Z = JB, where J is a p x (q+ I )  matrix of 
coefficients 

t, is the normalized chordal distance from the first 

data point to the ith (the normalization is such that 
t ,  = 0 and t p  = 1) and Z is a matrix with rows corre- 

sponding to the coordinates of the p observed 
points and columns corresponding to the x, y (and 
possibly z )  coordinate axes. 

An advantage of the use of Bezier curves is 
that one can easily fit lower order polynomials, p > 
q+ 1, without having to discard data points. In this 
case matrix J will have more rows than columns and 
the first and last vertices will no longer correspond 
exactly to the first and last data points. A least- 
squares solution for this case can be obtained as 

This minimizes 

where z = Jfi is a matrix of estimated coordinates 
of the q +  1 vertices. 

T a l ~ l e  5 Vector of normalinxi t values and J matrix for a 5th degree 
Bcrier polynomial fittcd to the example data set of Table 1. 

I 

0.00000 
0.24424 
0.41178 
0.59910 
0.81268 
I.iHHH)O 

J 
1.00000 
0.24056 
0.07042 
0.01030 
0.00023 
0.iHHH)O 

0.00000 0.00000 0.00000 0.00000 0.00000 
0.30840 0.25750 0.08322 0.01345 0.00087 
0.24649 0.34510 0.24159 0.08456 0.01184 
0.077% 0.231% 0.345Y3 0.25823 0.07718 
O.(K)SOiI 0.04341 O.lM33 0.40854 0.35448 
O.00000 0.OOoW O.OOHNX) 0.00000 1.0000U 
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Table 5 furnishes the vector of normalized ti 

values for the 6 data points from the artificial 
example and the J matrix for a 5th degree Bezier 
curve. Table 6 gives the constructed Bezier 
vertices. Figure 4 shows a plot of the Bezier curve 
and the Bezier vertices. The vertices are numbered 
in the order in which they are constructed. They are 
also connected by dotted lines to show how they 
form an envelope (something like a convex hull) 
around the observed data points. 

18.29616 

5 1 

- 1 . 
9 

10 
1 I 

-1  5 r---- , - - - - 
-1.5 - 1  -0 5 0 0 5 1 1.5 2 

Figure 5. Example of a closed contour with points at the 
intersection of equally spaced radii. 

some of the properties of Bezier curves and 
generalizations to Bezier surfaces. 

Closed Contours 
Data consisting of points along closed contours, 
complete outlines, have been used more commonly 
in morphometrics than open contours. If a homolo- 
gous landmark along the outline is available, it is 
usually taken as the first point along the curve; it is 
treated as if homologous from specimen to speci- 
men. If no landmark is available, an arbitrary point 
is taken as the starting point for the curve and some 

adjustment must be made in the fitted coefficients 
to take this into account. As in the previous 
sections, it is useful to distinguish between the case 
of simple closed contours and the more general 
case of complex contours, whose outline can even 
appear to intersect in the view being analyzed. 
While many different techniques could be 
employed, some type of Fourier analysis is usually 
used. 

Simple Closed Contours 

The outline of an Ostracode was used in one of the 
first examples (Kaesler and Waters, 1972) of the 
use of Fourier analysis in morphometrics. In this 
and in many of the subsequent studies the outline 
was described in terms of the lengths of radii 
emanating from a central point (see Figure 5 for an 
example). 

Fourier analysis of equally spaced radii For this 
method the data consist of the lengths of p equally 
spaced radii emanating from a central point within 
the object. This point is the origin of the polar 
coordinate system. In most early studies it corre- 
sponded to a morphological landmark. In more 
recent studies it is simply the centroid of the outline 
of the object. An example is shown in Figure 5. 
Fourier analysis consists of fitting the following 
function to the observed data 

where the angle, 0, varies from 0 to 27r; a; and b; are 

the Fourier coefficients for the ith harmonic; and k 
is the maximum number of harmonics computed 
( k < p / 2 ) .  The least-squares estimates of the 
Fourier coefficients can be computed as 
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for i = 1 to p /2 .  The zeroth harmonic coefficients 
are 

This sirnple solution is possible since the indepen- 
dent variables in the equation for 0 given above are 
orthogonal when the angles are eclually spaced. 

An example is furn~shed in Table 7. The 
angle\, 0, from 0 to 271- are tiivided into 12 equal- 
:~ng~rl:ir \teps of ~ / h .  The lengths, p , of the radii, 
given i n  the second column, are relative to the 
location of a landmark near the center of the 
object. The Fourier coefficients are shown for 
harmonics 0 through the 6th. 

o f  radii at an  anglc 0 
cocfficicnls for h;~rmonics 0 througl~ 6. 

of the centroid of the contour should be found by a 
numerical integration, but they can be approxi- 

mated by using only 1 and 9. If the original angles 
were equally spaced, the transformed coordinates 
will no longer be equally spaced. One solution is to 
interpolate along the curve to obtain a new set of 
equally spaced values. A simpler solution is to use 
the methods of the next section which allow for 
~~nequally spaced values. 

In order to compare the coefficients of one 
qpecimen with those of another, the angle of the 
starting radius must be the same for both. This 
means that the outlines must be oriented so that the 
intersection of the first radius with the outline must 
correspond to a homologous landmark. If this is 
not the caw, then the rotational information [phase 
angle, 4 = tan-I(b/u)] in the coefficients must be 
ignored. This IS easily done by combining the two 
coefficients for each harmonic into a single number, 

2 2 
the harnmonic amplitude, computed as / I ,  = a, + h,. 

If a landmark is not used as the origin, the 
data must be transformed to polar coordinates 
relative to the centroid of the contour. 'I'his can be 
done by transforming the polar coordinates to a 
rectilinear coordinates (~rsing the rel:itionships x = 

p cos 0 and y = p sin O), translating the origin to the 
centroid (u' = x - x,, y' = y - y,), and then 

converting back to the polar coordinate systern ( 0  = 

tali-l().'/xl) arid p = d m ) .  Parriell and Lxstrcl 
(1977) describe these and other manipulations that 
can bc performed with such data. l'he coordinates 

These arnplitudes are a measure of the amount of 
"energy" at each harmonic. Lohmann (1983) and 
Bookstein et al. (1985) point out that if a reference 
point can be defined, the information on phase 
angle should be retained. An alternative is to 
rotate each specimen so that it aligns with some 
standard. Imhmann (1983) rotated each specimen 
so as to maximize its correlation with a reference 
specimen. Ferson et al. (1985) aligned each speci- 
men with its principal axes. Full and Ehrlich (1986) 
refer to these alignments as mathematical homol- 

o a .  

If the number of points happens to be a 
power of 2, it is possible to use the "fast Fourier 
transformation" algorithm (e.g., Cooley and Tukey, 
1965) to perform the calculations. It should be 
noted that this is simply an efficient computational 
algorithm not another type of analysis. The same 
numerical values are obtained for the coefficients. 

Fourier analysis of unequally spaced radii Fourier 
analysis can also be applied when the radii are not 
equally spaced. While most studies use equally 
spaced points, it is more efficient to collect points 
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more densely in regions of higher curvature. Note 
that by using equally spaced radii the parts of the 
outline close to the center are sampled more 
densely relative to regions of the outline far from 
the center. The base and tips of a mosquito wing, 
for example, are sampled very poorly since the 
wings are very elongate. The computations are 
more complex than in the case of equally spaced 
points since the vectors corresponding to the 
observed values of cos(iOj) and sin(i6,) are not 

orthogonal. Least-squares estimates of the Fourier 
coefficients can be obtained using the methods of 
multiple regression analysis with the cos(iOj) and 
sin(iOi) used as independent variables. An example 

of their use is shown below for the analysis of the $* 
function. 

Complex Closed Contours 

The above methods cannot be used for more 
complex contours when one or more radii would 
intersect the contour at more than one point. The 
solution here is to express the contour as a para- 
metric function of the cumulative chordal distance 
along the contour from some fixed starting point. 
Several such procedures have been proposed for 
use in morphometrics and are listed below. 

Fourier analysis of tangent angles Zahn and 
Roskies (1972) suggest expressing the contour in 
terms of the function: 

0 $ 2 3 4 5 6 
I 

Figure 6. Plot of 9 and d* as functions of cumulative chordal 
distance I. 

where t is the cumulative chordal distance along the 
curve (scaled as if it were an angle ranging from O 
to 27 radians), $(t) is the angular difference in 
orientation between a tangent at the starting point 
(t=O) and a tangent at a distance t along the out- 
line. The last value (corresponding to the last 
tangent angle) is not computed since it is assumed 
to be identical to the first value. See Figure 6 for a 
plot of $ and $* based on the example data. 

Care must be taken in the computation of 
the angles in order to obtain their proper sign. The 
function ATAN2 in FORTRAN (or its equivalent 
in other programming languages) that uses the signs 
of Ax and Ay rather than just their ratio, should be 

3 1 2 3 4 5 6 7 
t 

Figure 7. Plot of d* and an estimate of d* based on the first 
four harmonics. 

Table 8. Zahn and Roskies (1972) +* values and their Fourier 
coefficients for the example data of Table 7. 

t d +* 
0 2.32241 0 
0.71074 2.99739 -0.03575 
1.26974 2.87979 -0,71236 
1.62813 3.07630 -0.87424 
2.04442 -2.35619 -0.43984 
2.47448 -2.22569 -0.73939 
2.99824 -0.9159 1 0.0%63 
3.52200 -0.45831 -0.01954 
3.93829 -0.26180 -0.23932 
4.29608 -0.37940 -0.71530 
4.85568 0.29558 -0.5933 
5.56642 1.30900 -0.29665 
6.28319 

i a; 6 
0 -0.34626 
1 0.17595 -0.10944 
2 0.91564 0.26300 
3 -0.15540 0.02055 
4 -0.02769 0.37984 
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used. This function is defined so that a circle will 
have 4*(t) values equal to 0 for all values of t .  In 
most applications the array of observed 4*(t) values 
is adjusted, using interpolation, to correspond to 
equally spaced t-values. Fourier coefficients are 
then computed for the array of 4*(t) values. Table 8 
furnishes +*(t) values and their Fourier coefficients 
for the example data of Table 7 based on a least- 
squares analysis for the first four harmonics using 
the unequally spaced data. Figure 7 shows the fit 
based on the first four harmonics (R2 = 0.88). This 
function has been used in many morphornetric 
applications in recent years. 

Elliptic Fourier analysis This method (developed 
by Kuhl and Giardina, 1082) is based on the sepa- 
rate Fourier decompositions of the first differences 
of the x and y-coordinates (Ax; and Ay;) as paramet- 

ric functions of the cunlulative chordal distance, t, 
of the points around the outline. As above, the 
distance t is scaled to go from O to 2~ radians. The 
Fourier coefficients for the kth harmonic of the 
outline's x-projection are (Kuhl and Giardina, 1982) 

where p is the number of steps around the outline, 
Axi = xi - xi-l, Ati is the chordal distance of the step 

I 
1 1 5  

F ~ g u r c  8 Plot of e l l ~ p t ~ c  Fourlcr lunctlon b a w l  on thc first 3 
harmon~cs for t h e  exdmple ddtd ( ~ q u d r e ~  connected ~ ~ t h  t h ~ n  
lines) of Table 7 

between points i-1 and i, ti is the cumulative length 

of such steps up to step i, and T (= tp )  is the total 

length of the outline contour. Note that Ax, = x, - 

xP. The constant term for x is 

where the sums with limits of i-1 are defined to be 
zero when i = 1. This equation represents a numer- 

1 
ical integration of 7 5 ;  x(t) dt. 

Given a set of elliptic Fourier coefficients, a 
curve can be drawn using the equations ( for t  = 0 to 
27r) and n harmonics: 

TI 

~ ( t )  = A,, + C Ak cos ktk + Bk sin ktk.l 

y(t) = Co + C Ck cos ktk + Dk sin ktk., 
k = l  

The coefficients for the y-projections, Ci, Di, and Co, 

are found in the same way (simply replace the x's 
with )j's in the above equations). Thus four parame- 
ters are estimated for each harmonic. As a result 
one expects fewer harmonics to be necessary to  
describe a contour than are necessary using the 
methods described above. 

Table 9 shows the elliptic Fourier coeffi- 
cients for the example data of Table 7. Figure 8 
shows a plot of the example data from Table 7 with 
the elliptic Fourier function, based on the first three 
harmonics, superimposed. Since the general shape 
of the outline of the example data is elliptical, the 
fit is very good even with very few harmonics. The 
harmonic amplitude, sum of the squared coeffi- 
cients for each harmonic, is much larger for the first 
harmonic. Kuhl and Giardina (1982) show several 
examples of how the elliptic Fourier function can 
be fitted to very complex curves-including those 
that self-intersect. Rohlf and Archie (1984) found 
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Table 9. Elliptic Fourier coefficients for the example data of 
Table 7. 

i Ai Bi Ci Di 

0 0.31460 - -0.09'995 - 
1 1.56468 -0.27246 0.00959 1.13297 
2 -0.01796 0.00444 0.00135 0.03388 
3 0.06718 -0.03061 0.08219 0.03999 

this method to be effective and convenient in their 
studies. An example of its use to discriminate 
between two populations of mussels using a variety 
of multivariate analyses is given in Ferson et  al. 
(1985). 

Dual axis Fourier analysis This approach, 
suggested for use in describing shapes of 2- 
dimensional objects by Moellering and Rayner 
(1981, 1982), is closely related to elliptic Fourier 
analysis. In this method the x and y-coordinates are 
fitted directly by trigonometric series, rather than 
Ax and Ay, as a function of the cumulative chordal 
distance along the contour. This method does not 
seem to have been compared to elliptic Fourier 
analysis so its relative advantages or disadvantages 
are not known. 

Parametric cubic splines Evans et al. (1985) show 
that one can fit parametric cubic splines to a closed 
contour. No special modification of the method for 
parametric open curves was made. The fact that 
the first point, X I ,  yl  was the same point as the last, 

xp, yp ,  was not taken into account. 

Discussion 

A variety of methods for describing the outline 
shapes in morphometrics, for both partial and 
complete outlines, are described above. As can be 
seen from the various tables, different numerical 
results are produced by the different methods. But 
there are simple relationships between the coeffi- 
cients produced by some of the different methods. 
For example, polynomial regression, cubic splines, 
and Bezier curves based on the same set of coordi- 
nates will yield values for coefficients that differ by 
affine transformations (Rohlf, 1990). This means 
that statistical procedures that are invariant under 
affine transformations (such as generalized 

distances and discriminant functions) will yield 
equivalent results when based on data from these 
different methods. O n  the other hand, methods 
sensitive to affine transformations (such as principal 
components analysis or UPGMA cluster analysis of 
taxonomic distances) will yield different results for 
these methods. Methods based on parameters that 
differ by non-linear transformations, such as 4 * (t) 

values versus p ,  are expected to yield different 
results. 

These results indicate that the choice among 
the various method for describing an outline should 
not be determined by computational considerations 
since different methods can lead to different results. 
Unfortunately, it is not clear just how one can 
decide which method to use in a given application. 
This leads to an  inherent arbitrariness in how one 
describes the shape of an organism. If one's 
purpose is to develop a method to discriminate 
between two or  more forms that is not likely to be a 
problem. If, for example, one is able to develop a 
discriminant function that satisfactorily distin- 
guishes two species then that is sufficient. If, how- 
ever, one's purpose is to determine whether species 
A is more similar to species B or  to species C, then 
arbitrary choices of different methods can lead to 
different conclusions. 
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Abstract cannot be measured easily because appropriate 

Median axes are geometric transformations of an 
outline that identify a branching set of points that 
constitute the middle of a form. At least five 
different algorithms exist for constructing median 
axes, but the line skeleton is of most immediate 
morphometric interest. Operational homologies 
between line skeleton branches and branch points 
can be established among reasonably similar forms, 
permitting branch points to be used as constructed 
landmarks. An example analysis is provided  s sing 
line skeleton branch points to st~ldy complex outline 
shape variation in rodent bacula. Line skeleton 
measures are more informative than simple 
measures of length and width and provide nearly 
the same results as an elliptical Fourier analysis. 
Line skeletons are a promising approach to mor- 
phometric analysis of outline shape variation, even 
t h o ~ ~ g h  there are some challenges involved in using 
them. Line skeletons can be the basis of a rich 
geometric analysis of outline shape, and can be 
used to identify phylogenetic characters, model 
outline shape analytically, and study correlations in 
shape between interacting structures. 

Introduction 

Some shapes of biometrical interest resist analysis 
with landmark-based methods. Most systen~atists 
can probably think of regions of their organisms 
where major differences exist between taxa that 

landmarks are not located where obvious differ- 
ences exist. In bivalve shells, for example, land- 
marks can be identified in the hinge region and on 
the internal face o f  the shell, but these d o  not help 
quantify differences in the shape o f  the shell 
margin. The bones of vertebrate skulls have obvi- 
ous landmarks where three or more sutures meet at 
a point, but these landmarks are missing during 
ontogeny before the bones are in contact. Growth 
itself can conlplicate matters. Structures like bones, 
which grow by surface addition of matrix, can have 
surface landmarks at one age buried during growth. 
In these cases, surface landmarks at  successive 
ontogcnetic stages are not strictly homologous. 

'Three basic strategies exist for measuring 
fornls that lack appropriately placed landmarks. A 
very appealing approach is to model mathemati- 
cally the shape of  an outline. The most widely used 
methods involve some form of Fourier modeling 
(Rohlf, this volume), but approaches based on 
other analytical functions have been proposed (e.g., 
Rookstein, 1978; Sampson, 1982). The utility of 
these methods is well illustrated elsewhere in this 
volume. I w o ~ ~ l d  note, though, that these methods 
are developed within a framework that need not 
include the concept of homology. Systematists will, 
in general, wish to cast their analysis of morpholog- 
ical difference and change in terms of comparable 
aspects of biological shapes. This can be difficult 
(but not impossible) within a modeling paradigm. 
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A second, very common approach is to use 
arbitrary "landmarks of convenience" by measuring 
longest, widest, shortest or thinnest dimensions - 

between the extreme points on an outline. Alter- 
natively, points might be chosen at  specific fractions 
of outline arc length, and functions of the outline 
sampled at those points (e.g., tangent angle func- 
tions, Bookstein, 1978; eigenshape analysis, 
h h m a n n  and Schweitzer, this volume). Using arbi- 
trary landmarks, however, will confound errors in 
locating specific points with interindividual vari- 
ance, reducing the power of an analysis that 
compares groups. T o  be useful, convenience land- 
marks must be identified with a point-location error 
that is much smaller than the magnitude of group 
differences. This approach also is limited to 
comparisons of relatively similar shapes. Although 
the points might be chosen arbitrarily, morphomet- 
ric analyses will still assume that distances between 
points or functions at  points are in some sense 
homologous. If the shapes compared differ radi- 
cally, the arbitrary landmarks can occur in different 
regions in different samples, and any analysis could 
misrepresent the biological basis of the differences 
between taxa. 

The usefulness of convenience landmarks 
would be improved if a landmark construction 
scheme could be found that was precise enough. A 
third approach to analyzing outline shapes might be 
one that attempted to combine the precision of 
modeling with the comparability of operationally 
homologous landmarks. If we could find a mathe- 
matically precise way to identify constructed land- 
marks, not arbitrary ones of convenience, we could 
combine the best features of the other two 
approaches while possibly avoiding their limita- 
tions. To date, work along these lines has focused 
on median axis methods that geometrically trans- 
form an outline into a branching, tree-like graph 
that represents the points "in the middle" of an out- 
line. Bookstein (1979) suggested that the branch 
point$ of a median axis might behave as if they were 
homologous points. These points can be 
constructed very precisely, to the precision of digi- 

tizing the outline used to construct them. Although 
they lie within, rather than on, an  outline, these 
points could be useful if they can be homologized 
between outlines. Here, I review methods of 
median axis construction and their use in several 
morphometric contexts. In particular, I explore 
Bookstein's suggestion that this construct can 
provide constructed landmarks useful for morpho- 
metrics of shapes that otherwise lack them. I also 
compare the information obtained from morpho- 
metric analysis of these constructed landmarks with 
the results of the other two approaches to analyzing 
the same outlines. 

Calculating Median Axes 

The literature on median axis methods refers to 
these under several different names: median axis, 
medial axis, symmetric axis, skeleton, and line 
skeleton. Unfortunately, these names are used 
interchangeably even though there are at  least five 
distinct algorithms for constructing median axes 
which produce substantially different results. 
Although I will use a standardized taxonomy of 
median axis methods (and use the term "median 
axis" to refer to this class of methods generally), 
readers of the computational literature should be 
aware that usage is far from fixed. 

Symmetric Axis 

Blum (1967) introduced median axis methods to 
morphometrics in the general form of symmetric 
axes. For a continuous, smooth, closed curve, the 
symmetric axis is the continuous, branching curve 
that in some well-defined sense lies in the middle of 
the outline. The symmetric axis is the locus of 
points in the interior of the outline that are 
equidistant from points on the outline. Consider 
the outline as a wave front at some initial time, and 
imagine that this wave front moves inward toward 
the interior of the outline at  a constant rate. The 
symmetric axis is the set of points where wave 
fronts from opposite sides first touch as they meet 
in the middle of the form. This is usually referred 
to as the "prairie fire" definition: if the outline curve 
marks the boundary of a patch of grass, and the 
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wave front is a fire that starts simultaneously at 
each point along the boundary, the symmetric axis 
will be the points in the interior where the fire 
extinguishes itself. If the equation of an outline 
shape is known, an equation for its symmetric axis 
can be calculated precisely as an exercise in calcu- 
lus. Since the equation of the outline curve is rarely 
known in morphometric applications, this definition 
does not lead to a useful morphometric algorithm. 

An alternative definition for the symmetric 
axis, entirely compatible with the first, leads to the 
simplest algorithm for calculating any median axis, 
and illuminates some important properties of sym- 
metric axes. Imagine inscribing circles that are 
tangent to an outline at two, three, or more points. 
The set of centers of these circles will be the 
symmetric axis (Figure 1) since the symmetric axis 
is equidistant from both sides of the outline. The 
centers of circles that are tangent to the outline at 
two points will represent points along the curves of 
the symmetric axis, while circles that are tangent at 
three or more points have centers where the 
symmetric axis branches. The symmetric axis will 
end at points that mark the centers of circles of 
arbitrarily small radius that touch the outline at two 
points. It is clear from the geometry of this defini- 
tion that each point on the symmetric axis is asso- 
ciated with a width function, the radius of the circle 
centered at that point and tangent to the outline at 
more than one point. The width function is the 
distance from outline to symmetric axis, measured 

Figure 1. Constructing a symmetric axis with compass or 
circular templates. Centers of circles tangent to the outline 
at two points define branches of the axis. Circles tangent at 
three (or more) points define branch points of the axis. 

normal to the outline. Each outline point is associ- 
ated with a single axis branch or branch point. 

This definition of the symmetric axis 
provides an easy algorithm for calculating the axis. 
A compass or set of circular templates can be used 
to identify points of the symmetric axis from an 
image of an outline. In practice, the outline should 
be enlarged sufficiently to minimize the errors of 
identifying tangent points of inscribed circles. 
Frequently, it will be sufficient to identify branch 
points of the symmetric axis. Care should be taken 
to identify all branch points; beginners frequently 
overlook some, such as the two in the rectangle in 
Figure 1. 

Although this algorithm is extremely easy, it 
must be carried out by hand. Most work on median 
axis methods has sought computer-based algorithms 
that process digitized outlines. Computer analysis 
produces results no more precise than a careful use 
of a compass, but it does free the researcher from 
tedious manual labor. All computer algorithms find 
something like the symmetric axis by replacing the 
outline curve either by a polygon connecting digi- 
tized points or by a set of pixels sampled along the 
outline. In both cases, the approximation can differ 
radically from the symmetric axis of the original 
outline. Derived measures of the symmetric axis 
(Blum and Nagel, 1978; Bookstein, 1978) can 
generally be applied to these digitized approxima- 
tions. 

Medial Axes 

The term "medial axis" is generally associated with 
Lee's (1982) algorithm for finding the symmetric 
axis of a polygon. His algorithm is the most effi- 
cient for this task and is limited in accuracy only by 
the arithmetic precision of the computer and the 
resolution of the display device (an X-Y plotter will 
provide much better results than most microcom- 
puter raster displays). The medial axis of a polygon 
is a special case of a much more general construct, 
the Voronoi diagram, which is the basis of many 
algorithms for solving "nearest neighbor" problems 
(Preparata and Shamos, 1985). 
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of advance of the prairie-fire-like wavefront 
Lee's medial axis is the symmetric axis of a 

along the symmetric axis. This statistic could polygonal boundary. If the polygonal outline is an 
be used to discriminate among branches. 

approximation of a continuous outline, does its 
medial axis approximate the symmetric axis of the 

Adjusting a threshold value for branch dele- 
tion could result in a close approximation to a continuous outline? The medial axis does contain 
compass-drawn estimate of the symmetric axis 

an estimate of the symmetric axis of the continuous 
of the continuous outline. 

outline approximated by the polygon, but it also 
contains elements not present in that symmetric 2. At the very least, branches that are defined 
axis (Figures 2a and 2b). Consider a convex vertex only by contiguous edges of the polygonal 
of the polygon (internal angle at the vertex less than estimate need to be pruned. This should pro- 
180"). We can certainly inscribe arbitrarily small duce a figure very similar to the line skeleton 
circles within such a vertex that are tangent to the (see below). However, Lee's merging proce- 
sides at only two points. The centers of these dure will often construct additional 
circles will define a branch of the medial axis that connecting branches between the unwanted 
enters the vertex. Every convex vertex will have ones, and a threshold procedure may be 
such a branch, and when an outline is approximated needed to adjust the degree of contiguity 
by a polygon of many sides, there is a veritable appropriate to consider for pruning in specific 
forest of such branches that do  not exist in the instances. 
symmetric axis of the associated 
continuous outline. It should be 
clear that the symmetric axis of a 
polygonal approximation of a 
continuous outline can be a poor 
approximation of the symmetric axis 
of the continuous outline. 

Lee's algorithm is well suited 
for analyzing truly polygonal o ~ i t -  
lines. In morphometric studies 
where the polygon is an approxima- 
tion of a non-polygonal shape, some 
pruning of medial axis branches is 
required to estimate the original 
symmetric axis. It would be worth 
some study to determine how medial 
axes could be restricted to provide a 

for more useful basis 
morphometrics. I am unaware of 
any formal treatment, but the 
following two methods are worth 
trying if One would l ike use '"" 
medial axes in a mor~honletric 
context. 

Montanari presents 'Iis- 
Crete analogs of the "velocity" 
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Figure 2. Some altcrnative algorithms for computing median axes. a) Medial 
axes computed for a polygon by Lce's algorithm. b) When a continuous outline is 
rcprescnted by a high order polygon, this algorithm adds branches of the medial 
,s that cntcr cach convex vertex. As the limiting smooth curved outline is 
approachcd, thc number of these branches increases. Thc symmetric axis of the 
smooth outline in this figure would contain only a single branch. c) Pixel approx- 
inlation of a shapc (right) and its digital skelcton (left). d) Pixel approximation 
(right) and homotypic thinning (right). (a after Lcc; c and d from Serra). 
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Line Skeleton 

Bookstein (1979) presents an algorithm that calcu- 
lates from a polygonal approximation of a continu- 
ous outline an estimate of the original outline's 
symmetric axis. This construct, which Bookstein 
calls a line skeleton, is composed of line segments. 
As such, it is not the symmetric axis of the approxi- 
mating polygon, which should have parabolic arcs in 
addition to line segments (Bookstein, 1979; Lee, 
1982). But the line skeleton is not designed to be 
the symmetric axis of the polygon, as is the medial 
axis. Instead, it is constructed to estimate the 
symmetric axis of the original outline, an estimate 
that improves as the number of sides of the approx- 
imating polygon increases. 

The width function for both line skeletons 
and medial axes is not a single-valued function like 
that of the symmetric axis. Each element of the line 
skeleton or the medial axis represents a segment 
along the bisector of the angle formed by extension 
of two opposite outline edges. Since the edges may 
occur at different distances from the vertex of this 
angle, each edge endpoint may be a different 
distance from the axis element. Bookstein (1979) 
discusses this ambiguity, and suggests the minimum 
distance from endpoint to skeleton (measured 
perpendicular to the edge) as an appropriate esti- 
mate of the width function to associate with each 
skeleton segment. Other measures of width can be 
appropriate in specific applications (Zablotny, 
1988). 

Line skeletons are currently the median axes 
of choice for morphometric analysis. The algorithm 
has been implemented by Bookstein and by Straney 
and Kriegel (software distributed with this volume). 
Further aspects of the usefulness of line skeletons is 
presented below. There are limitations on their 
utility however, which are also discussed below. 

Digital Skeletons and Homotopic Thinning 

Polygons are not the only approximators of contin- 
uous outlines. An unconnected set of points along 
the outline is also a good representation of outline 

shape, if points are sampled densely enough. When 
the curved outline is captured by a video digitizer, 
the outline and interior of a shape can be repre- 
sented on a display screen by a set of pixels. A digi- 
tal median axis can be computed for this pixel 
approximation simply by operating on the pixels 
themselves. Serra (1982) summarizes approaches 
to calculating digital median axes of such an  outline 
set. In this digital domain, only one of the two 
definitions of the symmetric axis is appropriate. 
The digital axes are based on the tangent circle 
version of the symmetric axis; in digital situations, 
the prairie-fire definition produces a different, less 
well-behaved construct which will not be  discussed 
here. 

Two properties of the symmetric axis, its 
median position and its connectedness, cannot be 
achieved simultaneously in analyzing a pixel 
approximation. Serra (1982) presents two different 
algorithms that implement one or the other of these 
properties. The digital skeleton is the simplest to 
implement (see Appendix 2) and achieves the 
median property of the symmetric axis by uniting 
the results of a series of patterned erosions and 
dilations of the digital representation. The result is 
often a poorly connected set of points (Figure 2c). 
A second algorithm, homotopic thinning, produces 
a connected set of points that are not always in the 
middle of the outline (Figure 2d). Zhang and Suen 
(1984) present a more efficient thinning algorithm. 
Whether either approach will be useful in system- 
atic morphometrics remains an  unstudied question. 
I encourage morphometricians who analyze video 
images (Fink, Macleod, and Rohlf, this volume) to 
explore their utility. 

Morphometrics of Line Skeletons 
Because they provide close approximations of the 
symmetric axis of continuous outlines, line skele- 
tons have been the algorithm of choice for applica- 
tions of median axis methods in morphometrics. 
Bookstein (1979) analyzed an  ontogenetic series of 
human mandibles and noted the stability and 
apparent homology of branch points of the line 
skeletons. Webber and Blum (1979) discovered 
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invariant angles between branches of line skeletons 
in a similar growth series of human mandibles. 
Bookstein et al. (1985) measured angles between 
line skeleton branches of opercula in two species of 
centrarchid fishes and found that these measures 
clearly discriminated between species, although 
there was no apparent ontogenetic pattern of 
difference within species. There are a large 
number of other derived measures that can be 
taken on line skeletons (Blum and Nagel, 1978; 
Bookstein, 1978), but an important use of line 
skeletons in morphometrics will lie in the branch 
points they construct within landmark-free forms. 
Unlike biological landmarks, these points have no 
real existence. But as computed landmarks they 
may facilitate analysis of outline shape differences. 
To be useful, though, they must enable us to iden- 
tify comparable points in different individuals, to 
establish a homology between points. This homol- 
ogy is not the same as for biologically real entities, 
but instead is an  operational procedure that makes 
comparison possible. 

To  illustrate how line skeletons can be used 
to study shape differences, I present a subset of the 
results of a study of shape evolution of the baculum 
in spiny rats (genus Proechinlys) (Straney and Pat- 
ton, in prep.; Figure 3). Mammalian systematists 
have found bacular shape a useful source of taxo- 
nomic information, but the lack of any homologous 
landmarks on the bone has restricted morphometric 
study to simple length and width measures (e.g., 
Patton, 1987). Bacular shape is complex in 
Proechinzjs, and both intrapopulation variation and 
interspecific differences are often striking. This 
example provides a realistic picture of issues 
involved in using line skeletons for landmark-based 
morphometric analysis. 

The sample analyzed here comprises bacula 
of 54 individuals representing 10 nominate species 
in 6 species groups within Proechin~s .  Thirty indi- 
viduals represent an age series of P. brevicuudu 
collected at one locality (Huampami, Rio Cenepa, 
Amazonas, Peru; age classes follow Patton and 
Rogers, 1983); samples of other species were indi- 

viduals illustrated in Patton's monograph (Patton, 
1987; they were all old adults). Scaled original 
camera lucida tracings made by J. L. Patton were 
digitized by sampling 150 to 350 outline points. 
Points were sampled inversely to the curvature of 
the outline: more points were taken in regions of 
the form where the outline was highly curved than 
in regions that were relatively straight. In some 
individuals, the proximal base of the baculum was 
irregular in outline where the corpora cavernosa 
attach. I sampled outline points in these individuals 
to smooth out such irregularities. 

Identifying Landmarks 8 proximal 8 
s 10 

' 8 

a. b. c. 

d e. 
Figure 3. Line skeletons of Proecltimys brevicauda bacula. 
a) Generalized outline. b) Generalized line skeleton 
(numbers index branch points discussed in text). c) Truss 
measurement scheme based on line skeleton branch points. 
d) and e)  Steps in parsing the outline shape based upon 
outline points that define branch points of the line skeleton. 
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In general plan (Figure 3b), the line 
skeleton of Proecliimys bacula con- 
tains a central segment that branches 
both distally and proximally where 
the baculum flares into expanded 
and somewhat flattened ends. 
Because these bacula are usually 
longer than they are wide, the cen- 
tral segment of the line skeleton is 
oriented in a proximodistal direction. 
Along the central segment, circles 
centered on the line skeleton can be 
drawn to touch both right and left 
portions of the outline at one point 
each. At the endpoints of this 

2 5 7 7 P. oconnelli 

Figure 4. Representative age series demonstrating the development of the line 
skeleton within a) distal and b)proxirnal ends of Proechin~ys brevicauda bacula. 
Numbers refcr to age classes. 

segment (points 1 and 2 in Figure 
3b), such an inscribed circle will also touch a third 
point at the terminal end of the outline (Figure 3d). 
More terminal elements of the line skeleton will 
branch into the flared ends of the baculum. Points 
1 and 2, therefore, are useful landmarks that mark 
the transition points between the central shaft of 
the baculum and its more elaborate ends. Indeed, 
the points on the outline where a circle centered at 
a branch point is tangent can parse the outline into 
regions associated with particular line skeleton 
branches (Figure 3e). This association is 
unambiguous and helps assign operational 
homologies to branches across specimens. 

The ontogenetic series of bacula from P. 
brevicauda also helps clarify the homologies among 
line skeleton branches within the distal and proxi- 
mal ends (Figure 4). There are two branch points 
present in all P. brevicauda distal end line skeletons 
(points 3 and 4 in Figure 3b). Terminal branches 
from these points penetrate into the corners 
defined by a flattening of the distal margin of the 
baculum. This distal edge is barely noticeable in 
the youngest individual in the sample, but is well 
developed by age class 5. Among age class 6 
individuals, a second branch point appears on the 
distal end line skeleton (points 5 and 6 in Figure 

3b). This point and its lateral branch appear when 
a distinct lateral flange is evident on the distal end. 
At its earliest appearance, the lateral flange 
appears to be positioned such that points 5 and 6 
are coincident with points 3 and 4. With age, points 
5 and 6 become distinct and are displaced 
proximally towards point 1 (there is some variation 
in the rate of displacement with age). 

Some P. brevicauda (and most other species, 
Figure 5 )  lack a well-defined lateral flange, and 
therefore do not appear to have points 5 and 6 
present on the line skeleton. Based on the 
ontogeny of this flange, I interpret these individuals 
to have undereone insufficient bone de~osi t ion  to " 
elaborate this flange and locate points 5 and 6 in 
these individuals coincident with points 3 and 4. 
Among the other 9 species (Figure 5), the distal 
flange is present only in one individual of P. ocon- 
nelli (Figure 4). In individuals without distal edges, 
I interpret points 3 and 4 to be coincident with the 
endpoint of the line skeleton in the distal end. The 
position of points 3 and 4 in the youngest P. 
brevicauda suggests strongly that, as the distal edge 
develops, points 3 and 4 move from a position very 
close to the skeleton end point to a position more 
proximal on the skeleton. 
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The proximal-end line skeleton has branch 
points that are analogous to those in the distal end 
(Figure 4). A proximal edge is present that defines 
branch points 7 and 8 (Figure 3b). It is more vari- 
able in its presence than is the distal edge, but 
appears to follow a similar ontogeny. A distinct 
shoulder appears on the otherwise smoothly 
bulbous base of the baculum by age class 5 in P. 
hrevicauda. At its first appearance, it defines a 
branch point on the line skeleton that lies between 
point 2 and points 7 and 8 (Figure 4). With increas- 
ing age, the proximal shoulder moves distally, and 
branch points 9 and 10 follow. Passing through a 
stage when they are coincident with point 2, points 

topology of the line skeleton in this species poses 
problems since the same landmarks cannot be 
found on all individuals. Because the topology of 
the line skeleton can change dramatically with such 
small changes in outline shape, this situation is 
likely to be encountered whenever the shapes 
studied are more square (or circular) than they are 
rectangular. In the present case, the individuals 
with the minority topology could be excluded from 
the analysis, or only those points present on all 
individuals might be  analyzed. I have taken a third 
choice in the analysis to follow. Bacular length and 
width vary continuously in this species; individuals 
can be found that connect the topologies of Figure 

. - 
hrevicauda, but ontogenetic evidence 
is not sufficient to indicate where 
these points may be located in such a 
young individual. 

- 
9 and 10 are located along the cen- 

Two individuals of P. cuvieri 
deserve special notice. The baculum 
of this species is only slightly longer 
than it is wide; in two individuals, the 

tral branch of the line skeleton in 
niost older individuals. As with the 
distal flange, some individuals lack a 
proximal shoulder. I have inter- 
preted points 9 and 10 to be coinci- 
dent with point 2 in these individu- 
als, based on the ontogeny of these 
points in P. brevicauda. This is rea- 
sonable for all but the voungest P. 

baculum is actually wider than it is 
long (Figure 5k and 1). The line 
skeletons of these individuals has a 
central segment that is oriented from 
left to right, not proximodistally as in 
all other Proechimys. The endpoints 
of the transverse central segments 

a .  

steerel s~rnonsl oconnelli 

are not in any sense homologous cuvieri 

with points 1 and 2 in other individ- 
uals where they parse the baculum 
i n t o  left and right, not and 
distal, ends. ~h~ 
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5k and 51 in a continuous fashion. If we imagine 
transforming Figure 5i through Figure 5j into 
Figure 5k and 51, keeping track of points 1 and 2 
during the transformation, we would find that these 
points end up along the transverse central axis. I 
have constructed approximations of points 1 and 2 
for these two individuals by making them coincident 
at a point halfway along the path from points 3 to 4. 
This procedure is in the same spirit of compromise 
between rigor and sample size as one utilized by 
Bookstein et al. (1985) in their line skeleton analy- 
sis of sunfish opercula. 

A number of individuals in the sample of 
bacula had unique line skeleton branches produced 
by small irregularities on the outline, but only 
branches and branch points common to many indi- 
viduals were considered potentially homologous. 
Because these common branches and branch points 
can be unambiguously linked to portions of the 
outline, the standard positional, relational and 
ontogenetic arguments for homology can apply to 
outline fragments and the branches and branch 
points they define. As in any morphometric situa- 
tion, some branch points can be homologized only 
t)y invoking an ontogenetic hypothesis that must be 
confirmed separately. The branch points of line 
skeletons therefore seem capable of supporting 
landmark-based analyses of forms that otherwise 
lack appropriately placed landmarks. 

Truss Analysis of Proechimys Bacular Line 
Skeletons 

To illustrate the morphometric utility of line- 
skeleton-based landmarks, I have used the land- 
marks derived in Proechimys as the basis of a truss 
measurement scheme. In some ways, this is a very 
inefficient use of the line skeleton, since it ignores 
all but a very small part of the total skeleton. At 
the very least, measures of branch arc length and 
angles between branches could be included. The 
diversity of derived measures of median axes (Blum 
and Nagel, 1978) presents morphometricians with a 
rich source of information. The present analysis, 
however, does indicate the utility of line skeletons 

when they are treated as simply as possible. More 
sophisticated analyses are likely to be even more 
informative. 

Twenty-seven interlandmark distances were 
calculated (Figure 3c) and analyzed with an addi- 
tional ten variables representing the width function 
of the line skeleton at  each landmark. Principal 
components, extracted from the covariance matrix, 
were used to display patterns of variation among 
species (analysis of the correlation matrix yields 
very similar results). 

Three components had eigenvalues greater 
than 1.0 and represent 65%, 23%, and 5% of the 
variation among individuals of all species. Figure 6 
illustrates the variables that have high loadings (>  
0.55) on each component. Component I reflects the 
distance between proximal and distal ends of the 
baculum, or the length of the central shaft of the 
bone. Component I1 represents variation in the 
relative position of landmarks within both the distal 
and proximal ends of the bacula. Individuals with 
high values of Component I1 have landmarks within 
both ends more widely separated than in individuals 
ranking low on this component. Four width func- 
tion variables within the ends also contribute to this 
component. Component 111 reflects variation in the 
position of landmarks in the proximal end that is 
independent of the covariance between distal and 
proximal width indexed by component 11. 

A different set of principal components 
emerges from an analysis of the ontogenetic series 
of P. brevicauda. Within this species, four compo- 
nents (Figure 6) represent 53%, 11%, 9%, and 8% 
of the variation within the species. Component I is 
a general size component with high positive load- 
ings for all but seven variables. It reflects the 
unsurprising fact that the baculum becomes larger 
in most dimensions with age. Component I1 
indexes the non-ontogenetic variation in proximal 
flange position; there appears to be very little non- 
ontogenetic variation in distal flange position that is 
separable from the overall size effect. Component 
I11 is a measure of the width function at the proxi- 
mal end of the line skeleton, and Component IV 
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indexes variation in the length of the distal-most tion? To  justify the computational effort, we would 
branch of the skeleton. hope they provide more information than do mea- 

No single size factor appears in the inter- surements between convenience landmarks. But 

species analysis, even though that analysis contains line skeletons are approximations of the symmetric 

the brevicauda specimens which by themselves axis of an  outline shape, itself approximated by a 

display a strong effect of general size. The size axis polygon. This extra level of approximation, and 

within hrevicauda, however, is evident in a plot of reliance on only a few constructed landmarks to 

the first two interspecific principal components capture all of the information on variation in out- 

(Figure 7) as the major axis of the elliptical scatter line shape, may make an analysis of line skeleton 

of brevicauda. The interspecific analysis lacks an branch points less informative than a Fourier anal- 

explicit size factor because the variation among ysis of the entire outline. T o  evaluate the relative 

species is greater than size-related variation within. effectiveness of the line skelton for morphometric 

This is a common result of multigroup principal comparisons, both extremal measurements and 

component analyses and further analysis could fol- Fourier analysis were conducted on the same 

low the suggestions of Rohlf and Bookstein (1987). specimens of Proechimys bacula. 

Patton (1987) measured Proechinzys bacula 
Comparisons with Other Methods with calipers and recorded three extremal dimen- 

How effective are line skeleton branch points at sions: maximal length, maximal distal width, and 

capturing information about outline shape maximal proximal width. A plot of distal width ver- 

PC I1 PC III PC I 

E AI I  species 

All  axcbpt: 

g E u 8  brevicauda 

,A. 4 5  a *  . . -. . 
Figure 6. Principal component loadings for interspecific (top) and intraspecific 
(bottom) analyses of truss measurements of line skeletons of Proecllimys bacula, 
Open dots represent landmarks; solid lines indicate dimensions with high loadings 
for a particular component (except in PC I, bottom, where all dimensions except 
the ones indicated in dotted lines have hieh loadines on this comuonent). 

sus bacular length (his Figure 12) 
provides a very similar picture of 
variation among species as does a 
plot of the first and second principal 
components of the among-species 
analysis in Figure 7. Component I 
varies with the length of bacula while 
Component I1 represents variation in 
the width of each end. Because 
interspecific differences in these two 
dimensions are large, it is no real 
surprise that caliper measures of 
analogous length and widths provide 

tion. placement the same The view errors are very of of patterns caliper small relative end-point of varia- to 

the magnitude of shape differences, 
which are large enough to see by eye. 
Patton (pers. comm.) first noted this 
pattern of structured variation on 
visual inspection and chose his 
caliper measures to help convince 
readers of the differences between 
groups. 
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While it is reassuring that analysis of line measurement would mimic the general size factor 

skeleton branch points confirms the subjective identified in Figure 6, but it is difficult to identify 

impressions of a good systematist, these points repeatable measurement schemes for measuring 

support an  analysis that resolves more than an eye the other, independent patterns of variation in this 

sees or calipers measure. Variation in bacular sample. With Figure 6 in hand, it might be possible 

length and end width accounts at best for 88% of to find caliper measurements accurate enough to 

the variation in this sample of bones. (and only 61% recover the same patterns of variation. But these 

if the more customary analysis of the correlation would be unlikely measures to choose unless the 

matrix is performed). Component 111, with its patterns were known to be present. Certainly no 

complex covariation of proximal flange position and one has thought to measure such dimensions during 

the relative roundness of the proximal end, would the history of study of bacular shape in this genus 

be difficult to measure using calipers. Studying the (Patton, 1978). The line skeleton analysis detects 

ontogeny of P. hrevicunda with caliper measure- much subtler patterns of variation than do standard 

ments would be even more difficult. Any one measurement schemes applied to this bone. 

- 3 - 2  - I  o I 2 3 

PC I 

This comparison, however, 
may be unfair because Patton's three 
distances are competing with 37 
based on the line skeleton. A more 
informative comparison is with the 
more analytical Fourier analysis. 
The files of digitized outlines used to 
construct line skeletons were used as 
input to Rohlfs elliptical Fourier 
program (Rohlf, this volume). 
Twenty-two terms were required to 
produce an  acceptable fit of the 
Fourier reconstruction to the outline 
(maximum x or y deviation within 
l o x  digitizing error) in six individu- 
als chosen to represent the range of 
shape variation in the sample. 
Reconstructions for all individuals 
used 22 terms and were made invari- 
ant to orientation and digitizing 
starting point, resulting in 86 esti- 
mated Fourier coefficients for each 
individual. 

3 - 

2 - 

I - 

5 o -  
a 

-I - 

- 2  - 

Reconstructions were not 
made invariant to size so that results 
would be comparable with the line 

Figure 7. Two-dimensional plot of component scores for specimens of 
Procchir?~ys bacula. Measurements were of truss clcmcnts connecting branch 
points of line skeletons and width functions at branch points. Components have 
been scaled to unit variance to facilitate comparison with Figure 8. Unsealed, a 
unit distance along Component I is three times as long as one along Component 
I T  

- 

Line Skeleton Truss 
Factor 3 - 
> 1 . 0  

-0-1.0 
------ < o 

brer icoudn 

skeleton analysis. covariances 
among coefficients were calculated 

'pecimens and 
principal components analysis. 
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The covariance matrix yielded three compo- have not followed this strategy because the 

nents accounting for 60.296, 26.4% and 7.0% of the variables in the two analyses are so fundamentally 

variation, respectively. Component I has a large different. I see no way to directly transform one 

loading only for coefficient A", the Fourier size pattern matrix into the other. Further, I am 
uncertain how to specify a hypothetical target 

index. P. brevicauda scores on this component have for the ~~~~i~~ analysis. ~ ~ h l f  and  hi^ 
a correlation of 0.97 with scores on Component I of (1984) note reasons for viewing as a virtue the 
the ontogenetic line skeleton analysis, itself a size uninterpretability of the ~~~~i~~ coefficients; in the 
axis. Component I1 has high loadings for coefficient present context, however, this is a liability. 
Do (the eccentricity parameter) as well as coeffi- ~~~~~~~~~i~~ the principal components of the 

cients A2 and (negatively) D4 Examination of Fourier data set relies on inspection of how they 
specimens of varying scores on Component I1 but sort the specimens. Consequently, I have sought 
with near-zero scores on Components I and 111 indi- transformations of the distribution of specimens on 
cates long-thin bacula have high scores and short- the three components that make Figures 7 and 8 as 
broad bacula have low scores. Component 111 is similar as possible. Graphical transforms that bring 
highly correlated with four coeffi- 
cients ( A l ,  Dl ,  A4, and AG). Speci- 

mens with near-zero values of the 
first two components vary along 
Component I11 in a pattern suggest- 
ing a contrast between proximal and 
distal width. Proximal ends are 
widest in specimens with high Com- 
ponent 111 scores, distal ends are 
widest in specimens with low scores, 
and both ends are nearly equal in 
specimens with near-zero scores. 
Figure 8 illustrates the distribution 
of specimens along these compo- 
nents. 

These results cannot be com- 
pared directly with the results of the 
line skeleton truss. The two sets of 
components must first be trans- 
formed to be as alike as possible, 
since nothing in their extraction 
constrained them to be similar 
(Zelditch, DeBry, and Straney, 1989; 
Rohlf and Archie, 1984; Mulaik, 
1972). Usually, one would transform 

the pattern matrix of load- 
using some variant of 

crustean rotation to make one anal- 
ysis match the other, or to make both 
match some independent criterion. 1 
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Figure 8. Two-dimensional plot of component scores for individual Proecltir,~):~ 
bacula based upon elliptical Fouricr coefficients. Components have been scaled 
to have unit variance to facilitate comparison with Figurc 7. The unscaled unit 
distance in Component I is three times as large as for Component 11. The asterisk 
Iabclsone P. cuvieri with a score for PC I11 > 1.0. 
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Figure 7 into agreement with Figure 8 can then be 
applied to a vector plot of loadings of line skeleton 
variables on the original components to identity the 
transformed axes. These can then be compared 
with the interpretations of Fourier components to 
determine how differently the two methods 
describe shape differences within the sample. 

Figures 7 and 8 have already been subjected 
to one transformation to make them comparable. 
Both figures have axes that are each standardized 
to have unit variance. In fact, the scale in each 
figure is different. Although the two analyses yield 
components that explain nearly the same propor- 
tion of the total variance (see above), the total vari- 
ance in the line skeleton data is 22 times greater 
than in the Fourier coefficients. This difference is 
reflected in the distance between points in the two 

results. Mahalanobis D~ distance between species 
centroids is 20.3 units greater in the line skeleton 
analysis. This scale difference, reflecting the differ- 
ence in how the variables are measured, must be 
removed to make units comparable. When this 
difference is removed, the distances between 
centroids are very similar except those involving P. 
oconnelli (mean difference between line skeleton 
and Fourier distances = -0.074 without oconnelli, 
and distances involving this species differ by 0.980). 
This suggests that the main features of the distribu- 
tion of points in Figures 7 and 8 are potentially 
more similar than is apparent. 

The sign of Components I and I1 in the 
Fourier analysis (Figure 8) can be changed without 
altering the results, since components are unique up 
to a change in sign. This turns Figure 8 upside 
down and backwards. Superimposing Figure 7, and 
rotating it about the origin by 42" brings the species 
distributions into good alignment. P. oconnelli is 
placed differently in the two analyses. A small 
rotation of Component 11 and 111 of Figure 7 
around Component I improves the visual fit of the 
distributions still further, but has little effect on P. 
oconnelli. 

These transformations bring the taxa into 
remarkably good registration, but in doing so, the 

original components have themselves been trans- 
formed. The same rigid rotations of the component 
axes must be applied to a vector plot of variable 
loadings to interpret what aspects of variation 
among line skeleton measures the transformed 
component's index. Transformed Component I has 
moderate (0.4-0.6) positive loadings for most 
distances. Only distances between points 2, 9, and 
10, and widths at  points 3 through 8 (Figure 3b), 
have near-zero loadings. This component is easily 
interpreted as a size axis, as was Component I of 
the Fourier analysis. Component I1 is transformed 
into a contrast between measures of length with 
extreme negative loadings (-0.5 to -0.6) and 
measures of distal and proximal width with extreme 
positive loadings (0.4 to 0.6). This is the same 
variation in shape indexed by Fourier Component 
11. Component 111 has also become a contrast, but 
one between widths between distal landmarks (-0.3 
to -0.4) and widths between proximal landmarks 
and width functions at distal end landmarks (0.3 to 
0.5). This component is similar to Fourier Compo- 
nent 111, except that it includes a tendancy for broad 
distal ends to be more sharply pointed which was 
not apparent in the Fourier analysis. 

Principal component analysis of line skele- 
ton and Fourier coefficient data sets therefore yield 
very similar results. Very nearly the same compo- 
nents can be found for both data sets, and the 
components distribute species in a similar way. The 
major difference between the original analyses is 
one of perspective: Figures 7 and 8 view essentially 
the same multidimensional clusters of data from 
different viewpoints. The reason for this difference 
lies in the distribution of the variance across vari- 
ables. In the Fourier data set, the size coefficient 
A. is nearly twice as variable as the next most vari- 

able coefficient, and Component I is compelled to 
be aligned with its variation. Likewise, line skele- 
ton measures of bacular length are  slightly more 
variable than widths and therefore dictate place- 
ment of the first component along their axis of 
covariation, rather than along a size trend. This 
difference between analyses has little biological 
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importance and reflects only the difference in 
statistical distributions of the variance of linear 
measures and the variance of coefficients in a 
trigonometric series. 

The important difference between these 
analyses is their respective treatment of P. ocon- 
rzelli. The line skeleton measures find bacula of this 
species to be less eccentric than does the Fourier 
analysis. I suspect this is because the line skeleton 
measures are more strongly influenced by the rela- 
tively flared ends of these bones than are the 
Fourier coefficients that load on the first three 
components. The line skeleton measures probably 
capture more shape variation in fewer orthogonal 
dimensions than do Fourier coefficients. This is 
certainly true of Component 111, which contains 
information about distal end sharpness in  the line 
skeleton analysis that seems absent in the Fourier 
analysis. 

In  conclusion, line skeleton measures do 
much better than expected compared with other 
approaches to landmark-free outline shape analysis. 
For this data set, they permit a much more subtle 
analysis than has been possible with convenience 
landmarks. Surprisingly, line skeleton and elliptical 
Fourier analysis of these bacula yield very similar 
results. The line skeleton landmarks index shape 
variation in 10 very limited regions of the outline. 
That this limited sample of the outline shape 
competes so well with an analysis of overall outline 
shape is unexpected. I see no basis in the results of 
these two analysis for preferring one over the other. 
I find the line skeleton analysis easier to interpret, 
since component loadings can be interpreted much 
more directly. Because they construct points that 
serve well as landmarks, line skeletons permit some 
types of analyses, such as shape coordinates, 
(Bookstein. this volun~e). not available with Fourier 

Limitations 

I must leaven the preceding optimism for line 
skeletons with some limitations on their usefulness. 
The most obvious problem they pose is in how they 
are calculated. Unlike other methods of shape 
analysis, line skeletons are calculated interactively, 
and often iteratively. Without some experience, it 
is difficult to digitize outlines and calculate a useful 
line skeleton on one unattended pass through a 
program. In the early stages, one will often go back 
to redigitize an outline to add points that will bring 
out a skeleton branch the program refuses to find, 
or to delete points that induce a confusing array of 
spurious branches. Straney and Kriegel's (1989) 
program includes an outline editor to make the 
learning process easier. Bookstein's (1979) algo- 
rithm is quite sensitive to starting position. For 
some shapes, some starting points may produce 
only parts of the line skeleton. The chaining proto- 
col of this algorithm can have difficulty finding 
branches within some regions of an outline. In this 
case the outline must be redigitized with more or 
fewer points. The algorithm is also sensitive to 
minor digitizing errors, producing branches caused 
by dimples or pimples in the outline shape. 
Smoothing the outline or changing the threshold for 
diagnosing these irregularities (Straney and Kriegal, 
1989) can prune these products of digitizing error. I 
find it extremely useful to sketch the symmetric axis 
of an outline with circular templates before begin- 
ning to digitize a set of new shapes. One must 
know what the skeleton should look like before 
using one in an analysis. Uncritical, casual use of a 
line skeleton program will not be informative. Care 
and patience are rewarded, not only with a useful 
line skeleton, but also with a solid understanding of 
the shape being studied. 

, , 

coefficients. Perhaps it is only the purpose of a If outlines are digitized too coursely, the 

study that can dictate the choice between these two locations of branches and branch points can be 
techniques. sensitive to the way outlines were digitized. The 

line skeleton algorithm assumes that the outline is 
captured as a polygon with many sides, and enough 
points must be taken to reduce the effect of digitiz- 
ing error on branch and branch point location. For 
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each set of new shapes, I generally digitize one 
individual at several different point densities and 
examine the (x,y) coordinates of branch points. It is 
then a simple matter to determine a threshold point 
density that will produce stable results. The end 
point of terminal branches, however, is always 
sensitive to the scale of digitization: terminal 
branches invade further into a region as point 
density increases. If the end of terminal branches is 
important for a morphometric analysis, that region 
of the outline must be digitized to the same relative 
point density in different individuals. 

There are some shapes that measures of line 
skeletons will not analyze well. Sausage-like 
shapes, with smoothly covarying sides, will have a 
skeleton with only a single branch n o  matter how 
the outline snakes across a plane. Whatever is 
measured on this line skeleton could just as easily 
be measured on the original outline. Compact, 
nearly square or circular shapes pose a very differ- 
ent problem, and must be studied with caution. 
Very slight changes in these outlines can produce 
miijor changes in the topology of the skeleton. 
Ani~lyzing line skeletons of populations of nearly 
circular shapes is very challenging, since the topo- 
logical differences make identifying comparable 
branches o r  branch points very difficult (except in 
certain cases; see discussion of Figure 5i-I, above). 
To analyze these shapes well, one must be able to 
distinguish between topological differences induced 
by l>iologically meaningfill changes in outline shape 
and those produced by ~~nimportant ,   rando on^" 
perturbations. But the topologies of the line 
skeletons of other shapes can also vary, such as in 
the bacula of Proechittzj~s (Figure 5). The ontogeny 
of the baculurn was reasonably stable, however, and 
indicated that much of this variation was produced 
by a simple process of topological change. The 
ontogenetic model is what made the analysis of 
these line skeletons possible. In general, one will 
need some type of biological model that specifies 
how different topologies can be related or 
comp;~red if the line skeletons are to be analyzed 
qu;intitatively. I am not aware of analytical 

methods for studying topological variation directly. 
In extreme cases, where topological differences 
cannot be made comparable, the shapes may be 
analyzed more easily by techniques like Fourier 
analysis. 

Finally, median axes currently can be calcu- 
lated only in two dimensions. While Bookstein's 
(1979) algorithm might be extended to a third 
dimension, the extension might be easier to make 
with pixel-based image analysis algorithms. Median 
axes of three-dimensional forms projected to two 
dimensions will inevitably lose some information. 
Results should be viewed carefully for potential 
artifacts of projection or perspective. 

Other Uses of Line Skeletons 

Recognizing Phylogenetic Characters 

Phylogenetic analysis of biological shapes without 
suital>le landmarks can be as challenging as a 
metric analysis. Identifying consistent patterns of 
character transformation, and communicating them 
effectively, is a cognitive task that shares many 
feat~ires with a morphometric analysis. Just as line 
skeletons can be used to find operational homolo- 
gies between regions of a complex outline for 
morphometric study, they can be a useful aid in the 
more visual task of character analysis. Oxnard 
(1072) was the first to use median axis methods as 
an aid to phylogenetic study. 

Mammalian systematists have used features 
of bacula shape to diagnose taxa, but generally 
there has been little attempt to connect intertaxon 
differences in transformation series. For example, 
the several recent treatments of bacula shape within 
echimyid rodents focus on descriptive differences, 
but not in an explicit phylogenetic context (Didier, 
1063; Patton and Emmons, 1985; Patton, 1987). 
Line skeletons of these bacula supported a detailed 
morphometric analysis of patterns of variation, and 
they also facilitate the identification of transforma- 
tion ~ e r i e s  among taxa. 
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Figure 9. Transformation series for bacular shape in echimyid rodcnts and two outgroups (Cteriotnys [Ctenomyidae] and 
Ocrodoti [Octodontidae]). Outlines are drawn with line skeletons. 

Figure 9 illustrates the shape of the baculum 
in six genera of the Echimyidae, plus two outgroups, 
the Octodontidae and Ctenomyidae. I have exam- 
ined bacula from several species of Ctenomys, 
Echirnys, and Proechintys but illustrate here what I 
interpret to be the primitive bacular shape for each 
genus (Straney and Patton, in prep., analyze phylo- 
genetic patterns within Proechintys; I assume that 
generic limits are accurate). Examining the bacula, 
it was easy to note that echimyids generally possess 
a shallow notch on the distal tip of the bacula. But 
I had questions about the shape of the proximal end 

that were difficult to resolve. The proximal end of 
the baculum in Ecllimys appeared intermediate 
between the bulbous, flask-shaped base in Octodon 
and Ctenomys, and the tapered base of the remain- 
ing echimyids. Within the latter group, there 
appeared to be similarities between Thrinacodus, 
Dactylotnys, and Mesomys in the shape of the 
proximal flange, but I was uncertain how the bacula 
of Proecllimp and Diplomys could be related to 
these three. 

After calculating the line skeletons of the 
bacular outlines, I could resolve these uncertainties 
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easily. The intermediacy of Ecllit?zys is more appar- 
ent than real. The proximal end of the baculum in 
this genus shares a noticeable feature with Octodon 
and Ctenonlys: the base of the baculum is so evenly 
curved that it is virtually circular (secondarily flat- 
tened in Ctenomys). The line skeleton in these 
forms ends abruptly at an end point that is the 
center of a circle that describes nearly the entire 
proximal base of the baculum. The smoother 
transition from base to shaft in Echinzys makes the 
baculum appear similar to other echimyids, but the 
strikingly simple shape of the base, shared with the 
outgroups, defines the primitive bacular shape for 
the family. 

The remaining echirnyids share a feature I 
had not noted in examining the outlines themselves. 
All display line skeletons that branch at the proxi- 
mal end, due to a flattening of the base. Diplonzys 
is unique among these flat-based taxa in having 
subparallel bacular sides; the remaining four genera 
have bacula that bow outward in a proximal flange. 
I interpret the inward tapering of the proximal base 
as a synapomorphy uniting these genera. Dacty- 
lonzys and Tllrirzacodus carry this transformation 
one step further. In these genera, the proximal 
flange is located more distally, with a longer proxi- 
mal taper, than in Proechinlys and Mesomnjls. I had 
originally thought that Mesonzys shared a proximal 
shape with Dactylomys and Tl~rinacodus, but the line 
skeleton indicates the position of the proximal 
flange in this genus is most like Proecltirnys. One 
feature is shared by Mesomys, Ductylom?~ys and 
Tllrinacodus: in all three, the proximal flange is 
more sharply angled than in Proechi~njls. This is 
apparent in the outline, and the deeper penetration 
of the flange by the line skeleton in these genera 
confirms that the flange is more abruptly angled 
than in the more smoothly sloping Proechinzys. 
However, this trait is highly variable within genera, 
and even between sides within individuals. This 
variability is not particularly clear on the outlines, 
but the line skeleton makes it obvious that this simi- 
larity is of little systematic utility. 

Figure 9 summarizes the steps in the trans- 
formation series deduced from the line skeletons of 
these bacula. It confirms the reality of the subfam- 
ily Dactylomyinae (including Dactylomys and Thri- 
nucodus), established on cranial evidence (Woods, 
1984), and suggests that bacular morphology may 
be useful in resolving relationships within the 
Echimyinae (comprising the remaining four 
echimyid genera). Figure 9 is not a phylogeny of 
the echimyids; that would require more than a 
single transformation series. But it does provide 
information more useful in constructing a 
phylogeny than the vague uncertainties that result 
from examination of the outlines alone. I find line 
skeletons useful in providing an  additional basis of 
comparison for constructing transformation 
hypotheses. They help clarify patterns of variation 
in complex shapes that might otherwise go unno- 
ticed or be misinterpreted. Line skeletons will 
probably have little utility for someone with exten- 
sive experience in character analysis of a particular 
structure. But for beginners, or for someone initiat- 
ing a phylogenetic analysis of a previously unstudied 
structure, line skeletons can serve as a very useful 
tool in identifying characters and understanding 
their evolutionary connections. 

Line Skeletons as Coordinate Systems 

Median axes provide a convenient and intrinsic 
coordinate system for describing outline shape. 
With symmetric axes, each point along the axis is 
associated with a unique width that identifies 
specific points on the outline on either side of the 
axis. If this width is plotted as a function of 
distance along the symmetric axis, the resulting two- 
dimensional plot will represent the closed outline 
shape as a single curve. Because the width function 
is symmetric about the symmetric axis, this plot of 
width versus axis arc length effectively folds the 
outline along the symmetric axis and then straight- 
ens the axis to create an  abscissa. With line skele- 
tons and medial axes, the width function is not 
uniquely defined and some care is required in 
defining width functions to permit the axes to serve 
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as coordinate systems that will 
meaningfully and consistently 
represent outline shape. 

Zablotny (1988) used line 
skeletons to provide an intrinsic 
coordinate system in his study of the 
ontogeny of outline shape of the fifth 
ceratobranchial bone in bluegill and 
pumpkinseed sunfishes. As juve- 
niles, these species have similar 
zooplankton diets, but adult pump- 
kinseeds switch to feeding on snails 
when body length exceeds approxi- 
mately 45 mm, while adult bluegills 
continue to feed on zooplankton and 
aquatic insects (Werner and Iiall, 
1976; Mittelbach, 1984). The tooth- 
hearing pharyngeal bones used by 
these centrarchids to process food 
also diverge between these species 
with age: in pumpkinseeds these 
bones, and particularlv the fifth cera- 

ceratobranchial shape in these I coordination of outline shape. (Aftcr Zablotny). 

species, Zablotny calculated line 
skeletons of ceratobranchial outlines (Figure 10). the P ~ ) ~ Y ~ ~ ~ ~ ~ ~  regression in geometric form 
These line skeletons are simple, (Mortensont 1985) to ensure the 

unbranched curves in all but the oldest pumpkin. of its terms and to permit 

seeds (where a minor  branch appears that pene- easier identification of the regions of the curve 

trates the medial lobe the ceratObranchial). =he affected by changes in particular coefficients. By 
width function used was not the standard ~ ~ ~ ) k ~ ~ ~ i ~  regressing each coefficient in each species against a 

function, but rather the width from %is to outline size predictor (standard length)* he  demon- 

perpendicular to the %is. This permitted strated that the ontogenetic trajectories in bluegill 

an unambiguous characterization of the shape and pumpkinseeds were linear functions of size. 

the medial portion of the outline as a function of The Ontogeny Of both posterior width and the 

l ine skeleton arc length. I t  also allowed h i m  to change in curve slope at  the anterior end did not 

ignore  the minor  side branch that was present i n  differ between species. The ontogenetic basis for 

relatively few individuals. ceratobranchial divergence in these two species lay 
in differences between species in anterior width, 

A f i f th  degree polynomial function provided outline slope at anterior and posterior ends, and the 
an excellent fit to the points of the width versus arc change of outline slope at  the posterior end, 
length plots of each individual. Zablotny expressed ~ ~ t , l ~ ) ~ ~ ~  concluded that ceratobranchial shape 

tobranchial, become large and stout 
to be effective in crushing the shells 
Of ingested snails (Figure lo)'  
quantify the ontogenetic changes i n  

RELATIVE DISTANCE 
ALONG MEDIAL A X I S  

Figurc 10. Outlincs of sunfish fifth ccratobranchial bones. a) Juvenile pumpkin- 
sced. b) Adult pumpkincccd. c) Juvcnile blucgill. d) Adult blucgill. e )  Width 
function uscd to produce intrinsic coordinate system, and an example of such a 
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ontogeny began diverging between species at  
approximately 35mm. standard length, before the 
functional diet shift occurred. H e  was also able to 
use the regression equations to model the ontogeny 
of ceratobranchial shape in these species (Figure 
11). 

Using the line skeleton as the basis for an  
intrinsic coordinate system provides a 
straightforward quantitative analysis of shape 
ontogeny in this case. Ceratobranchial outlines 
could have been analyzed directly using Fourier 
analysis, but the results were particularly easy to 
interpret in terms of the geometric polynomial 
regression. This use of median axis methods may 
have broad applications in modeling outline shape 
change in analytical terms. There is one potential 
advantage to this approach: if the topology of the 
median axis is similar in all individuals, the outline 
may be parsed into regions (e.g., Figure 3e) to be 
analyzed separately. In some applications, this may 
be a desirable feature not available with Fourier 
analysis. 

Analyzing Parallel Curvature Between Two 
Structures 

In a study of mechanical isolation in grasshoppers 
of the genus Barytettk, Bennack (1988) was inter- 
ested in quantifying the match between the surface 

shape of male genitalia and the shape of the female 
bursa during copulation. Cohn and Cantrall (1974) 
had suggested genital shape in these grasshoppers 
produced mechanical isolation through a lock-and- 
key mechanism. Under this hypothesis, there 
should be regions in both male and female genitalia 
where surface shape is similar enough to permit 
close matching that is required for successful insem- 
ination. The surface of the matching portions of 
the genitalia should display an  identical pattern of 
curvature as a function of arc length at an  appro- 
priate scale. 

Rather than calculate curvature and arc 
length, and establish algorithms for determining an 
appropriate scaling for comparison, Bennack made 
use of the properties of median axes to quantify the 
degree of fit between genitalia. H e  serially 
sectioned genitalia in copulo and calculated line 
skeletons of the region between male and female 
structures at specific section levels (Figure 12). He  
ignored portions of the line skeleton produced by 
the outline of only male or only female structures. 
His measure of the degree of matching between 
male and female shape was the variance of the 
Bookstein width function over the line skeleton. 
H e  reasoned that in areas where male and female 
shapes matched, the outline curves should be paral- 
lel and the width function should be  nearly 
constant. Regions of poor fit between genitalia, on 

the other hand, should be 
characterized by width functions 
that varied greatly along the line 
skeleton. The variance of the width 
function was useful in determining 
the influence of fit between genitals 
on insemination success. Bennack 
was able to conclude that coevolved 
shape similarity between male and 
female genitalia was unimportant in 
determining reproductive success in 
intertaxon crosses; body size differ- 
ences between mates was so much 
more important in influencing the 
reproductive outcome of matings 
that there is little reason to invoke a 

V) 
W L e p o m l s  p l b b o s u s  L e p o m l s  m a c r o c h l r u s  

z 
W 
J R E L A T I V E  D I S T A N C E  A L O N G  M E D I A L  A X I S  
Figure 11. Use of an intrinsic coordinate system based on a line skeleton to 
model the ontogeny of ceratobranchial bone shape in two species of sunfishes. 
Outline shape was modeled with a fifth-order geomctric polynomial; cocfficients 
of this model (estimated by polynomial regression) from each individual were 
regressed against standard length and the resulting equations uscd to construct 
model outline shapes at specific standard Icngths. (From Zablotny) 
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LS 

Figurc 12. Analysis of genital shapc in copulating grasshoppers of the genus 
Rayieiiir. a) Diagrammatic view of genitals it1 copulo. b) Tracing of serial 
scction through thc genitalia of copulating individuals, c) Dctails of calculation of 
the line skclcton bctwecn nialc and fcmalc genctalia in copltlo. Abbreviations: 
BR, bursa of female; DV, dorsal valve of malc gcnitalia; LS, line skeleton bctwccn 
male and fcmalc genitalia; RD, radii of circle defining line skclcton, the width 
function at a particular linc skclcton point; VV, vcntral valve of malc gcnitalia 

lock-and-key mechanisms in these grasshoppers. 

In this case, the simple geometry of the line 
skeleton provided a straightforward method for 
answering an  otherwise computation-intensive 
problem. Bennack's approach may prove useful in 
studies of other interacting-structure shape 
problems, such as joint surface shape comparisons. 
Bookstein (1978) has outlined a more sophisticated 
approach to width function analysis that deserves 
serious consideration. The large number of derived 
measures of median axes (Blum and Nagel, 1978) 
may hold other, equally simple solutions of compli- 
cated shape comparisons. 

Conclusion 
Xledian axes are well-defined, geometrical objects 
that can be calculated for any closed outline shape. 

They are useful in morphometric 
studies of shapes that otherwise lack 
appropriate landmarks. The branch 
points of median axes, in particular, 
can be homologized operationally 
across forms by the same logic that is 
applied to more traditional, non- 
computed landmarks. When used as 
a basis for a truss measurement 
scheme, the branch points of a line 
skeleton are more informative than 
an analysis based upon simple land- 
marks of convenience and yield 
results nearly the same as elliptical 
Fourier analysis. They also provide a 
more interpretable analysis of pat- 
terns of variation, and provide 
insights that might be difficult to 
quantify in other ways. 

The geometric richness of 
median axes offers many opportuni- 
ties for novel approaches to analysis 
of complex shapes. The uses 
discussed here (parsing outline 
shape for phylogenetic analysis and 
several applications of width 
functions) barely begin to explore 
the types of geometrical comparisons 

that could be made between taxa using median 
axes. Because the geometry of median axes is rela- 
tively straightforward, there should be additional 
situations where they facilitate analyses. 
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Appendix: An Algorithm for Calculating 
Digital Skeletons on Microcomputers 

The availability of reasonably priced image process- 
ing systems for microcomputers makes accessible to 
most systematists the technology for computing 
digital skeletons. Serra's (1982) algorithm for 
calculating digital skeletons is here translated from 
his symbols into pseudocode and has been changed 
slightly to make use of an iterative procedure. To 
implement this algorithm, an image processor must 
be able to dilate and erode a high contrast (black- 
and-white) image on three "pages" of memory (A, B, 
and C; page C may be a hard-disk drive if speed is 
of no concern). Images captured in continuous 
grey-scale form should be processed so the entire 

shape of interest, and its entire interior, have grey- 
scale pixel values at one end of the continuum, and 
the rest of the screen has pixel values at  the oppo- 
site end. Whether black or white values are 
assigned to image or background will depend on 
how a particular image processor implements 
erosions and dilations. Use of this algorithm with 
unfiltered grey-scale images may be entertaining 
only. 

In the algorithm, f(A) means that the image 
transform f should be applied to the image in page 
A; B := f(A) means the result of f(A) should is 
assigned to page B. 

begin 
{Calculate the first element of the digital 
line skeleton) 

A : = original image; 
B : = erode(A); 
B : = dilate(B); 
C : =  I A - B  1 ;  

{Calculate the remaining elements) 
repeat 

A : = erode(B); 
B : = erode(A); 
B : = dilate(B); 
C : = a n  O R  combination of C 

and I A - B  1 ;  
until the image in B is composed of 
pixels all of background grey-scale 
value; 

end. 
{Page C will contain the digital skeleton) 

Digitization of an  image may cause aliasing 
of outline edges. In some applications of this 
algorithm, I found it necessary to edit out points of 
the digital skeleton that were produced by such arti- 
facts. The digital skeleton is a set of unconnected 
pixels that might be useful as landmarks, or that can 
be connected to provide an  analog of the line 
skeleton. 
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"One size fits all" - Fruit of the Loom 

Abstract metamorphic shoot development. The normaliza- 
tion of Lohmann and Schweitzer is questioned. A Eigenshape analysis is applied to characterization 
modification of the eigenshape technique is 

of changes in form that occur during second-order 
proposed which will allow the integration of outline 

development in Syrzgoni~cm podopllyllum. Second- 
and landmark approaches, and which will allow 

order development refers to changes in the mature 
eigenshape analysis to be applied to non-closed as 

forms of successively produced serial homologous 
well as closed curves. 

organs, in this example, the forms of successive 
leaves on the shoot. Leaf outline and landmark 
coordinates were acquired on the BioSonics OPRS 
system. Outline coordinates were converted to d* 
functions by the ES-TRANS program. The d* 
functions were processed by the EIGENS program 
which computes an R-mode principal components 
analysis of a matrix of shape functions, and which 
outputs +* functions for the first five eigenshapes 
and a listing of the loadings on the first five eigen- 
vectors for each of the 86 leaves of the sample. 
Algorithms are provided for reconstructing the out- 
lines from the +* functions and the eigenshapes. 
The influence of the weighting of each of the five 
eigenshapes on the geometry of the outline is 
explored. A size-shape space for characterizing 
second-order developmental trajectories is chosen, 
based on the length of the leaf perimeter and the 
first two eigenvectors. The eigenshapes are used to 
synthesize simulated second-order developmental 
trajectories of plants with allometric and with 

Introduction 

The Biological Problem 

Owing to the continued activity of rneristerns, plant 
deveIopment can be considered to occur at  several 
hierarchical levels. At the lowest level, which I call 
first-order development, primordial tissues develop 
into mature organs (internodes, leaves, flowers). 
This is the level of plant development that is most 
comparable to development in the majority of 
animals, which leads from the zygote to the mature 
organism, and is deterministic, in contrast to the 
higher levels of development. Meristems repeat- 
edly produce primordia, with the result that a 
succession of organs is strung together in a linear 
series producing a shoot. The process which 
produces the shoot, that I call second-order devel- 
opment or shoot development, is relatively inde- 
terminate and open, consisting of a serial repetition 
of the first-order process. Various aspects of shoot 
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development in the Araceae have been discussed by After the leaves were marked, they were cut off the 
Ray (1981, 1983a, b, 1986, 1987a, b, c, 1988, plant a t  the point of insertion of the petiole. The 
Accepted a, Accepted b) and Ray and Renner stems and the youngest leaves were left on the tree. 
(Accepted a). The present paper explores the use All leaves were placed in a plant press and dried. 
of image acquisition technology and eigenshape 
analysis (Lohmann, 1983; Lohmann and Schweitzer, Data Acquisition - Hardware 
Chapter 6) to analyze second-order developn~ent of me dried leaves were taken to (he N S F - ~ ~ ~ ~ ~ ~ ~ ~ ~  
leaves. Morphometrics Workshop in Ann Arbor, where the 

Materials & Methods 
outlines were digitized using the BioSonics OPRS 
system of Norman MacLeod. The leaves were 

Specimens placed with the under-side facing the camera, and 
the outline was traced counter-clockwise, with the 

Ixaf samples were collected from 
Syt~gonium podoplyllum Schott var. 
pelioclud~dum (Schott) Croat 
(voucher: Barry Hammel 12787, 
Missouri Botanical Garden), in May 
1088 at Finca El Bejuco in the low- 
land rain forests of the Sarapiqu'i 
region of Costa Rica. Leaves were 
collected in four groups totaling 86 
leaves. One group consisted of 29 
leaves gathered from various indi- 
vidual plants, and were selected to 
represent the full range of variation 
in leaf form for the species. Each of 
the other three groups was collected 
along shoots of individual plants. 
The three plants used to collect the 
leaves in these three groups were all 
growing on the trunk of the same 
tree, and may have been three 
shoots of the same clone. The three 
shoots contained 16, 17, and 24 
leaves. Before collecting the leaves 
from each shoot, the leaves were 

from bottom to top. Where leaves 
were missing from a node, the node 
was counted in the numbering, so 

numbered along the shoot, in order 

that gaps appear in the number se- 
ries where leaves were missing. An 
identifying letter (z, b, c, or d) was 
placed on each leaf to indicate 
which shoot it was collected from. 

e 1 

e 5 
:.::; :,: e: 

b4 

b 9  

b 1 3 

b 1 7 
Figure 1. Plots of the d* functions of the first five cigcnshapes and the 86 l e d  out- 
lincs (el to c4). Thcsc figures rcprcscnt outlines intcrpolatcd from the original 
coordinate data by the ES-TRANS program. 



Chapter 9. Application of Eigenshape Analysis 203 

point of insertion of the petiole as the starting The file of +* functions for all 86 leaves way 
point. The OPRS 'ystem lhen and then processed by the EIGENS program of 
recorded the xy  coordinates of 128 "equally" spaced Schweitzer and Lohmann which performs an 
points around the outline, saving this data in a file R-mode principal components analysis using the 
with the letter and number label for each leaf. In routine and Lohnes, 1971). EIGENS 
addition, the coordinates of four landmarks on the also puts out a listing of the loadings (projections) 
leaf outline were recorded: the point of insertion of of each of the individual specimens on the first five 
the petiole, the leaf tip, the tip of the right lobe, and eigenshapes (eigenvectors) and generates +* 
the tip of the left lobe. The o ~ ~ t p u t  file from the functions for the first five eigenshapes. 
OPRS system lists coordinates using an arbitrary 
scale, but it also puts out a scaling factor for each The loadings of the individual leaves on the 

sample so that the arbitrary units can be adjusted to five e igensha~es  are Output the EIGENS 
measurements in the units defined at the time the Program into lwo files. According to the 
data were acquired. The data files DEMO-CMD file of Schweitzer and Lohmann, the 

from the OPRS system are included 
on the software distribution disk. 

Data Analysis - Software 

Outline coordinate data were trans- 
formed into $* functions (Zahn and 
Roskies, 1972) using the ES-TRANS 
program of Norman hlacleod.  
ES-TRANS was developed by modi- 
fying the OUTLINE program of 
Schweitzer and Lohmann to fit it 
specifically for the o u t p ~ ~ t  from 
OPRS. ES-TRANS takes output of 
outline coordinates in the OPRS 
format, makes the proper adjustment 
for scaling, and outputs the +* func- 
tions. In the implementations of 
OUTLINE and ES-TRANS that 
have been provided, the outline is 
divided into 100 roughly equally 
spaced steps by interpolating be- 
tween the xy coordinates in the raw 
data file. The $* fiinctions put out 
by these programs consist of 100 
measures of normalized angular de- 
viations from a circle (Zahn and 
Roskies, 1972; Lohmann, 1983; 
Lohmann and Schweitzer, 1988). 
Also see below for more specific 
details on +* functions. 

c5  c 8  

C3 ~ 1 0  ell C l Z  

c13  

c 1 7 ~ 1 8  

d 3  

d8 d l 0  d l  1 dl  Z 
Figure 2. Plots of the 4" functions of the first five eigenshapes and the 86 leaf out- 
lines (c5 to d12). These figures represent outlines interpolated from the original 
coordinate data by the ES-TRANS program. 
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svD.xu file contains the "covariances between 
shapes and eigenshapes," and the SVD. vs file 
contains the "correlations between shapes and 
eigenshapes." The loadings in the SVD.VS file are 
for functions with normalized amplitudes, the 
SvD. xu file provides loadings on functions which 
have been de-normalized. The loadings from the 
SVD.XU can be used to reconstruct outlines from 
the eigenshapes, and they have been used as the 
loadings throughout the analysis in this paper. 

In presenting the results of the analysis, the 
leaf outlines were reconstructed by reading the 4' 
functions and converting them to x ,  y coordinates to 
be displayed on the screen by Generic CADD or 
sent to a Mewlett Packard pen plotter. I include, on 
disk, the code for a routine phi(), in the C language, 
which draws a single outline according to the speci- 
fied position, direction, orientation, step length, and 

leaf are reported in the file TABLE-1, on disk. The 
4' functions for the first five eigenshapes were out- 
put by EIGENS to the SVD. u file, which is in the 
same format as the output files from the 
ES-TRANS program. The first five eigenshapes 
and the 86 leaf shapes (drawn from their 4' func- 
tions) are plotted in Figures 1-4. The first eigen- 
shape represents an average shape; the remaining 
eigenshapes represent deviations from the average 
shape, and so would not be expected to resemble 
the leaf form. 

Geometric Interpretation of Eigenshapes 

While it seems imprudent to attempt to place a 
biological interpretation on the individual eigen- 
shapes, it does seem appropriate to interpret the 
eigenshapes geometrically. It should be possible to 
understand the influence, on the geometry of the 

amplitude. h h m a n n  and 
Schweitzer distributed FORTRAN 
source code for their PLTSHAPE 
program at the workshop. The RE- 
BILD routine in that program per- 
forms essentially the same function 
as my phi() routine. In addition, the 
five eigenshape functions were used 
to synthesize leaf outlines given vari- 
ous selected loadings on the eigen- 
vectors (eigenshapes). The eigen() 
routine, included on disk, performs 
this synthesis of a single form 
according to the specified position, 
direction, orientation, step length 
and five loadings. 

Results 

Analysis of the 86 leaf outline 
samples by the EIGENS program 
showed that the first five eigen- 
shapes accounted for 71.596, 11.596, 

z 1 1 2 1 4  

Z 1 5 

z 1 9  

M 
3.6%, 2.3% and 2.1% of the variance 
successively. The sample label, lobe 
lengths, leaf perimeter, five 
loadings, and the amplitude for each 

227 2 2 8  2 2 9  
Figure 3. Plots of the +* functions of the first five eigenshapes and the 86 leaf out- 
lines (z11 to 229). These figures represent outlines interpolated from the original 
coordinate data by the ES-TRANS program. 
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outline, of changing the weighting of each eigen- to three-lobed. This is an  approximate description 
shape. T o  this end I have selected two leaves (d l ,  of the primary change in form taking place during 
d26) which represent extremes of shape variation. shoot development in this species. Taking the 
For these leaves (Figures 5-6), I have plotted the weighting above the range observed in the data 
outline as reconstructed from the 6' function and causes a collapse of the figure similar to what is 
as synthesized from the five eigenshapes weighted observed in the amplitude series. 
by the five loadings for that leaf. Below these Varying the weighting of the second eigen- 

I have plotted the d'* function with shape affects the orientation of the lobes 
amplitudes, using five of the leaves. With low the lobes point 

the range of in  the forward, and as the value increases the lobes bend 
sample of 86 leaves. Below these five shapes I have toward the This is an interesting observation, 
plotted outlines synthesized from the eigenshapes as the problem of articulation is a general one in 
by varying each of the loadings individually. again the characterizat ion of shape. ?'hat the articulation 
using five equally spaced values - & . .  

through the observed range of 
loadings. While varying each 
loading, I keep the remaining four 
set to the values for that leaf as listed 
at the top of the figure. 

Varying the value of the 
amplitude alters the degree to which 
the shape deviates from a circle, a 
characteristic which Lohmann and 
Schweitzer (Chapter 6) call angular- 
ity. If the amplitude were set to 
zero, the resulting shape would be a 
circle. Amplitudes are greater for 
the more lobed leaves, and increas- 
ing the value of the amplitude of any 
leaf increases the degree to which 
the resulting outline is lobed. How- 
ever, increasing the amplitude can 
also cause the outline to collapse, 
because some portions of the outline 
deviate inward from a circle. This 
inward bending is enhanced as the 
amplitude is increased. 

Varying the weighting of the 
first eigenshape is equivalent to 
varying the amplitude of the average 
outline, and has an effect very simi- 
lar to varying the amplitudes of 
individual outlines, causing the leaf 
shape to vary from cordate to hastate 
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value for the fourth. An interesting 
example is the series d24, d25, d26, 
which all have bulges on the lobes, 
but which alternate between having 
high fourth and low third loadings. 
The only leaf to combine both low 
third and high fourth loadings is 
z10 which is one of the most 

of a structure could be isolated to a single variable abnormal leaves in the sample. Low values of the 
in the characterization of the shape seems like a fourth loading tend to be associated with fat central 
useful feature. lobes (zS,z6, 28, 29, z15, 216, 219, 220, 221, 222, 224, 

It is much more difficult to interpret the 225). The fattening influence of low fourth loadings 

Figure 5. In each figure, the interpolated outline of the leaf as reconstructed from 

the 4" function is represented in the upper left. In the upper right is the leaf out- 
line synthesized from the first five eigenshapes as weighted by the loadings on the 
first five eigenvectors found in the svd.xu file. The values of the amplitude and the 
first five loadings are listed in the top center. Below this, the outline is recon- 

structed from the 4" function with five values of the amplitude, evenly spaced over 
the observed range of amplitudes in the sample of 86 leaves. Below this the same is 
done for each of the five loadings. As each loading is varied individually, the 
remaining four loadings remain fixed at the values listed at the top. 

influence of the third eigenshape. 
In most leaves, large negative 
values result in inappropriate 
rounding or extra bulges in the 
lobes. The leaves with the most 
negative values of the third loading 
fall into two groups, those with low 
first loadings (22, 23, 210, 212, 214, 
z28), and those with high first 
loadings and bulges at the base of 
the lobes (d25, 26, 28, 216, 221). 
What these two groups have in 
common is that there is a bulge or 
leaf tip at a position on the outline 
closer to the petiole than in most 
leaves. The third eigenshape ap- 
parently acts to compensate for the 
lack of homology in the po5ition of 
the lobe tips, by creating an extra 
bulge near the petiole when 
needed. 

The fourth eigenshape 
seems to have an influence very 
similar to that of the third. In fact, 
the tracings of the two eigenshapes 
(e3, e4) are very similar. High 
values of the fourth loading are 
found in leaves with bulges near the 
base of the lobes (d24, d25, c14, 
c17). Leaves with these bulges tend 
to have either a large negative 
value for the third loading or a high 

can be seen in Figures 5-6 where this value 

v A M = O  85 
E I = O  70 
E Z = O  27 
E3=-0 14 
E ~ = O  06 0 SVD XU 

AM 
O 65 t7:0k* l 4  f 3 l  
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varied. The third eigenshape also seems to have a 
similar influence, but to a lesser extent and in the 
opposite direction (fat central lobes are associated 
with high third loadings). 

The influence of the fifth eigenshape seems 
fairly clear, it affects the handedness of the leaf. 
With low fifth loadings the central lobe swings to 
the right, and with high values the lobe swings to 
the left. 

Developmental Trajectories 

Simulation of Second-Order Ontogeny 

My second principal objective for using 
eigenshape analysis is to be able to synthesize the 
complex and subtle transformations in leaf form 
that occur in second-order development for use in 
simulations, and as a graphic device to illustrate 
different classes of shoot development. This has 
been done in Figure 7, where I illustrate the differ- 
ence between allometry and metamorphosis of leaf 
form in shoot development. Eigenshape analysis 

One of the principal objectives of 
this study is to use eigenshape anal- 
ysis to portray second-order ontoge- 
netic trajectories of leaf shape. In 
order to search for possible size- 
shape spaces in which to view these 
trajectories, I plotted each of the 
loadings against one another, and 
against the amplitude and three 
measures of size: the length of the 
central lobe (computed from the 
coordinates of the petiole insertion 
and leaf tip landmarks), the leaf 
area, and the length of the perime- 
ter. I examined all two-dimensional 
projections of the size-shape space 
onto the axes of the variables just 
listed. 

These o b s e ~ a t i o n s  suggest 
that the most appropriate size-shape 
space for examining second-order 
development would be that made up 
of the leaf perimeter and the first 
two eigenvectors. Examples of 
second-order trajectories in two 
projections of this space can be seen 
in Figure 7. These synthetic exam- 
ples illustrate how leaf shape on- 
togeny can be characterized, and 
how one can recognize the differ- 
ence between the second-order 
trajectories of allometry and 
metamorphosis. 
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Figure 6.  In each figure, the interpolated outline of the leaf as reconstructed from 
the I$* function is represented in the upper left. Details as in Figure 5. 
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appears to be a handy tool for making the point identical to the R-mode principal components 
graphically. analysis described by Cooley and Lohnes (1971)." 

Discussion I 
Normalization I 
In order to reconstruct the outline 
coordinates from Lohmann and 
Schweitzer's 4*  function, each value 
in the function must be multiplied by 
the amplitude, because they were all 
divided by the amplitude when the 
functions were normalized. 
Lohmann and Schweitzer (Chapter 
6) state "Amplitude is calculated as 
the standard deviation of the 
observed values of 4* ,  before they 
are standardized." The source code 
for the ES-TRANS program indi- 
cates that amplitude, PS, is 
computed by the following formula: 

where $(i) are the individual values 
of the 4*  function before normaliza- 
tion, and n is the number of values in 
the function (100). The value PS is 
recorded in the output of 
ES-TRANS and is referred to as the 
amplitude. 

Lohmann (1983) states "Note 
that the amplitude of 4*(i) is subse- 
quently standardized to unit variance 
as a consequence of computing 
correlations between shapes." This 
is apparently a reference to the fact 
that, in performing a principal 
components analysis from a correla- 
tion matrix, the values are first 
normalized. Lnhmann and 
Schweitzer (Chapter 6) state that 
their procedure is "computationally 

Figure 7. Representations of isometry, allometry and metamorphosis in second- 
order leaf development. In the drawing of a plant on the left, leaves increase in 
s i ~ e  without changing shape, isometry, for eleven segments. Then metamorphosis 
causes an abrupt change in shape, involving only two leaves. After the abrupt 
change, isometric development resumes for seven more segments, during which 
leaves again increase in size without changing shape, but f i e d  at the new post- 
metamorphosis shape. In the drawing of the plant on the right, successive leaves 
develop allometrically. Leaf form changes gradually as leaves increase in size. The 
lowest leaf is based on the loadings of leaf 22 and the highest leaf is based on the 
loadings of leaf d20. The intervening leaves are based on an evenly stepped linear 
interpolation between the loading values for the two leaves. Below and to the left 
of each plant, the second-order ontogenetic trajectory through the size-shape space 
is plotted for two projections: leaf perimeter and the loading on the first eigenvec- 

- ~ 

tor (above), and leaf perimeter and the loading on the second eigenvector (below). 
Leaf perimeter measures size and the loadings measure shape. 
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However, the traditional normalization for an 
R-type analysis is made across specimens for each 
measure, not across measures for each specimen 
(Cooley and Lohnes, 1971; Pimentel, 1979). Their 
methods amount to an R-type principal components 
analysis performed with a Q-type normalization. 

Normalizing the amplitude causes all N 
points to be equidistant from the origin of the p 
axes. All points are projected onto the surface of a 
hyper-sphere whose center is the origin of the p 
axes of angle measures; however, the N points will 
not be distributed over the entire surface of the 
hyper-sphere. The entire surface of the hyper- 
sphere represents all possible shapes with normal- 
ized amplitudes. Any real sample of specimens will 
represent only a small sub-set of all possible shapes, 
so the points in p space will be restricted to a patch 
on the surface of the hyper-sphere. . - 

While the first eigenvector will pass through 
the centroid of the patch on the hyper-sphere 
(unless the patch is significantly larger than the 
radius of the hyper-sphere), subsequent eigenvec- 
tors will not pass through the swarm of points at  all. 
The eigenanalysis of the data swarm takes place by 
rotation of a set of Cartesian axes which are located 
at the origin. The sample centroid will be inside 
the hyper-sphere, close to its surface, and therefore 
displaced from the origin by a distance of slightly 
less than the radius of the hyper-sphere. All eigen- 
vectors after the first will be parallel to tangents to 
the principal components of variation of the data 
swarm, which curves with the surface of the hyper- 
sphere. 

In the technique of Lohmann and 
Schweitzer, the first eigenvector locates the sample 
centroid, not the first principal component of varia- 
tion. The first principal component of variation is 
represented by the second eigenvector. As points 
deviate from the sample centroid, the swarm curves 
toward the second and higher eigenvectors. The 
plot of EV1 against EV2 in Figure 8 shows that as 
we move out from the origin along the second 
eigenvector, the data swarm bends around the 

surface of the hyper-sphere. If there is enough 
variation, the data swarm will eventually become 
perpendicular to the second eigenvector, resulting 
in a loss of information. The second eigenvector 
loses ability to represent the variation in the 
periphery of the data swarm. Thus the first princi- 
pal component of variation is not well represented 
by its associated eigenvector. 

Any projection on the first eigenvector and 
another eigenvector shows the bending of the data 
swarm caused by projection on the hyper-sphere. 
This bending is most apparent in the projection on 
the first two eigenvectors (Figure 8). This same 
bending was apparent in the MacSpin demonstra- 
tion at  the workshop. This demonstration showed a 
data swarm projected on the first three eigenvec- 
tors, being rotated. The swarm showed a strong 
bending as a result of being wrapped around the 
hyper-sphere. It is an unfortunate property of the 
spherical projection that the greater the variation 
along any principal component, the less efficiently 
will the associated linear eigenvector account for 
the variation, because the greater will be the bend- 
ing. If angles had been normalized across samples, 
the sample centroid would have been located by the 
normalization step. This would leave the first 
eigenvector free to represent the first principal 
component of variation from the sample centroid. 
The latter approach would make more efficient use 
of the eigenvectors. In addition, normalization of 
angles across samples would not project the data 
onto the surface of a hyper-sphere; therefore the 
linear eigenvectors could more efficiently account 
for the variation. Lohmann and Schweitzer 
(Chapter 6) state, in reference to their eigenshape 
functions, "No other set of shape functions can 
account for the variation more efficiently." This is 
not true because of their inefficient application of 
Cartesian eigenanalysis to a spherical distribution, 
and because the first eigenvector locates the sample 
centroid rather than the first principal component 
of variation. 
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Given the lack of resolution 
toward the periphery of the swarm 
caused by bending around the hyper- 
sphere, and the inefficient use of 
eigenvectors, I would like to see 
compelling reasons for the normal- 
ization of amplitude. I see two moti- 
vations for this procedure: 

1) To  be able to describe an 
individual's outline with three 
attributes: form, size, and angularity. 
This seems a reasonable way of 
breaking down the attributes of out- 
lines described with +* functions. 
However, I see no biological use for 
the isolation of angularity. Lohmann 
and Schweitzer (Chapter 6) give the 
example of the secondary encrusta- 
tion of the shell wall of foraminifera, 
which changes the shapes of shells by 
smoothing their outlines. I doubt 
that a close look at the data would 
show a change in angularity with 
absolutely no change in form. At 
any rate, angularity of outlines can 
always be calculated, adjusted, or 
compared, without normalization of 
amplitude. 

Decomposition of outlines 
into the three components, form, 
size, and angularity is arbitrary. The 
angularity attribute is peculiar to the 
+* representation of outlines, and 
arises as a result of the "removal of a 

SVD . VS SVD . XU I 

circle ~f outlines were repre- 
Sented by an r (8 )  function Or a 
tangent angle function (Zahn and 
Roskies, 1972; Bookstein, 1978; and 
see below, "Proposal of a New 
~ ~ ~ h ~ i ~ ~ ~ ~ )  there would be no angu- 
larity to be It 
can be seen in Figures 5-6 of this 

Figure 8. Plots of projections of the normalized (SVD.VS) and un-normalized 
(SVD.XU) data on the first eigenvector and the next four eigenvectors. The 
normalbation by amplitude causes all N points to be projected onto the surface of 
a hyper-sphere, making all points the same distance from the origin. The two axes 
of each plot have been set to the same scale in order to preserve the circular curva- 
ture of the surface of the sphere. In the projection of the surface of the hyper- 
spherc onto two dimensions, some of the points appear closer to the origin than the 
radius of the sphere because they are bent around the surface of the sphere on 
some of the collapsed axes. However, even in this projection, no point can appear 
farther from the origin than the radius of the sphere. Therefore the margin of the 

paper, and in Figure 4 of Lohmann 
and Schweitzer (Chapter 6), that 

data swarm farthest from the origin traces the circular outline of the sphere. This 
is most apparent in the plot of the first two eigenvectors, where the variance is the 
ereatest. 
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variation in amplitude results in significant varia- my sample. In the smallest leaves, the tips of the 
tion in the outline. I think it is unwise to exclude poorly developed lobes occur proportionately closer 
such significant variation in shape from the princi- to the petiole along the outline than in the larger 
pal components analysis. leaves where the lobes are better developed; there- 

2) To give each individual shape an equal fore the leaf tip landmarks do not line up in the 

weight in determining the orientation of the first analysis. The third and fourth eigenshapes 

eigenvector. This is not accomplished by their compensate for this movement in the position of 

normalization, because eigenvectors are oriented by the lobe tips by producing bulges in the outlines at 

minimizing the sum of the squared residual various positions as needed; however, this is neither 

distances of the points from the eigenvectors (with an elegant nor a biologically meaningful solution to 

the additional constraint that eigenvectors are the problem. 

orthogonal). Therefore points further from each 
eigenvector in the data swarm continue to carry 
more weight in determining the direction of eigen- 
vectors (including the first). They have only 
removed the influence of amplitude, they have not 
given all points equal weight. 

The sample centroid could be located by a 
simple average of angles across samples, rather 
than an eigenvector. In a simple average, individual 
points have an equal weighting, unlike in the 
process that determines the orientation of eigenvec- 
tors. Normalization of angles across specimens 
would provide a relatively unbiased sample 
centroid, would not project the data onto the 
surface of a hyper-sphere, would make more effi- 
cient use of eigenvectors, and would not exclude a 
significant component of shape, angularity, from the 
eigenanalysis. 

Outlines and Landmarks, Proposal for a 
New Technique 

Lohmann (1983) and Lohmann and Schweitzer 
(Chapter 6) developed and applied eigenshape 
analysis to microfossils lacking well-defined land- 
marks on their outlines. However, the leaves of my 
study have four well-defined landmarks on their 
outlines (the point of insertion of the petiole and 
the tips of the three lobes). The principal weakness 
of the eigenshape method, as I have implemented 
it, is that it makes the assumption that the nth 

segment of each outline is homologous to the nth 

segment on each of the other outlines. This 
assumption is clearly violated by the specimens of 

It is feasible to modify eigenshape analysis in 
such a way as to treat landmarks on the outline in a 
more realistic manner. The obvious solution is to 
mark the landmarks around the outline, and to 
divide the portion of the outline occurring between 
any pair of adjacent landmarks into the same 
number of segments on each specimen. This would 
insure that real landmarks on the outline line up in 
each specimen. 

The principal problem that would be created 
by this approach is that the step size would vary 
between different pairs of landmarks. However, in 
this example, only four different lengths are 
involved. In general, for closed curves, the number 
of different lengths involved would be equal to the 
number of landmarks. The lengths could be 
entered into the matrix and subjected to principal 
component analysis along with the angle data. 
Another problem that would arise from this modifi- 
cation of the technique derives from what Lohmann 
(1983) describes as "removing a circle" from the +(I )  
function in the construction of the +* (1 )  function. 
Because the values of the +* function are  the angle 
by which the nth step of the outline differs from the 
nth step of a circle, there is also an assumed homol- 
ogy between the sample outline and that of a circle. 
As long as the outline is a closed curve and both the 
outline and the circle are divided into equal 
numbers of equal length segments, this is not a 
problem. However, when the lengths of the 
segments on the sample outline vary, it becomes 
less clear how to determine the homology of a 
segment of the outline with a segment of a circle. 
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The most obvious solution is to proportion the steps 
around the circle in the same way they are propor- 
tioned around the outline; however, this would vary 
from specimen to specimen. It would probably be 
necessary to partition the perimeter of the circle in 
the same proportions as an average outline, in 
which case it is not clear that the average steps of 
the circle would be homologous to any of the steps 
of the outlines. 

A better solution would be to dispense with 
"removing a circle." When normalization is applied 
in the traditional manner in principal components 
analysis, it involves the calculation of the mean 
value of each of the independent measures, in this 
case, the mean across the 86 leaves of each of the 
100 values of the d* function. This results in a 
sample centroid function which is an average out- 
line. Successive eigenshapes would describe devia- 
tions from the sample centroid basis shape rather 
than from the circle. Starting with a basis shape 
derived from the data rather than an arbitrary geo- 
metric form strikes me as more in the spirit of 
eigenshape analysis. 

By eliminating the "circle removal" step we 
not only remove a source of uncertainty when we 
move to an  analysis with unequal length steps, but 
we remove the limitation that our "outline" must be 
a closed curve. With this limitation removed, it 
would be possible to apply eigenshape analysis to 
the outlines of appendages, where the outline is not 
closed, or in general to any contour bounded by 
homologous landmarks. What I am proposing is 
that the d* function be replaced by the d function 
(Zahn and Roskies, 1972), which simply records the 
angular direction in the plane at  each step (with the 
angle of the first step, or the line through two 
landmarks, set to zero). In addition, step lengths 
would be recorded and appended to the function. 
Bookstein (1978) has proposed a similar approach 
in which N landmarks on the outline are sampled by 
N paired measurements of arc-length and tangent 
angle, forming a 2N vector. This technique could 
be applied to any outline or contour of any shape, 
closed or not, and so would have more general 

applicability. Some experimentation and further 
thought should make this approach workable. This 
modified eigenshape analysis will provide a tech- 
nique which nicely combines outline and landmark 
approaches. 

In this study, eigenshape analysis has shown 
itself to be very useful, and potentially more so if 
landmarks could be treated more realistically. Most 
importantly, this experiment with eigenshape anal- 
ysis in Syngonium podopliyllum has shown that it is 
feasible to characterize complex and subtle second- 
order developmental trajectories of leaf form. 
However, it remains to be seen how the technique 
will work when applied to other leaf forms. For 
example, how will the technique cope with second- 
order leaf series involving differing numbers of 
lobes? Also, the technique may be inappropriate 
for some leaf forms, such as the leaves of some 
Monstera species which include varying numbers of 
holes as important features of shape. It will prob- 
ably be necessary to use a diversity of analytical 
techniques in order to study second-order develop- 
ment of leaf shape in a wide variety of species. 
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Abstract 

Morphometrics is the biometric study of effects 
upon form. Its statistics proceeds by special adap- 
tations of path analysis, the typical mode of quanti- 
tative multifactorial modeling, applied to carefully 
selected geometrical quantities. When these 
quantities represent the locations of landmark 
points, it becomes possible to match computed dia- 
grams of effects against potential explanations of 
their mechanisms. That is, landmarks are the 
points to which typical epigenetic explanations 
refer. They bridge the geometric record of biologi- 
cal forms separately, the modeling of relations 
between pairs of forms as deformations, and the 
statistics of whole samples of forms in one single 

weakest category of landmark points are character- 
ized by their relationship to structures at  a distance, 
such as endpoints of the greatest diameter of a 
form. Any statistically detectable "effect" upon 
points like these must be construed as applying to 
the entire length of the defining extremal property. 

These strategies of morphometrics are un- 
aligned with the goals of phylogenetic reconstruc- 
tion. The proper role of morphometrics in biology 
does not include the provenance of putative mea- 
sures of "similarity" or "distance" for purposes of 
phylogenetic inference, and landmark data should 
never be turned to that purpose. 

Landmarks 
algebraic technology. Morphometrics is different from other biometrical 

The varieties of landmarks accord with the 
sorts of explanations that apply to their locations. 
The most useful class are individually recognizable 
points on boundaries between regions of distinct 
histology. Such points can be imagined to respond 
to growth processes or other adaptations at any 
distance. Landmarks that lie in planes of symmetry 
may be analyzed using only two Cartesian coordi- 
nates. Somewhat less powerful are local geometric 
features of extended tissue boundaries, such as 
points of sharpest curvature ("corners") on curves, 

methods. Its distinctiveness owes to the triple role 
played by landmarks. Their geometry supplies a 
language for describing individual forms, pairs of 
forms, and effects upon entire samples of forms. 
Morphometrics begins by exploiting landmarks 
under the first heading in gathering data; proceeds 
directly to the third heading to compute versions of 
all the classic path models; then reverts to the 
second when findings are interpreted, wherever 
possible, as if they specified processes relating 
single pairs of forms. 

or surfaces that might serve as points of application It is useful to begin the discussion by 
of net biomechanical vectors even when traces of examining one classic sort of statistical analysis that 
the relevant processes are not visible. A third, landmark-based analysis does not resemble: it is not 
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in any way an indirect measurement of true 
parameters, whether morphological "distance" or 
anything else. The metaphor of estimating "true 
values" arises in the classical method of 
least-squares, which already existed in recognizable 
form by 1810 (cf. Stigler, 1986). The method is 
designed for data in the form of "observations," such 
as the position of a planet at a particular time in the 
eyepiece of a telescope at a particular spot on the 
earth. Such observations are of no particular scien- 
tific meaning one by one. But in sufficient quantity, 
they may be combined in an  "estimate" of the true 
orbital parameters of the celestial object(s) 
involved. First, the true Newtonian equations of 
motion of the planet are linearized in the vicinity of 
the true parameters, and the errors in all observed 
measurements combined into a single error for 
each equation. Second, these equations are repeat- 
edly summed after multiplication by the (known) 
coefficient of each (unknown) parameter in turn, 
yielding as many "normal equations" as there are 
unknowns. Third, the normal equations are solved 
to supply estimates of the true orbital parameters 
that have, under certain probability models for 
measurement errors, their own desirable properties. 
In summary, observations (positions in a telescope) 
are combined into parameters (invariants of 
motion-potentials, momenta, etc.) which are 
conceptually different and physically constant. 

In the modification of this model for 
biometric use, at  the hands of Francis Galton, Karl 
Pearson, and Sewall Wright, the conceptual sepa- 
ration of data (measures of organisms) from 
parameters (path coefficients) was maintained. But 
the tie between "parameters" and exact laws was 
replaced by a vague notion of causality. Recall that 
in the classic contexts for which least-squares 
methods were developed-principally celestial 
mechanics and geodesy--there is no mention of 
causality. Newton's Laws don't "cause" the planets 
to take the orbits they take, but instead describe 
those orbits for all time, once "initial conditions" are 
set. 

By comparison, in Galton's equally classic 
analysis of the inheritance of height, there is no law 
regulating height of the offspring under any 
circumstances. Instead, we may believe that 
offspring height is "determined" by a collection of 
numerous "causes," of which parental height is one. 
The purpose of the biometric regression is to 
compute not a physical constant, like the momen- 
tum of Jupiter, but instead a path coefficient the 
value of which is subject to further explanations, 
such as by evolutionary argument or by an  auxiliary 
computation based in gene frequencies. The 
regressions are based on a presumption of causality, 
but end up interpreted functionally instead, in 
terms of mechanisms rather than coefficients. 

As applied to morphometrics, the incompat- 
ibility between these two invocations of 
least-squares methods went unnoted until Huxley's 
seminal work of 1932. At the crux of the problem is 
the manner in which explanations of these coeffi- 
cients were eventually to refer back to the data they 
were supposedly accounting for. Astronomers, after 
all, know exactly what object they mean by 
"Jupiter." They agree regarding the precise manner 
in which observations are to be compared from 
night to night, telescope to telescope, and regarding 
the roster of parameters relevant to celestial 
mechanics. Biologists must substitute contingencies 
for both of those intellectual luxuries; and while 
regression substitutes coefficients for constants, it is 
not at all obvious what substitutes for "pointing the 
telescope." Yet if we cannot say where we are 
pointing our measuring instrument, we cannot 
relate regression coefficients to meaningful expla- 
nations. 

In Galton's analysis of height, for instance, 
by what principle can we assume that net height, 
from the floor to the crown, is the subject of regu- 
lation by any explicable biological process? Huxley 
reminds us that net height is actually the integral of 
all its differentials, its little elements, along the 
diversity of organs that make up  the path taken by 
the yardstick. In principle, a different "parameter," 
a different covariance, should be computed for each 
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infinitesimal segment of that path. To  assert that a 
covariate of an  epigenetic process affects "height" 
we must inspect the way in which it affects all the 
components of height; otherwise the explanation is 
wrong even when the regression is computed 
correctly. 

Hence emerged the classic growth-gradient 
models that were applied to axial forms from inver- 
tebrates through man (cf. these views in Boyd, 1980, 
or Bookstein, 1978). The analogy on which this 
work is based relates the reading of a ruler placed 
upon an organism to the reading of a reticle placed 
upon the eye piece of a telescope. The elemental 
size of a bit of tissue, identified by its pair of end- 
points, is presumably analogous to the visual sepa- 
ration of a pair of celestial objects, like Jupiter and 
Saturn. At root, then, the analogy stands or falls on 
the appropriateness of the axial element--the 
segment between two "landmarks"-for bearing the 
biological explanation (in this case, allornetry, the 
effect of size on shape) beyond the regression 
coefficient. 

The fundamental difficulty of morphomet- 
rics is already patent in this relatively early analysis. 
Even when we actually mark particular bits of tissue 
over ontogeny, as by following natural variations of 
pigmentation, the resulting regression coefficients 
do not necessarily support any interpretation in 
terms of explanations of form (cf. Bookstein, 1978). 
In root tips, mammalian bone, and several other 
common examples, explanations "move over" 
tissues: a process applying at one place at one time 
applies at "another" place at a later moment in 
ontogeny. In fact, the relevance of biological 
explanations to line-elements, or  any other coordi- 
nate system applied to a form, is logically circular. 
No laws control our decisions about matching loca- 
tions for the ends of the ruler separately prior to 
carrying out our regressions. Rather, it is the 
regression analysis itself, perhaps an exploration of 
allometry in one guise or another, that is to justify 
(however retroactively) the comparisons of 
segments among these tentatively labelled end- 
points. To the extent that the "lengths" covary with 

other measurable entities-eight, other lengths, 
fitness, habitat, histology, date-e assert these 
endpoints to be "landmarks." If the distances didn't 
manifest interesting covariances, they would be 
useless as landmarks, no matter how clearly or 
objectively they had been observed. 

Then landmarh delimit our explanations of 
effects upon form; their role in investigations is not 
just to be there but to encourage hints about the 
processes that put them there. Except in one 
dimension, the axial case Huxley treated, there is 
no easy way to automatically generate morphomet- 
ric "variables" (Bookstein, 1978). In two or three 
dimensions, the construction of a space in which to 
sift through covariances so as to uncover possible 
biological meaningfulness without any geometric 
bias requires algebraic tricks, for instance, the 
scheme of "shape coordinates" to be introduced 
below. Yet most of the shape variables explicitly 
required for fair coverage of any set of landmarks 
will prove uninteresting. Even in one dimension, 
the set of possible objects of a subsequent biologi- 
cal explanation includes all of the distances 
between pairs of landmarks; all of these are equally 
meaningless prior to a sophisticated study of their 
covariances among themselves and with exogenous 
factors, and all but a few will remain meaningless 
composites even after the study is completed. 

Thus in all cases there are more morphome- 
tric variables than one can use in realistic descrip- 
tions of particular effects upon form. The logic by 
which these alternatives are sifted has nothing to do 
with the usual reasoning patterns of systematics, 
and morphometrics should not be thought of as a 
branch of systematics, or  even as a tool of phyloge- 
netic reconstruction, except insofar as it produces 
residuals from coherent explanations to which the 
incoherent explanation of taxonomy ("they are 
different taxa") applies as a sort of default. Many 
quantifications of organismic form may be both 
accurate and taxonomically useful and still be 
indistinguishable, for our purposes, from meristics, 
colors, or variables of any other disorganized class. 
I do not include such quantifications among the 
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morphometric methods. Although they appear to 
suit the etymology, they are not conformal with the 
context of biological explanation: one cannot inter- 
pret their covariances. For instance, a list of elliptic 
Fourier coefficients serves the biologist essentially 
as a list of ingredients serves the supermarket shop- 
per. One can duplicate the outline (the product), 
but it remains wholly unclear why just those ingre- 
dients are there. In the absence of an epigenetic 
theory, we can have no expectations about the 
"causes" or "effects" of these ingredients; we only 
know that products with paprika tend to have 
pictures of Hungary on the box, etc. Analogously, 
certain sorts of "similarities" between evolutionary 
recipes might express some combination of 
common causes of the lists in question. The 
methods of taxonomy attempt to separate these 
causes into those which express common ancestry, 
case by case, versus those which do not. Whether 
or not that separation is even a well-posed problem 
(I  believe it is not), ar evidetzce for estahli.~l~ing 
cotnt7zon ancestry morphometric methods are not 
necessarily either better or worse than other 
methods. That is not their purpose at all. 

The information we morphometricians are 
after is not similarity due to common ancestry but 
the other part, the covariances with explanatory 

factors1. The word "factor" is used here in Sewall 
Wright's sense: a factor is a quantity measurable 
(directly or indirectly) upon single organisms and 
serving as a predictor in a path model. There, at 
last, we can revert to a theoretical grounding stated 
first and most passionately by D'Arcy Thomp~on  in 

This search is often enough successful that, in 
general, it is unwise to presume a computed 
morphometric "dis ta~ce"  to at all approximate a 
measurement of taxonomic distance; there are too 
many other good explanations of similarity (see 
Bookstein, 1091). 1 believe it is unreasonable, for 
instance, to compute RFTRA distances and pass 
them through any sort of dendrogrammatic analysis, 
as is unfortunately exemplified in the chapters by 
Chapman, Riedel, and Reilly which follow. 

the well-known passage from his On Growth and 
Form (1917:275-276) that I shall spare the reader 
the chore of rereading here. Thompson asserts that 
our descriptions of the processes that regulate form 
tend usefully to proceed in terms of the sizes and 
shapes of parts relative to others, and so would 
conduce to descriptions of relations among those 
forms in terms of geometric deformations. 
Conversely, deformations, as extended systems of 
distributed change, are a likely substrate in which to 
search for evidence of explicable biological 
processes. 

It is one implication of this position that 
Huxley's basic model of "growth-gradients," which 
came 15 years later, would get its geometry wrong: 
the issue is one of size, shape, and relative position, 
not merely of a scalar "length" along a conventional 
axis. 

Many investigators after Thompson 
attempted to discover methods for objectively 
seeking biologically meaningful descriptions within 
the mathematical space of deformations. As it 
happens, the algebra of landmark points provides 
the solution to that problem. That is, the statistics 
of the landmark locations are also the statistics of 
all models of deformation driven by the landmarks 
(cf. Bookstein, 1987)- but that is not the issue 
here. Rather, the question at hand is the manner in 
which the model of deformation can usefully be 
applied to multiple sets of data, not just single pairs 
of forms. On this matter contemporary 
morphometricians are approaching a consensus. 
The theory underlying landmark-based 
morphometrics currently runs somewhat as follows: 
We know that epigenetic processes regulate form as 
it unfolds and as it is arrived at  in adulthood. We 
understand, too, certain influences on these 
processes. Some of the covariates of form are 
global, like net food intake; others are extremely 
local, as in the hypermorphosis resulting from 
muscular exertion or in the sequelae of particular 
mutations. Over this variety of causes and 
covariates of form, and in functional explanations 
throughout the huge diversity of taxa of which we 
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have knowledge, it is found that the elements to 
which explanations point can often be identified 
with specific organs or tissues, and, further that they 
may usually be  identified with specific boundary 
points of those organs or tissues. By a "boundary 
point" is meant a location at which tissue types are 
juxtaposed with other tissues or with the surround- 
ing medium. Then landmarks are the boundary 
points, between organ and organ or between organ- 
ism and environment, at which our epigenetic 
explanations adhere. 

This ideal type for landmarks will be 
searched for throughout the remaining chapters of 
this Proceedings just as they are devoutly sought 
throughout (the valid) part of contemporary 
morphometric literature. Landmarks are the 
points at  which one's explanations of biological 
processes are grounded. They are sign posts which 
the organism conveniently erects to ease our task of 
being functional or evolutionary biologists while 
remaining biometricians. In that capacity they ease 
the phylogenetic reconstruction task by specifying 
those deformations that are not of concern; that is 
their sole function in phylogenetic reconstruction. 

I have claimed that landmarks are located to 
ease the task of biological explanation, and I seem 
to be justifying this claim by noting that many of the 
explanations of form we accept today as epigeneti- 
cally valid seem to invoke deformations of the 
locations of landmarks. All this would seem to 
involve only the psychology of the biological 
profession. There is an additional advantage of 
landmark data, however, which in my view super- 
sedes the preceding difficulty, by permitting us, at 
last, to transcend the context of classic biometry 
(Galton, Pearson, Wright) with its arbitrary separa- 
tion of path coefficient from datum. In an appro- 
priate multivariate context, to be reviewed 
presently, landmarks permit the biologist to circum- 
vent this distinction. (Though D'Arcy Thompson 
suspected it, it has been formally recognized only in 
the development of morphometrics in the last 
decade or so.) The space of "configurations" in 
which landmark locations are recorded is, at the 

same time, the space of possible depictions of 
effects upon form and the space of statistics of 
deformations relating those forms. Thus land- 
mark-bmed morphometrics k the embodiment within 
biornetrics of the functional form of biological expla- 
nation. That is, the same statistical formalism can 
be used to delineate explanations as was used to 
gather the individual instances subject to explana- 
tion. The landmarks link three separate scientific 
thrusts: (a) the geometry of data, (b) the mathemat- 
ics of deformation, and (c) the explanations of biol- 
ogy. For instance (Bookstein et al., 1985), any 
instance of size allometry (c), computed in the 
appropriate multivariate way, can be immediately 
interpreted as a deformation (b), or  can be equally 
effectively used to "grow" any single form into 
others (a). 

The importance of this formal property 
cannot be overstated. It applies to all the statistical 
manipulations of landmarks from Procrustes fits 
(which represent the no-deformation) through my 
relative warps. By contrast, the outline methods 
criticized by Bookstein et  al. (1982, 1985) and by 
Rohlf (this volume) are incapable of leading to bio- 
logical explanations. Landmark-based explanations 
can be localized, whereas those based on Fourier 
coefficients cannot be. For example, the location of 
the warp in Figure 5 of the chapter entitled 
Higher-Order Features of Shape Change for 
Landmark Data may be taken as the center of the 
quadrilateral of landmarks. The same objection 
applies to any other technique of integral measures, 
from eigenshapes to body weight: the language of 
their statistics is not a biometrical language, 
whereas the language of landmark statistics, the 
language of variables selected by virtue of their 
covariances with deformation, is. In morphomet- 
rics, the same landmarks that we locate on the 
image are "put there," or, rather, put nearby (there 
is always residual), by the processes we use to 
explain their patterns. The name of a species does 
not account for differences among configurations of 
landmarks on a page, but the biomechanics of a jaw 
joint can. We draw the effect of that biomechanical 
explanation using vectors, or describe its effect on 
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shapes using tensors; likewise, we draw the pattern 
of morphometric covariances with size using 
vectors, and interpret it as a tensor field of allo- 
metric growth. But we cannot draw the change of a 
Fourier coefficient, or of an eigenshape, or of a net 
weight, using vectors: there is no place to put the 
arrowheads. For that matter, one can draw change 
of a single interlandmark distance, or of an angle or 
ratio among landmarks, in a great many metrically 
equivalent ways, as one or another landmark or 
subset of landmarks is "moving". The methods of 
conventional multivariate morphometrics (cf. the 
chapters by Marcus and Reyment, this volume), like 
the other integral methods, are generally not 
supportive of subsequent biological explanations. 
(See Bookstein and Reyment, 1989; for an excep- 
tion, consider the "truss" method, Bookstein et al. 
1985.) 

In so radically empirical a context, the 
meaning of homology becomes far different from 
the usual meaning, and different, too, from the 
meaning attributed to it in the essays of the last 
Part of this Proceedings. "Homology" is detectable 
only by its opposite, for which let me coin an 
abominable neologism, "heterology." If it were a 
word, "heterology" would mean an ineluctable inter- 
ference, an intellectual jamming of the tie between 
morphometric pattern and epigenetic description: 
they would be "different words," as the etymology 
might imply. We do not draw any conclusions 
about the relation of shapes between the fish jaw 
and the human jaw, for instance, because they are 
heterologous. In other words, "homology" is a 
residual category (which is why it is so very difficult 
to talk about it). The term applies to similarities of 
form and covariation with exogenous variables for 
which arguments in favor of heterology are not 
considered definitive. In the absence of a continu- 
ous fossil record, then, "homology" is just another 
name for effective morphometrics. In my 1978 
book I argued that, for statistical purposes, the 
classic notion of homology reduced to the applica- 
bility of the deformation model; I maintain the 
same position now. 

From this point of view, the class of 
phenomena considered "homologous," and thus 
subject to morphometrically-bayed evolutionary 
explanation (using landmarks or otherwise), will 
enlarge or contract over the years as phylogenies 
come and go in the journals. Morphometrics 
cannot settle these arguments, nor has it anything to 
say about "true phylogeny" at all. 

The three principal types of points that are 
frequently usable as landmarks correspond to three 
ways in which are grounded the epigenetic explana- 
tions that motivate the measurements in the first 
place. 

1. Discrete juxtapositions of tissue types. This 
category includes points in space at which three 
structures meet, such as the bridge of the nose in 
humans; branching points of tree structures, 
whether in two dimensions or three; centers or 
centroids of "sufficiently small" inclusions, prefer- 
ably convex, such as the vertebrate eye or the nuclei 
of the brain; and intersections of extended curves 
with planes of symmetry. Such points can be 
modeled as displaced in any (geometrical) direction 
by relative growth immediately adjacent or at a 
distance (the difference is not statistically 
detectablesee Bookstein, 1987). 

Landmarks of this first category can enter 
into many familiar sorts of biometrically valid func- 
tional explanations. Among the alternative 
accounts for deformation, for instance, is the con- 
servation or optimization of biomechanical strength 
or stiffness under systematic changes of load; 
another is the biomathematical efficiency of sensory 
systems; yet another, the bioenergetics of propul- 
sive systems. In particular, the statistics of land- 
marks are the same as the statistics of descriptive 
finite element schemes, which rely on landmarks to 
quantify strains in a manner comparable from form 
to form. Another common suggestion is the 
conservatism of enclosing structures under changes 
of their contents (the "functional matrix" hypothesis 
of Melvin Moss). When a lobe of a brain expands 
in ontogeny, for instance, there is induced a defor- 
mation of the surrounding bone. Although the 
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brain behaves approximately like a fluid, expanding 
directionlessly, the enclosing bone must adjust to 
several considerations other than mere hydrostatic 
pressure, and will generally respond by a shape 
change that is not isotropic (cf. the example for rat 
calvarial growth in Bookstein, 1991). In other 
examples (cf. Bookstein, 1985), localized changes 
near the margin of an organ are propagated only a 
short way across it, leading to equally localized 
changes among landmarks exactly upon the margin. 
All such explanations are most persuasive within 
single ontogenies or functional cycles; their 
extension to comparisons across organisms involves 
inferences about fitness gradients, inferences that 
rely on faith to a greater or lesser extent. 
2. Maxima of curvature or  other local morpho- 
genetic processes. These include tips of extrusions 
and valleys of invaginations. Landmarks of this 
second sort often serve as points of application of 
real biomechanical forces, pushes and pulls. 
Included are tips of predatory structures--claws 
and teeth, for instance--and tips of bony processes 
where muscle attachments may be centered. 
Landmarks of this sort may also signify a response 
to a bulge or other radial phenomenon at some 
distance from the geometrical boundary under 
study. As reviewed in Bookstein et al. (1985), one 
cannot, in principle, discriminate displacements of 
such landmarks lateral to the boundary direction 
from combinations of normal displacements 
outward to one side of the landmark, inward to the 
other; the more complex explanations of the latter 
category are less credible in general, but may be 
more valid in particular cases. Landmarks of the 
first category may enter into explanations of this 
second sort as well: for instance, tips of  incisors. 

3. Extremal points. These are points the 
definitions of which refer to information at diverse, 
finitely separated locations. This category, com- 
monest in multivariate morphometrics, incorporates 
endpoints of diameters, centroids, intersections of 
interlandmark segments, points farthest from such 
segments, constructions involving perpendiculars or 
evenly spaced radial intercepts, and the like. Points 
taken as "farthest" from other points, or as 

"endpoints" of a diameter of the form (i.e., as 
farthest from a point which is farthest from them), 
are rarely very useful as landmarks. Although the 
statistical methods following attach vectors to them 
just as if they had two or three real coordinates, 
their displacement is meaningful principally in a 
single direction representing the length ("size") of 
the defining segment; the other direction is badly 
confounded by unmeasured aspects of local shape. 
For an example that supports an appropriate expla- 
nation nevertheless, see Bookstein and Reyment, 
1989. Similar difficulties apply in the case of points 
computed as intersections of a contour with 
perpendiculars to a chord: series of such points 
represent functions, not landmark configurations, 
and their statistics must be  reinterpreted appropri- 
ately. 

Landmarks upon the symmetric axis (see 
Straney, this volume) are hybrids of the second and 
third categories above. Endpoints (centers of 
curvature of boundary segments having locally 
extreme values of curvature) are at a distance from 
the boundary equal to that minimum radius of 
curvature along a vector aligned with the boundary 
normal. If the morphogenetic process regulating 
the form in this region is boundary-driven, as it may 
be for relatively small, heavily sculpted forms like 
teeth, the displaced point is less useful than the 
boundary point which it represents; if the process is 
driven from an interior center, like a bulge, the 
better point for explanations is the medial point. In 
contrast, triple points of the medial axis represent 
organizations of three or  more boundary arcs at 
considerable separation. When these stand for 
biomechanical integration, as in the human 
mandible (Bookstein et al., 1985), they are likely to 
be more informative than the boundary points they 
summarize; otherwise, they are not likely to be 
useful. 

Some other landmarks of the third category 
are associated with the convenience of extracting 
data from plane representations of solid form. The 
plane involved may be a homologously oriented 
plane of a section of the form, typically a plane of 
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symmetry, or instead the apparent "plane" of a 
photograph or drawing. In space, certain structures 
are curves, and other structures, such as pairs of 
surfaces, may abut along curves. The points where 
curves begin and end in space are fine landmarks; 
but in plane descriptions, additional apparent 
landmarks arise where these curves appear to touch 
the apparent boundary of the organism. In reality 
such a "landmark" is merely a point at which the 
tangent to the surface passes through the point of 
view of the pictorial representation. This is obvi- 
ously not a local characterization of the "landmark 
unless the view is of a plane of symmetry. Even less 
landmark-like is the bulge-point of a surface in such 
a view; it corresponds to no recognizable location 
on the actual surface material. 

When data are derived from radiographs 
instead of surfaces, the value of a two-dimensional 
representation is somewhat enhanced. Landmarks 
digitized in two dimensions from projection images 
typically have at least two-thirds of the information 
available in three dimensions. Of course, this com- 
promise is not necessary. Landmarks can be digi- 
tized directly in three dimensions or reconstructed 
there from multiple projections (cf. Grayson et al., 
1988). Any explanation of a two-dimension analysis 
of a three-dimensional configuration must acknowl- 
edge, of course, the absence of information normal 
to the plane of the representation. 

Examples of all these types of landmarks 
occur throughout these Proceedings. The following 
paragraphs serve as a sketchy review of some of the 
usual possibilities. 

Marcus. (Chapter 4)  The data of this didactic 
chapter are not submitted to landmark analyses; 
nevertheless, it is instructive to survey the 
measurements Marcus reports. For the fowl data, it 
is likely that lengths of limb bones involve land- 
marks of Category 2, maxima of curvature relevant 
to biomechanical explanations, while the skull 
length and width are presumably of Category 3 
only. In the Zygodontomys form, the posterior skull 
width does not appear to me to involve landmarks 
at all; the distance LIB is based on landmarks of 

Category 3; distance LOF is again not based on 
landmarks at all (as its endpoints are on different 
structures, chosen to have nearest neighbors that 
are farthest apart between structures); distances 
LD, BR, and BPB could be modified to be land- 
mark-based by referring to "centers" of the struc- 
tures they span; incisal length LIF links landmarks 
(root tip and apex), while molar length and width 
are of Category 3, extremal points; DI seems not to 
be landmark-based (note that there is nothing 
recognizable about the left endpoint of the vector in 
the figure); and lengths BZP and CIL appear not to 
be landmark-based in the lateral view. On the 
whole, Marcus's example supports the assertion 
here that traditional morphometrics is not particu- 
larly conducive to explanations of the patterns of 
covariance it uncovers. 

Reyment. (Chapter 5) No argument is apparent in 
this chapter that morphometric data might be 
thought to have anything to do with biology at all. 
The ostracode measurements, for instance, are 
labelled as "var 1" through "var 7," guaranteeing that 
biological interpretation is impossible. 

Lohmann and Schweitzer. (Chapter 6) For some 
landmarks appropriate to Globorotalia, see the 
chapter by Tabachnick and Bookstein, this volume. 
Bookstein (1986, 1991) shows that there appear to 
be usable landmarks in the eigenshapes of these 
shells; the landmark configuration correlates more 
strongly with latitude and with size than do the 
eigenshape scores used by Lohmann in his original 
publication. These landmarks are of the second 
category, "corners" of the form. For an assortment 
of landmarks upon an ostracode, Veenia, see Abe et 
al. (1988). 

Straney. (Chapter 8) The landmarks of this chap- 
ter are the end-points and triple-points of the 
medial axis of an outline viewed normal to its plane 
of symmetry. This particular pattern of points is not 
particularly well-suited for trussing, and the origin 
of the landmarks in various features of the 
symmetric axis does not seem to have been taken 
into account in the truss scheme. In particular, it 
would have been interesting to substitute the 
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"corners" of the outline for the centers of curvature 
that the end-points represent. Compare Tabach- 
nick and Bookstein (1990). 

Chapman. (Chapter 12) In the starfish example, 
the innermost landmark points may be of Category 
1, histologically recognizable points, or of Category 
2, inward-pointing "corners". The outer ring of 
points, "tips" furthest from a central ring, are of 
Category 3 only, unless it can be argued that their 
azimuthal coordinate (the direction in which they 
are displaced from the center) is not a taphonomic 
artifact. It is not at all clear, in any case, how the 
pentagonal symmetry is to be managed. The land- 
marks for Diodon and Mola were originally selected 
by me in 1977 from Thompson's figures, not from 
specimens. They were intended to be of Category 1 
(juxtapositions of different tissue types along the 
midsagittal plane) except for the landmark on the 
body outline nearest the eye, which is of Category 3, 
having one coordinate only. The selection was not 
based on any knowledge of the processes actually 
delimiting ranges of fin-rays in fishes, and might 
have been improved had I known what I was doing. 
The figure of mine reproduced by Chapman invisi- 
bly incorporates some additional landmarks of 
Category 3, called "helping points" in Bookstein et  
al. (1985), for the purpose of specifying curvatures 
of boundary arcs between its Category 1 landmarks. 
The computations underlying the deformations 
depicted not only treat these as explicitly of Cate- 
gory 3 but also suppress them in the diagrams. The 
labelled points of the saurian skulls in Chapman's 
final examples all appear to be of Category 1, juxta- 
positions of discrete structures; but some cautions 
are generally in order here. The structures them- 
selves need to be "the same" from instance to 
instance; the visible sutures cannot be a haphazard 
selection from a larger set of possibilities. This is 
known to be a problem for some fish skull bones, 
for certain bones of the primate skull, and else- 

measure, and that it is particularly unwise to submit 
such a measure to any sort of taxonomic analysis. 

Tabachnick and Bookstein. (Chapter 13) There are 
two schemes of landmarks in this chapter, corre- 
sponding to two views of the same organisms at 
approximately 90". No attempt is made here to 
correlate landmarks between the views. In the 
spiral view, the landmarks are the hybrid of cate- 
gories 1 and 3 reviewed earlier. They lie on 
well-defined space curves (juxtaposition of succes- 
sive chambers) where those curves intersect the 
edge of the regression of the form in the chosen 
view. In the apertural view, landmarks on the 
aperture itself appear to be of Category 1, juxta- 
positions of structures. The spiral point s is likewise 
of Category 1, as the earliest recognizable point of 
the organism. Landmarks labelled w are, again, 
hybrids of categories 1 and 3; they are loci at which 
well defined curves have tangents perpendicular to 
the chosen plane of view. In both views, that plane 
is defined by structures at a distance from the 
landmarks in question, contributing to their unreli- 
ability. None of these problems interferes with the 
application at which these data were aimed, a 
consideration of the role of holotypes in delimiting 
the modes of morphospace. 

MacLeod and Kitchell. (Chapter 14) There are 
two different types of landmarks in the data of this 
chapter; they are indicated using different plotting 
symbols in Figure 1. Points 5, 8, and 11 are juxta- 
positions of different structures. I consider these to 
almost attain Category 1, good landmarks, as the 
plane in which they are viewed at  the periphery is 
characterized by reference to the structures on 
which these points lie. Other landmarks, as noted 
by the authors, a re  in Category 3, extremal points 
(widest, highest). The analysis might have pro- 
ceeded more efficiently with respect to the centers 
of these chambers than by exploiting the greater 
number of these peripheral points. 

where. The question of their homology is, as Lindberg. (Chapter 15) There are only three inde- 
argued in the text, essentially a statistical problem. pendent landmarks in this study. Two are the ends 
I must reiterate that no theory justifies the summary of the long axis of the organism, presumably falling 
of residuals from the Procrustes fit in a net distance into our Category 1 (as they seem quite well- 
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defined - head and tail - in the lateral view). 
The third is either of the points on the lateral 
margin chosen at an axial distance corresponding to 
the aperture. While individually these are of Cate- 
gory 3 only, they have two effective Cartesian 
coordinates: one of aperture position, the other of 
width. (In this dorsal view, the aperture has only 
one effective coordinate, being restricted to the 
midline.) Effects upon them can be interpreted in 
all directions even though they are not proper 
landmarks (compare the example of the cranial 
base in Apert syndrome, Bookstein, 1991). The 
resulting analysis of shape has only two geometric 
degrees of freedom and can be summarized in 
printed scatterplots without loss of information. 

Reilly. (Chapter 16) Of the points Reilly gathered 
on these skulls, numbers 2, 3, and 6 appear to be of 
Category 1 ('juxtapositions of structures). Numbers 
4, 5 and 7 appear to be of Category 2 (sharp 
corners), and number 1 appears to be Category 3 
(an extremal point), the point of the orbital margin 
closest to the midline. Again, I must disapprove of 
the computation of the RFTRA distance or any 
postprocessing of this value by UPGMA or any 
other algorithm from numerical taxonomy. 

Ackerly. (Chapter 18) The points referred to here 
as "landmarks," while very interesting, do  not fit into 
the approach described in this chapter. They are 
direct observations of the growth process: local 
extrema of a certain radial rate of accretion. The 
statistics of such points are not those of the land- 
mark-based methods: for instance, distances 
between them are likely to be heterologous features 
of form, they may increase or decrease their 
number over ontogeny, and so on. Nevertheless, 
because points like these can be observed easily in 
accretionary processes, they may support cogent 
biological explanations, such as models for the 
direct regulation of growth rate around a closed 
boundary. These models will involve an algebra 
different from that of landmark locations. 

rotation with a certain region of surface. To the 
extent that the axis is well-defined, so is this land- 
mark, which tends toward Category 1. Neverthe- 
less, the center of this terminal sphere might have 
been a better choice. Landmark B is the center of a 
somewhat less localized structure, the distal aper- 
ture, and so falls in the second category above. Of 
the remaining landmarks, C, E, and G potentially 
fall in Category 1, anatomical landmarks, by the 
device of intersecting the form with a plane of 
symmetry. (In radiolarians, the symmetry is radial, 
and so any plane including the axis will do.) Land- 
marks D and F are in Category 3, points of greatest 
width, presumably not recognizable from a study of 
the patches of surface in which they lie. To  the 
extent that the chambers of this form are restricted 
to sectors of spheres, the model of shape change as 
deformation cannot apply, so the analysis of these 
points would be equivalent to a simpler conven- 
tional multivariate morphometric analysis of the 
centers of the spheres, their radii, and the axial (or 
lateral) locations of their circles of intersection. 
The UPGMA trees based on RFTRA distances 
between forms are meaningless, as argued in the 
text. 

The remainder of the discussion of land- 
marks in these Proceedings is divided into two 
parts. First is an exposition of the Procmstes 
method for standardization of size and orientation 
between homologous landmark configurations. The 
computations of this method result in one vector 
per landmark per specimen of "residuals" from a 
model declaring there to have been no shape 
change from the other form (if there be two) or 
about a mean form (if there be more than two). 
Such residuals may be meaningful if and only if 
there is sound reason for believing the model of no 
shape change, as in the study of deviations from 
bilateral symmetry (cf. Smith, Crespi, and Book- 
stein, submitted). These scatters are also useful in 
preliminary studies of the unreliability of diverse 
landmarks and in scanning for blunders in the digi- 

Sanfilippo and Riedel. (Chapter 19) Landmark A tizing. None too soon, although not until after 
should be taken not as an extremal point but some applications, we quit the arena of Procrustes 
instead as the intersection of the organism's axis of analyses for the specifically biometrical context of 
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extracting features of shape difference and vari- 
ability. My introductory discussion of these 
methods argues the uselessness of the Procrustes 
step, explains the uniform component of shape 
difference or shape variability (and introduces a 
new, easy approximation to it in the form of a factor 
score), and presents a recently developed analogue 
to principal-components analysis for the context of 
landmark data: an  algorithm for the largest-scale 
features of the deviation of the data from unifor- 
mity (itself representing "infinite scale" in this 
context). The systematist may think of this 
approach as a praxis for generating large-scale 
"characters" in a semi-automatic way not too 
crucially dependent on the actual choice of land- 
marks underlying the computations. These new 
methods are exemplified in two applications papers. 
I have restricted my editorial license to this single 
paragraph. 
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Abstract 

This is a survey of methods which superimpose 
configurations of landmarks from different 
specimens so that differences in landmarks can be 
discovered. The strengths and weaknesses of this 
approach (versus fitting deformational models) are 
discussed. 

Introduction 

This chapter is concerned with the problem 
of comparison of configurations of landmarks in 
two or more specimens. One approach is the use of 
dejonnatior~ rnodels (in the spirit of the 
transformation grids of Thompson, 1917). This 
approach is characterized by the depiction of the 
overall form of one organism as a continuous 
deformation of another, reference, organism. 
These can be implemented, for example, through 
the use of thin-plate splines (Bookstein, 1989). This 
approach is described by Bookstein in Chapter 11. 

change) for the differences in landmark 
configurations. Small scale (local) changes in the 
relative positions of the landmarks in different 
organisms are detected by studying the residuals 
from the fit. The approach is analogous to that 
used in regression when one fits a straight line 
through some points and then studies the residuals 
for evidence of curvilinearity. Large residuals or  a 
nonrandom pattern of the residuals can suggest 
more appropriate--but more complex--models. 
Goodall (1990) and Goodall and Bose (1987) give 
extensive discussions of the statistical consequences 
of these models. Olshan et al. (1982) describes the 
application of these methods to outline data. 

The primary purpose of this chapter is to 
review and compare various types of 
superimposition methods. But the discussion 
section (below) responds to some of the criticisms 
detailed by Bookstein (1991). 

Methods 

An alternative approach is that rt,tutionul This section describes different approaches to 

fit (superposition) nlethods in which the homologous determining the "optimal" superimposition of two 
landmarks of one organism are superimposed on organisms* the incorporation of affine 
those of another so as to optimize some measure of t r a n ~ f ~ r m a t i o n s  in the fitting process, and the 
goodness of fit. This corresponds to fitting a very generalizations to the fitting of more than two 
simple model (taking into account only translation, orgmisms. The account given below provides only 

rigid rotation, scale, and possibly uniform shape 
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a general summary since Rohlf and Slice (1990) 
describe many of the methods in detail. 

Given two organisms represented by sets of x,y- 
coordinates of landmarks, Sneath (1967) 
investigated the problem of finding the optimal 
translation, rigid rotation, and scale change for the 
coordinates of one organism in order for it to be 
superimposed o n  another. I-Ie proposed the use of 
a least-squares criterion to measure the resulting 
lack of fit. Cower (1971) further developed 
Sneath's (1967) method and expressed the 
operations in terms of matrix operations as 
described below. Least-squares methods have also 
developed independently in the field of factor 
analysis. Ahmrlvaara (1957), Mosier (1939), and 
I lurley and Cattell (1962) are early references (but 
these are for the more general case of affine 
trrinsformations, see below). 

Let X I  and X2 be p x k  matrices giving the k -  

dimensional coordinates of the p landmark points 
on organisms 1 and 2, respectively. The goal is to 
transform the matrix X2 such that the sum of 

squared differences between the corresponding 
elements of it and X I  is as small as possible. The 

method consists of the following steps: 

1. Center both sets of coordinates at the origin 
by expressing their .wg-coordinates as the 
rnatrix of deviations, X', and XI2, from their 

respective means along each axis. This is the 
translation step. It can conveniently be done 
by premultiplying X by (I - P), where I is a 
p x p  identity matrix and P is a p x p  matrix 
with every element equal to l ip. 

2. Scale both organisms to the same size. I t  is 
convenient to follow Cower's (1971) 
suggestion of dividing each organism's x,y- 
coordinates by the square root of the sum of 
the squared distances of each landmark to the 
centroid. Thus X'; = (I - P) Xi / s;, where 

2 
si = tr((1 - P) Xi XI (I - P)). Bookstein 

(1991) calls s; "centroid size." 

3. Rotate, and possibly reflect, the second 
organism so that the new locations of its 
landmarks, X; = XI2 H, have minimal sum of 

squared deviations from the locations of the 
corresponding landmarks on the reference 
organism. The rotation matrix that 
accomplishes this, H = V S U', can be 
computed from the singular-value 
decomposition (Eckart and Young, 1936; 
Press et al., 1986) of the matrix 

x'! XI2 = U C Vt. The matrix S is diagonal 

with elements ? 1. The signs are the same as 
those of the corresponding elements of C. For 
k = 2 dimensions, the matrix H is of the form 

cos 6 s i n  6 
sin 6 cos 6 ' I I 

While most published applications in 
morphometrics only consider coordinates in a 2- 
dimensional space, the above procedure can also be 
used for multivariate data in three or more 
dimensions. 

Resistant Fit 

Siegel and Benson (1982) made the important 
observation that the use of a least-squares criterion 
for the optimal superimposition of two specimens 
usually results in a general lack of fit at most points- 
even if the specimens being compared are identical 
except at a few landmarks. 'This makes it difficult 
to accept the residuals at face value and give them 
what may seem to be an obvious interpretation. 
Siegel and Benson proposed an  alternative 
"resistant-fit" method, that is based on a 
nonparametric analog of least squares regression. 
Their method is better able to reveal differences 
between two organisms when the major differences 
are mostly in the relative positions of a few 
landmarks. 
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The computational steps are analogous to 
those of the least-squares approach but are 
somewhat more difficult to describe. Each step is 
designed to do the same as one component of the 
least-squares procedure. They are done, however, 
in a way that is more resistant to the effects of 
displacements in a minority of the data points. 
There is no obvious goodness-of-fit criterion that is 
being maximized or minimized. Since the method 
is discussed by Chapman in Chapter 12, it is 
described here just for completeness and for 
consistency. 

The goal is to find a matrix X; = lpxl(t i ,6)  

+ i x2H,  such that corresponding entries in XI and 

X; are very similar for most of the landmark points. 

The matrix lp, is a p x 1 matrix of all 1s. The 

parameters in the above equation are estimated 
one at a time as follows: 

1. A least-squares fit as described above is 
performed. This will take care of the possible 
need for reflection and ensure that the 
subsequent steps begin with the two 
specimens approximately aligned. 

2. The scale factor, i ,  is computed by first 
finding for each point, i ,  the median of the 
ratio of the distance from i to each of the 
other landmarks in the two specimens. Then 
7 is taken as the median of these medians (a 
repeated nzedian ). 

3. The rotation angle, 8, that the rotation matrix 

H is based upon, is computed in a similar way. 
Let Oij be the angle necessary to rotate a line 

connecting points i and j in specimen 2 in such 
a way that it becomes parallel to the 
corresponding line in specimen 1. The 
median of such angles is found for each point i 

and then 8 is taken as the median of these 
medians. 

4. The vector of translation parameters, (Ci,P),  is 
estimated using ordinary medians of the 
differences in the x and y-coordinates of 

specimens 1 and 2 after the above scaling and 
rotation operations have been applied. 

The above procedure, which seems 
somewhat ad hoc, works quite well (several 
examples are given in Chapter 12 by Chapman). 
See Siege1 (1982a, 1982b) for more detailed 
information about the algorithm and examples. 

The algorithm given above is just for 2- 
dimensional data but an  analogous algorithm can 
be developed for 3-dimensional data. 

Affine Transformations (Oblique 
Procrustes) 

Goodall and Green (1986) have suggested allowing 
the use of affine transformations when fitting one 
set of landmarks to another. Affine transforma- 
tions can be interpreted as scale changes along 
orthogonal axes (for example, a magnification along 
one axis and a contraction along another). 
Bookstein (Chapter 11) refers to this as uniform 
shape change. The methods described in the 
previous section permit only changes in overall 
scale. 

The solution to the fitting problem for the 
least-squares criterion was developed by Hurley 
and Cattell (1962) and by Ten Berge and Nevels 
(1977). Cattell and Khanna (1977) and Gower 
(1984) reviewed the general problem of 
transforming one set of coordinates into another 
when orthogonality constraints are not imposed. 
The least-squares method consists of the following 
steps: 

1. The coordinates of the two specimens are first 
translated to place their centroids at the 
origin. 

2. The matrix of coordinates of the landmarks of 
the second organism, after rotation and 
dilatation to fit the first organism, is given by 
X; = Xi  H*, where the affine transformation 

matrix is 
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This is the equation for the least-squares 
estimates of the partial regression coefficients 
in a multivariate multiple regression analysis. 
There is no explicit scaling step since this is 
taken care of by the multiplication by the 
inverse matrix. 

The transformation matrix, H* can also be 
expressed in terms of a singular value 
decomposition, 

Multiplication of Xi by H* corresponds to the 

rotation of the landmarks through the angle 0 
(determined by the matrix U) to align the 
deformation axes with the coordinate axes, followed 
by the multiplication of the resulting landmark 
coordinates by the scaling factors p and q (diagonal 
elements of C) in the x and y directions, 
respectively, and the rotation of the configuration 
back through the angle $ (determined by the matrix 
V) to realign the fitted organism with the reference. 
The net change in the orientation of the fitted 
organism as 0 - $. Flowever, 0 is a function of the 
placement of the fitted organism on the coordinate 
system and $ will be a function of the placement of 
the reference organism. Unless, both organisms 
were initially placed in some meaningful 
orientation neither these angles nor their difference 
will be biologically interesting by themselves. For a 
fixed reference, differences in $ between different 
fitted configurations will identify differences in the 
direction of principal strains. 

The resistant fit method can also be 
generalized to include an oblique rotation in order 
to best fit one configuration of landmarks to 
another. Rohlf and Slice (1990) (based on a 
suggestion by Goodall, 1983) estimated the 
elements of the transformation matrix H as the 
repeated medians of the elements of transformation 
matrices computed from all possible triplets of 
landmarks (or from a sample of triplets when there 
are a large number of landmarks). 

The direction and magnitude of a dilatation 
can be shown graphically as a strain cross--a pair of 
orthogonal axes with lengths proportional to the 
two eigenvalues computed above and orientated so 
that the longer axis is parallel to the direction, $, of 
maximum stretching. If the eigenvalues are 
identical then the change is isotropic and the angles 
are not uniquely defined. See Bookstein (1982, 
1984) for a more extended description. Goodall 
and Green (1986) give convenient equations for the 
relationships between the canonical parameters, the 
strain cross parameters, and the singular value 
decomposition described above. 

Superposition Based on Thin-plate Splines 

Since Bookstein's (1989) thin-plate spline method 
includes parameters for translation, oblique 
rotation, and scale change, it can be used as an 
affine rotational fit procedure by simply ignoring 
the fact that the higher order terms have also been 
fit (as suggested by Bookstein in Chapter 11). 

The transformed coordinates for specimen 2 
can be computed as follows. Let 

where Q is a 2 x  3 matrix, V is a p x  3 matrix with the 
first column containing Is and the other two 
columns containing the x and y-coordinates of the 
landmarks in specimen 1, P is the corresponding 
matrix for specimen 2, and K is a p  x p  matrix of r2 
log r2 values based on the distances, r, between all 
pairs of landmarks in specimen 2. See Bookstein 
(1989, 1991) or Chapter 11 for more information 
about this matrix. The matrix Q can be partitioned 
by columns as (T I H), where T has 1 column and 
corresponds to the translation effect and H is a 2 x  2 
affine rotation matrix. The transformed 
coordinates for specimen 2 are then 

This approach fits the positions of the landmarks in 
specimen 2 to the positions in specimen 1 with the 
effects of the higher order terms (the principle 



Chapter 10. Rotational fit Methods 23 1 

warps of Chapter 11) held constant. In the usual 
Procrustes methods the effects of any higher order 
terms are ignored. 

Other Superposition Methods 

Several other superposition methods have been 
proposed. Bookstein and Sampson (1990) and 
Bookstein (1991) describe a generalized least- 
squares method that takes into account different 
variabilities at different landmarks and the 
tendency for neighboring landmarks to covary as a 
consequence of changes between them and the 
baseline. 

Mardia and Dryden (1989) have developed a 
maximum-likelihood approach to the estimation of 
the uniform component. Both methods allow 
testing for the significance of the uniform 
component and of the residuals from the model. 

More Than Two Specimens 

There are several approaches that can be taken to 
deal with the problem of superimposing n > 2 
specimens in a study. These include: 

1 Match all specimens against a single reference 
specimen. 

2 Match specimen 1 against 2, 2 against 3, etc. 
This assumes that there is a logical sequence 
(such as in developmental studies). 

3 Match all n(n-1)/2 pairs of specimens 
against each other and then analyze a matrix 
containing some measure of difference (see 
below) between each pair of specimens. 

4 Compute an "average" (or consensus) 
configuration and then match all n specimens 
against this average configuration. 

The choice among these alternatives will 
depend upon the structure of the data. The first 
three require no special methods-just appropriate 
software. Two methods have been developed to 
construct average configurations of landmarks: 
least-squares and resistant fit. The least-squares 
solution was developed by several workers (Gower, 

1975; Kristof and Windersky, 1971). A 
generalization for the resistant-fit method was 
reported by Rohlf and Slice (1990). Their method 
is patterned after the computational approach of 
Gower (1975). The steps are as follows: 

1. Center and scale the coordinates for each of 
the n specimens. Call the results Xi. 

2. Set matrix Y to the coordinates of the first 
specimen and then do a least-squares fit of all 
other specimens, Xf, to this initial reference 

specimen. 

3. Compute a new Y as an average (median in 
the case of resistant-fit) of the rotated 
specimens from step 2. 

4. Rotate the current Xi to fit the present Y 

matrix using least-squares or resistant fit 
methods. 

5. Form a new Y from the current Xi. 

6. If the change in the results is larger than some 
tolerance then go back to step 4, otherwise 
stop. 

Note that the stopping criterion in the 
resistant fit method is the lack of change in the 
consensus configuration, not a measure of the 
degree of fit of the objects to the consensus. This is 
because no criterion of fit is being explicitly 
minimized. The least-squares procedure uses a 
change in the residual sums of squares. 

For IBM PC compatible microcomputers a 
computer program, GRF, that performs the 
computations described above is available from 
author and Dennis Slice. 

Procrustes Distances 

In addition to the si~perimposition itself, it is useful 
to have a quantitative measure of the degree of fit 
between two or more specimens. These are of 
interest both for testing whether the observed 
differences are larger than what one would expect 
just from digitizing error and for looking for 
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patterns in the relative degrees of differences 
among three or more specimens. 

Coefficients 

While there are  various indices that could be used 
to measure the degree of fit of two superimposed 
specimens, most studies have simply used the sum 
of squared differences in the coordinates of the 
specimens 1 and 2 (after specimen 2 has been 
optimally superimposed on I), A problem with this 
simple approach is that the distance from specimen 
1 to 2 need not be the same as that from 2 to 1. A 
solution is to first scale both specimens so that their 
centroid sizes are equal (Gower, 1971). This is an 
obvious choice since it is the criterion being 
minimized in the least-squares methods. This 
quantity can be expressed in several forms, for 
example: 

tr((XV1 - x;)(xl, - XZt)). (4) 

Sneath (1967) divided b y p  (to make it an average) 
rather than 2. Gower (1971) showed that 

ln12 = .\/KC, where C is the matrix of 
eigenvalues from the singular-value decomposition 
described above. For n > 2  specimens the overall fit 

2 can be measured by summing m12 over all 

comparisons with the consensus configuration. 

Kendall (1984) suggested the use of the 
coefficient p where 

XI; and X2i are  the x ~ i  coordinates, treated as a 
complex number ( x + i y ) ,  for the ith landmark in the 
first and second specimens (each of which have 
been centered on the origin), and stands for the 
complex conjugation operation. The quantity 1 - 
cos p is idential to the Procrustes distance 
coefficient (Kendall, 1984). 

Goodall (1990) proposed the multivariate 
Procrustes statistic: 

s = ~t ( x ~  - x;) T H, (6) 

where XI is the matrix of coordinates for the 

reference specimen, X;) is the translated, rotated, 

and/or scaled estimate based on the second 
specimen, T is the orthonormal matrix needed to 
rotate the reference specimen to the second, and 
the E and H matrices are from a singular-value 
decomposition of X2. Basically, S is simply a p x k 
matrix of differences between the reference 
specimen and the fitted second specimen but with 
its rows and columns aligned with the row and 
column eigenvectors of the second specimen. 

Shape space 

Kendall (1984) uses p, see above, as a measure of 
shape distance between pairs of configurations of 
landmarks in a sllape space. For the case of p = 3 
points in k = 2 dimensions, Kendall (1984, 1985) 
shows that the shape space corresponds to the 
surface of sphere with radius 0.5. H e  also shows 
that, when such triplets of bivariate landmarks are 
sampled randomly and independently from the 
same normal distribution, the density of points in 
the shape space is uniform. For p > 3 the models 
are much more complex. Kendall (1981) and Small 
(1987, 1988) give very useful general surveys of 
shape spaces and statistics for comparing shapes, 
especially for the case of p = 3 points. 

Due to the great complexity of shape spaces 
for p > 3 ,  Goodall (1990) suggests that practical 
statistical models and techniques for shape 
comparison must be made in Euclidean space (but 
in a way that when projected into shape space are 
faithful to the statistical analyses one would like to 
perform in shape space). 

Based on their S statistic (see above), 
Goodall and Bose (1987) and Goodall 1990) have 
developed a series of statistics based on T2-tests, 
ANOVA, and multiple regression for testing for 
shape change in both cross-sectional and 
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longitudinal studies, and with various assumptions 
about the error structure of the residuals. 
Bookstein and Sampson (1990) present slightly 
different tests for the same purposes. 

Analyses of Matrices of Procrustes 
Distances 

Given an index that measures the degree of 
agreement between two specimens, it is natural to 
consider using it to compare all possible pairs of 
specimens (e.g., Sneath, 1067). If there are more 
than just a few specimens, the distances can be 
placed in a matrix and subjected to cluster or 
ordination analyses. Gower (1075) shows that, with 
proper scaling, the distances define a metric and 
can be analyzed by metric or non-metric scaling 
methods. Since that time this approach has often 
been used (three examples are included in the 
present volurnc: Chapm:ln, Chapter 12; Reilly, 
Chapter 16; and Sanfilippo and Kiedel, Chapter 
19). 

Rookstein (in the introduction to part 111 C 
of this volun~e) strongly criticizes such uses of 
l'rocrustes distances. One problem is the fact that 
the residuals from an orthogonal Procrustes fit are 
a function of differences due  both to uniform shape 
change and to local defort-nations. In his model 
(see Chapter 11) these anisotropy and bending 
enerby are not commensurate anti cannot 
reasonably be combined into a single coefficient. 
Using Procrustes distances after an  affine fit would 
eliminate this problem. But a consequence would 
be that rather dissimilar looking organisms differing 
only by a uniforrn shape change would be 
considered identical 

Another problem is the fact that the 
Procrustes distance is prohably be5t thought of as a 
measure of residual variance. Thus it is most 
appropriate when the differences among organisn~s 
is similar to digitizing error (independent 
homogeneous random error across landmarks). 
But in many studies large systematic differences are 
found. It is also unreasonable to expect that the 
residuals at nearby landmarkg are independent. 

Spatial (in terms of the position on the organism) 
autocorrelations need to be taken into account. 

Perhaps the largest problem is simply that 
combining all shape differences loses so  much 
information. From a single distance coefficient one 
cannot distinguish between the case of modest 
differences at most landmarks versus a large 
distance at  only a single landmark. One also loses 
information about the landmarks at  which pairs of 
organisms differ. Usually such information is of 
more interest to a morphometrician than the 
overall degree of difference between a pair of 
organisms. 

The problem is similar to that in numerical 
taxonomy where one combines different kinds of 
differences across a diversity of characters in order 
to construct a tree placing similar (minimum 
distance) organisms together or a tree such that 
distances between organisms along its branches are 
as short as possible. T o  compensate for this loss, 
the resulting trees are often imbedded in ordination 
spaces or "decorated" with information about 
implied changes in character states along the 
branches of the tree. 

Displaying Results 

Since inferences about the shape differences 
between the forms being compared are usually 
based on an examination of residuals, graphical 
techniques for displaying residuals are  very 
important. Chapman (Chapter 12) shows examples 
of differences between two forms using vectors to 
represent the residuals. 

When many specimens are superimposed, 
the scatter at each landmark can be summarized by 
performing principal components analyses at each 
landmark and then plotting equal frequency ellipses 
and the principal component axes. These usually 
show the magnitude and orientation of the residual 
scatter very well. Rohlf and Slice (1990) furnish 
several examples. Figures 8 and 9 of Lindberg 
(Chapter 15) show these for each of several groups 
of specimens that were superimposed. 
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Discussion 
Bookstein (1991) describes a number of 

problems with the use of superposition methods to 
detect and describe shape change. 

1. The existence of uniform shape change nzay he 
difficult to detect by an examinafion of 
residuals. This should not be a problem since 
it is easy to include affine transformations in 
the fitting process. But the presence of 
uniform shape differences can usually be 
detected quite easily from the systematic 
pattern of the residuals. For example, the 
landmarks at opposite sides of the 
configuration having vectors pointing towards 
each other and the landmarks at  90" from 
them in the configuration having vectors 
pointing away from each other. Figures 11 
and 12 of Chapman (Chapter 12) are good 
examples as is Figure 9 (and perhaps 8) of 
Lindberg (Chapter 15). Bookstein's shape 
coordinates will show an analogous pattern of 
displacement in the presence of uniform 
shape change (displacements running parallel 
above and antiparallel below an object and 
with a magnitude proportional to their 
distance from the baseline. Of course one 
must be looking for these effects to see them. 

2. The displacemerzt of a single landrnark causes 
the centroid of the confib.uration to he displaced 
and tllus creates apparent displacenlents at all 
landntarkr. While true for least-squares fitting 
methods, the problem is less severe than one 
might think. Bookstein (1991) shows that if 
one landmark is displaced hy a vector v then 
after superimposition the residual at the 
landmark that was displaced will be v(p- l ) lp  
and -v /p  at the other landmarks. As the 
number, p, of landmarks increases, the 
relative lengths of the residuals at  the 
displaced and undisplaced landmarks 
increases linearly so that it will be clear as to 
which landmark was actually displaced. 
Figure 6 of Chapman (Chapter 12) is a good 

example for 10 landmarks. Resistant-fit 
methods are, of course, designed to avoid such 
problems. 

3. Procrustes superposition is an intentional 
misspecification of a model for shape 
differences. True, but the fitting (and 
sometimes rejecting) of simple null models 
before considering more complex ones is one 
of the two main strategies in applied statistical 
studies. Unless one knows enough to put 
forward specific a priori hypotheses to be 
tested, the only alternative to these simple 
models is to deal from the beginning with a 
more complex model incorporation all 
possible patterns of variation (see Chapter 
11). To  choose Procrustes methods is 
reasonable if one means to state that one 
doesn't expect findings from those more 
complex analyses, and if one checks that 
expectation against the Procrustes residuals; it 
is not reasonable if it merely asserts that one 
does not understand the more complex 
methods. 

4. Superposition of centroids of configurations 
(necessary to acllieve a least-squares fit) is 
biologically unreasonable. It is true that the 
means of the configurations must align 
perfectly as do the median x,y-coordinates 
after rotation in the resistant fit method. But 
in order to superimpose, some part of the 
configuration must align. 

5.  Procrustes superpositions are ill-suited for 
diagnosing most effects on biological shape as 
tlley are observed in practice. If complex 
deformations are the most common type of 
shape change, then this is the most important 
criticism. When differences consist of 
mixtures of displacements of isolated 
landmarks and local deformations it becomes 
much more difficult to make inferences about 
the patterns of shape changes from a visual 
examination of the residuals. Figures 15 and 
16 of Chapman (Chapter 12) are good 
examples of more complex differences in 
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shape where a deformational model might 
yield a clearer picture. But the patterns 
shown in his other figures are much simpler 
and are easy to describe using Procrustes 
analysis (especially if affine transformations 
are allowed). 

Superposition methods seem most useful in 
two situations. The first case is when the major 
differences are limited to just a few landmarks after 
any uniform shape differences have been removed. 
In this case the pattern of resid~lals is very easy to 
recognize and interpret (especially when "resistant" 
methods are used). The second case is when the 
pattern of deviations across landmarks seems 
random (similar to what one would expect as a 
result of digitizing error). The level and orientation 
of the variability at each landmark need not be 
homogeneous, however. The study of asynlmetry 
between right and left bee wings by Smith et al. 
(1990) is a good example. In such cases the squared 
Procrustes distance is better thought of as a residual 
variance that can be partitioned in various ways. 
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Abstract interpreted, are very nearly independent of base- 

This chapter reviews a decomposition of shape 
change or shape variation into geometrical and 
statistical components which, together, often 
support useful interpretations. The techniques 
apply to data in the form of homologous landmark 
locations. All the shape features discussed here are 
independent of the decision as to whether to stan- 
dardize position, orientation, and scale in any way 
and, if so, in what way that standardization is 
carried out. In particular, the features that describe 
the shape relations of a pair of landmark configu- 
rations are the same as those that describe the 
residuals from the fit of either to the other by an 
isotropic Procrustes transformation, as discussed 
elsewhere in this volume. The nonuniform features 
are the same whether or not a uniform part is esti- 
mated and corrected first. For drawing shape 
changes, I will use my two-point regktrution. Shapes 
of triangles are expressed as shape coordinate pairs 
of one landmark in a coordinate system defined by 
fixing two others along a baseline at Cartesian 
locations (0,O) and (1,O). More general landmark 
reconfigurations are treated as vectors of displace- 
ment of all but two of the landmarks after reduction 
to sets of shape coordinate pairs one by one. Mul- 
tivariate analyses of such representations, properly 

line. 

The present chapter is, intended mainly to 
sketch the assumptions, computations, and dogmata 
underlying the two examples to follow in this 
Section. It is no substitute for a detailed study of 
the full statistical feature space for landmark-based 
shape. These matters were the subject of several 
lectures at the Michigan workshop and also of 
Chapter 7 in the preliminary draft of my Morpho- 
metric Tools for Landmark Data (Bookstein, 1991). 
Portions of the same material have appeared in 
Bookstein (1985, 1986, 1987, 1989a, 1989b) as well. 

A Summary of the Basic Ideas 
Any change of shape for a configuration of 
landmarks has a ltnifonn part and a non- 
urzifortn part, and any observed sample of 
landmark configurations incorporates variation 
of both the uniform part and the non-uniform 
part about a mean configuration. 

The uniform and the non-uniform parts of any 
change or scatter represent complementary 
subspaces of the full vector space of shape 
variation. 

The uniform part may be imagined as the 
change or variation of a "typical" triangle, 
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rigorously interpolated or extrapolated so as to 
apply to every landmark triangle in the same 
way. 

A purely uniform transformation leaves parallel 
lines parallel. In the two-point registration, all 
landmarks are displaced by multiples of a 
single vector; each multiplier is proportional to 
the landmark's distance from the baseline. 

There are various ways of estinzating the 
uniform part of a shape change that is not 
exactly uniform. The most convenient is as a 
factor score, an average of all landmark shifts 
weighted by their distance from the baseline. 

To  any sample of shapes corresponds a two- 
dimensional distribution of this uniform factor 
score. It may have up to two uniform statistical 
components, which are eigenvectors of uniform 
shape variation with respect to the anisotropy 
metric (log ratio of principal strains). 

To any transformation of landmarks there is a 
bending etzergy, which may be thought of as the 
net energy required to bend an infinite, 
infinitely thin metal plate over one set of land- 
marks so that its height over each landmark is 
equal first to the x-,  then the y-coordinate of 
the corresponding landmark in another set. 
Uniform transformations involve tilting and re- 
rolling this plate, not bending it, and so require 
zero bending energy. 

Any single non-uniform transformation may be 
expressed as a finite sum of pritzcipul wurps, 
eigenfunctions of the bending energy corre- 
sponding to Procrustes-orthogonal displace- 
ments of the "metal plate" at the landmarks. 
These warps emerge in descending order of an 
eigenvalue, bending energy per unit summed 
squared Procrustes displacement, which can be 
identified with the inverse geometrical scale or 
infortnation localizubilify. 

Because the uniform part of a mixed transfor- 
mation can be defined in many different 
reasonable ways, the non-uniform part is like- 

wise not unique. However, all of its variants 
have the same bending energy. 

A sample of shape changes, or their residuals 
after subtraction of an  estimated uniform part, 
may be usefully decomposed into a series of 
relative warps, which are eigenvectors of the 
variance-covariance matrix of landmark coor- 
dinates with respect to bending energy. These 
are analogous to ordinary principal compo- 
nents, in that they emerge in order of their 
power to account for transformations of land- 
mark locations distributed as widely as possible 
over the form. They are calibrated by eigen- 
values which represent variance per unit 
bending energy. 

The uniform transformatiorls can be thought of 
as the zeroth of these relative warps, with 
eigenvalue infinite and zero bending energy per 
unit variance. 

The metrics for the uniform and non-uniform 
parts of shape change or variation are wholly 
incommensurate: for the uniform part, an 
anisotropy; for the non-uniform part, an 
energy. Describing the "magnitude" of a 
change of landmark configuration requires at 
least three "distances": anisotropy, bending 
energy, and also a size difference score. There 
is no good way to combine these into one single 
metric; the hope of a meaningful unitary matrix 
of distances between shapes is vain. 

Instead, the combination of two uniform com- 
ponents with some number of relative warps 
provides a useful feature space in which to 
search for evidence of diverse morphogenetic 
processes at multiple geometric scales. 

The Simplest Example: Transformations 
of a Square 

I shall assume that the reader agrees with my 
much-published view, beginning with Bookstein 
(1984), about how best to carry out the multivariate 
statistical analysis of a triangle of landmarks. The 
analysis of shape variability for a triangle reduces to 
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a scatter of single pairs of shape 
coordinates. Distance in this shape 
coordinate plane is proportional to 
log-anisotropy, log of the ratio of 
diameters of the ellipse into which 
any circle is taken by the simple 
shear (cf. Figure 3) consistent with 
the landmark locations. All the con- 
ventional sorts of biometric hypothe- 
ses dealing with covariates of shape 
or shape change, such as size or 
group, may be rigorously tested in 
this space, and any effects found as 
displacements or trends in the shape 
coordinate plane may be interpreted 
immediately as specific scalar shape 
variables: ratios of homologously 
measured distances aligned with the 
principal strains of the effect con- 
strued as a deformation. 

The question naturally arises 
as to whether the general change of 
shape for more than three landmarks 
can be described in equally simple 
language. The problem is clear in 
the context of even the very simplest 
configuration of four landmarks, the 
square in Figure 1. Consider two 
transformations of the square, one to 
a parallelogram and one to a kite- 
shaped object. Let us inspect the 
effects of these changes upon the 
two triangles into which we can 
divide the square. Figure l a  shows 
this analysis for the transformation 
to a parallelogram. The analyses of 
shape change for the two triangles 
agree regarding the principal direc- 
tions and principal strains of the 
shape change. But in the change of 
square to kite (Figure lb),  the 
ses of the shape change for 
triangles are somewhat in 

different starting triangulation. d) When the two strains are taken to refer to the 



240 Fred L. Bookstein 

strain for the other. When we switch to the other cannot. We can attempt to quantify this, and, in 
triangulation (Figure lc), the agreement or fact, we arrive at the actual uniform and non- 
disagreement continues. uniform spaces of shape change-for squares only!- 

It seems that the transformation of square to if in each of Figures l a  and b we rotate one of the 

parallelogram can be described by a single triangle triangles by 180" around the baseline so that the 

in some sense in which that of square to kite starting positions of the third landmark are now 
superimposed in the same location. 
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Figure 1 (continued). Uniform and non-uniform transformations of a square. e) 
The situation is the same for a different starting triangulation. f )  For a square 
(but only for a square!), the uniform part of any shape change may be identified 
with the difference of the displacements of either internal triangulation, and the 
non-uniform part with their sum, g) The square to hite transformation to 
baselines along edges of the square. 

Then in the transformation of a 
square to a parallelogram (Figure 
Id) the resulting displacements of 
the "same" point are identical, while 
in the transformation of square to 
kite, they are  opposite. This agree- 
ment or disagreement of features, 
which is the same regardless of 
original triangulation (cf. Figure le), 
suggests a decomposition of any 
observed change of shape of a 
square of landmarks into two parts 
(Figure If). One part, representing 
the difference of the displacements 
of the two movable landmarks 
(which becomes their average after 
one is "flipped"), is the square-to- 
parallelogram part of the transfor- 
mation, the same no matter how one 
triangulates the form. The other 
part, incorporating the average of 
the moving landmarks before flipping 
(e.g., their difference after flipping), 
seems to represent the pure contra- 
diction between the alternate trian- 
gulations, likewise in a way that here 
seems independent of the triangula- 
tion. 

A suggestive visualization of 
this distinction treats differences in 
the landmark locations between the 
square and the outcome form as if 
displacements were perpendicular to 
the picture rather than within the 
plane of the paper. Then the 
uniform transformation (Figure 2a) 
appears to involve a distorted square 
which is tipped with respect to the 
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original pictureit looks like a projected image of 
the original form-whereas the non-uniform trans- 
formation (Figure 2b) appears to bend the square. 
In neither case can the transformation be 
"localized" to any single landmark or subset of 
landmarks. Both appear to be distributed evenly 
over the whole set of four. We will return to this 
rather potent metaphor shortly. 

Figure 2. Mctrrphor for landmark displnccmcnls pcrpcn- 
diculirr t o  the plane of t he  starting squarc. a) Unirorm 
transformation, squarc  is tippcd and "foreshortcncd." 

Figure 3. Uniform transformations leave pnr;rllcl lines 
parallel. 

The apparent agreement of these analyses 
between the triangulations corresponds to invari- 
ance of one's biornetric analysis under such changes 
(Bookstein, 1987). If the square and the kite repre- 
sented mean forms in two populations, conven- 
tional statistical tests of the difference between the 
groups would yield exactly the same significance 
levels whether based on optimal distance-ratios 
from the first triangulation or on those from the 
second. Different variables would be involved, of 
course, in discriminating the kite from those 
involved in discriminating the parallelogram. 

The General Picture of a Uniform 
Transformation 

We need to generalize the preceding discussion so 
as to refer to any number of landmarks located 
anywhere, not just four changing from the form of a 
square. A very useful model for this generalization 
is that shown in Figure 3: the class of transforma- 
tions for which the shape change tensors computed 
from all triangles of landmarks are the same in 
their lengths and orientation upon "tissue". It can 
be shown that such transformations are simply the 
uniform or uffine trunsfonr~ution that keep parallel 
lines parallel and preserve ratios of lengths 
measured in the same direction. These transfor- 
mations take circles to ellipses whose axes are the 
principal strains of the transformation. For a 
review, see Bookstein et al., 1985. 

I n  an arbitrary superposition, such as one 
resulting from a best-fitting isotropic Procrustes 
transformation, it is n o t  at all clear when a trans- 
formation is uniform in this sense (Figure 4a). 
Things are much clearer when superposition is by 
means of shape coordinates to any baseline pair of 
landmarks (Figure 4b). In the shape coordinate 
plane, a uniform transformation displaces all land- 
marks in the same direction, by multiples of a single 
vector. Landmarks at the same height are displaced 
by the same vector regardless of their location 
along the baseline. The distance by which each 
landmark is displaced is proportional to the 
distance that landmark began above the baseline. 
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(Landmarks below the baseline are displaced by effect on a standard triangle, and biometries 
multiples of the opposite of that vector, correspond- proceeds from there. 
ing to their negative distance "above.") All this In this approach, the non-uniform part of the 

perfectly to what we noted interpolation function is confounded with the 
about the square in Figure 1. uniform part. If it were known a priori that the non- 

When a transformation is in 
fact uniform, there is no disagree- 
ment about what uniform transfor- 
mation it is. When a transformation 
differs from the uniform, either by 
mere digitizing noise or by 
additional biologically real features, 
it is no longer obvious what we 
should consider to be the uniform 
"part" of the shape change. Several 
of us in morphometrics are working 
on this problem from different points 
of view. 

The best solution, in my 
opinion, is that which I have pro- 
posed in the course of my papers on 
the thin-plate spline (e.g., Bookstein, 
1989a). Any reconfiguration of 
landmarks in two dimensions can be 
uniquely expressed as the sum of a 
uniform transformation together 
with vector multiples of the function 
ri2 log ri2, where ri is the ordinary 

distance to the ith landmark of one 
form. The origin of these strange 
functions will be revealed presently. 
Because this decomposition is exact, 
it requires no decision about the 
direction in shape space along which 
to measure the "error of fit" to the 
uniform transformation which is to 
be minimized. The transformation is 
linear in the coordinates of any set of 
landmarks-indeed, it is expressed 
by the last three rows of the matrix 

L-' in the next section. The resulting 
uniform part of  each transformation 
may be expressed as a shape scatter 
in the usual way, by reference to its 
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Figure 4. Visualizing and estimating uniform transformations as factors. a) It is 
very difficult to detect evidence of uniform transformations in the residuals left by 
fitted models of scale change, b) In the shape coordinate plane, a uniform trans- 
formation displaces all landmarks in a single direction by amounts proportional to 
(signed) distance from the baseline. c) One may thereby estimate the uniform 
part of any observed shape change using the usual formula for estimating factor 
scores (see text). 



Chapter 11. Features of Shape 243 

uniform part is meaningless, pure noise, then one 
might wish to estimate a uniform part which is the 
"closest" to the actual transformation for some 
reasonable measure of nearness, averaging away 
the apparent non-uniformity as best one can instead 
of compensating for it. Rohlf (Chapter 10) and 
Goodall (1989) both present least-squares methods 
for this computation under slightly different 
assumptions about the structure of error. Book- 
stein and Sampson (1987) present another, lifting 
the assumption that error is independent at the 
several landmarks, and Mardia (1989) suggests a 
~naximum-likelihood technique. 

The papers in this section use a much 
simpler method than any of these others. The 
scheme of Figure 4b, in which each vector of 
displacement is proportional to one single vector 
according to a known multiplier, is exactly analo- 
gous to the usual scheme of estimation of factor 
scores (Figure 4c). In the usual factor model, if  a 
factor score is postulated to predict each of a family 
of indicators with known regression slopes and 
independent regression errors, then the best esti- 
mate of the factor score itself, given only its seque- 
lae, is proportional to the average of the observed 
outcomes, each weighted by the inverse of its own 
error of prediction. (No factor-analyst would let me 
fail to remind the reader that this is true only if 
those errors are, in fact, uncorrelated+)nly if there 
is no secondary factor structure.) 

We can apply this model to our landmark 
data by treating the uniform part as a vector-valued 
factor score, the urlifon?~ fuctor, which predicts each 
observed displacement of shape coordinates via a 
regression coefficient that, for each landmark, 
equals its distance from the baseline. The "error of 
prediction" of each displacement by this common 
score is technically unobservable, but can be 
guessed as approximately the same for each land- 
mark (perhaps on the assumption that they are 
expressing the same digitizing noise); then the rela- 
tive precision of each landmark-specific "prediction" 
is directly proportional to its distance from the 
baseline. The factor score is the sum of all these 

inverse predictions, divided by a suitable constant. 
(The exactly analogous formula for factors not 
referring to landmarks can be found on page 89 of 
Bookstein et al., 1985.) 

There results the following formula for the 
estimated uniform transformation underlying any 
observed change of shape coordinates (xi#;) - >  

(xi&'i) + ( h i , A ~ i ) :  

Here the sums are taken over all the land- 
marks; each weight is the mean vertical shape 
coordinate (relative distance from baseline) for its 
landmark. If the context is that of the description 
of shape variation rather than shape change, then 
the A's here should be the deviations of the 
observed shape coordinates from their sample 
means. If the transformation is indeed uniform- 
that is, if each (hwi,Ayj) equals yia for some 

common vector a - then  these formulas (without 
the bars over the y's) recover the vector cr exactly 
whatever the distribution of ordinates y;. If the 
transformation is not exactly uniform, then this 
estimate will disagree slightly with estimates to 
other baselines and with estimates provided by 
Procrustes algorithms, my own projection algo- 
rithm, or the exact spline fit. In my view the 
simplicity of the formula above more than compen- 
sates for its not being an embodiment of any least- 
squares optimum. 

The uniform component arrived at  by this or 
any other estimation rule may be considered as if it 
were indeed the observed effect of the shape 
change or variation in question on one big, fuzzy 
triangle. For a single shape change, it may be re- 
expressed in terms of its principal strains by the 
construction in Bookstein et al., 1985. For a sample 
of forms, there results a sample of these estimated 
uniform "factors," which may be scattered for the 
cases of a sample, scanned for outliers, regressed 
into exogenous variables to find shape trends, or 
referred to a conventional component analysis of 
their own-which turns out to be with respect to 
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anisotropy, a sensible choice (see below). There 
result up to two uniform statistical components of 
this uniform factor. Each may be inspected, just as 
any other principal component may be inspected, to 
see if it suggests some underlying biological process. 

Pictures of Bending Energy 

One might imagine "the" non-uniform part of a 
transformation to be the residual reconfiguration of 
landmarks left after one has undone the effects of a 
uniform part fitted to the data by my factor approx- 
imation, Rohlfs least-squares algorithm, or any 
other. It is not a trivial task to unearth a descriptor 
of such a residual that is independent of the algo- 
rithm used for producing the uniform part whose 
residual it is. Instead, one needs a method which 
extracts non-uniform parts of observed shape 
changes or variations directly, without requiring the 
(arbitrary) projection onto a fitted uniform part as 
an intermediate step. Such a procedure is avail- 
able, I noted above, in the course of the decompo- 
sition of any observed change of landmark configu- 
ration as a thin-plate spline. 

The general theory of thin-plate splines is 
somewhat technical (cf. Bookstein, 1989a, 1991), 
and it is inappropriate to review i t  here in any 
detail. Briefly, let P I  = (xIyl), P2 = (x2z2), ..., PII = 

(x,,,yn) be n points in the ordinary Euclidean plane 

according to any convenient Cartesian coordinate 
system. Write rij = I Pi - Pi/ for the distance 

between points i and j, and U(r) for the function r2 
log r2. Define matrices 

where is the matrix transpose operator and 0 is a 
3 x 3 matrix of 0's. 

Let V = (vl, ..., v,) be any n-vector, and 

write = (v I 0 0 0). Define the vector = 

(wI, ..., w,) and the coefficients al ,  ax, ay by the 

equation 

YT L-1 = (WT I 01, ux, uy) 

Use the elements of YT L-1 to define a func- 
tion f(x, y) everywhere in the plane: 

Then the following three propositions hold: 
1. f(xiyi) = vi, for all i. 

2. The function f minimizes the nonnegative 
quantity 

over the class of such interpolants. This is a 
constant multiple of the physical bending energy of 
an infinite, uniform, thin metal plate originally flat 
and level and now constrained to pass through all 
the points (xi,yi,vi). The function f in fact gives the 

actual form of that plate, as it takes a position 
which minimizes precisely this energy. 

3. The value of Ij is proportional to 

WT K W = (L,,-1 K L,,-l) V , 

where L ~ - '  is the upper left n x n  subblock of L-I. 

This form is zero only when all the components of 
W are zero: in this case, the computed interpolant is 
f(xy) = u1 + a g  + a y ,  a linear function. 

In the present application we take V to be 
the 2 x n matrix 
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where each (XI;, yIi) is a point "homologous to" (xi, yi) 

in another copy of 3 2 .  The resulting function f now 
maps each point to its homologue (x'i, y',) and is 

least bent (according to the measure Ij integral 

quadratic variation over all fR2, computed 
separately for real and imaginary parts of f and 
summed) over all such functions. In effect, our 
metric is the bending energy of a four-dimensional 
thin plate: two dimensions of plate, displaced in two 
"other" perpendicular directions. 

It is instructive to view the form of the plate 
for the transformation of square into kite. Figure 
5a shows the interpolation, Figure 5b the plate. It is 
the energy of this bending that is proportional to 
the quadratic form in point (3) above. In this figure 
one can finally see how it is that the non-uniform 
transformation is indeed localized: while the tilt of 
Figlire 2a extrapolates out to infinity unchanged, 
the spline of Fig~lre 5b goes asymptotically flat a 
short distance from the landmarks involved. 

This particular transformation involves 
changes in one shape coordinate only (the ordi- 
nate). In general, bending energy derives from both 
shape coordinates. Figure 6a shows five landmarks, 
Figure 6b the two-dimensional spline interpolant f 
just introduced. Figures 6c and 6d, separately, show 
thex- and y-components of this interpolant after the 
uniform part is graphically suppressed. The ener- 
gies of these two are 0.0205 and 0.0225 (in arbitrary 
units). This example is discussed at much greater 
length in Bookstein, 1989a. 

The bending energy may be imagined as a 
metric (a distance measure) on shape space (cf. 
Bookstein, 1991, Appendix 2). Landmark configu- 
rations that differ by a uniform transformation are 
at distance zero from one another in this metric: 
bending energy zeroes out all transformations that 

exactly fit any combination of those simple models. 
We already know how to describe those changes of 
configurations, however: by a combination of 
changes of position, orientation, and scale, together 
with a uniform "distance" measured as the loga- 
rithm of the ratio of the principal strains. Just as 
change of position is incommensurate with change 
of orientation (centimeters and degrees don't mix), 
and just as both are incommensurate with log 
anisotropy, so all of these natural metrics for 
uniform changes are incommensurate with the 
bending energy introduced here. 

In most multivariate statistical applications, 
the appropriate picture of a distance measure is a 
generalized ellipsoid. "Statistical distance" in all 
directions is variously proportional to the Euclidean 
distances of the "natural" descriptor space. (Such 
metrics arise, for instance, when one refers to the 
difference between population mean forms in units 
of within-sample covariance, the underpinnings of 
Hotelling's T2.) By contrast, the bending energy is a 
deficient metric. Its picture is a cylinder in landmark 
configuration space, not an ellipsoid. The generutors 
of the cylinder-the "straight lines" on it-are in 
fact the sets of all transformations derived from a 
given non-uniform warping by application of any 
additional uniform transformation. All such 
additional transforms are at  the same "distance" 
(bending energy) from the starting form. 

The axes of this cylinder are the principal 
warps of the landmark configuration (Bookstein, 
1990). These are eigenvectors of the bending 
energy with respect to summed squared landmark 
displacement in their original coordinate system. 
Each principal warp specifies the displacement of 
each landmark by a particular distance (positive or 
negative, summing to zero) in an  unspecified direc- 
tion that is the same for all landmarks (Bookstein, 
1989~) .  The cylinder pairs these axes into circles of 
equivalent bending in any direction of the plane. 
The first principal warp represents the pattern of 
displacements having largest bending energy per 
unit root-mean-square landmark displacement; 
usually, it is the relative displacement of the two 
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landmarks closest together with only small contri- L K L  described above. We extract 
butions from the others, which are effectively "at components of purely non-uniform shape variation, 
infinity." At the other extreme, the last principal the relative warps, as directions in shape space of 
warp is the largest-scale nonlinearity that can be successively greatest variances in relation to bend- 
considered to leave landmarks at infinity fixed: it ing energy. ~h~ of these directions by 
usually looks just like the square-to-kite transfor- conventional matr ix Operations is a bit delicate (see 
mation in Figure 5a. 

Relative Warps as 
Eigenfunctions with Respect 
to Bending Energy 
In ordinary principal components 
analysis, the principal components 
are the directions in feature space 
which have the successively greatest 
variances as ratios of their "lengths" 
i n  a geometry for which direction 
cosines in all directions are weighted 
equally. This is almost always unrea- 
sonable in practice, as everybody 
fails to consider whether lengths in 
different directions of feature space 
really ought to be considered as cali- 
brated by Euclidean distance regard- 
less of direction. Nevertheless, in 
the analysis of the uniform factor I 
introduced above, the uniform com- 
ponents are taken as principal com- 1 
ponents in just that way: directions in 
the space of the uniform factor 
which have the greatest and least 
sample variance per unit length. 
This is justified here because in that 
space we know the meaning of 
length: it is exactly proportional to 
anisotropy, our preferred measure of 
the extent of a shape change, and as 
such really is independent of direc- 
tion. 

In the method of relative 
warp5, the eigenanalysis of the 
ierved variance-covariance matrix of 

is taken with 
re5pect to the bending-energy matrix 

x 
X 

X X 
X X 

X 
x 

Integral b c n d l n l  norm 0 0451 
B 

F~gurc  5. The th~n-plate spl~ne for the square-to-kite transformation, a) The 
~nterpolnnt, trcntcd ns a vertical displacement over corners of a square: up at the 
end? of one didgonnl, down at the cnds of thc other. Note that the bending is 
locall,cd In the rcglon of the four landmark?, though it is evenly distributed over 
the four b) The cquivalcnt thrcc-dimensiondl "plate." 
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In tegra l  b e n d i n g  n o r m  0.0430 
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Figure 6. A more general example of the t h i r ~ - ~ l a t e  spline. a) Two sets of landmarks. b) The thin-plate interpolant. c) The 
equivalent three-dimensional plate for the x-component, with the uniform part visually suppressed. The bending is quite local- 
ized, representing the relative dirplaccment of the central two landmarks from one another with respect to the corners of the 
triangle as "infinity." d) The same for the y-component. The bending here is larger-scale, describing the joint displacement of 
the two central landmarks from the outer comers. 

Bookstein, 1991)-and will not be reviewed here. principal component is attempting to find the 
A program which computes them has been included dimensions of variability that the whole list of 
on the set of software accompanying this publica- variables hold "most in common." The ordinary 
tion. first principal component conflates covariances 

In the relative warps, it was my intention to among all pairs of the original measures into that 

provide the strongest possible analogue to the axis of the covariance ellipsoid which has the 

notion of principal component for the very highly greatest length. In the translation into landmark- 

structured data of landmark locations. Intuitively, a based morphometrics, "length" remains sample 
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variance of coordinates, but we must be careful 
about what is meant by "most in common." In the 
metaphor of bending energy, reducing the scale of a 
set of landmarks by half multiplies the bending 
energy of a given set of displacements fourfold. 
Recall that the dimensions of shape space may be 
ranked in terms of intrinsic bending energy, the 
"size" of the square-to-kite transformation that best 
suits them. For a single set of landmark displace- 
ments, large regions have the lowest bending 
energy, and small ones the greatest. 

The analysis by relative warps, which I have 
proposed, weights sampling variance inversely to 
this apparent "scale" of geometric nonlinearity 
before searching for the series of successive 
extrema which are the eigenvectors, the relative 
warps. A two-up-two-down transformation (Figure 
5a) on the farthest corners of the form, for instance, 
will need only one-fourth the sampling variance of 
the same features restricted to a quadrant to 
emerge as the first relative warp. In this way, the 
relative warps pull out geometrically orthogonal 
dimensions of nonlinear shape variability in order 
o f  variance scaled inversely by feature size. This 
ensures at least one aspect in which the relative 
warps do not generalize the conventional compo- 
nents. There, analysis of the covariance matrix is 
independent of the sample means. But the matrix 
for bending energy is a function of the mean land- 
mark configuration-the same landmark variance- 
covariance matrix leads to different relative warps 
as the variance is taken about different mean forms. 

The uniform transformations have bending 
energy zero, and thus have "infinite" shape variance 
per unit bending energy regardless of direction. In 
that sense, they may be considered as the "zeroth" 
eigenvectors of this system. (They cannot be 
computed in that fashion, however, as we could not 
identify which direction held the largest variance of 
the uniform factor without reference to anisotropy, 
which is a different metric entirely.) 

Extended examples of the complete analysis 
of a system of landmarks by its decomposition into 
the uniform statistical components, the relative 

warps, and their correlations are the concern of the 
paper by Tabachnick and myself later in this 
volume, and will not be repeated here. It is useful, 
however, to attempt a certain clarification of 
nomenclature: 

The higher-order features of shape to which 
the title of this chapter refers apply to samples of 
shapes and, equally, to residuals from their analysis 
by any combination of partial fits to changes of size, 
orientation, and position. Any single shape change, 
and likewise any sample of deviations of shapes 
from a sample mean, may be usefully decomposed 
into two parts: uniform and non-unifom. The 
uniform part for each change or deviation of shape 
is representable as a single vector of length 2, the 
uniform factor. There are several ways of estimat- 
ing it which differ only in statistical details. A 
sample of these factors may be usefully expanded in 
terms of its (first and second) uniform statistical 
components, each of which is an  eigenvector of the 
observed sampling variability of the uniform factor 
with respect to its anisotropy. Complementary to 
the subspace of uniform transformations, those 
described exhaustively by their uniform parts in this 
sense, is the subspace of non-uniform transforma- 
tions, those having no uniform part at all, according 
to whatever estimation routine one prefers. Sample 
variability of this non-uniform part is usefully 
considered in terms of the (first, second, etc.) rela- 
tive warps of the sample, which are the first few 
eigenvectors of the observed sample covariance 
matrix with respect to the deficient metric that is 
bending energy. The uniform factor itself may be 
thought of as the first pair of eigenvectors of this 
computation, having "infinite" relative eigenvalue, 
owing to the fact that uniform transformations have 
no bending energy. These two metrics, bending and 
anisotropy, are incommensurate; it requires values 
for both of these distances to describe the 
"magnitudes" of any shape transformation. (And 
therefore it requires at least three distances to 
describe the general reconfiguration of landmarks: 
not only these two shape metrics, but a third, for 
size change, as well.) 
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Concluding Comment 

Nothing here is meant to imply that other features 
of shape space might not be interesting in particular 
applications, only that one needs a reason to look at 
them. I have published several examples of the 
reporting of shape changes by specific features of 
change associated with reasonable biological 
processes. Of the conventional models for shape 
change, the uniform model sometimes fits real data 
(Bookstein, 1987), and the model of growth- 
gradients is very compatible with the highest-order 
relative warps as described here. In comparison, a 
shape change that is truly limited to one single 
landmark moving upon a background of all the 
others in an unchanging configuration, such as is 
postulated by the robust Procrustes methods, is 
smeared out into a series of relative warps by this 
method-so much for nonlinearity of the smallest 
quadrilateral around it, so much for the second- 
smallest, and so on-and thereby becomes unrecog- 
nizable. In one study of the rat cranium (Bookstein, 
1989b) the first two relative warps are explicitly 
identified with the two dimensions of an obvious 
candidate for explanation of form change, the rigid 
motion of the vault of the skull with respect to the 
cranial base. Abe et al. (1988) find that a cubic 
growth-gradient accounts cleanly for some changes 
in a lineage of ostracodes. In another cranial data 
set (Grayson et  al., 1985), the appropriate explana- 
tion of an observed difference between typical 
syndromal and normal forms of the human cranial 
base hinges upon one single landmark that is being 
pushed in two directions by two separate sequelae 
of the abnormality. In Tabachnick's chapter below, 
the first uniform component and first relative warp 
correlate 0.96, and together embody Raup's 
parameter 6 for a spiral form in one view; the same 
uniform component in another view is interpreted 
quite differently. In all these papers, shape coordi- 
nates were computed first, and then configurations 
of their differences were inspected to see what 
simple features were suggested. 

construction of large-scale gradient patterns. I 
recommend the formal consideration of all of these 
components and their correlations as a necessary 
step in the morphometric analysis of any set of 
landmark data, regardless of whether the intended 
end-point of the investigation is a n  understanding 
of process. Any fitting of landmark data to 
restricted models, with or without a uniform part, 
by Procrustes methods or  any other, is useless with- 
out a close inspection of the geometric and statisti- 
cal covariances of the residuals it induces. When 
that latter analysis is done according to the decom- 
position I am recommending here, the appropriate 
fits are optional, a-posteriori approaches to 
summaries of effects already noted. They are prop- 
erly taken as confirmatory, not exploratory, tech- 
niques. 
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Conventional Procrustes methods allow the analysis 
of morphology through the superimposition of one 
morphology onto another using the positions of 
landmark points. These methods are most useful 
for the comparison of pairs or small groups of 
specimens when it is of interest to describe one 
morphology in terms of deformation from another. 
When population analyses are of interest, general- 
ized methods tend to be more appropriate. Least- 
squares methods are most appropriate when change 
is more general and not localized, whereas robust 
methods are unexcelled in demonstrating localized - 
change when it is present. Examples are given that 
demonstrate the relative strengths of the two 
approaches and comparison made with the results 
of a hiorthogonal analysis. The algorithms used in 
calculating two forms of conventional Procrustes 
analyses, Ixast-Squares Theta-Rho-Analysis 
(ISTRA) and Resistant-Fit Theta-Rho-Analysis 
(RFTRA) are discussed in detail. 

Introduction 

Landmark tnethods of shape analysis include the 
most powerful rnorphornetric procedures for 
deterniinating biologically relevant patterns of 

morphological variability and change. These tech- 
niques make use of the relative positions of land- 
marks or homologous points (h-points) for their 
calculations. Included are many conventional 
multivariate analyses (e.g., Neff and Marcus, 1980), 
the powerful suite of methods included under the 
general heading of tensor or finite element tech- 
niques discussed in Tobler (1977, 1978), Bookstein 
(1977, 1978, 1986; Bookstein, et al. 1985, and refer- 
ences therein), Goodall and Green (1986) and 
Moss et al. (1987, references therein), and 
Procrustes techniques that work by superimposing 
two or more specimens onto one another. 

As Goodall and Bose (1987) suggest, 
Procrustean methods fall into three major cate- 
gories. The first includes very simple methods that 
map two or more morphologies by making a simple 
baseline in all specimens of equal size and with 
identical coordinates (see Benson, 1982a; Book- 
stein, 1978, 1986, for discussions). The second 
group involves an optimization of the fit by least- 
squares or related approaches (see Gower, 1970, 
1975; Sneath, 1967; Siege1 and Benson, 1982, for 
discussions). Finally, Goodall and Bose (1987) 
recognize a class of methods that make use of 
robust methods for making the superimposition 
while attempting to highlight localized differences 
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in form. The most commonly used method of this 
last approach utilizes repeated medians and 
includes the method Resistant-Fit Theta-Rho-Anal- 
ysis developed by Siegel and Benson (1982). 

Separate from this classification, Procrustes 
analyses can also be divided into two philosophical 
categories, conventional Procrustes methods (i.e., 
ordinary Procrustes analyses by Goodall and Bose, 
1987) and generalized approaches. The former 
superimpose one or a series of specimens onto a 
single or base specimen. The latter provide super- 
impositions based on a consensus specimen and 
were introduced by Gower (1975); they have been 
discussed subsequently by Goodall and Dose (1987), 
Rohlf and Slice (1990) and Chapter 10 of this 
volume). 

Herein, I will concentrate on conventional 
Procrustes methods, which can include simple 
models (e.g., Bjork analysis, see discussion in 
Benson, et al., 1982) but I will concentrate on a 
robust method, Resistant-Fit Theta-Rho-Analysis 
(RFTRA), and a corresponding least-squares 
method (LSTRA). RFTRA and IS'TRA refer to 
specific algorithms used by the Smithsonian 
morphometric community and are used in their 
abbreviated forms for convenience and consistency 
with other works (e. g., Benson, 1967, 1976, 1982a, 
b; Benson et al., 1982; Siegel and Benson, 1982; 
Chapman, in press; Chapman and Brett-Surman, in 
press). Statements made about LSTRA and analy- 
ses made running LSTRA also should apply to 
conventional least-squares approaches developed 
by other researchers (e. g., Huffman, et al., 1978; 
Sneath, 1967). RFTRA refers to a single robust 
procedure that utilizes repeated medians, which 
was developed by Siegel and Benson (1982) and 
used by Siegel (1982) and Benson et al. (1982). 

As with many forms of shape analysis, 
conventional Procrustes methods were inspired by 
the works of D'Arcy Thompson (e.g., 1942). Least- 
squares approaches were first developed within this 
context by Sneath (1967) in an effort to quantify 
Thompson's transformation grids, applying the 
method to the study of primate skulls. The general 

approach was developed further through the works 
of Gower (1971, 1975), who formalized the least- 
square algorithm in matrix terms and discussed 
generalized solutions. The least-squares approach 
was used later by Benson (1976) studying ostracode 
morphology, and was discussed in general terms 
and with hypothetical figures by Huffman et al. 
(1978). Resistant-Fit Theta-Rho-Analysis was 
developed by Siegel and Benson (1982), Siegel 
(1982), Benson et al. (1982) and Benson (1982a, b; 
1983), who used Sneath's (1967) primate examples, 
further hypothetical figures, examples from the 
Ostracoda, and even human caricatures made by 
Leonardo da Vinci. Finally, applications to 
dinosaurs are available (Chapman, in press; 
Chapman and Brett-Surman, in press). 

Questions and Ca~abilities 

Conventional Procrustean methods provide the 
researcher with the superimposed fit of one constel- 
lation of h-points or landmarks onto another. The 
landmarks are equivalent or corresponding points 
found on all specimens being studied. In their most 
useful form, landmarks are homologous points or h- 
points. In other forms, they can be analogous 
points determined either functionally or geometri- 
cally. As with all forms of shape analysis, these 
methods are designed to document interesting 
patterns of morphological change and variability; 
specifically, asking how two forms differ, based on 
selected points. 

The question is answered by superimposing 
the figures using either the LSTRA or RFTRA 
algorithm and noting differences in landmark posi- 
tions, or outlines and accessory figures carried 
along with the fit. The differences are quantified as 
vectors of change for each landmark from the point 
on the base specimen (the one fit to) to the corre- 
sponding point on the superimposed specimen. 
Vector directions and magnitudes can be examined 
and further quantified to give insight into the 
nature of the superimposition. The average of the 
squared magnitudes of the vectors provides a 
distance coefficient that can be used for comparison 
within single studies and for use with auxiliary 
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techniques (e.g., cluster analyses and ordinations) 
to elucidate patterns further. 

Conventional Procrustes methods provide a 
number of advantages. These include: 

adaptability to a wide range of studies, ranging 
from simple comparisons of pictures or speci- 
mens with illustrations, to studies of large 
suites of specimens within a phylogenetic 
framework, to detailed studies of population 
variability and evolution. Because of the avail- 
ability of distance coefficients indicating the 
level or goodness of fit of the two constellations 
of landmarks, mapping methods are among the 
best techniques available for the examination 
of morphological trends within a temporal- 
spatial distribution (see, e.g., Benson, 1976, 
1982b). 

intuitive understanding. Most morphologists 
can interpret the graphics immediately and 
obtain answers to the questions of interest. 
The mathematical manipulations also are rela- 
tively simple, helping to prevent errors in 
intermetation. 

efficient processing, allowing researchers to use 
RFTRA and LSTRA as exploratory tools. 
Within this context, they are especially useful in 
developing characters for use in standard 
phylogenetic studies because they allow 
researchers to focus on particular landmarks. 

allowing the researcher to examine shape dif- 
ferences after removing overall size following 
the algorithm relevant to the Procrustean 
method being applied. 

for RFTRA and other robust methods, provid- 
ing an unexcelled insight into patterns of local- 
ized deformation. The use of robust proce- 
dures allows RFTRA to fit following a majority 
of the points and to concentrate the change in 
one or a few h-points, if that is where the dif- 
ferences lie. The other method, LSTRA, will 
tend to partition the differences among all the 
h-points. Selection between RFTRA and 
LSTRA depends on how biologically reason- 

able localized change is within the application 
being studied. Using both methods often 
provides an excellent indication of the relative 
importance of localized change. 

allowing a combination of landmark analysis 
with the analysis of change in outlines (see 
below). During superimposition, only land- 
marks are used to make the fit, but outlines as 
well as other accessory figures can be superim- 
posed using the same transformation coeffi- 
cients, and the differences noted between 
specimens. 

quantifying populations. Multiple specimens of 
a single population can be superimposed onto a 
single or base specimen and an average individ- 
ual for that population generated for compari- 
son with others. This approach is best made 
using generalized techniques, but the conven- 
tional methods provide especially interesting 
results when the specimens being studied have 
an ordered nature (e.g., ontogenetic series). In 
such cases, it is worthwhile to apply both 
conventional and generalized methods. 

analyzing the differences in small or selected 
regions, especially with RFTRA. This has been 
stressed before in character development, but it 
also applies to specimens with missing sections 
(especially important in vertebrate paleontol- 
ogy), and to studies concentrating on functional 
complexes. Experience suggests that a rela- 
tively small number of additional general 
landmarks provides an overall fit that is 
moderately to greatly congruent with the one 
obtainable using larger numbers. This 
approach should be especially effective if 
combined with other methods (e.g., biorthogo- 
nal analysis of Bookstein, 1978) also useful in 
this context. 

Limitations 
No single method can solve all problems of interest; 
certain characteristics make conventional 
Procrustes methods unsuitable as the sole tech- 
nique in some contexts. For example, the distance 
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coefficients are phenetic and correspond directly to 
other coefficients such as euclidean distance. 
Consequently they are not as useful for the 
construction of phylogenetic trees as are cladistic 
methods. They are useful, however, for analyzing 
morphological variability within a predefined 
phylogenetic framework either by superimposing 
results on pre-existing trees or helping to evaluate 
competing trees. As mentioned earlier, these 
methods are useful for helping develop and evalu- 
ate potential characters for phylogenetic analyses. 

In the study of allomctry, Bookstein et al. 
(1985) point out that RFTIZA (and LSTRA) cannot 
he used directly. Conventional Procrustean 
methods were not developed to analyze allomctry 
directly. Hut, within the framework of an allometric 
study, they can provide insight into the morphologi- 
cal effects of the allometry documented using more 
conventional approaches. 

Conventional Procrustean methods arc less 
uscful for population studies. Generalized methods 
are the better technique in that they do not require 
a base specimen to be selected. As mentioned 
above, conventional studies within this frarrlework 
can provide interesting results in selected cases, but 
the generalized approach shoulti be supcrior in 
most cases. 

Itohust procedures work best when most of 
the differences between the superimposed speci- 
rnens are concentrated in less than half the land- 
marks. When the differences are extensive and 
widely spread, LSTRA may provide the optimal 
solution. Examination of the differences between 
the two analyses, however, frequently will provide 
insight into the quality or the distribution of the 
landmarks chosen, or will suggest important areas 
for further analysis. For those comparisons where 
localized change is unreasonable (e.g., deformation 
in ;I closed system, or balloon model) the robust 
model is inappropriate. 

One of the strengths of Procrustes methods - 
that they provide a direct vector record of the 
changes that occur from one form to another - can 
a150 be the source of weakness. The vector patterns 

often can be complex and misleading. The general 
assumption of such an analysis is of isometric 
change. This can produce apparently large-scale 
and complex patterns from simple expansion and 
contraction. Further, the assumption of localized 
change made when applying robust methods such a5 
KFTRA can cause a misleading result if the actual 
deformation is not localized. 

Doing an Analysis 
Applying RFTRA or LSTRA takes relatively little 
time and the steps necessary to do an analysis are 
summarized below. 

1 .  As in any analysis, a first and major step is the 
development of the exact questions to be asked, 
and specifically for these analyses, exactly what type 
of output from RFTRA or LSTRA can contribute 
significantly to answering these questions. All 
subsequent work relies heavily on this step. 

2. Next, one must select the specimens and illus- 
trations/photograpl~s to be used. This commonly is 
tirile-consuming and may require modifications in 
step 1. To run analyses, specimens are needed that 
exhibit adequate numbers of landmarks, especially 
in critical areas. 

3. Selection o f  h-points or landmarks is the next 
step and one which has a strong effect on the anal- 
ysis. The philosophy behind h-point selection varies 
with the questions being asked (Chapman, in press). 
If  the researcher is interested only in documenting 
how a reconstructed illustration differs from a 
photograph of the original specimen on which it is 
based, then landmark selection can be quite flexi- 
ble. flowever, for analyses made within a phyloge- 
netic framework, the landmarks should be chosen 
to represent, as much as possible, truly hon~ologous 
points. This has been stressed by Bookstein et al. 
(1985) who discuss this problem in detail and 
present interesting options. This is one area that 
deserves considerable attention in all detailed 
applied studies and on which more theoretical work 
needs to be done. 
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4. After landmarks are chosexi, they must be 
identified for each specimen. Additional figures 
(e.g., outlines) must he selected for each, if of inter- 
est. 

Figurc 1. Bivariatc scattcr plot of 172 distance coefficients 
calculated for 1 0  ornithopod dinosaurs. Data from Chapman 
and Brett-Surnarn (in press). C'onlparison is for ISTKA, 

I I I 1 
0 0 0 2 0 A 0 G 0 E 13 

KG 

Figure 2. Bivariate scaltcr plot for data as in Figure 1 for 
KFTRA. KD. and mctlian RFTKA. RDM. tiist:rnccs. 

5. Next, one must digitize the illustrations, 
photographs or specimens. Generally, the first two 
are used because of current restrictions to two- 
dimensional space. However, with three-dimen- 
sional digitizers becoming more readily available, 
the use of actual specimens, even for two-dimen- 
sional studies, is now reasonable. Further, three- 
dimensional studies are the next type to be devel- 
oped. This step typically goes quickly, and many 
specimens can be digitized per day. The additional 
figures, such as the outlines, take most of the digi- 
tizing time, which explains why many exploratory 
analyses reduce the number of accessory figures, or 
eliminate them altogether. 

b. One must select the connections to be made 
between landmarks to provide "skeleton" or  polygo- 
nal figures. There is no single correct series of 
connections. The researcher must balance each 
figure between adding connections to provide addi- 
tional information and avoiding too many connec- 
tions which will tend to obscure patterns. A typical 
philosophy is to make connections following estab- 
lished functional groups and highlighting areas of 

I VICROSAURS LSTRA 0 I 



Ralph E. Chapman 

critical interest. A series of polygonal diagrams can 
be made for each series of specimens and these can 
be used experimentally in the initial output stages. 

7. The analyses can now be made. Programs for 
LSTRA can be adapted from Huffman et  al. (1978), 
and Siegel (1982) presents options for both LSTRA 
and RFTRA. A series of programs is available 

nAOR05AuRS I F T R 4  0 IM3:ANI 

DISTANCE 
0 I 

Figure 4. Dendrograms resulting from UP<;MA cluster 
analysis using RFTRA distance (top), and RDM (bottom), 
based upon data described in Figure 1. 

from the author for most DOS microcomputers. 
Programs typically are run to perform single 
comparisons, produce graphics, output vector 
magnitudes and directions and plot these values, 
produce distance matrices for series of specimens, 
or do outline studies. Other programs allow an 
average figure to be calculated for a series of 
related specimens. 

8. A wide variety of output formats is available. 
Standard graphics typically provide superimposed 
polygonal figures, plotted vectors of change, super- 
imposed outlines and accessory figures, or  combi- 
nations of these (see Figures 1,3). The user can 
also plot histograms of vector magnitudes, or 
histograms or rose diagrams of vector magnitudes 
and directions. Distance coefficients can be used in 
a wide variety of contexts, and matrices can be out- 
putted to files for use with various software 
packages. 

9. The final stage is interpretation of the results in 
light of the original questions being asked and, 
frequently, reformulating questions and starting 
over at stage 1. 

For individual comparisons, entire studies 
can frequently be completed in less than an  hour or 
two. Large scale studies will take much longer, 
although most of this time is spent in selecting h- 
points and specimens and digitizing. Analysis time 
(stage 7) tends to be short, even with a relatively 
slow CPU. 

Mechanics of the Analysis 
Both forms of mapping, LSTRA and RFTRA, 
function by calculating four coefficients. These are 
used to transform the two-dimensional coordinates 
of points that are part of the superimposed figure to 
their optimal fit onto the base specimen. In doing 
this, assuming the points on the base specimen have 
coordinates (xa) and those on the superimposed 
specimen have coordinates (u,v), the latter are 
transformed to new coordinates (u',v') by the 
following, 
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(along the x or u axis), T2 vertical translation (along 

(1)  they or v axis), and T3 and T4 provide a combina- 

tion of scaling and rotation changes. T3 equates to 
where TI-T4 are the four transformation coeffi- S cos 0 and T4 to S sin 8. S is the scale factor that 
cients. Of these, T I  provides horizontal translation expands or contracts the size of the superimposed 

figure to fit the base specimen. The value 8, the 
rotation angle, is the degree of rotation necessary to 
fit the superimposed specimen optimally to the 
base. Equation (1) reduces to the equation, 

d (x; - xi)2 + (y; - y i p  
y..  = 
' 'I (u, - ui)2 + (v, - vi)2 

Figure 5. Illustration o f  thc "Pinocchio clfcct" using n hypo- 
ihc~ical st2rrfish in two modcs, normal and with part of onc 
leg anipu~atcd. Top: original figure; middle and lower: land- 
m;rrks on thc two forms. 

which has been used in equivalent form by Sneath 
(1967), IIuffman et al. (1978), Siegel & Benson 
(1982), and Siege1 (1982). 

The differences between LSTRA and 
RFI'RA result from the way the four transforma- 
tion coefficients are estimated. LSTRA approaches 
utilize standard least-squares algorithms to mini- 
mize the sum of the squared differences between 
correspontling landmarks or h-points. Typically this 
is done in a single step, including the estimation of 
values for 7', to T4 (for source code see Huffman et 

al., 1978; Siegel, 1982). 

In RFTRA the coefficients are estimated 
separately. The first calculation is to find the scale 
factor, S, which is estimated by using algorithms 
based on equations found in Siegel and Benson 
(1982). For each pair of corresponding h-points, a 
single scale value is calculated by 

distance in hasc specimen 
"'Ic = distance in superimposed specimen (3) 

More specifically, for h-points i and j, a single scale 
value, si,, is calculated by 

For a comparison with n h-points, the global scale 
factor, S, is estimated using all possible n(n-1)/2 
comparisons by taking repeated medians using, 
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SPECIMENS 3 0 0 1  [BASE) AND 3002.  METHOD -LSTRA 
0 - 2 5 4 ,  0 IMEOIANI - , 3 4 1 5  
SPECIMEN 3 0 0 1  - STARFISH NORMAL 
SPECIMEN 3 0 0 2  = STARFISH AMPUTATED 
SKELETON - STARFISH 

Figure 6. Results of LSTRA of starfish shown in Figure 1. 
Top: landmarks and vectors. Bollom: with polygonal dia- 
grams superimposed. Relevant data are in the legend. 

The determination of the rotation angle, 0, is 
done in much the same way, facilitated at  first by an 
initial least-squares fit (see Siegel and Benson, 
1982). Individual rotation values are calculated for 
each pair of h-points. This is done by calculating 
the angle needed to rotate a vector passing through 
the two h-points on the superimposed specimen to 
the corresponding vector on the base specimen. 
These rotation values Oij are then used to calculate 
the global rotation factor, 0, using repeated medians 
as in Equation (5) by the equation 

0. = 
M E D  

(MED O j j )  
i # j  

As mentioned above, the scale factor, S ,  and this 
rotation angle, 0, are then used to calculate T3 and 

T4 a" cos 0 and S sin 0, respectively. 

The final two coefficients, TI  and T2, are 

used to translate the superimposed specimen in 
two-dimensional space. They are estimated using 
only simple medians, 

Tl i  = M E D  (xi - T3ui + T4vi) (7) 

and 

T2i = MED Oi - T4ui f T3vi) 

These equations are direct alterations of Equation 
( 1 ) .  Simply, they determine the amount of transla- 
tion necessary for each h-point of the superimposed 
specimen to be moved on top of its corresponding 
h-point on the base. The overall translation is then 
determined as the median of these values, one for 
each dimension. A detailed discussion of the 
repeated median approach and robust methods can 
be found in Siegel and Benson (1982). 

The distance value between the two speci- 
MED 

S,  = (MED A,,) ( 5 )  mens is calculated after superimposition and in the 
j # i  same way for both LSTRA and RFTRA. The value 

is the average of the squared distances between 
where MED is the median. Here, the median scale corresponding h-points divided by a general 
value for each h-point is determined. The grand estimator. The equation used is 
median of all these medians is then used to provide 
the scale factor, S. 
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Table 1. Correlation matrix among standard LSTRA distance 
RFTRA distance, and median RFTRA distance cocfficicnts. 

i mediam 
LSTRA RFTRA RFTRA 

LSTRA 1 .Om 
RF;TRA 0,987 I .(HI 
median RFTRA 0.077 0.m 1 1 .OOO 

where D is the distance coefficient, S W  the sum of 
the squared distances between corresponding h- 
points, n the number of h-points, and So a size 

measure. The latter keeps the coefficient from 
varying in value due solely to different base 
specimen sizes. In past applicrttions this has been 
calculated as the mean distance between each h- 
point, on both specimens, and the center of form. 

An alternative now also calculated for 
RFTRA is the median distance rather than the 
mean. Except for small differences due to rounding 
errors in computation, RFTRA distance coeffi- 
cients always will be equal to or larger than corre- 
sponding LSTRA coefficients. The distance coeffi- 
cients are, as expected, very highly correlated. An 
example data set using 19 ornithopod dinosaur 
crania (171 distances in all) taken from Chapman 
and Brett-Surman (in press) provides an indication 
of how the standard LSTRA distance coefficients 
(LD), the standard RFTRA distance coefficients 
(RD), and the niedian RFTRA distance coefficients 
(RDM) intercorrelate within a large data set. 
The correlation matrix is shown in Table 1. 
Bivariate scatter plots of L,D versus R D  and RD 
versus RDM are given in Figures 1 and 2, respec- 
tively. The result of using these different coeffi- 
cients with a UPGMA cluster analysis is demon- 
strated in Figure 3 for LD, and Figure 4 for R D  
(top) and RDM (bottom). For large studies with 
multi-specimen comparisons, LSTRA is the 
recommended procedure. However, as is apparent 
from Figures 1-4, the results vary little with varia- 
tion in the coefficient used. In general, LD is 

reported now for LSTRA analyses, and R D  and 
RDM for RFTRA analyses. A more detailed study 
of the behavior of these coefficient is currently 
underway as well as the development of new size 
estimators. It is important to note that the D coef- 
ficient provided by the program given by Siegel 
(1982) does not factor out the effects of differences 
in size of the base specimen. 

SPECIMENS 3 0 0 1  [BASE) AND 3002.  HETHOD -RFTRA 
D - , 2 8 7 5 ,  0 (ME3IANI - 4236 
SPECIMEN 3 0 0 1  - STARFISH NORWAL 
SPECZMEN 3 0 0 2  = STARFISH AWFUTATED 
SKELET3N - STARFISH 

F ~ g u r e  7. Rezulrs of RFTRA of starfish shown in Figure 1. 
Top: landniarks and vectors. Bottom: with polygonal 
diagrams zupcrimpozed. Relevant data are in the legend. 
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Figure 8. D'Arcy Thompson's grid-transformation analysis 
of Diodorl-llfolu transition taken from Bookstcin ct al. 
(1985). 

Diodon 

Mola 

D ~ o d o n  

Mold Moia 

Figure 9. Biorthogonal analyses of Diodorl-hfolu transition 
taken from Bookstcin ct al. (198.5). 

Examples 
The differences between LSTRA and 

RFTRA can be illustrated by a hypothetical exam- 
ple, much as has been done by Siege1 and Benson 
(1982) and Benson et al. (1982). As an extreme 
example of what I will term the "Pinocchio effect," I 
will use a case of extreme localized deformation. 
The model of deformation used here is a starfish 
that has had a single leg amputated. Figure 5 illus- 
trates the original figure with normal and ampu- 
tated leg indicated (top), and polygonal figures for 
the normal (middle) and amputated (bottom) state. 
The results obtained from a LSTRA analysis are 
given in Figure 6, which provides a vector-landmark 
diagram (top) and polygonal figure comparison 
(bottom). The equivalent diagrams for a RFTRA 
analysis are presented in Figure 7. The results show 
that the least-squares algorithm distributed the lack 

SPECIMEN 1 3101 = OIODON L A T E R A L  

SKELETON S3?0! = CIODCN - MOLA L A T E R A L  

SPECIMEN C 3102 - MOLA L A T E R A L  

SKELETON 53101 = OIOCON - M O L A  L A T E R A L  

Figure 10. Polygonal figures with landmarks used for 
LSTRA and RFTRA analysis of Diodon-Mola transition. 
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of fit among the landmarks, whereas the IIFTRA 
analysis represented the fit correctly. 

A second example uses the classic Diodon - 
Mola series discussed in detail by nookstein (1978) 
and originating with the form-transforn1:ition grid 
presented by D'Arcy Thompson (1042; F i g ~ ~ r e  8). 
The results of the hiorthogonal analysis performed 
t)y Bookstein (1978) are given in F i g ~ ~ r e  0, tiernon- 
strating the strength of that method for illustrating 
shape gradients. These data have been analyzed 
using both I S T R A  and KF1'RA for comparison. 
Figure 10 presents polygonal diagrams for the two 
forms as used in the analyses. 'the LSI'RA and 
RFI'RA results are prcsentcd as in Fig~rrcs 6 and 
7, in Figures 11 and 12, resl)ectively. 
This case of extreme deformation provides an  
opposing example to the previous one. The vector 
arrow graphics provide a ~rseful complement to the 

SPECIMENS 3 1 0 1  [BASE) AND 3102.  METHOD -LSTRA 
0 - ,5185, 0 IMEOIANI - ,5311 
SPECIMEN 3 1 0 1  - OIODON LATERAL 
SPECIMEN 3 1 0 2  = MOLA LATERAL 
SKELETON - DIOOON - MOLA LATERAL 

I'igurc 11. Rcsults of LSTKA a~lalyhis o l  Diodorl-hlola 
transition. Figurcs as in Figurc 0. 

finite element output. As expected, the LSTRA 
output is most directly compatible with the finite 
element results because of the large overall change 
which is not localized. The RFTRA fit suggests 
that the dorsal sections expanded more than the 
ventral sections, but the LSTIiA results suggest a 
more even deformation. Intuition suggests that 
results from finite element and LSTRA fit the 
actual data better. llowever, as I suggested earlier, 
the difference between RFTRA and LSTRA 
suggest that further analyses be made using land- 
marks not limited to the outline. 

A final example using dinosaur5 is given in 
Fig~rres 13-17, taken from Chapman (in press). The 

SPECIMENS 3 1 0 1  (BASE1 AND 3102. METHOD -RFTRA 
D - .5814. 0 (MEDIAN) - ,5587 
SPECIMEN 3 1 0 1  - DIOOON LATERAL 
SPECIMEN 3 1 0 2  = MOLA LATERAL 
SKELETON - OIOOCN - MOLA LATERAL 

Figurc 12. Rcsults of RFTRA analysis o f  Diodon-Afola 
Ir;rnsition. Fieures as in Firurc 6. 
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question here is how two carnosaurs, Allosauncr and 
Tyrannosaurus, differ in cranial morphology. This 
would be done ideally within a functional or 
systematic framework, using various views (if rele- 
vant). As an example we will use a simple lateral 
view of each. The illustrations used are given in the 
top and middle of Figure 13, and the landmarks 
chosen are illustrated on Allosaurus in the bottom 
of that Figure. For this example, landmarks were 
taken at the intersection of sutures, fenestrae, and 
teeth. Landmark selection in vertebrate crania is 

far from clear-cut and is an  area needing far more 
philosophical discussion and detailed developmen- 
tal analysis because there are potential problems 
associated with most usable points. In this sense, 
the ostracode pore patterns used by Benson (1976, 
1983), being extensions of the central nervous 
system, are superior for direct phylogenetic appli- 
cations. However, these landmarks are certainly 
useful for these examples and for functional inter- 
pretation. 

Figure 14 provides landmark/outline 
diagrams (left) and polygonal figure/outline figure 
diagrams (right) for Allosuurus (top) and Tyran- 
nosaurus (bottom). LSTRA and RFTRA analyses, 
presented as in Figures 6 and 7, are given in Figures 
15 and 16, respectively. The fit appears to be simi- 
lar to that seen for the Diodon - Mola comparison in 
that large vector changes are seen throughout. 
Note two major differences in the specimens: First, 
a more robust posterior of the lower jaw in Tyran- 
nosaurus (dashed lines) is evident from the super- 
imposed outline figures for that element. Second, 
there is a higher degree of dorso-ventral vaulting in 
Allosuurus, indicated by antero-ventral vector 
directions for the landmarks in the nasal and 
premaxilla regions, and in the posteriorly directed 
vectors in the jugal and quadratojugal regions. The 
RFTRA comparison suggests that differences were 
concentrated in the posterior of the cranium and 
the top of the snout. The LSTRA fit concentrated 

Figure 13. Carnosaur crania used as an example of R F r R A  
and L.YTRA. Top and middle: latcral vicws of Alloso~~nrs 
and Tyrannosaurus. Bottom: 25 landmarks shown on 
Allosoums. 

Figure 14. H-points and outlincs (left) and polygonal and 
outline figures (right). Top: Allosaurus. Bottom: Tyran- 
I I O S U I I ~ L S .  
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the fit on the top of the skull in general. Only 
additional analyses in other views and using differ- 
ent landmarks will shed further light on which 
model is best. 

'I'he additional strength of the graphical 
approach possible with this type of Procr~lstes anal- 
ysis is shown by the superimposed outlines in Figure 
17. The trends follow the same lines as those 
described, but accentuate some of the areas where 
landmarks were difficult to identify. The robustness 
of the tyrannosaurid jaw comes out particularly 
clear in the comparison. 

The Analysis of Outlines 

With conventional Procrustes approaches, the anal- 

SPECIMENS 2 7 0 1  (BASE) AND 2702. METHOD -LSTRA 
0 - .2157.  0 (MEDIAN) - .2123 
SPECIMEN 2 7 0 1  - ALLOSAURUS 
SPECIMEN 2702 = TYRANNOSAURUS 
SKELETON - CARNOSAUR SKULL LAT 

Figurc 15. LSTRA analysis of carnosnur cranial Intcral 
vicws. Figurc as in Figurc 6. 

yses of outlines can be made following at least three 
general approaches. The first is part of the stan- 
dard procedure used when applying LSTRA and 
RFTRA or related methods within a software pack- 
age that allows outlines to be included in the final 
graphics. After landmarks have been superimposed 
using the appropriate algorithm, digitized outlines 
and other figures of interest are superimposed using 
the same transformation coefficients. Graphics 
showing the outlines and other figures allow the 
researcher to inspect these superimpositions and 
note where interesting differences and similarities 
occur. For many applications, this will provide 
important and sufficient insight. 

The second approach takes the standard 

SPECIMENS 2701  [BASE) AN0 2702. METHOD -RFTRA 
D - . 2520 .  0 (MEDIAN) - ,2436 
SPECIMEN 2701  - ALLOSAURUS 
SPECIMEN 2702 - TYRANNOSAURUS 
SKELETON - CARNOSAUR SKULL LAT. 

Figurc 16. RmRA analysis of carnosaur cranial lateral view. 
Figure as in Figurc 6. 
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analysis a step further. After the landmarks and 
outlines have been superimposed following stan- 
dard procedures, differences in the outlines can be 
quantified further by calculating distances between 
the two outlines at selected intervals. These inter- 
vals can be chosen for equally spaced radii from the 
center of form (see, for example, Ehrlich and 
Weinberg, 1970) or from a single landmark, as was 
done by Benson (1967) and Kaesler and Waters 
(1972), or they can be equally spaced along the 
perimeter of the outline (see, for example, 
Lnhmann, 1983; Rohlf, 1986). An average of the 
squared differences supplies a second distance 
coefficient that can be used in much the same way 
as the conventional distance coefficients discussed 
earlier. The differences can be plotted in bivariate 
space for comparison between two or among a 
number of specimens. These analyses can be made 
following the conventional Procrustes approach, by 
projecting all specimens onto a base specimen, or 
by using the generalized methods discussed by 
Gower (1975), Goodall and Bose (1987), or Rohlf 
(this volume). 

The third approach is more typical of stan- 
dard outline methods. There are no landmarks 
used in the analyses, but instead, points found at 
selected intervals along the outlines, using the same 
methods discussed above, are used as pseudo- 
landmarks. The fit itself is made by rotating one 
outline over the other and calculating a distance 
coefficient at each step. The rotation is performed 
by "homologizing" the first point in the base speci- 
men with successive points on the outline of the 
second specimen. This is done because there is no 
basis for assuming that the researcher will start 
digitizing the outlines at the exact same point for 
both specimens, or that the researcher necessarily 
would be able to recognize equal or "homologous" 
starting points. Consequently, the first comparison 
is made by "homologizing" point 1 in the base 
specimen with point 1 in the other. The next 
comparison is made by "homologizing" point 1 in 
the base specimen with point 2 of the other, with 
the last point in the base lining up with point 1 of 
the second specimen. This procedure continues 

SPEC:MENS 2 7 0 1  (BASE1 AN0 2702. METHOC =LSTAA 
0 - ,2157, 0 (MEOIAUI - ,2123 
SPECIYEN 2 7 0 1  - ALLOSAURUS 
SPECIMEN 2702 = TYRANNOSAURUS 

SPECIMENS 2 7 0 1  [BASE) AN0 2702. METhOO -AFTRA 
D - .2528.  D IME3IANI - , 2436  
SPECIMEN 2701 - ALL3SAURUS 
SPECIMEN 2702 = TYRANNOSAURCS 

Figure 17. Superimposed outline figures for carnosaurs. 
Top: LSTRA. Bottom: RFTRA. 

until point 1 of the base has been compared with all 
points of the other, providing a series of distance 
coefficients, and making the optimal fit by deter- 
mining the smallest distance value. This value is 
taken as the resulting distance coefficient for the 
comparison, and a series of these values can be 
used in the same way as those produced by more 
standard analyses. As with the second approach, 
the differences between matched points can be 
plotted in bivariate space, and more than two 
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specimens can be compared simultaneously. 
Further, this optimal fit can be used with other, 
more standard, outline approaches (see Lohmann, 
1983, for an example). The least-squares fit is the 
one more typically used, but optimizing the fit using 
the RFTRA algorithm can provide very interesting 
results. 

Conclusions 
The conventional Procrustes methods 

discussed herein exhibit a wide range of strengths 
and weaknesses. They are unusual among mor- 
phometric methods in that they concentrate on the 
deformation of one form relative to another. As 
such, they share the approach of D'Arcy Thomp- 
son's original form-transformation grids and finite- 
element/biorthogonal approaches. Procrustes 
methods have limitations for population analyses 
but provide unexcelled insight into questions of 
function and the morphological shift from one form 
to another. These methods have an advantage in 
that they do not distort the data and provide useful 
graphics using the data points selected. As such, 
they are relatively easy to use within any evolution- 
ary framework. They have their limitations in their 
assumption of isometry and occasionally misleading 
patterns if the original deformation does not fit the 
model being considered. However, use of conven- 
tional Procrustean methods is usually enlightening 
in some way. 

Within this approach, robust methods have 
their share of strengths and weaknesses. Past 
examples of LSTRA and RFTRA comparisons 
have stressed the strengths of the robust approach, 
again demonstrated here using the starfish. If the 
deformation is localized, the robust approach is the 
best procedure currently available for its analysis. 
Robust methods work best when comparing very 
similar forms (see Siegel and Benson, 1982; 
Benson, et  al. 1982). 

The LSTRA approach also has its usefulness 
and is the approach of choice when comparing 
groups of specimens and when deformation is 
general. LSTRA provides results that tend to be 

more directly complementary to those of other 
landmark methods. RFTRA results tend to be 
divergent, especially when the deformation is 
generally distributed. 

When the major question of interest is in the 
comparison of populations, generalized methods 
should be used, although conventional methods can 
be useful in some cases as complementary analyses. 
Within a directly systematic and phylogenetic 
framework, generalized methods should be more 
generally applicable, although conventional 
approaches are more useful for determining func- 
tional interpretations and the development of indi- 
vidual phylogenetic characters. 
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Abstract of this separation of landmark displacements into 

Shape coordinates of landmarks taken on Miocene 
Glohorotulia from DSDP site 503 were analyzed 
using two approaches. A principal components 
analysis produces vectors of correlated landmark 
displacement with respect to an  arbitrary baseline. 
Separation of the uniform part of this shape varia- 
tion and analysis of the nonuniform variation by the 
method of relative warps produces a mixed suite of 
geometrical and statistical components of shape 
change. This type of analysis expands the interpre- 
tation of shape variation in several ways. First, it 
allows us to examine the geometric types of shape 
variation resulting from change in known morpho- 
logical parameters. Variation of 0, the angle of 
increment of an equiangular spiral, results in both 
uniform and nonuniform landmark transformation, 
while variation of r, the expansion rate, appears in 
the nonuniform part only. Second, this type of 
analysis facilitates identification of novel conlpo- 
nents of morphological variation. For these 
foraminifera, the tilt of chambers relative to the 
coiling axis is more strongly correlated with defor- 
mation of landmarks in apertural view than was 
either of the spiral parameters t or r. Third, in light 

uniform and nonuniform parts, we suggest that 
predefined morphological features might be inter- 
preted to interact in three ways: responding coher- 
ently as a single morphological feature would react 
to a single process; responding by correlated change 
reflecting changes due to separate processes that 
happen to be correlated for the population under 
study; and responding by independent changes of 
the separate features. The aperture of the 
Globorotalia test reacts to some extent as a single 
feature with the spiral parameters and to some 
extent independently. 

Introduction 

Planktonic foraminifera are an interesting subject 
for the study of patterns of morphological diversity 
inasmuch as the patterns of morphological variation 
exhibited by these organisms are often richly 
complicated. Phylogenetic hypotheses are usually 
erected on the basis of intermediate forms present 
between species (for example, see Banner and 
Lowery, 1985), and single samples of planktonic 
foraminifera often show continuous variation 
between named species (see, for example, Stain- 
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forth et a]., 1975; Tabachnick. 1981; 
Tabachnick and Bookstein, 1990). 

(Bookstein, this volume), allows analysis that produces vectors of correlated 
greatly increased precision in both the description displacement at the landmarks. 

A G ~  S T R A T I ~ R A P H I C  OISTRIBUTION 

OF SPECIES Clem la~ l r l  I ~ ~ O I I I  

There is no guarantee that 
any variable defined in advance of 
an analysis, merely because it ap- 
pears to the researcher to be vari- 
able in the population, will vary in 
accordance with an underlying factor 
or component of shape change; in 
fact, it is unlikely to do so. In order 
to discern the patterns of variation 
present in populations of 
foraminifera, it is necessary to  ana- 
lyze that variation by methods sensi- 
tive to principal dimensions of shape 
variation. These "principal dimen- 
sions" are of two sorts, geometric and 
statistical. Our purpose in this study 
is to demonstrate a landmark-based 
method of discerning principal di- 
mensions of shape variation in sam- 
ples of Miocene planktonic 
foraminifera. 

Analysis of sets of homolo- 
gous points by their shape coordi- 
nates results in a description of 
shape variation in terms of geomet- 
ric patterns distributed over the form 
(Bookstein et al., 1985; Bookstein, 
1991). Extraction and display of the 
uniform part of the shape variation, 
together with the analysis of the 

part of the shape var ia -  
tion by the method of relative warps 

of that variation and the exploration of the struc- 
ture of populations within the morphologic spaces 
so specified. In the present study, vector diagrams 
of statistical components of the uniform and 
nonuniform parts of shape variation are generated 
separately, and then considered jointly, for spirally 
coiled foraminifera1 tests. Those results are com- 
pared with the results of a principal components 

Inspection of statistical components of the 
uniform and nonuniform parts of shape variation 
both provides insight into the meaning of change in 
familiar parameters of the abstract geometry of 
spirals and allows us to synthesize patterns of 
morphological change involving landmarks from 
putatively distinct morphological features. We 
apply these methods to individuals from Deep Sea 
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Figure I. Stratigraphic section of Site 593 showing the position of the samples 
uscd in this study: 44-6, 43-02, 42-1, 40-2. Range chart of named species is taken 
from the Initial Reports of Dea Sea Drilling Project, Leg 90 (Jenkins and 
Srinivasan, 1985). 
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Drilling Project (DSDP) Site 593, which is located 
between New Zealand and Australia in the south- 
west Pacific (40" S latitude, 167" E longitude) and to 
seven named morphologies, presumably represent- 
ing a single evolutionary lineage, that dominated 
populations of temperate planktonic foraminifera 
during the Early to Middle Miocene (Kennett and 
Srinivasan, 1983). 

Analysis 

Analysis of Components of Shape Variation 

We have examined Early to Middle Miocene 
Glohorotuliu from the southwest Pacific using four 
samples from DSDP Site 593 (Figure 1).  From 
each DSDP sample, twenty to thirty individuals 
were randomly chosen from all Glohorotuliu larger 
than 0.125 mm in diameter with complete, 
nonkummerform final chambers. Figure 1 also 
shows the ranges of named forms as presented in 
the Initial Reports of DSDP Leg 90 (Jenkins and 
Srinivasan, 1985). 

For a study to support inference about the 
structure of morphological variation and about the 
relationship between current taxonomy and this 
structure of variation, individuals included in the 
study must have been drawn from an "experimental 
taxon" imposing a minimum of preconceptions 
about that structure on the study samples (Scott, 
1966). Accordingly, we have chosen the individuals 
included in the study from all individuals of 
Glohorofalia present in the samples without refer- 
ence to the species-level designations that can be 
applied to some of those morphologies (as outlined 
in Tabachnick and Bookstein, 1990). 

These Glohorotuliu take the form of an 
arrangement of chambers along an equiangular 
spiral. There are three major aspects of their 
morphological variation: the parameters of the 
spiral geometry, the shape of the chambers, and the 
shape of the aperture. hlost characters used in 
traditional qualitative taxonomy can be re- 
expressed in terms of one or more of these aspects 
(Stainforth et al., 1975). The geometry of the first 

and third of these can be described to a great extent 
by landmark points (Bookstein et al., 1985) that 
simplify their comparison. Figure 2 shows the 
landmarks in the apertural and spiral views of the 
foraminifera1 test that are used in this study. 

Figure 2. Landmark data collected on individuals of 
Ciloborotaliu. Landmarks used in this study are shown with 
small circles. A )  Spiral view. n :  intersection of ultimate and 
penultimate chambers; n-1 to  n-4: interscction of each 
chamber with the chamber preceding, in sequence. B) 
Apertural view. s: tip of spiral axis; w,: interscction of 

ultimate and penultimate whorls; w,.,: intersection of 

penultimalc and antepenultimate whorls; a; spiral end of 

aperture; a,: umbilical end of aperture. 

The landmarks were selected to incorporate 
variations in spiral parameters (Raup, 1966) in both 
the spiral and apertural views. After designation of 
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two landmark points as the baseline, 
two-point registration of the 
landmarks results in shape 
coordinates for each of the other 
landmarks (Bookstein et al., 1985; 
Bookstein, 1986, 1991). Joint 

obvious in a scatter plot of this factor estimate. We 
The generation of shape coordinates by two- 

call this vector the (two-dimensional) uniform point registration has already discarded dilations, 
factor. translations and rotations of the configuration. A 

variation of these shape coordinates 
expresses shape variation without 
any reference to size. When the 
statistics of these reconfigurations 
are reported properly, they express 
changes in spiral parameters as well 
as any other effective factors of 
variation in a manner nearly inde- 
pendent of the landmarks chosen to 
be the baseline points. 

Multivariate analysis of shape 
coordinates results in diagrams of 
vectors of change at each landmark 
that are correlated from landmark to 
landmark. These vectors specify 
directions of displacement in shape 
space which can then be reinter- 
preted to find "common names" for 
the underlying shape processes, 
acting over the form, that may have 
resulted in the displacement. In this 
paper we compare the results of the 
principal components analysis of 
shape coordinates (Tabachnick and 
Bookstein, 1990) to separate 

uniform transformation changes squares into paral- What remains of variation and covariation of 
lelograms; it is uniform over all the landmarks. A shape coordinates after the uniform part has been 
uniform transformation displaces each shape coor- projected out is the nonuniform part of the varia- 
dinate by a multiple of one single vector; the tion. We extract statistical components of this part 
multiple is the landmark's distance from the base- by the method of relative warps (Bookstein, 1988, 

1989). These nonuniform components emerge in 

analyses of the uniform and nonuniform parts of line. This part of any observed shape change (for 
shape coordinate changes. The results of the first example, the difference of any single form from the 
analysis are slightly baseline-dependent; the results population mean form) may be  estimated as a 
of the later pair of analyses are baseline- factor score by the formula given in Bookstein (this 
indevendent. volume), and its two statistical components are 
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Figure 3. Vector diagrams produced by change, relative to the baseline shown, in 
each of three spiral parameters in the vicinity of the mean form. I. Spiral view: 
A)  Change in angle of increment, 6': B) Change in spiral view expansion rate, r.  
11: Apertural vicw: A) Change in translation rate, t; B) Change in apertural view 

rate, r, 
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descending order of the ratio of 
sample variation to inverse geomet- 
ric scale. The unit of this inverse 
scale is actually the energy it takes to 
move two landmarks "up" and two 
"down" on an idealized metal plate. 
The rationale for using bending 
energy in this way is presented in 
Bookstein (this volume). We will 
interpret the patterns of shape 
variation generated by these two 
methods and compare both to 
unpartitioned principal components 
of shape coordinates computed 
without distinguishing the uniform 
and nonuniform parts of transfor- 
mations. 

In this paper, the phrase 
"principal components" will refer to 
the results of the latter analysis. 
Statistical components of the uni- 
form part of the variation are ordi- 
nary principal components of the 
two-dimensional uniform factor; they 
will be called the first and second 
uniform statistical components. 

The first two principal 
components of shape variation for landmarks in 
spiral view are shown as vectors at  each shape 
coordinate in Figures 3 IA and IB. These can be 
interpreted as corresponding to variation in two 
spiral parameters: 8, the angle at  which new 
chambers are added, and r, the expansion rate 
(Tabachnick and Bookstein, 1990). The vector 
diagrams that model these spiral parameters are 
presented in Figure 4. Figures 3 IIA and IIB 
present the vector diagrams for the first two princi- 
pal components of shape variation for landmarks in 
apertural view. The first principal component 
combines change in the spiral parameters r and t 

Components of variation of the 
nonuniform part with respect to 
bending energy will be 

(translation down the spiral axis) with a change in 
chamber tilt relative to the spiral axis. The second 
principal component of shape variation in apertural 
view landmarks expresses changes in apertural 
width (Tabachnick and Bookstein, 1990). Table 1 
presents the principal components of the three pairs 
of shape coordinates in these two views. 

A scatter-plot of the uniform factor for the 
landmarks in spiral view (Figure 5A) is essentially 
one-dimensional, implying that a single uniform 
statistical component underlies this variation. This 
component, explaining 93% of the uniform factor, is 
a projection of each landmark (weighted by its 

Figure 4. Vector diagrams of the principal components of shape coordinates. I. 
Spiral landmark shape coordinates: A) PC 1 (change in 0); B) PC 2 (change in 
r) .  11 Apcrtural landmark shape coordinates: A) Pla  (reflects change in t and 

relative warps. apcrture tilt); B) PC 2a (change in aperture width). 
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mean distance to the baseline) on the direction (.70, 
.71). 
Table 1. Principal components of three morphologic spaces, 
DSDP samplc data. A. Spiral view morphospace (see Figurc 

A scatter-plot of the first two relative warps 
(Figure 5B) suggests that the nonuniform part of 
the variation in these samples is at least two- 
dimensional. The higher relative warps explain 
trivial amounts of sample variation, so we present 
only the first two (Table 2A). The ratios of sample 
variance to bending energy for these warps are 0.72 
and 0.16. Figure 6 diagrams the uniform factor and 
the first two relative warps as they apply to the 
landmarks of the spiral view. The fraction of the 
total shape variation encompassed by each of these 
patterns can be approximated (in a slightly base- 
line-dependent way) as the fraction of the total 
shape coordinate variance "explained" by a regres- 
sion of the spiral shape coordinates separately on 
the factor in question. The uniform factor 
"explains" 63% of total variance of the three spiral 
view landmarks. The first relative warp "explains" 
68% of the total variance of these landmarks, and 
17% of the total variance is "explained" by the 
second relative warp. 

4), baseline points are n and TI-3. B. Apertural view of 
morphospace (see Figure 4), baseline points are s and a,. 

Principal components are computed using correlation 
matrices. 

The correlation between the first uniform 
statistical component and the first relative warp is 
high ( r =  -0.96). Figure 7A illustrates vectors of 
shape change that result from summing the first 
uniform statistical component and the first relative 

A. 
PC1 PC2 

% of trace : 49% 21 % 
Shape Coordinates 

x -.06 - 3 5  
n-1 

Y .51 -.07 
x .43 -.33 

11 -2 

v .45 .35 
x -.W .21 

11 -4 

\I .52 .05 

B. 
PC1 PC2 

% of trace : 52%) 21% 
Shape Coordinates 

x .45 .13 

W n 

Y -.48 .14 
x .50 .13 

wn-l 

Y -.43 .30 
x 34 .52 

as 
Y -.I4 .77 

warp with weights proportional to the fraction of 
total shape variation accounted for by each. The 
pattern that results is nearly the same as the model 
for change in 6 presented in Figure 4. That is, 
variation in the spiral parameter 8 is partly uniform 
and partly nonuniform. Figure 7B illustrates the 
change in this summed "component" as exemplified 
by individuals drawn from the study samples. By 
contrast, the second relative warp closely models 
change in r. The r-like vector diagram extracted by 
the principal component analysis (Figure 4) devi- 
ated from the pattern of change consequent upon 
change in r in that the vector at  landmark n-4 was 
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Figure 5 .  Scatter-plots of individuals in the shape 
subspaces for the spiral view. A) Uniform factor 
(UNIFXSP: x dimension; UNIFYSP: y dimension). B) 
Nonuniform variation (REISP: first relative warp; RE2SP: 
second relative warp). 
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Figure 6. Vector diagrams for the spiral view. A) First 
uniform statistical component (93% of linear variation, 
63% of total variation of the shape coordinates). B) First 
relative warp (68% of total variation). C) Second relative 

rotated by 90". Once the uniform part of shape 
variation is removed, this discrepancy disappears. 
The net shape coordinate variance explained by the 
summed first uniform statistical component and 
first relative warp is much greater than that 
explained by the second relative warp; variation of 6 
far outweighs variation of r as an  explanation for 
covariation of the landmarks in spiral view. 

For landmarks taken in the apertural view, 
scatterplots of the uniform factor and the relative 
warps suggests that there are two dimensions to 
both (Figure 8). The first uniform statistical 
component is estimated as the summed projection 
of the landmarks, each weighted by its mean 
distance to the baseline, upon the vector (-.68, .73); 
the second uniform statistical component is at 90" 
to the first. The first two relative warps are as in 

n-1 

I / - *  

n a 17-3 

A. c"-* 

@ B. @ 
Figure 7. Combined uniform and nonuniform components 
of landmarks in spiral view. A) Vector diagram: result 
vectors are the summed first uniform statistical component 
and first relative warp at each landmark weighted by the 
proportion of total shape covariance explained. B) Sample 
individuals with extreme values for the first uniform statisti- 
cal component. 

Table 2R. Figure 9 illustrates the uniform 
statistical components and the relative warps as 
vector diagrams. The first uniform statistical 
component accounts for 50% of the total shape 
coordinate variance of these landmarks, and the 
second accounts for 22%. The first relative warp 
accounts for 43% of the total shape variance, and 
the second for 19%. (As for the landmarks in spiral 
view, these fractions of variance overlap.) The ratio 
of sample variance to bending energy is 0.65 for the 
first relative warp, 0.21 for the second, and negligi- 
ble for the others. 

Although the uniform and nonuniform parts 
of shape space are orthogonal in Procrustes 
distance (the sum of squared distances by which the 
landmarks have moved, in the coordinate system 
for which that sum is minimized), they usually 
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-0.80 
0.10 0.37 0.63 0.90 

RE lAP 
F i g u r d .  Scaucr-plots of individuals in the sul~spaces of 
thc apcrturc view. A) Uniform factor (UNIFXAP: x 
dimension; UNIFYAP: )J dimension). B) Nonuniform 
vnrialion (REIAP: first rclativc warp; RE2AP: second 
relat i~e warp). 

exhibit some correlation. For the landmarks in 
apert~iral view, the correlation between the first 
uniform statistical component and the first relative 
warp is 0.66; between the first uniform statistical 
component and second relative warp, -0.49. These 
correlations are unremarkable; they reflect the 
statistically arbitrary nature of the projection of 
shape variation into these two incommensurate 

Tablc 2. Relative eigenveetors of the nonuniform part of 
shape variation. A. Spiral view landmarks: baseline points are 
11 and t l-3. B .  Apertural view landmarks: baseline points are s 
and a,. Rclative eigenvalucs represent the ratio of variance to 

hending energy. 

subspaces. The first principal component repre- 
sents the pooled effect of correlated uniform and 
nonuniform parts, a combination of change in spiral 
parameters at  the whorl land~narks and tilt at the 
aperture landmark; this should be considered to 
embody two separate, but correlated, components 
of morphological variation. 

A. 
R E  1 R E 2  

ratio of var. to 0.72 0.16 
hending energy : 

Shape Coordinate 
x .38 -.51 

The first relative warp expresses a correlated 
change in spiral parameters and apertural width; 
the second primarily reflects changes in aperture 
tilt, associated with small changes in the whorl 

B. 
R E  1 R E 2  

ratio of var. to 0.62 0.23 
bending energy : 

Shape Coordinate 
x . .22 

landmarks that seem unrelated to spiral parame- 
ters. What the second uniform statistical compo- 
nent represents also seems unrelated to spiral 
parameters. The second principal component does 
not resemble any of the separate uniform compo- 
nents or relative warps in that it associates change 
in apertural width with a certain direction of change 
in whorl landmarks. 

One identifiable morphological change that 
could produce the transformation seen here as the 
first uniform statistical component is a change in 
the chamber tilt relative to the coiling axis. This 
would jointly alter translation away from the spire 
and apertural position relative to the coiling axis, as 
shown in Figure 10. 
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Individual Variation at Site 593 

FIabachnick and Bookstein (1090) 
demonstrate, using the principal 
components, that the Glohorotalia in 
these samples are continuously, and 
roughly elliptically, distributed in 
both the spiral and apertural land- 
rnark spaces. This result is 
unchanged when the shape variation 
is partitioned into its uniform and 
nonuniform parts. 'I'he distributions 
of the individuals from site 593 are 
shown in Figure 11A for the spiral 
landmarks and Figure 11R for the 
apertural landmarks. There arc no 
significant differences among the 
sample means in the space of the 
first uniform statistical component 
and second relative warp for the 
spiral view. As in the space of the 
principal components of the apertu- 
ral view, sarnple 42-1 is significantly 
different from all other samples in 
the space of the first uniform statisti- 
cal coniponent and the first relative 
warp of the apert~lral view. Sample 
42-1 lies at the extreme high end of 
the distributions for both cornpo- 
ncnts, There are no significant 
differences the means 
other samples. 

we have applied this analysis 
to individuals representing seven 
narned morphologies taken from Kennctt and Discussion 
Srinivasan (1983). With one exception, the named 
specimens fall within the regions occupied by the Interpretation of morphological variation is 

scatters from site 593 (Figure 12). This individual, enhanced a generalized system of 

labelled G. arc~Lco,ncnur~ii, lies slightly the Iandniark variation into uniform and nonuniform 

occupied by the scatters in tile apertural geometric and statistical components. The particu- 
morphospace; the  morphotype lar advantage for interpretation depends on the 

rel,resented by this specimen is apparently not l a n d m a r k s a d  the biologic process whose effect 

present in the DSDP samples. their locations record. For these landmarks, one 
named aspect of morphological variation, "angle of 
increment." seems to combine uniform and nonuni- 
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form aspects of landmark transformation. Other 
named aspects of morphological variation can be 
seen to be primarily nonuniform (e.g., "expansion 
rate") or primarily uniform (e.g., "chamber tilt"). 
Principal components analysis of the shape coordi- 
nates of the spiral view suggested that 0 and r are 
also statistically orthogonal components of morpho- 
logical variation for the Globorotalia. Yet that 
result was not completely clear; there were some 
unexplained deviations between the vector 

B. 
Figure 10. A linear transformation which could result from 
a change in chamber tilt at a constant translation rate. A) 
Vector diagram: the position of angular offset for each 
whorl point is based on the location of the apcrtural end of 
the coiling axis as each whorl is created. B) Variation in 
the first uniform statistical component of landmarks in 
apcrtural view as exemplified by sample individuals with 
extrcme valucs for that componcnt. 

diagrams of the principal components and of the 
parameters they almost model. Examination of the 
separate uniform and nonuniform parts and the 
correlations between them provided clearer inter- 
pretations of spiral parameter variation. 

WlF 1 FP (chamber t i l t )  
Figure 11. Scatter plots of individuals from Site 593. A) 
Spiral view variation (UNIFlSP: first uniform statistical 
componcnt, 8; RE25P: second relative warp, r). B) Apcrtu- 
ral view variation (UNIFlAP: first uniform statistical 
componcnt, chamber tilt; REIAP: first relative warp, t and 
aperture width). 
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The landmarks in spiral view are homolo- 
gous among themselves in their location on the 
biologic geometry of the form. This "serial homol- 
ogy" (Sattler, 1984) is a different sense of homology 
than is usually applied to landmarks. Each land- 
tnark is located where the end of the outer edge of 
a chamber intersects the wall of the previous one, 
as projected into two dimensions. The first land- 
mark is located between the ultimate and penulti- 
mate chambers. the second between the penulti- 

marks in apertural view suggests that the morpho- 
logic "parts" represented by these landmarks also 
encode biometrically separate features; the aper- 
ture exhibits variation that is not merely a result of 
morphologic variation also affecting the whorl 
landmarks. Definitive conclusions on this point 
would require observation of whether actual 
changes in the aperture result in predicted changes 
in whorl characters. Our results suggest that this is 
an interesting question for further investigation. 

mate and antepenultimate chambers, and so on. What we see from the variety of uniform and 
Because of this serial homology on the spiral, we nonuniform components is that to some extent the 
would not expect uniform transformations to have aperture and whorl landmarks respond as a single 
any particular biologic meaning. feature to a process of uniform displacement. 

The apertural view landmarks, on the other 
hand, combine two features of the form, spiral 
parameters and aperture shape, which may react 
independently to the biologic processes that cause 
morphologic variation. By examining covariation 
among the landmarks, we can ask whether such 
features should be considered distinct parts of the 
morphology. Separation of landmark displace- 
ments into uniform and nonuniform factors suggests 

Changes in aperture are also correlated with 
changes in spiral parameters in a way which may or 
may not express some shared underlying process, 
but which does not suggest that they are a single 
feature. The feature we call "aperture" might be 
partitioned into two parts: variation in the chamber 
as a whole from which the "aperture" cannot be 
distinguished, and variation of the aperture that is 
independent of the rest of the test. 

that these morphologic parts could be interpreted Differences in tilt of the whole chamber 
to interact in three ways: responding coherently as a relative to the coiling axis are more important in 
single rnorphologic feature would react to a single explaining variation of landmarks in apertural view 
process; responding by correlated change reflecting than is either change in spiral parameters or varia- 
changes due to separate processes that happen to tion in the aperture as a separate morphologic 
be correlated for these populations; and responding feature. Most qualitative taxonomy does not 
by independent change of the separate features. explicitly mention this parameter of morphologic 

The two principal components of the land- 
marks in apertural view suggest that displacement 
of these landmarks is dominated by covariation 
among the effects of spiral parameters acting on the 
whorl landmarks (w,, and w,,.~) and variation in 

either aperture width or tilt acting on the aperture 
landmark (a,). Analysis of uniform and nonuniform 

parts of the same landmark variation allowed iden- 
tification of a prominent uniform component that 
reflects tilt of the chambers relative to the coiling 
axis. The aperture and whorl landmarks respond 
coherently to this single process of uniform 
displacement. Identification of a prominent 
nonuniform component for variation of the land- 

variation; what is discussed instead is the 
"compression" of the test, a measure of the distance 
from the tip of the spire to the umbilical opening in 
apertural view. It is common to orient the test of 
Globorotuliu in apertural view so that the plane 
through the longest extension of the chambers is 
horizontal in the viewing plane. As a result, the test 
appears "compressed" as the chambers tilt relative 
to the axis of coiling (an effect identical to tilting 
the axis of coiling) since this tilt decreases the 
height from spire tip to umbilicus in that orienta- 
tion. By explicitly examining landmark transforma- 
tion relative to the coiling axis, we have been able 
to discern that this chamber tilt (or tilt of the coiling 
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c: Ci. cl~alk~t~gc~ri .  A) Spacc of  landmarks in spiral vicw. B) 
Spacc of landmarks in apertural view. 

axis), a previously obscured component of variation, 
account5 for much of the variation of landmarks in 
apertural view. 

The uniform and nonuniform subspaces of 
shape variation are continuously occupied in both 
the spiral and apertural view. The distributions of 
our samples do not change with stratigraphic posi- 

tion for the landmarks taken in spiral view, but do 
vary to some extent with stratigraphic position for 
the landmarks taken in apertural view. Named 
morphologies are scattered across the occupied 
spaces with continuous variation between them, 
suggesting that, insofar as the variation we have 
measured validly encompasses the morphology, 
these "species" names are merely labels for areas of 
continuously occupied morphologic space. As 
discussed in Tabachnick and Bookstein (1990), 
variation in occupation of morphologic space from 
one stratigraphic sample to another could be used 
to resolve phylogenetic relationships; yet the 
species names, while useful as designations of areas 
within continuous distributions, d o  not seem to 
correspond to discrete, gap-bounded parts of the 
variation. Stratigraphic changes in this lineage 
seem to involve changes in the shape and position 
of occupied morphospace without the appearance 
of gaps in variation. This fits neither a model of 
strict anagenesis nor one of strict cladogenesis. 

Conclusion 

The decomposition of variation in landmark 
configurations into their uniform and nonuniform 
parts can enhance our ability to interpret shape 
variation. For Miocene Globorotalia this increase 
in interpretability is fourfold. First, we may 
examine the geometric details of landmark dis- 
placement resulting from variation in known 
parameters of abstract geometry. We found that 8, 
the angle of increment of an equiangular spiral, has 
both a uniform and a nonuniform part, but that r, 
the expansion rate, is primarily a nonuniform 
phenomenon. Second, we are able to assess the 
relative importance of parameters of abstract 
geometry in explaining morphologic variation. In 
this study we found that change in the angle of 
increment explains much more of the variation of 
landmarks in spiral view than does change in 
expansion rate. Third, separation of the landmark 
variation into its uniform and nonuniform parts has 
allowed us to identify a previously obscured statisti- 
cal component of morphologic variation and to 
demonstrate that change in this component 
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accounts for a large fraction of total variation of the 
landmarks taken in apertural view. Fourth, 
covariation of suites of landmarks can be used to 
examine the independence of parts of the morphol- 
ogy. We found that the aperture and whorl land- 
marks react to some extent as a single feature and 
to some extent as independent parts. 

This increasingly detailed description of 
shape variation still supports the conclusions of 
Tabachnick and Bookstein (1990). The relationship 
of exemplars of named morphospecies to distribu- 
tions of individuals in morphologic space strongly 
suggests that the names do not label discrete 
species. The distributions of individuals in morpho- 
logic space are continuous and roughly elliptical, 
and there is stratigraphic variation between samples 
in these distributions. 
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Abstract tions in shape space are very similar to mean land- 

In order to illustrate the use of a predominatently 
landmark-based approach to rnorphometric analy- 
sis, we examine covariant aspects of intraspecific 
morphologic variation in the planktic foraminifera1 
species Sr~hhotitzu linapertu by comparing samples 
prior to and following a well-documented environ- 
mental disturbance. These investigations document 
patterns of size and shape variation in the last three 
growth stages of shell or test formation, including 
the terminal ontogenetic phase of sexual maturity. 
Results indicate that a statistically significant 
reduction in test size (approximately 30%) occurred 
between the pre-disturbance sample and the post- 
disturbance sample. This agrees with previous 
estimates of the size difference between these 
samples based on more traditional multivariate size 
indices. Previous analyses have also shown this size 
difference to result from a change in the 
sizelfrequency distribution of adult individuals and 
not through the differential preservation of juvenile 
forms. Post-disturbance mean landr~iark configura- 

mark configurations characteristic of smaller-sized 
pre-disturbance individuals suggesting that changes 
in developmental patterns may have been respon- 
sible for the observed differences in test size and 
shape. Over a series of size classes, both uniform 
and non-uniform aspects of shape variation were 
estimated and used to identify the predominant 
modes of geometric variation. With respect to a 
uniform deformation of the shape space, both 
samples were found to be characterized by a radial 
expansion/compression and left-to-rightlright-to- 
left lateral translation of the non-constrained shape 
coordinates, though fundamental differences exist 
between the samples in the way the predominant 
axes of variation are oriented relative to these two 
deformational modes. Non-uniform within-group 
shape variation primarily involved an asymmetric 
radial expansion of landmark locations that may be 
descriptively attributed to a special case of a 
quadratic deformational mode while between-group 
shape variation appears to be brought about 
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primarily by a tendency toward less inter-chamber 
shape differentiation to be exhibited by post- 
disturbance populations. 

Finally, we note that despite the power of 
morphometrics to efficiently summarize vast 
amounts of geometric data and provide strategies 
for the testing of alternative evolutionary hypothe- 
ses, solely descriptive models of morphological 
change are insufficient to the task of explaining how 
evolutionary processes might have brought such 
changes about. This limitation derives from the 
historically contingent nature of evolutionary 
processes and the fact that morphomctric analyses 
per se maintain an indifferent position with respect 
to questions of phylogenetic relationship. A 
primary challenge to the future developnlent of 
evolutionary niorphometrics lies in the ability of its 
practitioners to employ tools of descriptive and 
exploratory geometry within a research context that 
explicitly differentiates between alternative 
hypotheses of phylogenetic ancestry, and to derive a 
series of expected patterns of morphological trans- 
formation that are based on an understanding of 
developmental as well as phylogenetic processes. 

Introduction 

Bookstein (1988) has recently described morpho- 
metrics as the study "not of form per se but of 
covariances with form". This statement alludes to 
the central problem of developing evolutionary 
theories, namely that evolution is a contingent 
process far more constrained by phylogenetic 
history than by mechanical or geometric optima. 
Thus, descriptive models of shape change are 
necessary but not sufficient to the task of explaining 
morphological change. 

In this study of intraspecific variation, we 
contrast variations in form prior to and following a 
profound environmental disturbance, as a means of 
quantifying covariant morphological aspects of a 
species' response. Within this context, morphome- 
tric analyses have been used to provide an efficient 
means of describing intraspecific changes in form 
by examining shifts i) across an environmental 

disturbance, and ii) during different stages of the 
organism's ontogeny. Although we are unable to 
posit specific developmental pathways controlling 
the potential for change in this fossil form, we have 
made our measurements on a series of separate 
growth stages within each specimen in order to 
gather information that can be directly related to 
the biological process of development. Conse- 
quently, these data show strong correspondence 
between the factors of morphological change that 
can be defined mathematically, via landmark-based 
morphometric analysis, and a series of a pn'ori 
models of growth processes and changes in the 
developmental program. 

In an earlier investigation (MacLeod et al., 
submitted), we examined both geographic and 
temporal aspects of dwarfing within middle and late 
Eocene populations of the planktic foraminiferal 
species Suhhotiiza linaperta Finlay. That study was 
initiated by Keller's (1986; Keller et al., 1987) 
report of a qualitative size reduction in this species 
occurring at DSDP Site 612 that was coincident 
with the first occurrence of microtektites belonging 
to the late Eocene North American tektite layer at 
this locality. Presence of the tektite layer in these 
late Eocene sediments provides unambiguous 
geochemical and mineralogical evidence for a 
geologically sudden and widespread environmental 
disturbance in the form of a terrestrial impact event 
i~ivolving an extraterrestrial object (Barnes and 
Barnes, 1973; Glass, 1982; Shaw and Wasserburg, 
1982). While reductions in planktic foraminiferal 
test size have been associated with other types of 
environmental fluctuations and with planktic 
extinction events (e.g., Berggren 1965, Malmgren 
and Kennett 1972, BC et  al. 1973, Hecht 1974, Blow 
1979, Smit 1982, Erez 1983, Keller et  al. 1987), 
dwarfing in foraminifera has received relatively 
little study in terms of the quantitative description 
of patterns of variation found in the dwarfed popu- 
lations. 

As an alternative to the more temporally 
and geographically comprehensive dataset analyzed 
in the earlier investigation, we now focus exclusively 
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on two samples from DSDP Site 612: one located in 
middle Eocene sediments stratigraphically just 
below the first occurrence of microtektite material, 
and one located in the overlying late Eocene sedi- 
ments containing impact ejecta. As opposed to a 
traditional multivariate morphometric analysis of 
distances between relocatable landmarks (as was 
carried out in parts of the earlier study), here we 
present the results of analyses of variation in the 
relative positions of the individual landmark coor- 
dinates themselves. Aside from providing an  illus- 
tration of use of some of the newer landmark-based 
data analytic techniques discussed in the Workshop, 
the application of different methods of analysis to 
similar data provides a check on the consistency 
and methodological robustness of conclusions 
derived from the earlier investigation. 

Materials and Methods 

To compare patterns of variation in size and shape 
in these S. linupertu populations, two samples were 
obtained from DSDP Site 612: the first (sec. 21- 
5:132-140 cm) representing populations existing 
prior to the occurrence of tektite debris within the 
core (herein referred to as the pre-disturbance 
sample), and the second (sec. 21-5:114-118 cm) 
representing forms whose occurrence coincides with 
that of the tektite debris (herein referred to as the 
post-disturbance sample). A total of 110 individu- 
als were measured from the pre-disturbance inter- 
val and 167 individuals from the post-disturbance 
interval. Since these specimens constitute all indi- 
viduals of this species found in a random split of the 
processed residue > 150 p, all size classes present in 
the original fauna (averaged over a relatively short 
interval of time) are likely to be represented in the 
samples in their correct relative proportions. 

- - 

For each specimen, test size and shape were 
quantified by locating the (x,y) coordinate positions 
of 11 landmark points (Figure 1). This set of land- 
marks was chosen because the measured points lie 
at the ends of the major and minor axes of the three 
elliptical chambers that comprise the final whorl, 
thereby insuring some measure of consistency in the 
sampling of morphometric variation over the entire 

test as well as maximizing the ability to detect 
developmentally significant patterns of variation in 
the phenotype. However, it must also be recog- 
nized that while each of these landmarks is unam- 
biguously relocatable, several are identified as 
extremal locations and therefore cannot be 
regarded as having any necessary biological corre- 
spondence between individuals. 

Ultimate Chamber 

chamber Chamber I 

Figure 1. Location of the landmark points used to quantify 
morphometric variation in S.linaperta, shown in umbilical 
vicw. Filled circles represent homologous point locations, 
hollow circles represent positions corresponding to local 
cxtrcma. 

For each specimen, test size was estimated 
using Bookstein's (1986) centroid size index (S), 
which is the sum of all squared distances from each 
landmark to their joint centroid. This size measure 
has the desirable property of being uncorrelated 
with all possible shape variables under a model of 
randomly distributed digitizing error of constant 
variance at each landmark location. In order to 
improve the interpretability of the resulting size 
estimate, however, all sizes are reported as the 
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square root of centroid size ($) so that the units 
of the size measure and the interlandmark distances 
used to estimate size correspond. Although use of 
the centroid size index may not be appropriate in 
some cases (e.g., if the outline of the shape does not 
contain the centroid or if a number of the line 
segments spanning the distance between the 
centroid and individual landmarks cross the bound- 
ary of the organisnial outline), it appears to be a 
convenient multivariate size measure for many 
globigeriniforrn planktic foraminifera. 

Once individual size had heen quantified, 
each specimen's set of 11 landrn:irk (xa) coordi- 
nates were converted to "shape coordinates" via the 
two-point registration technique with the line 
segment between landmarks 1 and 2 serving as the 
baseline. Selection of the base line coordinates is 
wholly arbitrary in terms of the scaling calculations 
with n o  systernatic errors resulting from alternative 
baseline specifications (Bookstein, 1986). How- 
ever, there do exist differences in the ease with 
which results of particul:ir analyses can be inter- 
preted, which depend, to somc extent, on baseline 
placement. In the present s t ~ ~ d y ,  coordinates 1 and 
2 were chosen for the hascline to take advantage of 
a relatively long shell dimension for size standard- 
ization as well as to avoid any unnecessary compli- 
cations that might arise from using a haseline that 
s ~ ~ a n ~ e v e l o p n ~ e n t a l l y  distinct units of test struc- 
ture (e.g., the individual chambers). These shape 
coordinates were then used to determine average 
landmark configurations for each of the two sarn- 
ples and, within each sample, to examine the nature 
of shape variation among a series of eight size 
cl:~sses. 

Multiple regression analyses of ccntroid size 

($) o n  the individual shape coordinates were used 
to determine whether or not any linear patterns of 
sizelshape variation (allornetry) were present in the 
landmark data. Utilization of the centroid size 
index for allornetric analyscs circumvents much of 
the ambiguity that is inherent in many traditional 
forms of allometric regression analyses owing to the 
essentially ad hoc nature of the definitions of "size" 

and "shape" employed by these methods (see 
Bookstein, 1989a). I-Iowever, since centroid size 

(both S and $) is statistically uncorrelated with 
any shape space for homologously located land- 
mark coordinates, the relationship between 
centroid size and the size-standardized location of 
the landmark points can be assessed by traditional 
linear regression techniques with confidence that 
the resulting statistics will be free from artifactual 
bias (Bookstein, 1986). 

Finally, uniform and non-uniform aspects of 
shape variation were studied as deformations of a 
2-dimensional thin plate spline passing over the 
locations of the mean shape coordinates for each 
sample and whose undulations are proportional to 
the direction and amount of variability in each 
coordinate location across all measured specimens. 
In this context, the uniform aspects of shape defor- 
mation can be envisioned as accounting for the 
observed variability in shape coordinate location via 
a tilting of the thin plate spline with projection of 
the resulting changes onto a common plane. 
During this tilting procedure, the baseline remains 
fixcd. Thus, the magnitude of the resulting 
displacement vectors increases with increasing 
distance from the baseline and the orientation of 
the displacement vectors on opposite sides of the 
baseline changes by 180". Alternatively, non- 
uniform aspects of shape variation can be envi- 
sioned as a decomposition of the bends in the thin 
plate spline into a series of hierarchically arranged 
warps that express progressively more general (less 
regional) aspects of the shape deformation. When 
interpreting the results of these uniform and non- 
uniform aspects of shape deformation it is impor- 
tant to remember that they are  conceptually inde- 
pendent ways of representing the variability of 
landmark location in the size-normalized shape 
space. Consequently, both uniform and non- 
uniform representations of shape deformation 
exhaustively account for all shape variability within 
each sample. Algorithms for calculation of the 
uniform and non-uniform (e.g., principal warps and 
relative eigenvectors) aspects of shape variability 
are given in Bookstein (1989b, this volume). 
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Results 
Test size distributions for pre-disturbance and post- 
disturbance samples are given in Table 1. Mean 
centroid size for the pre-disturbance sample is 10.67 
pm while the post-disturbance sample mean 
centroid size is 7.54 pm. This constitutes a statisti- 
cally significant (via 2-sample t-test; p < .05) size 
decrease across the tektite datum of slightly less 
than 30 percent, a result that is in good agreement 
with previous estimates of size variation between 
these two samples based on a multivariate analysis 
of selected interlandmark distances in all three 
dimensions (MacLeod et al., submitted). In addi- 
tion, prior SEM observations of test microstructure 
revealed clear indications that a layer of gameto- 
genic calcite has been deposited on the surface of 
tests comprising the smaller, post-disturbance 
sample, thus confirming that the observed size 
variation is not the result of mechanical sorting or 
the differential preservation of juvenile individuals, 
but represents a change in the size-frequency distri- 
bution of adult organisms. 

Mean shape coordinate configurations for 
the eight size classes shown in Table 1 are 
presented in Figure 2. Although several obvious 
changes in shape in both the pre-disturbance and 
post-disturbance samples are apparent, the overall 
nature of observed shape changes is best revealed 
by superimposing the size class specific landmark 
configurations upon one another, as in Figure 3. 
From this figure, it is clear that (holding distance 1- 
2 constant) as size increased, pre-disturbance 
specimens tended to develop chambers that were 
progressively more elongate in the radial direction 
and that this radial elongation or widening of the 
ultimate, penultimate and ante-penultimate 
chambers does not appear to have taken place 
proportionately through all size classes. While 
grossly similar variations in shape coordinate loca- 
tion also seem to characterize the post-disturbance 
sample, the absolute range of variation in landmark 
location is notably smaller owing, no doubt, to the 
smaller range of size variation. 

Table 1. Test size distributions. 
Post- 

Disturbance Disturbance 
Sample Sample 

Class Index Freq Freq 
1 5.54 - 6.90 5 4.50 60 35.93 

'Centroid sire index = (6) (see text for discussion) 

Overall mean landmark shape confi- 
gurations for pre- and post-disturbance samples are 
compared in Figure 4 which shows that observed 
differences in mean test shape can be attributed to 
a lesser degree of shape differentiation between 
chambers in the post-disturbance sample. There is 
also a suggestion that the ultimate chamber in the 
pre-disturbance sample may be slightly more 
elongate tangent to the spiral curve of chamber 
placement than is the case in the post-disturbance 
sample, though it is not evident from this diagram 
whether this is the result of a change in the relative 
size of the ultimate chamber or a change in the 
nature of the trochospiral coil (or some 
combination of the two). Finally, there appears to 
be a difference in the relative placement of the 
umbilicus (the central triangle) in the two samples 
that may indicate that the smaller-sized post- 
disturbance S, linaperta tests exhibit a tighter 
trochospiral coil. 

While it is clear from Figure 3 that some 
pre-disturbance size classes exhibit mean shapes 
that closely approximate the overall mean shape of 
the post-disturbance sample, this relationship must 
be quantified to be of use within a systematic inves- 
tigation. One way this quantification may be 
brought about is by assessing the degree of corre- 
spondence between a set of interlandmark distances 
that completely and redundantly locate the posi- 
tions of individual landmarks relative to their 
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neighbors. Strauss and Bookstein 

(1982) constructing have such devised a network a protocol of inter- for 
landmark distances (termed truss 
analysis). 

For the set of 11 landmarks 
used to quantify morphologic varia- 

tion possible in this truss study, network Figure of 5 shows 21 inter- one 

landmark distances. As suggested by 
Strauss and Bookstein (1982), the 
root sum of squares index provides a 
convenient measure of shape simi- 
larity: 

21 

RRS = C [(dObS - dcxp) / 
11 = 1 

where: dexp = distance between 

landmarks in post-disturbance mean 
shape, doh, = distance between 

corresponding shape of a pre-disturbance landmarks size in class. mean 

on the root sum of 
squares index, both pre- 
disturbance size classes 1 and 3 can 
be identified as exhibiting marked 
similarities with the shape of the 
post-disturbance S. linaperta popula- 
tions (Figure 5). 

Can the patterns of size/ 
shape variation exhibited by the pre- 
disturbance and post-disturbance S. 
linupetta landmark datasets be inter- 
preted as manifestations of an allo- 
metric pattern of growth? F-ratios 
for multiple regressions of on the 
shape coordinates of the 9 non- 
constrained landmarks are 1.413 and 
1.732 for the pre-disturbance and 
post-disturbance datasets respec- Mean Shapes by Size C l a s s :  

Post-Disturbance Sample 

tively (d.f. regression = d.f. 
deviation = 91 [pre-disturbance], 
148 [post-disturbance]). These 

Pre-Disturbance Mean Shapes 

osl 
.n'5 0 ~ 5  

,n-26 

0s4 

n-26 O ~ a  

n=4 

3s2 

II-9 0 ~ 6  

n-15 

Post-Disturbance Mean Shapes 

3 

n-21 7 

n-4 

Size Class 1 

n-60 

Figure 2. Mean landmark configurations in shape space for the eight size classes of 
S. lit~uperlu in thcpre-disturbance sample and the first four corresponding size 
classes in the post-disturbance sample (see Tablel). 

Size Class 4 

n-14 

Size Class 2 

n=65 

She Cbss 3 ~~~~ n=28 
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values are both non-significant ( p  < 
.05) indicating that no linear change 
in test shape relative to test size is 
apparent in either sample. Of 
course, this does not mean that there 
is no change in overall test shape 
with increasing test size, only that 
what changes are there fail to corre- 
spond to a strictly linear model of 
allometric sizelshape change in any 
statistically significant manner. 

For the purpose of character- 
izing non-allometric modes of shape 
variation, one can consider growth 
gradients to be an aspect of either 
uniform or non-uniform shape 
change whose effects may vary 
depending on location across the 
form. In this way, "shape" can be 
thought of as a series of tilts or 
bends that represent deviations of 
the landmarks from strictly linear 
types of variation. Through the 
method of thin plate spline 
interpolations of the shape space 
(Bookstein, 1989b; this volume), it is 
convenient to decompose this 
variation into a hierarchy of 
"localizability" whose major 
constituents can, in turn, be related 
to a series of a priori defined 
geometric models of shape deforma- 
tion. 

Mean Shape: 
Pre-Disturbance Sample 

Mean Shape: 
Post-Disturbance Sample 

Mean Shape Overlay 

Figurc 4. Separate and superimposed mean landmark configurations in shape 
space for pre-disturbance and post-disturbance samples. Post-disturbance mean 
shane is indicated bv thick lines in the mean shane overlav. 

Analysis of the uniform aspects of shape 
change involves an eigenanalysis of the uniform 
shape components as defined by Bookstein (this 
volume). These calculations result in the extraction 
of two eigenvectors whose relative lengths are 
proportional to the amount of shape variation 
accounted for by each axis and whose orientation 
represents the direction of tilt in the thin plate 
spline which, when the resultant positions of the 
landmarks are projected onto a 2-dimensional 
plane that contains the mean shape, appears as a 

uniform shearing of the mean shape with respect to 
the fixed baseline. Results of this analysis are 
summarized in Figure 6, which reveals several 
marked differences in this uniform aspect of shape 
variation to exist between the pre- and post- 
disturbance samples. In general, the uniform shape 
space of the post-disturbance sample appears to be 
much more cleanly partitioned into axes describing 
shell expansion/compression (uniform factor 1) and 
differences in the lateral translation of shape coor- 
dinates (uniform factor 2) that may reflect a 
tightening or loosening of the trochospiral coiling 
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mode. Each of these components of variation is 
also present in the uniform shape space of the pre- 
disturbance sample, but here they are arranged in 
such a way as to always link test expan- 
sion/compression and lateral translation along the 
major axes of shape variability. Similarities 
between these two samples do exist, however, in the 
relative amount of shape variability accounted for 
by each of the two uniform shape deformational 
axes. 

Principal warps of the "bending-energy" 
matrix for pre-disturbance and post-disturbance 
samples are given in Table 2. These represent 
mutually orthogonal non-uniform aspects of the 
observed shape variation ordered in terms of their 
localizability. Principal warps with high bending 
energies, as measured by their respective eigenval- 
ues (e.g., 28.523 and 25.248 for pre-disturbance and 
post-disturbance samples, respectively), exhibit a 
strong contrast between very high and very low 
loadings with relatively high loadings occurring at 
landmarks that are grouped closely together in such 
a way as to define a very localized region of the 
form (i.e., landmarks 4, 5, and 6, which together 
define the umbilical area of the test). These first 
few principal warps represent patterns of variation 
occurring between landmarks in these localized 
regions that are quite pronounced, thus reflecting 
the presence of substantial bends in the thin plate 
spline at these locations. 

On the other hand, principal warps of rela- 
tively low bending energy (e.g., 0.628 and 0.715 for 
pre-disturbance and post-disturbance samples 
respectively) exhibit a markedly lower degree of 
contrast between relatively high and relatively low 
loadings on the landmarks themselves reflecting the 
fact that these warps represent non-uniform aspects 
of morphologic variation that have a broader effect 
on the form as a whole. In both samples, the last 
three principal warps (warps 9, 10 and l l ) ,  repre- 
senting the most global aspects of non-uniform 
shape variability, had no bending energy 
(eigenvalue = 0.0), and so describe uniform tilts of 
the thin plate spline that have already been ana- 

I Measured Points (1 l) RSS Distances (21) 

Pre-Disturbance RSS Shape 
Size Class Similarity Index 

1 .301 
2 .362 
3 .303 
4 ,332 
5 .325 
6 ,553 
7 .749 
8 ,311 

Figure 5. Upper figures: positions of the 11 landmarks and 
21 interlandmark distances used to measure shape similarity 
between the post-disturbance mean shape and the mean 
shapes of eight pre-disturbance size classes. Lower table: 
Root-sum-of-squares shape similarity indices for the 
comparison of post-disturbance mean shape with mean 
shapes for each of the eight pre-disturbance size classes (see 
text for discussion). 

lyzed (by a slightly different method) in the preced- 
ing section. 

Diagrams of the two most global non- 
uniform principal warps for pre-disturbance and 
post-disturbance datasets are shown in Figure 7. 
From these diagrams it is evident that the patterns 
of landmark displacement represented by these 
non-uniform but relatively global principal warps 
are similar for both samples. The left-to-right 
pattern of landmark displacements represented by 
principal warp 8 corresponds to a form of purely 
inhomogeneous shape change: the "square-to-kite" 
transformation diagrammed in Figure 8. This type 
of deformation carries no biological information in 
terms of energy-normalized variance and is best 
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regarded as a type of analytical artifact possibly 

Pre-Disturbance Sample I 

I 
Un~lorm Factor 1 (A = 60.09%) 

Post-Disturbance Sample 

L 

Un~forrn Factor 1 (A = 69.37%) 

Figure 6. Graphical summary of the two uniform modes of 
shape deformation for pre-disturbance and post-disturbance 
landmark data. Stippled figures in the middle of each plot 
represents mean configurations of the landmark shape 
coordinates. Dots rcprcscnt mean shapc coordinate configu- 
rations for each diagram and arrows represent directions and 
relative magnitucics of the uniform shapc deformations. 
Polygons drawn at the tips of the arrows show the effect of 

the uniform deformation on the mean shapc. values indi- 
cate how much relative shape variability is represented by 
t,nrh ~ ~ n i f o r m  ctcform:rtion;rl axis. 

resulting from non-correspondence (due to non- 
homology) of large numbers of the landmark loca- 
tions between forms and the coincidental approxi- 
mation of landmarks 1, 2 and 3 to a right triangle. 

Interpretation of the second most global 
principal warp (Figure 7) is more straightforward, 
however, and in both samples represents a 
markedly non-uniform radial expansion of land- 
mark locations that is more pronounced in the 
region of the penultimate and ante-penultimate 
chambers than it is in the region of the ultimate 
chamber (though the absolute magnitude of shape 
coordinate variability is dependent on baseline 
placement, the relative variability in the location of 
non-baseline shape coordinates is independent of 

Tahle 2. Principal Warps. 
Pre-Disturhancc Sample 

Land- 
mark 1 2 3 4 5 6 7 8 
Points 

1 432 ,037 -.I05 .I92 -.&l -.468 354 .060 
2 ,038 -.035 -.498 -.246 -.244 -.I26 -So9 .I18 
3 ,008 .024 ,134 -.005 .302 .468 .I85 .431 
4 -.539 -.592 -.072 ,123 ,009 ,189 .054 -.454 
5 -.MI ,129 ,728 .270 -.o94 -.248 -.232 .071 
6 ,796 -.I37 -.021 ,083 ,021 ,209 .065 -.44 
7 -.013 -.017 -.2.% . ,409 -.3% .501 .lo8 
8 -.030 -.055 ,189 -.390 -527 ,344 .I99 ,273 
9 - 2 6 1  .7(h -.I52 -.I04 ,074 ,179 .OX3 -.416 
10 .oOO .023 -.I73 ,571 ,102 ,135 - . a 8  .324 
11 .031 -.I43 .207 -.561 ,409 -336 .249 .002 

Eigen 28.527 13.931 6.124 4.337 2.636 1.063 ,946 .6W 
-value 

Post-Disturbancc Sample 
Land- 
mark 1 2 3 4 5 6 7 8 
Points 

1 ,021 .041 -.I49 ,215 - . a 1  - . a 5  ,339 -.I12 
2 ,041 -.016 -.455 -.298 -.234 -.416 -.516 -.098 
3 ,011 .021 ,137 ,005 ,264 ,516 .I71 -38.5 
4 -.475 -639 -.I11 ,110 .022 ,150 ,671 ,470 
5 ,073 ,094 ,681 ,382 -.055 -.277 -.200 ,054 
6 .809 -.a58 -.OX3 ,089 .003 .I75 .085 ,450 
7 -.012 -.011 -.248 -.016 .388 -.261 .525 -.253 
8 -.045 -.a55 .230 -.304 -.584 .368 ,125 -.255 
9 -329 ,746 -.I18 -.I02 ,064 ,149 ,048 ,429 
10 -.001 ,013 -.233 .505 ,195 ,132 -.454 -.MI 
11 .053 -.I33 ,304 -.585 ,379 -323 -.I95 ,002 

Eigen 25.248 17.360 6.488 4.944 3.001 1.089 1.054 ,715 
-value 



Macleod, N. and J. A. Kitchell 

this arbitrary decision). The type of deformational 
mode represented by principal warp 7 has been 
identified (Rookstein, in press) as a special case of 
the quadratic transformation and is diagrammed for 
a simple shape in Figure 8. 

Another way of summarizing information on 
non-uniform aspects of shape variability is through 
the calculation and analysis of relative eigenvectors. 
Relative eigenvector analysis produces combina- 
tions of shape coordinates that partition observed 
variances in l and~~ia rk  position into a series of 
mutually orthogonal components that account for 
progressively srnriller aspects of variation in Iand- 
mark location weighted by the warping energy (the 
eigenvalues of Table 2, see Bookstein 198%). Con- 
seq~~ently,  relative eigenvectors are re-expressions 
of the principal warps ordered in such a way as to 
rank the deformations in terrns of tlie greatest vari- 
ance represerlted by the warps relative to the 
geometric scale over which these deformations take 
place. 

For both pre-disturbance and post-distur- 
bance samples, two relative eigenvectors account 
for approximately nine-tenths of the observed rela- 
tive bending energy, and the orientations of these 
two relative eigenvectors for each of the non- 
constrained landmark locations are shown in Figure 
9. Interpretlition of this figure is clrirified by 
comparing it with Figure 3. The relative eigenvec- 
tors are the principal directions of each non- 
constrained landmark's distribution in shape space. 
Similarly, comparing Figures 7 and 0, it can be seen 
that the first relative eigenvector is closely aligned 
with the second principal warp and represents the 
non-uniform inflation (or deflation) of three 
chambers comprising the final whorl along with a 
slight translation of the umbilicril area. The second 
relative eigenvector is a bit more difficult to charac- 
terize, but appears, once again, to be related to 
relative differences in the tightness of the ultimate 
whorl's trochospiral coil. 

Pre-Distubnce Sample 

I Principal Warp 8 (1 = 1 .I%) I 
I Post-Disturbance Sample I 

Principal Warp 8 (A = 1.2%) 

Figure 7. Graphical summary of the two most global princi- 
pal warps (non-uniform modes of shape deformation) for 
prc-disturbance and post-disturbance landmark data. Stip- 
pled figures in the middle of each plot represent mean 
configurations of landmark shape coordinates. Dots repre- 
sent mean shape coordinate configurations for each diagram, 
and arrows rcprescnt directions and relative magnitudes of 
the non-uniform shape deformations. Polygons drawn at the 
tips of the arrows show the effect of the uniform deformation 
on the mcan shape. X values indicate how much relative 
shape variability is represented by each non-uniform defor- 
mational axis. 
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Discussion 

The data analyzed in this study were drawn from a 
larger database that incorporated measurements of 
morphologic variation in S. linupcrtu at  15 middle 
and late Eocene intervals at DSDP Site 612 and 
(partially) analyzed using a set of more traditional 
multivariate morphometric techniques (MacLeod et  
al., submitted). This prior analysis employed 
distances between landmark points located on the 
test surface in such a way as to summarize the 
major aspects of geometric variability in all 3 
dimensions as the primary morphologic descriptors 
rather than the landmark points themselves. There- 
fore, comparison of the results of these two differ- 
ent approaches t o  morphometric analysis should 
indicate areas of commonality and distinction, as 
well as providing an external check on the validity 
of the conclusions derived from the earlier investi- 

Principal Warp 8 
(Inhomogeneous Deformation: Square-to-Kite) 

Principal Warp 7 
(Quadratic Expansion) 

4 

gation. However, the results of this study are both 
conceptually and computationally independent of 
those that derive from the earlier investigation and 
should be evaluated in and of themselves (see 
Results). 

With respect to the analyses of test size, the 
centroid size index seemed to yield consistently 
lower estimates of the relative difference between 
individual specimens than did the PC-1 score (the 
size estimate used in the previous study), perhaps 
suggesting that centroid size is a more conservative 
size estimator. Nevertheless, centroid size should 
be highly correlated with a number of multivariate 
size indices. For the S. Iinuperta data, depending on 
which set of interlandmark distances were chosen 
for analysis, correlations between centroid size and 
score on the first principal component of the 
covariance matrix of log-transformed interlandmark 
distances were found to be  as high as 0.96. 

In the context of any analysis that seeks to 
evaluate changes in the pattern of ontogenetic 
development, the careful separation of organismal 
size from organismal shape is of the utmost impor- 
tance, especially for the recognition of the various 
types of heterochrony (Alberch et  al. 1979; Tissot, 
1988a,b). Though the distinctions between the 
various types of heterochronous variation in terms 
of patterns of variability in body size and body 
shape are clear, the relevant comparisons between 
ancestor and descendent phenotypes are often diffi- 
cult to make with certainty because of the widely 
divergent and oftentimes non-comparable estimates 
of "size" and "shape" that are currently employed in 
the field of morphometrics (see Bookstein, 1989a). 
The centroid size index and the simple, yet power- 
ful, shape coordinate transformation can be used to 
bring much needed standardization to the practice 
of estimating size and shape which can, in turn, be 
easily accommodated within the conceptual frame- 
work of developmental heterochrony. 

I JI I In the case of the comparison of pre- and 
Figure 8. Dominant modes of shape variation (expressed as 
a dcforma~ion) identified hy the principal warp analysis 
(eigcnannlysis of the hending energy rn;~trix). See text for 
Ai<c~~<<il>n 

post-disturbance S. linuperta populations, the exis- 
tence of variations in the mean test shape of differ- 
ent size classes is easily documented by direct 
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comparison of shape coordinate plots, as is the 
overall similarity in the shape of the post- 
disturbance populations with respect to the smaller 
size classes of the pre-disturbance sample. These 
results strongly imply that adult post-disturbance 
individuals exhibit test sizes and shapes that have 
been juvenilized, relative to their pre-disturbance, 
middle Eocene ancestors, a developmental 
phenomenon known as progenetic dwarfing (Gould, 
1977; Alberch et al., 1979; McNamara, 1986). 
Though this mode of developmental heterochrony 
was also recognized in the prior analysis of the 
interlandmark distance data, the method illustrated 
in this paper represents a computationally indepen- 
dent (and much more efficient) way of achieving 
the same result. 

Analysis of allometry using the landmark- 
based multiple regression of centroid size (+) on 
the non-baseline shape coordinates failed to detect 
any statistically significant pattern of linear allome- 
try in either of these two samples. Despite the fact 
that previous multivariate analysis did detect a 
small, but statistically significant, allometric trend 
in the pooled data from all 15 different middle and 
late Eocene intervals at this locality, this trend is 
very subtle and, given the relatively small sample 
sizes used in this analysis, it is not surprising to see 
that the landmark-based technique did not reveal 
its presence (although it should be noted that the F- 
ratio for the post-disturbance sample is quite close 
to significance at the 5% level). 

However, given these cornparabilities with 
more traditional morphometric methods, the real 
significance of the landmark-based morphometric 
methods lies in the fact that, through their use, 
important patterns of morphometric variability 
other than size quantification, gross shape similar- 
ity, and allometry can be studied in a systematic 
manner. While allometry is most often employed to 
analyze the global scaling of size and shape vari- 
ability, it must be acknowledged that oftentimes 
highly localized patterns of morphologic variation 
within a form can be as informative (perhaps even 
more informative) than strictly global patterns for 

I Pre-Disturbance Sample 1 

- 
Z 
lo 
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X 
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Relative Eigenvector 1 (li = 65.4%) 

Post-Disturbance Sample 

Relat~ve E~genveclor 1 (li = 55.3%) 

Figure 9. Graphicdl summary of the two dominant relative 
eigenvectors (non-uniform modes of shape deformation 
wcighted by the relative scale over which the deformations 
arc taking place) for pre-disturbance and post-disturbance 
landmark data. Stippled figures in the middle of each plot 
represent mean configurations of the landmark shape coor- 
dinates. Dots represent mean shape coordinate configura- 
tions for each diagram, and arrows represent directions and 
relative magnitudes of the non-uniform shape deformations. 
Polygons drawn at the tips of the arrows show the effect of 
the non-uniform deformation on the mean shape. X values 
indicate how much relative shape variability is represented 
by each non-uniform dcformational axis. 
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many types of systematic investigations. For 
example, from the S. litlrrpcrtu data it is clear from 
the comparison of the mean positions of non- 
baseline shape coordinates, as well as from the 
r e s~~ l t s  of the ~~n i fo rn i  and non-uniform shape anal- 
yses, that a large amount of sli:~pe variability is 
conncctetl to the relative location of the urnbilical 
area (points 4, 6 and 9). 'I'his result was totally 
unexpected and had been completely overlooked in 
the previous s t ~ ~ d y  owing to the fact that no distance 
meliaurernents between the landmark points that 
defined the umbilical area were collected even 
though these sarne points were used to determine 
interl:~nclm:~rk clist:inccs representing the semi- 
rmajor axes for each of the three chambers. 

Another instrince of the importance of 
regional patterns of variation to tlie interpretation 
of rnorphometric variability can be illustrated hy a 
clow look at the rnorpIiornetric\ of the ultirnate 
chamber in the S. lirzcrpcrtu data. A nurnber of f o \ d  
and modcrn pllinktic foraminifera1 ttwa often 
exliihit an ultimate charnber that is reduced in size 
relative to the preceding penulrirn:itc charnber, and 
intlividuals have been collectively referred to as 
"kurrlmerfor~n" morptiotypcs of their respective 
species (Berger, 1009). In the only quantitative 
analysis of tlie kurnrncrform phenomenon to date, 
Olsson (107 1, 1073) has shown that retluctions in 
the r~pparent size of successive chambers in 
troctiospirally coiled planktic foraminifera1 tests can 
begin prior to ultimate charnher forrnation and that 
kummerform morphotypes seem to appear only 
after a more-or-less fixed number of chamber 
whorls have been added to the test (e.g., 1000" of 
whorl in tlie modern species Glohogcrina prtcly- 
d(,rniu). Also, in rare instances, kummerforrn whorl 
reduction may proceed in such a way as to be 
maximally expressed in either the penultimate or 
ante-penultimate charnhers with the ultimate 
chamber exhibiting a slightly larger size. 

The kumrnerforrn phenomenon can be the 
result of i) an actual clccrease in the ahsolute si7e of 
the ~ ~ l t i m a t e  chamber or cllanibcr series, ii) a 
change in the nature of the coiling parameters for 

the ultimate chamber or chamber series resulting in 
an apparent change in chamber size when the test is 
viewed in certain orientations (e.g., plan view of the 
spiral side), or  iii) some combination of the two. 
Unfortunately, Olsson's method of test orientation 
and measurement does not allow for the effective 
separation of these two alternative sources of mor- 
phological variation. On the other hand, Olsson's 
plots of the apparent sizes of successive chambers 
for 2 1 kummerform morphotypes (Olsson, 197 1: 
Figure 9) do show that, owing to the fact that the 
hummerform phenomenon usually affects a rela- 
tively small part of the overall test, this aspect of 
morphologic variation can easily be missed in the 
application of many traditional morphometric 
techniques (i.e., univariate or multivariate allome- 
try) that focus on global linear trends. It would 
seem that principal warp and relative eigenvector 
analysic, would be ideally suited to the study of such 
non-l~near morphologic phenomena. 

I n  the S. linuperta data, it is tempting to 
consider a kummerform interpretation for principal 
warp 7 and relative eigenvector 1 which indicate 
that a relatively larger amount of shape variability 
is present at  landmarks 7 (penultimate chamber) 
and 10 (ante-penultimate chamber) than at  land- 
mark .? (ultimate chamher), all of which are roughly 
equivalent in terms of overall chamber geometry. 
Taking one of the trends represented by principal 
warp 7 and relative eigenvector 1 to its logical 
extreme, there is no doubt that kummerform 
phenotypes would result. However, the operative 
question in these data is whether or  not the actual 
scale (rather than the relative scale) of the land- 
mark point locations is such that the term kummer- 
form, in its traditional sense, can be applied to any 
of these phenotypes. 

In order to evaluate this question, simple 
calculations of centroid size and aspect ratios for 
the ultimate, penultimate, and ante-penultimate 
chambers for each individual in both pre- 
disturbance and post-disturbance samples were 
rnade to determine i) whether or not the apparent 
s i x  of the ultimate chamber decreased relative to 
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Table 3. Centroid s i x  and aspect ratios. 

Prc-Disturbance Sample 
Ultimate Penultinate Antc- 
Chamber Chambcr penultimate 

Chamber 
Centroid 

* 
Size : Mean 5.230 4.418 3.900 

Std. Dcv. 1.043 ,930 ,863 
O/o of 
Ullimatc 
Chamber : Mean 84.5 74.6 

Std. Dcv. 9.0 9.5 
Aspect 
Rat io :  Mean ,677 ,775 ,781 

Sld. Dcv ,060 ,080 ,084 
Post-Disturbance Sample 

Ultimate Penultimate Ante- 
Chamber Chamber penultimate 

Chamber 
Centroid 

* Mean 
S i x  : 3.906 3.066 2.M6 

Std. Dev. 668  ,560 ,408 
C/, of 
Ultimate 
Chamber : Mean 78.5 68.3 

Srd. Dev. 7.9 8.3 
Aspect 
Rat io :  Mean .656 .743 ,774 

Std. Dcv. ,070 ,078 ,104 
* 

Centroid Size = 6 

the penultimate or ante-penultimate chambers, and 
ii) whether or not the apparent decrease in shape 
variability at landmark 7 corresponds to change in 
ultimate chamber shape relative to the shapes of 
the preceding two chambers. Results are presented 
in Table 3. Compared with the ultimate chamber, 
the relative sizes of the penultimate and anre- 
penultimate chambers are actually larger in the pre- 
disturbance samples, indicating that there may be 
less interchamber differentiation in the pre- 
disturbance middle Eocene populations. On the 
other hand, the overall ellipticity of the ultimate 
chamber in both samples is much greater than the 
ellipticity of either the penultimate or ante- 
penultimate chambers, no doubt reflecting the fact 
that only a portion of these chambers is exposed. 
But, comparison of the aspect ratios for the ulti- 
mate chamber in each sample shows that during the 

studied interval, late Eocene post-disturbance 
populations may have exhibited a slightly more 
elliptical ultimate chamber than their middle 
Eocene pre-disturbance ancestors. From these 
data, it is clear that principal warp 7 and relative 
eigenvector 1 are describing the greater ellipticity 
of the ultimate chamber in both samples that arises 
from a combination of an  apparent radial compres- 
sion of the chamber itself about a line tangent to 
the trochospiral coil, along with the pattern of 
overlap of the ultimate (and penultimate) chamber 
onto the penultimate (and ante-penultimate) 
chamber that results in the external expression of 
these chambers being much closer to a sphere than 
it actually is. 

In short, on the basis of the morphometric 
data, the predominant non-linear trend in the S .  
linaperta skeletal phenotype cannot be interpreted 
as a manifestation of a kummerform morphotype. 
Indeed, given the definition of this species, it is 
difficult to believe that a kummerform individual 
would be identified as such and not placed into a 
wholly different taxon. Needless to say, no kum- 
merform S. linaperta have ever been reported and it 
is our impression that kummerform morphotypes as 
a whole are much rarer in the Paleogene planktic 
foraminifera] fauna than they are in the Neogene. 
Nevertheless, the kummerform phenomenon repre- 
sents but one of many different types of non-linear 
morphologic variations in planktic foraminifera that 
could be effectively studied within the general 
framework of an exclusively landmark-based mor- 
phometrics. 

Conclusions 

The term "evolutionary inference" refers both to 
causal explanations of observed patterns of evolu- 
tion and to phylogenetic relationships within and 
between groups. Morphometrics provides a quanti- 
tative means of redescribing biological shapes and 
their deformations in the economical language of 
mathematics. In this analysis of populations of S. 
linaperta separated by an environmental distur- 
bance, patterns of variation have been summarized 
through the exclusive use of landmark-based tech- 
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niques. Results obtained indicate that while the 
size class distribution characterizing the post- 
disturbance population (as measured by the 
centroid size index) is markedly truncated, the 
mean test shape exhibited by the smaller, post- 
disturbance sample is very similar to mean shapes 
of pre-disturbance specimens of a roughly corre- 
sponding size class. This strongly corroborates our 
previous suggestion that heterochronic variation in 
the developmental programs of individuals compris- 
ing these two populations has occurred. 

Aside from this marked reduction in the size 
of sexually mature adults between the \ampled 
intervals that has been accompanied by a corre- 
sponding change in test shape, landmark-baqed 
shape analyses have revealed patterns of morpho- 
logical 5imilarity and difference that were not 
clearly delineated in our prior investigation. Analy- 
ses of uniform aspects of morphologic variation 
indicate that, while similar modes of shape varia- 
tion (uniform patterns of test expansion/ 
contraction versus the uniform right-to-left/left-to- 
right translation of non-baxline landmark\) are 
present within both sample\, the mixture of these 
two patterns of variation before and after the inter- 
val of environmental disturbance is quite different. 
Overall patterns of non-uniform morphornetric 
variation among measured landmarks can be 
attributed to at  least two  mode^ of geometric 
deformation: a "square-to-kite" transformation 
indicative of purely inhomogeneous shape trans- 
formation that probably results from a degree of 
non-correspondence in landmark locations between 
specimens, and a slightly asymmetric radial expan- 
sion that may be characterized as the geometric 
manifestation of a form of quadratic expansion. 
When these non-uniform deform:itional modes are 
weighted by their geometric scale, the quadratic 
inflation of the last three chambers of the ultimate 
whorl dominates the pattern of shape variation by 
accounting for over 50% of the observed non- 
uniform shape variability in each sample. Also, a 
subordinate mode of shape deformation was iden- 
tified that appears to be related to the tightness of 
the trochospiral coil. Lastly, although these results, 

derived from a 2-dimensional sampling of the 
foraminiferal test morphology, appear to confirm 
those obtained using a more traditional multivari- 
ate morphometric approach to analyze interland- 
mark distance data collected in all three dimen- 
sions, this should not be interpreted as indicating 
that we regard 2-dimensional data collection 
strategies as sufficient for most foraminifera1 mor- 
phometric investigations; only that dimensional 
inter-relationships for this particular species appear 
to be exceptionally well-behaved. 

Blackstone (1987a,b) has argued that 
primarily descriptive approaches to the study of 
sizelshape changes must be tied to causal models of 
potential sizelshape change, and that developmen- 
tal processes should not be ignored since evolution- 
ary processes may have been expressed through 
changes in the pattern of ontogenetic development. 
Certainly, routine determinations of size and shape 
statistics, devoid of any understanding of the impli- 
cations that alternative process-oriented hypotheses 
hold for the interpretation of observed patterns, 
would be inappropriate. Although morphometrics 
provides an economical description of form and its 
transformation, one must be wary of confusing a 
geon~etric series of form transformations that either 
minilnizes or maximizes some abstract mathemati- 
cal property of the data with a form series gener- 
ated by biologically causal processes. 

In addition to these matters, several aspects 
of morphometric analysis need further considera- 
tion, particularly in dealing with characterization 
and evaluation of inter-specific patterns of varia- 
tion. One is that the general method of morpho- 
metrics reduce$, for the purpose of analysis, homol- 
ogous parts of organisms to points. Although 
homology of parts may be established, this is not 
necessarily equivalent to having established homol- 
ogy of points. Also, in some methods, the land- 
marks are fixed for the purpose of analysis. More 
biologically meaningful methods allow deformation 
of the position of landmarks as well (see Bookstein 
198% for an example). Finally, though synonymiz- 
ing relative degrees of geometric deformation with 
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indices of evolutionary dissimilarity cannot be 
supported as a general assertion, the economy of 
description afforded by morphometrics and its 
potential to summarize biologically and evolution- 
arily relevant patterns nevertheless provide power- 
ful tools for the study of the evolutionary process. 
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Abstract are supported while others can be rejected. In this 

Marine plant limpets have distinctive shell aper- 
tures with parallel lateral margins because apertu- 
ral width is constrained by the width of the host 
plant's leaf. This study was conducted to determine 
if morphometric studies can be useful in determin- 
ing niorphological boundaries between extinct 
marine plant limpet species. Morphological 
patterns prescnt in the living species, Lottia rr1vcu.s 
and Tccturu dcpictu, are coritrasted with patterns 
present in four nominal species from the Eocene of 
the Paris Basin, France; Prrtc~lloidn ctrc,nrrrirl.r, Pcltcl- 
loi(1~ elongutu, Putelloi(1u concuvus and Putelloirla 
j~yrunzidalc. Comparison is made of data sets 
obtained with vernier calipers and the video 
acquisition system MorphoSys, and between analyt- 
ical procedures, including principal component 
analysis, sheared-principal component analysis, 
principal component analysis using the Burnaby 
method, generalized least-squares antilysis, ant1 a 
modification of F. Bookstein's ~ ~ n i f o r m  versus non-  
uniform shape change analysis. Different analyses 
produce different taxa groupings and the use of as 
many different procedures as possible to explore 
the data appears useful. When the results of differ- 
ent analyses are viewed in light of biological and 
ecological knowledge of extant species some results 

5tudy the grouping present in the principal compo- 
nent analysis (P. urr~rzarius, 1'. pymnziticrle and P. 
concuvurlf'. <clongutu) wa5 rejected and the group- 
ing sugge5ted in the least-squares and uniformlnon- 
uniform shape analyse5 (P. concuvu.~, P. eiongutu 
and P. urc.nuri~r\/P. pyruv~iclul<~) was supported. 

Introduction 

I'atellogastropods or "limpets" are gastropod 
molluscs with cap-shaped or conical shells. They 
are found in rnost oceans of the world and live on 
firm substrata such as rocks, other invertebrates, 
and marine algae and angiosperms. This paper 
concerns limpets that live or are thought to have 
lived on marine angiosperms. 

1,impets are improbable candidates for 
morphometric s t ~ ~ d i e s  hecause their shells are 
simple concs with little morphological relief. 
Species distinctions are most often made on soft- 
part criteria, and morphological boundaries 
between species may become ambiguous due to 
phenotypic plasticity (Lindberg, 1988). I Iowever, 
morphometric studies may be of value in describing 
morphological variation within extant species, and 
in those trua where morphological variation is 
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Figure 1. Marine plant limpet landmarks and species used 
in this study. a) Landmarks and distance measurements. 
1,) L o ~ i a  alr.cl~s (Conrad) Holocene extinction, Northwest- 
ern Atlantic; extant Northcastcrn Pacific. c )  Patelloida 
arctianus (Deshayes), d) Pulclloidu cot~cavus (Deshayes), e) 
Putelloida elortgala (Larnarck). f)Parelloido pyrutnirlale 
(Cossmann). c - f) Eoccnc, Paris Basin, France. Thc 
distance nlcasurc for vnriahle I is AB, 2 - CC', 3 - BD, 4 - 
BC, 5 - BC', 6 - AC, 7 - AC', 8 - CD, and 9 - C'D. The 
liniform shape change is AB:CC', and the non-uniform 
shape change is AD:BD. 

constrained, typically by limitations of the substra- 
tum to which the limpets are attached. Moreover, 
for many fossil species gross shell morphology is all 
that remains, and morphometric studies may 
provide the only means by which these taxa can be 
incorporated into a phylogenetic framework. 

Extant marine plant limpets are readily 
recognized by their distinctive shell shape which 
typically features parallel lateral shell margins and 
elevated anterior and posterior regions of the 
aperture (Figure 1). This results because apertural 
uidth cannot exceed the width of the plant's leaf. 
Because of this constraint, fossil limpets showing 
this morphology are assumed to have lived on 
marine angiosperms. h4any extant marine plants 
show ecophenotypic plasticity (den Hartog, 1970), 
and often the range o f  apertural variation present 
within a marine plant limpet species is determined 

by the variation present within the host plant 
species (Lindberg, 1982). Therefore, ecophenotypic 
variation in the plant host may produce ambiguous 
limpet species boundaries defined strictly on shell- 
shape criteria. For example, in the extant species 
Tectura depicta (Hinds) plots of width on length 
suggest three distinct taxa while plots of length on 
height suggest only a single taxon (Figure 2). It is 
also possible that a single species of marine plant 
limpet could occur on several different marine 
plant species thereby producing similar non- 
overlapping variation in apertural morphology. 

In this study, I examine morphometric 
patterns present in an extant species to assess the 
amount of intraspecific variation, and then compare 
these patterns to those present in fossil taxa. 
Because the workshop made available numerous 
data acquisition techniques and analytical proce- 
dures, I have compared techniques and procedures 
using the same specimen data set. Data acquisition 
comparisons are made between vernier caliper and 
a video system, and comparisons of analytical 
procedures include three flavors of principal com- 
ponent analyses, generalized least-squares analysis, 
and a modification of F. Bookstein's uniform versus 
non-uniform shape change analysis. 

Materials and Methods 

Taxa 

Marine plant limpets have evolved in at  least three 
clades. In the family Lottiidae, extant taxa are 
found in the genera Patelloida, Proscuturn, Loftia, 
and Tectura (Figure 3). Furthermore, an  extensive 
radiation of marine plant limpets, unequaled in the 
Holocene, occurred during the Eocene in the Paris 
Basin of France. Eighteen nominal species of 
marine plant limpets have been described from this 
fauna (Cossmann & Pissarro, 1913). 

This study focuses on four of the eighteen 
nominal species that have been described from the 
Eocene of the Paris Basin, Patelloida arenarizu 
(Deshayes), P. concavus (Deshayes), P. elongata 
(Lamarck), and P. pyramidale (Cossmann). The 



Chapter 15. Marine Plant Limpets 303 

Holocene species Lottiu rill~crrs 
(Conrad) was also included in this 
study to estimate intraspecific varia- 
tion present in a marine plant 
species. 

Data Acquisition 

Five landmarks were used (Figure 
I) ,  and the X, Y coordinates of these 
landmarks were determined by the 
MorphoSys video data acquisition 
system. Only apex position (D in 
Figure 1) is homologous between 
specimens; the remaining four land- 
marks are positional or geornetric:ll 
landmarks and their homology 
between specimens is not known. I n  
adclition, nine distance measure- 
ments (Figure 1) between these 
landmarks were gathered with both 
vernier calipers (to the nearest 0.01 
mm.) and with the hlorphosys 
system. Sixteen damaged specimens 
measured in the caliper study were 
not used with the MorphoSys data 
system because the higher resolution 
of the video system made locating 
landmarks too arbitrary. 

Morphometrics 
men until they superimpose as well as possible on 

Standard principal component analyses the consensus form of the entire data set. Book- 
(PCA, sheared-PCA, and PCA using the Burnaby stein's PROJECT program uses two of the land- 
method) were calculated from the distance data marks for the construction of a baseline along 
using the SMEAR and BURNABY programs which the comparisons of specimens are scaled and 
provided hy L. Marcus. These programs report the mean shifts of the remaining landmarks calculated. 
results of a standard PCA before attempting to In the marine plant limpet data the high degree of 
remove size from the data. symmetry of the few remaining landmarks (only 2-3 

Landmark data were analyzed points were available after the baseline was desig- 

with J ,  Rohlf and GRF using a nated) produced results that were difficult to inter- 

least-squares fit analysis with a consensus f o r ~ n  pret. However, F. Bookstein (pers. comm.) pointed 

(C;ower's generalized Procrustes Inelhod) and F, Ou t  that the formed the landmarks 

Bookstein's program PROJECT. The least-squares be using two ratios: ( I )  

fit method scales the different specimens, and then AB:CC1, and (2) AD:BD (Figure 1). The first ratio 

rotates and translates the  landmarks each speci- contains information about the uniform shape 
change (spatially constant deformations), while the 
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Figure 2. Scalter plot and fitted regression lines of lcngth on a) width and b) 
height for  thrcc ccophcnotypcs ofthe marine plant limpet Teciltra depicfa. R" 
values: a) o = 3055, 1 = 3113, = ,8586; h) = .8C62. Reprinted with 
perrnis\ion from Bull. So. Calif. Acad. Sci., 81(2), 1082. 
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asymmetry in apex position. dard principal components (Tables 1-4)]. Principal 

Because the three PCAs produced identical 
coefficients for the individual PC eigenvectors only 
the results of the standard PCA are figured and 
discussed here. In all three analyses, the first prin- 
cipal component appears to be a size component: 
all the coefficients are positive and range between 
0.40 and 0.26 for the L. alve~rs data set, and between 
0.47 and 0.29 for the Paris Basin data set. These 
values were reduced to between -0.02 and 0.02 
when size was removed with the Burnaby method. 
The remaining principal component eigenvectors 
were composed of both positive and negative scores 
and represent mostly shape [shearing and the 
Burnaby method produced little change to the stan- 

0.00 -I 
0 5 10 15 20 

Non-Uniform Shape Change 

Non-Uniform Shape Change 
Figure 4. Scatter plot of uniform versus non-uniform shape 
changc values for four nominal species of marine plant 
limpcts from the Eocene of the Paris Basin. a) Data 
gathered with vernier calipers to the nearest 0.01 mm. 11) 

Data gathered with the MorphoSys video imaging system. 
Open symbols: = Patelloida are~tarilrs, o = P.cor~cor~~s ,  
V = P. elor~gata, A = P. pjrart~idalc. Solid symbols = 

components 2 and 3 accounted for only 7.5% of the 
initial variance in the L. alveus data set and 19.3% 
of the initial variance in the Paris Basin data set 
(Tables 3-4). However, principal components 2 and 
3 accounted for 90% of the remaining variance 
after size was removed in the L. alveus data set and 
92% of the remaining variance in the Paris Basin 
data set (Table 3).  For L. alveus there was no 
discernible pattern or segregation among either 
Atlantic or Pacific populations (Figure 6). In con- 
trast, the Paris Basin Eocene taxa showed three 
distinct groups, (1) P. arenunus, (2) P, pyramidale, 
and ( 3 )  P. concavus and P. elongata (Figure 7) .  In 

Table 3. Paris Basin Marine Plant Limpets: Eigenvalues o i  
total log-transformed covariance matrix. 

Eigcnvalues % Total Cumulative % 
Variance Total Variance 

Eigen- PCA Burnaby PCA Burnaby PCA Burnaby 
vectors 

- 

1 0.372 0.143 80.308 90.209 80.308 90.209 
2 0.073 0.012 15.735 7.322 96.043 97.531 
3 0.017 0.003 3.611 1.695 99.654 99.226 
4 0.001 0.001 .263 .5% 99.917 99.822 
5 0.000 0.000 ,062 ,134 99.979 99.955 
6 0.000 0.000 .017 .036 99.996 99.991 
7 0.004 0.000 ,004 ,009 100.000 100.000 
8 0.000 0.000 ,000 ,000 100.000 100.000 
9 0.000 0.000 ,000 .000 100.000 100.000 

1 

C) 

-1.0 -0.0 -0.8 -0.4 -0.2 0.0 0.2 0.4 0.6 

Coefficients for eigenvector PC2 
Figure 5. Scatter plot of coefficients for the eigenvectors of 
PC2 and PC3 of the nine distance measures used in the 
principal component analyses. o = standard principal 
component analysis, = sheared principal component 
analysis, and A = Burnaby method. See Figure 1 for 
legend to variables. 

u 0.6- 
a 0.5- 
5 0.4- 

0.3- 
a 0.2- 
t 0.1- ,- 

0.0 - 
$ -0.1- 
3 -0.2- 

-0.3- 
.- 
u -0.4- 
i? .;; -0.5- 
3 -0.8- 

9 2 8  a0 

B 5,4 

88 

g 7,6  
0 



306 David R.Lindberg 

this analysis, separation along the second principal 
component contrasts apex position (negative) with 
the three width measurements (positive) (Table 4). 
Separation of taxa along the third principal compo- 
nent was slight and contrasts three length 
measurements (negative) with the three width 
measurements (positive) (Table 4). 

The least-squares fit analysis (using the G R F  
program and methods described in Rohlf and Slice, 
1990) of the L. alveus data shows only slight 
intraspecific variation among the populations 
(Figure 8). However, the analysis of the Paris Basin 
Eocene taxa suggests several distinct groupings. 
The separation of these groups is primarily found in 

I Principal Component 2 I 
1 Figurc 6. Scatter plot of second and third principal I 

componcnt scorcs from analysis of scvcn populations of 
Loliia alveus. Opcn symbols = Atlantic populations: o = 

ANSP 39044, = ANSP 40962, A = ANSP 39046, V = 

ANSP 39047, 0 = ANSP 66767. Solid symbols = Pacific 
populations A = SBMNII 8940, V = SBMNH 6258. Sce 

Table 4. Paris Basin Marine Plant Limpets: Eigcnvcctors of 
total log-transformed covariance matrix. 

PC2 PC3 
Varia- PCA Shcarcd Burnaby PCA Shearcd Burnady 
blcs 

1 ,07814 ,08268 ,08278 -.41076 -.40212 -.MI88 
2 ,33693 ,34135 ,34107 ,35162 .36007 ,35952 
3 -.64188 -.63491 -63497 ,14324 .I5662 ,15644 
4 -.21676 -.21133 -.21096 ,01078 .02116 ,02185 
5 -.23776 -.23232 -.23225 ,01323 ,02364 .02376 
6 ,25394 ,25819 ,25831 -.46728 -.45923 -.45893 
7 ,24928 ,25352 ,25360 -.46334 -.45530 -.45509 
8 .3W02 ,40341 ,40335 ,38918 ,39757 ,39745 
9 ,2109 ,28554 ,28503 ,31992 ,32843 ,32745 

apex position and shell width (Figure 9). For apex 
position there appear to be three distinct groups 
relative to the consensus shape, (1) P. arenarius and 
P. pyramidale, (2) P. concuvus, and ( 3 )  P. elonguta. 
Separation is linear along the anterior-posterior 
axis of the shell. Shell width landmarks, relative to 
the consensus shape, divide the taxa into two 
groups, (1) P. arenanus, P. concavus, P. elongata, 
and (2) P, pyramidale. The horizontal separation of 
these groupings at the width landmarks is produced 
by the changing apex positions of the taxa; vertical 
separation results from changes in shell width rela- 
tive to length. 

The analysis of uniform and non-uniform 
shape changes produces groupings similar to those 
of the least-squares fit analyses. For L. alveus there 
are no discernible differences between the popula- 
tions (Figure 10). For the Paris Basin taxa, four 
distinct groupings are present. However, the four 
taxa are not randomly scattered relative to the axes. 
Instead, three taxa, P. arenarius, P. concavus, and P. 
elonguta, have similar mean uniform shape values 
and different non-uniform shape values, while P. 
arenarius and P, pyratnidale have similar mean non- 
uniform shape change values but different uniform 
shape change values (Figure 4b). 

Morphometrics 

The differences between the analyses using 
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Figure 7. Scatter plot of second and third principal compo- 
nents scores from analysis of four nominal species of 
marine plant limpet from the Eocene of the Paris Basin. 
See Figurc 4 for lcgcnd to symbols. 
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- - 

error in estimating apex position 
(BD in Figure 1) with calipers was 

distance data gathered with calipers 
versus a video system were surpris- 
ing. It was suspected that the video 
system would provide more accurate 
measurements than the caliper 
readings, but the apparent large 

C 

acquisition was necessary because 
geometric landmarks on these -- ' - '  

unsuspected. The large error asso- 
ciated with measuring apex position 
with calipers probably results be- 
cause there are no edges on which to 
place the calipers. Instead it is 
necessary to estimate the distance 
between the apex and anterior mar- 

gin with the aperture 
Figure 8. Least-squares fit of seven populations of Loitia alveus to their consen- 
sus form. A - C = landmarks from Figure 1. 

ria. Thus, while the use of a video system greatly 
speeds up data acquisition and provides greater 
accuracy, the higher resolution and smaller measur- 
ing point may reduce the number of specimens 
available for the analysis, especially when fossils are 
used. 

(Figure 1). 

The exclusion of sixteen 
specimens that were measured in the 
caliper study from the video data 

- 
specimens were chipped and missing. 
It was possible to locate and 
measure these specimens with the 
calipers because the 2 mm. width of 
the caliper blades smoothes over 
smaller irregularities along the 
aperture. However, magnified under 
the video system apertura] 

0.00 4 
0 2 4 6 6 1 0 1 2 1 1  

Non-Uniform Shape Change 

Figure 9. Least-squares fit of four nominal species of marine plant limpet from 
the Eocene of the Paris Basin. a) = Patelloida arerlarius, c) = P. concavus, e) = 

P. elotlga:a'a, p) = P. pyrat71idule. See Figure 8 for reference to landmarks. 

Figure 10. Scatter plot of mean uniform versus non- 
uniform shape change values for seven populations of 
Lotfia alve~rs. Open symbols = Atlantic populations, solid 
symbols = Pacific populations. See Figure 6 and Locality 
Register section for s~ecif ic  localities. 

irregularities are readily apparent. 
Moreover, the width of the measuring point, a 
single pixel, is only 10 pm wide (adjusted for the 
magnification used for these specimens with the 
MorphoSys system), 200 times smaller than the 
caliper blade. Combined, these two factors make 
recognition and placement of landmarks on slightly 
damaged specimens much more difficult with the 
video system and necessitates more rigorous crite- 
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The special procedures used to remove size 
from the PCA (sheared-PCA, the Burnaby method) 
had little affect on the marine plant limpet data 
sets. Most of the variation explained by principal 
component 1 is size-related and can be ignored. 
Shape information is mostly contained in principal 
component 2, with a little more pre5ent in principal 
component 3. 

All three of the niorphometric analyses 
(I'CA, least-scluares, uniforrn/non-unifortii) show 
little resolution among the populations of L. alveus 
(1;igurcs 6, 8 and 10). Ilowever, the different 
morphornetric analyses do not provide similar 
groupings of the nominal species from the Paris 
Basin. The YCA distinguishes three groups, P. arc,- 
ntlriri.~, 1'. pyrur?zidalc~, and the corn bi ned P. corrc~~vus 
and P. r~longc~tu. These groupings result mainly 
from differences in shell width and apex position. 
I'rrlolloirlu c~rcnarius and 1'. ,11yrur7~irlnlc> have more 
central apices, are narrower in witlth and are 
slightly asymmetric (the apex is closer to the left 
rnargi n )  than P. corzc~avu.~ or P. clongrltrr. P(~tc~l1oirlu 
c~otrcu~~u.~ and P. c~longata differ in apex position, but 
this difference is not strong enough to produce a 
sep:mtion in the PCA. 

Differences in apex position produce the 
largest and most striking distinction between three 
of the four norninal species in both the least- 
scluares and in the uniform/non-uniform shape 
change analyses. These analyses clearly separate P. 
cotlcu~~u.s and P. ehrzgutrr, while grouping I-'. rrrcTncrr- 
ills and P. pyrunzirlal~ (1;igures 4h and 9). The 
ape r t~~ra l  width differences also appear in both of 
these latter analyses, but do not appear to be 

Tal~lc 5. Marinc plant limpets in thc Paris Basin, Francc. 

greater or  overwhelm apex position differences as 
in the PCA. IIowever, which of these groupings 
best represents real, albeit extinct, species? 

Extant marine angiosperm limpet species 
are probably ephemeral. The planktonic larvae 
settle on young, newly emerging !eaves and grow as 
the leaf enlarges. Seasonal storms and leaf 
senescence destroys the habitat and new 
generations of leaves and limpets replace the 
previous ones. 

Three of the four nominal species show simi- 
lar proportional lengthlwidth growth parameters 
(represented by the uniform shape change vari- 
able), although maximum width differs among them 
(Figures I and 411). ?'his is not the case in P. pyra- 
r7li(lalc~. In this nominal species length increases are 
greater relative to width increases; compared to the 
other taxa, P. pyrumidale appears to reach maxi- 
mum width earlier and sub~equent  growth is only in 
length (Figure I la). 

Apex position, which is not affected by the 
constraints of a marine plant habitat as is aperture 
shape (and is described by the non-uniform shape 
change variable), suggests that P. pyramidale is 
identical to P. urer1uriu.s (Figures 9 and 4b). 
Geographic and stratigraphic evidence also associ- 
ates these two taxa. Of the four nominal species 
s t ~ ~ d i e d  here only P. pyrumidule and P. urenurius are 
found at  the same Lower Eocene locality; the other 
two species are known from Upper Eocene locali- 
ties (Table 5 and Locality Register). 

These data suggest that Patelloida 
pyruniirlulc~ and P. arerzarius may be two forms of a 
single species. Bivariate scatter plots of width on 

Spccics n Mer Lao Hcro (;oh Fay Bou <;ri Par Bor Dam I l o u  Hcr Auv Val Cro Bor Ver Gue Bra Scl 
P. urorurilrs 4 X X X X 
P corlcul~lrc 2 X X 
P ekjr~gutu 14 X X X X X  X X X X X X X X X X  
P. pvru~n~ciulc 1 X 
Tot,~l nurnhcr 1 1  2 1 4 1 X X 5 ? 2 2 1 1 1 1 1 2 1 1  
of \pcclcs 
rcportcd 
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length (Figure l l a )  and height on length (Figure groupings present in the PCA were rejected and 
I lb )  show morphological patterns similar to those those present in the least-squares and uniform/non- 
found in the extant species T. depicts (Figure 2). uniform shape analyses supported. 
Specimens of P. arenatius achieve greater widths 
than P. pyramidale at similar lengths (Figure l l a ) .  Acknowledgments 
However, there is no difference in height versus I thank K. warheit, D. ~ ~ ~ ~ i ~ ~ ~ ,  and J. ~ ~ h l f  for 
length relationships between the two species (heir criticism of the manuscript; C. ~~~~h~~ and 
(Figure l lb ) .  In T. depicts this Pattern results T. Duncan for making MorphoSys available to me 
because of ecophenotypic variation in the host plant for data acquisition; F. ~ ~ ~ k ~ ~ ~ i ~ ,  J. ~ ~ ~ ~ h ~ i ~ ~ ,  L, 
Zostera marina (Lindberg, 1982). 
When the plant lives intertidally its 
growth is stunted and its leaves are 
narrow. Limpets living on this form 
reflect the plant's narrow leaves in 
their apertural morphology. 

Subtidal and, likewise, plants the have limpets wider become leaves, 
wider at smaller lengths; intergrades 
between the forms of the plant are 
rare (den Hartog, 1970). Alterna- 
tively, there may have been two 
species of plants in the Paris Basin 
Lower Eocene with different width 
leaves and the taxa P. arerlarius and 
P. pj~ramidale represent a single 
species living on two distinct plants. 

Morphometric analyses of 
marine plant limpet species provide 
insights into questions of animal/ 
plant interactions, molluscan growth 
parameters and limpet systematics. 
These analyses make it possible to 
include fossil data which are often 
excluded from ecological and more 
recent systematic studies. Different 
analyses produce different patterns 
and the use of as many different pro- 
cedures as possible to explore the 
data appears useful. When the 
results of different morphological 
analyses are coupled with biological 
and ecological knowledge of extant 

results 
are supported while others can be 
rejected. In this study the taxa 
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Marcus, and J. Rohlf for providing compiled code Rohlf, F. J. and D. Slice. 1990. Extensions of the 
of their morphological analyses programs; G. Davis, Procrustes method for the optimal superimposi- 
F. Hochberg, and P. Scott for the loan of speci- tion of landmarks. Syst. Zool., 39:40-59. 
mens; and M. Taylor for preparing Figure 1. F. 
Bookstein, D. Eernisse, N. MacLeod, L. Marcus, Appendix: Locality Register 
and T. Pearce provided thoughtful discussions and Abbreviations used in the text are as follows: 
assistance during the workshop. I also wish to ANSP - Academy of Natural Sciences, Philadelphia, 
thank the workshop organizers, J. Kitchell, W. Fink, PA; SBMNH - Santa Barbara Museum of Natural 
and F. Bookstein, as well as D. Schindel, for their History, Santa Barbara, CA; UCMP - Museum of 
efforts and the opportunity to participate. Paleontology, University of California, Berkeley, 
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Comparative Ontogeny of Cranial Shape in Salamanders 
Using Resistant Fit Theta Rho Analysis 
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Abstract 

Ontogenetic and evolutionary cranial shape change 
among three transforming salamanders is studied 
using Resistant Fit Theta Rho Analysis (RFTRA; 
see Chapter 12 in this volume). RFTRA is used to 
describe ontogenetic changes in shape shared by 
different species, to identify heterochrony, and to 
demonstrate phyletic differences in early larval, 
metamorphic and post-metamorphic cranial shape. 
Metamorphic shape change is greater than differ- 
ences between species, showing how ontogeny 
confuses phylogenetic analysis in salamanders. 
Major gross metamorphic shape changes involve 
the shortening of the frontal arcade in ambystom- 
atids and increased length of the maxillary bone in 
newts. Species comparisons reveal that 1) snout 
width, 2) development of the maxillary bone, 3) 
design of the neurocraniuni, and 4) RFTRA mor- 
phometric "distance" may be useful phylogenetic 
characters. Utility of this method is discussed in 
regard to morphological evolution in salamanders 
where, the difficulty of comparing ontogenies 
among taxa is a major hindrance to understanding 
the phylogeny of the group. The RFTRA method 
produced results nearly identical to those of gen- 
eralized resistant fit (GRF), PROJECT, thin plate 
spline (TPS) and truss analysis. 

Introduction 

Reconstructing the phylogeny of salamander fami- 
lies (Order Caudata) has been difficult for several 
reasons, but especially because of the widespread 
occurrence of paedomorphosis in the group 
(Duellman and Trueb, 1986). All salamander 
families seem to share aspects of larval ontogeny 
but differ in the amount of morphological meta- 
morphosis exhibited by the terminal morphotypes. 
Thus, the extent of metamorphosis in different taxa 
confounds the evaluation of characters used in 
reconstructing evolutionary relationships. Com- 
parative studies are needed to determine what 
aspects of ontogeny and metamorphosis are shared 
among salamander taxa, and what features are due 
to phyletic change. 

In this paper, a preliminary attempt to 
compare ontogenetic and phyletic differences 
among salamanders is carried out through an anal- 
ysis of dorsal skull shape in three species of trans- 
forming salamanders. Although differences in 
dorsal skull shape are visibly obvious in salaman- 
ders, ontogenetic and phyletic differences have not 
been studied except as illustrated in cranial ossifi- 
cation sequence studies (Bonebrake and Brandon, 
1971; Altig, 1965; Reilly, 1986). There are no 
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quantitative data on skull shape ontogeny in sala- 
manders. 

The importance of defining "shape" change 
in ontogeny and phylogeny has been formalized by 
Alberch et al. (1979). These authors, however, 
restricted the definition of "shape" to non- 
dimensional parameters of the relative proportions 
(length, area, volume) of structures. "Shape" in this 
paper is defined by a constellation of landmark 
points measured from homologous locations on 
each skull. Comparison of the two-dimensional 
shapes defined by homologous points can reveal 
similarities and differences in form that indicate 
both ontogenetically shared characters and phyletic 
differences between species. Using the Resistant 
Fit Theta Rho Analysis (RFTRA), regions of shape 
similarity and areas of relative deformation are 
identified, and a generalized measure of morpho- 
metric distance between forms is computed. Inter- 
pretations of shape changes based on RFTRA are 
nearly identical to those based on other shape 
comparison methods discussed elsewhere in this 
volume (see discussion for a comparison). The goal 
of this study is to use this technique to compare and 
contrast ontogenetic and phyletic differences in 
cranial shape in several species of transforming 
salamanders and, thus, to test the utility of the 
method for a broader phylogenetic analysis of the 
Order Caudata. 

Materials and Methods 

RFTRA Methods 

Shape analyses and graphics were done with a PC 
Connection A T  computer and Hewlett-Packard 
laser plotter using the RFTRA package of 
programs for Resistant Fit Theta Rho Analysis 
written by Ralph E. Chapman, Scientific Comput- 
ing, Automatic Data Processing, the National 
Museum of Natural History, Washington, D.C. 
(included with this volume). 

The RFTRA method was chosen for several 
reasons. (1) RFTRA has been shown to be espe- 
cially useful in analyzing the comparative morphol- 

ogy of animal skeletons to identify similarities and 
allometric shape differences (Benson, 1976, 1982; 
Olshan et al., 1982). (2) It has been used to evalu- 
ate potential phylogenetic characters (Chapman 
and Brett-Surman, in press; Chapman, in press). 
(3) The method is suited to the analysis of cranial 
shape metamorphosis because it produces easily 
interpretable output in the form of vector plots 
showing the relative movement of landmarks in the 
transformation of one shape to another. (4) 
RFTRA produces distance coefficient that quanti- 
fies overall shape difference of two forms. (5) The 
mathematical bases of resistant fitting methods are 
easily understood by researchers trying to interpret 
the results. And (6), the RFTRA results for this 
dataset are very similar to results of several other 
shape analysis methods. The results of five differ- 
ent shape analyses of skull metamorphosis in one of 
the species examined (Atnhy.~for?zu tigrinurn) are 
compared at the end of the discussion section. 

The RFTRA method quantitatively matches 
points of one shape constellation to those of 
another, eliminating differences of size and orien- 
tation, to reveal only those differences caused by 
deformation of shape. The two objects being 
compared are scaled such that the median squared 
interlandmark distance is unity. This concentrates 
the registration of parts of the form where there is 
the least or no isometric shape difference and 
produces a lack of fit where allometric shape differ- 
ences actually occur (Siegel and Benson, 1982). As 
long as 50% or more of the landmark points fit 
closely, the resistant fit method will effectively 
match areas with coordinated local (small) varia- 
tion and identify areas of large deformation. The 
mathematical framework and discussions of these 
procedures are presented in Siegel and Benson 
(1982), Benson and Chapman (1982), and Chapters 
10 and I 2  in this volume. 

The landmark constellations for all speci- 
mens in each ontogenetic sample were scaled, 
rotated, and translated using the RFTRA program 
(least squares option) to superimpose sets of land- 
mark points without changing their shapes. This 
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produced a new set of superimposed point coordi- 
nates for the specimens within a sample that were 
then averaged to produce a single set of skull shape 
coordinates for each ontogenetic stage. Average 
sets of coordinates for ontogenetic samples were 
then compared using pair-wise RFTRA procedures 
(resistant fit option) which produced vectors indi- 
cating relative size-free deformations in distance 
and direction for each landmark point in each pair- 
wise shape comparison. 

Between two forms, average vectorial 
distance and direction can be used as a generalized 
coefficient of deformation or morphometric differ- 
ence (Benson, 1976, 1983; Benson and Chapman, 
1982). The RFTRA program was used to generate 
a matrix of mean RFTRA distance coefficients. 
This distance is the average of the squared 
distances between corresponding landmark points 
divided by the average distance of each landmark 
on both superimposed shapes, from the center of 
the form. RFTRA distances were clustered using 
the UPGMA method to illustrate the relative 
morphometric similarity of the cranial shapes. It is 
assumed in this study that differences in the average 
distances between pairs of landmarks in ontoge- 
netic comparisons indicate that some developmen- 
tal shape change has occurred. Likewise, differ- 
ences in species comparisons of the same ontoge- 
netic stage indicate that evolutionary shape change 
has occurred. 

Specimens and Shape Measurements 

Seventy-four specimens from nine ontogenetic 
samples representing three species of salamanders 
from two families were analyzed (specimen 
numbers and localities in the Appendix). These 
included 1) two samples of Ambystomu tigrinunz 
(Ambystomatidae): 11 larvae at an ontogenetic 
stage just before metamorphosis (late larvae), and 8 
recently transformed individuals; 2) three samples 
of Ambystomu talpoideum: 7 early larvae, 7 late 
larvae, and 5 transformed individuals; and 3) four 
samples of Notophthaltnus vindescens 
(Salamandridae): 6 early larvae, 10 late larvae, 10 
recently transformed juveniles (efts), and 10 

transformed individuals. The early larval, late 
larval, and transformed samples of N. vindescens 
and Ambystoma talpoideuin represent the same 
relative stages of development previously deter- 
mined by ossification sequence of bony elements of 

Arcade 

Trlrngle 

o i ~ c  
Compartment 

Figure 1. Landmark points and cranial regions used to com- 
pare cranial shape in salamanders. A) Newt skull indicating 
bilateral pairs of homologous points measured from each 
ontogenetic sample (right half). The landmark pairs are 1) 
medial point of narial foramen, 2) posterior of maxillary- 
prefrontal suture, 3) lateral point of frontal-prefrontal 
suture, 4) posterior tip of maxillary, 5) lateral point of 
squamosal, 6) anterior point of intersection of squamosal 
and otic capsule, 7) posteromedial notch of exoccipital. B) 
Constellation of landmark points taken from the skull shown 
in A. Morphological regions of the cranial shape discussed 
in the text are indicated. Abbreviations: E, exoccipital; Fr, 
Frontal; M, maxillary; N, nasal; 0, otic capsule; P, parietal; 
Pf, prcfrontal; Pm, premaxillary; Q, quadrate; Sq, squamosal. 



31 4 Stephen M. Reilly 

cleared and double stained skulls (Reilly, 1986, 
1987). Two stages of metamorphosed newts (efts 
and adults, both metamorphosed) were included to 
examine the extent of post-metamorphic change 
between these forms. 

The skull of each specimen was centered in 
the field of view of a Zeiss SV-8 binocular dissect- 
ing microscope and pinned with the top of the skull 
parallel to the microscope stage. Landmark points 
were drawn on paper using a camera lucida. 
Cartesian coordinates for each point were digitized 
using a Houston Instruments Hipad digitizing pad 
interfaced with an IBM A T  computer. Digitizing 
measurement error was less than 0.01%. Landmark 
coordinates were then scaled to 
millimeters. The 14 landmark points 
taken from each specimen are illus- 
trated in Figure 1. 

'To facilitate discussion of 
regional shape changes, compart- 
ments of the cranial snape constella- 
tion are defined (Figure 1B) on the 
basis of functionally important 
aspects of the cranium. The otic 
compartment, or foundation of the 
cranium, defines the relationship 
between the otic capsules and the 
foramen magnum. Bridging the otic 
compartment to the snout is the 
frontal arcade. The snout region 
reflects the width of the nasal 
capsules and anterior neurocranium. 
The maxillary triangle indicates the 
displacement of the cheek from the 
frontal bone, and its lateral side is 
the length of the jugal process of the 
maxilla. The free point of the 
squamosal triangle locates the point 
of jaw articulation relative to the otic 
capsule. 

Results 
Mean shape constellations of the 14 
homologous landmarks for each 

ontogenetic stage are shown in Figure 2. From 
gross comparison of these shapes qualitative shape 
differences can be seen. Notophthalmus viridescens 
has a narrower and longer snout relative to the two 
An~bystoma species, while all of the forms have 
similar otic compartments. The most obvious gross 
metamorphic shape changes are shortening of the 
frontal arcade in the ambystomatids, and increased 
maxillary length in newts. 

The RFTRA quantification of the relative 
vectorial movements of landmarks through 
ontogeny allows more detailed analysis of ontoge- 
netic shape change within species (Figure 3). The 
vectors represent actual ontogenetic transforma- 

Adult n e w t s  

Early l a r v a l  

N ,  viridescens A. ta lpo~deum I 
Figure 2. Mean cranial shape configurations of homologous landmark constella- 
tions produced by RFTRA for thc ontogenetic samples of three species of sala- 
manders. All forms are scalcd to the same size and reflect only differences in 
shape. 
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P o s t . m e t a m o r p h l c  s h a p e  c h a n g e  

Metamorphic s h a p e  c h a n g e  0 88 
A. tigrinurn 

L a r v a l  s h a p e  c h a n g e  

I N. vrridescens A. talpoideurn I 
Figurc 3. Ontogcnetic shape change betwccn the mean samples shown in Figurc 2. The arrows are residual vectors of resistant 
fit mc~hods  showing the relative distance and direction of movement of hon~ologous landmarks. Vector deformations describe 
ontogenclic transformations during larval grotvth (bclwecn early and late larvae), metamorphosis (between late larvae and 
transformed samples) and postmetamorphic gro\r.th for the species indicated. 

tions of shape. Through larval development 
(Figure 3, Larval shape change) N. viridescens and 
Atnl~ystor?lrz talpoideurn share the following shape 
changes: 1) shortening of the skull by anterior 
~novement of the otic compartment, 2) enlargement 
of the maxillary triangle (reflecting increased length 
of the maxillary bone), and 3) lateral deformation 
of the squamosal triangle as the point of jaw articu- 
lation moves posteriorly relative to the otic 
compartment. Anzhy.~tomu tulpoideut~l has greater 
shortening of the frontal arcade through anterior 
displacement of the otic compartment (Figure 3). 

At n~etamorphosis all three species undergo 
lengthening of the maxillary bones and shortening 
of the frontal arcade but differ in the extent to 
which these changes occur (Figure 3, Metamorphic 

change). During transformation there is greater 
posterior deformation of the maxillary triangle in N. 
viridescens and less shortening of the frontal arcade 
than in the Ar?zlystomu species. In both Ambystoma 
species shortening of the frontal arcade is in part 
accomplished by anterior movement of the otic 
compartment, a trend already evident during larval 
shape change. Metamorphosis in A. talpoideutrl 
differs from A. tigrinurn in that the relatively short 
snout expands posteriorly. Newts differ at meta- 
morphosis by exhibiting anterolateral widening of 
the snout, while in A. talpoideum it becomes 
narrower and longer. 

Shape change between recently transformed 
efts and older adult newts involves a lengthening 
and narrowing of the frontal arcade, and a postero- 
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lateral shift in the squamosal triangle indicating 
some shape change after metamorphosis. This 
increases the distance between the posterior end of 
the maxillary bone and the point of jaw articulation. 

Overall shape difference of the metamor- 
phosed forms of the three species are contrasted in 
Figure 4. The two species of Arnhystoma differ in 
the relative angles of the squamosal and maxillary 
triangles (Figure 4A). Comparison of all three 
species (Figure 4B) shows the similarity of the 
AmOystorna spp. relative to the newts, which have a 
relatively longer, narrower skull (frontal arcade and 
otic compartment), longer maxillary triangles, and 
the most anteriorly rotated squamosal triangles. 

Resistant fit estimates of the relative 
morphometric distance among the various skull 
shapes are shown in Figure 5. The most general 
pattern seen in the morphometric shape distances is 
that the larval and transformed shapes are clustered 
into separate groups indicating that metamorphic 
shape change is greater than species differences. 
Within both of these metamorphic groups the newt 
forms and Arnhystor?zu forms were intrinsically simi- 
lar in shape. The different transformed newt stages 
were more similar to each other than to the trans- 
formed Arnbystorna spp. 

Among the larvae, the early and late newts 
were the most similar of the comparisons. In con- 
trast to this close ontogenetic shape similarity in 
newt larvae, late A, talpoideltrn larvae were closer 
in shape to Ar?zhystornu ti@nu~n larvae of the same 
stage than they were to their own larvae at an 
earlier stage. 

Discussion 

The results of this analysis show the utility of the 
RFTRA methods for quantifying ontogenetic 
trajectories in salamander cranial shape (see below 
for a comparison of RFTRA to other techniques). 
During larval development prior to metamorphosis, 
newts and A. tulpoideurn share several modifica- 
tions of cranial shape, such as shortening of the otic 
compartment (Figure 3), that indicate similarity of 
shape ontogeny in the two species. Some of the 

,A. t a l p o i d e u m  

r i n  

-N. v i r i d e s c e n s  I 

B 
A. t a l p o i d e u m  

Figure 4. Species comparisons of cranial shape for trans- 
formed salamanders using RFTRA. A) Landmark constel- 
lation of Antbysto~na talpoideur?l (connected by healy lines) 
is superimposed on the shaded shape for A. tign'num. B) All 
three species superimposed. Note the relative rotation of the 
maxillary and squamosal triangles. 

larval shape changes, such as maxillary bone 
growth, continue, but with a much greater rate of 
development during metamorphosis in newts than 
in ambystomatids. Forward movement of the otic 
compartment and shrinkage of the frontal arcade is 
a change seen in each species both during larval 
ontogeny and through metamorphosis, which 
contributes to the transformed shape differences of 
the three species. In newts, however, after meta- 
morphosis there is a lengthening of the skull by a 
reversal of the larval trajectory of reduction in the 
otic compartment and frontal arcade. 

Clustering of RFTRA distances grouped the 
samples based on overall differences in shape. 
Larval newts show ontogenetic conservation of 
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shape, while the late larval A. 
talj~oidcunz were more similar to the 
late A. tigritl~tin than to their own 
early larvae. This indicates that 
there is more ontogenetic shape 
change during larval development in 
A. tulpoideui?l than there is in newts. 
Perhaps within the Ai?it~y.$tot~la 
species there is shape convergence 
through larval ontogeny of initially 
different early larval morphologies, 
which is then followed by species 
shape divergence during metarnor- 
phosis. 

Considering the morphologi- 
cal changes that occur during trans- 
formation from an ay~ratic to a 
terrestrial form (Reilly, 1080, 1987; 
Lauder and Shaffer, 1988; Reilly and 
Lauder, 1990; Lauder and Reilly, in 
press) it is n o t  surprising that 
morphometric shape distances across 
nietamorphosis were greater than 
between species (Figure 5 ) .  This 
shows how confusing ontogeny can 
be when comparing salamanders and 
reflects why it is difficult to find 
chc~racters that are not affected by 

UPGHA CLUSTER O F  CRANIAL SHAPE DISTANCE 

RFTRA OISTANCE 

E a r l y  Newt l a r v a s  I 
L a t a  Newt l a r v a e  / 
L a t e  A .  t a l .  l a r v a e  I 
E a r l y  A .  t a l . l a r v a a  L 
T r a n a f .  A .  t l ~ r l n u m t ,  1 
T r a n s f .  A .  t s l .  1 I 
T r a n a f .  Newt a f t 8  8 
T r s n s f .  Newt adults- 

I Figure 5. Cluster analysis of RFTRA morphometric distances of cranial shape for I 
nine salamander samplcs. Notc that metamorphic shape differences are  greater 
than taxonomic shape diffcrcnccs but the newts and An~bystotna spp. consistently 
clustered toecthcr within ontogenctic stages. 

metamorphosis. But the utility of the RFTRA 
methods for phyletic diagnosis is shown by the 
consistent separation of newts and ambystomatids 
within nietarnorphic stages based on morphometric 
shape distance. 

Comparison of larval shapes of newts and A. 
tulpoirlcuin (Figure 2 )  and the morphometric 
distance between them (Figure 5 )  shows that early 
in their ontogeny there is phyletic divergence in 
cranial shape, with the latter having much wider 
snouts. Phyletic differences are also indicated by 
differences in cranial shape metamorphosis. Newts 
differ from the others in having much greater 
development of the maxillary bone at metamor- 
phosis indicating a case of rate heterochrony in 
maxillary development. 

Metamorphosis is very similar within the 
ambystomatids (Figure 3). Based on the morpho- 
metric distance between the Amhysfonta species 
they are more similar before metamorphosis than 
after (Figure 5). After transformation, phyletic 
difference in the two species can be described in a 
shape context by a shrinkage and shift in the otic 
compartment and frontal arcade of A. talpoideuni 
(Figure 4B). Such a change rotates the squamosal 
triangle inward, and the maxillary triangle outward, 
leading to a convergence of the A. talpoideum shape 
with that of A. tigrinurn. Thus, patterns of shape 
differences in transformed crania of the two species 
might be hypothesized to be due to metamorphic 
changes in the neurocranium with associated shifts 
in the peripheral structures. 
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The longer and narrower skull in newts 
(Figure 4L3) also appears to be due to changes in 
the front:~l arcade and otic compartment. In this 
case, shape difference can be accounted for by a 
reversal of the ontogenetic trajectory of these 
regions which lengthens and narrows the neurocra- 
niurn and rotates the two triangles inward. As 
discussed above, tlie longer rnrutillary triangle in 
neivts is due to heterochronic development of this 
hone at metamorj~hosis. Therefore, changes in the 
neurocraniuni and maxillary bone occur both onto- 
genetically and phyletically in these species. I f  the 
pr~ttern of central cranial dcforrnations influencing 
overall shape was found to be widespread in a 
t,roader pliyletic comparison, this would provide 
insights into developmental constraints on design 
that limit phyletic morphospace available for trans- 
foriiicd skulls. 

IIFI'IIA is useful in defining ontogenetic 
changes in shape shared by different species, identi- 
fying heterochrony, and demonstrating phyletic 
differe~ices in early larval, rnetarnorphic and trans- 
formed shape. It has great potential for identifying 
phyletic differences and ontogenetic similarities in 
sh:\pe among families of salamanders. Such data 
are needed for the study of structural constraints to 
tlie evolution o f  form (sc11.trt L ~ u d c r ,  1981, 1982) 
and are necessary to test hypotheses relating 
patterns of organism21 design, such as cranial 
niorl)hology, to functional roles, such as aquatic 
feedinr. - 

Ideally, however, cornparisons of ontoge- 
netic phenomena, should take place with explicit 
hyj~otlieses of phyletic relittionship (Fink, 1982; 
12aucler, 1982). This is difficult with salamanders 
because larval ontogeny and nictarnorphosis are 
extremely varia1,le. I-Iypotlicses of phyletic rela- 
tionsliip are weakened by 1) p:~cdornorphosis, 2) 
lack of outgroups to identify ancestral character 
qtates, and 3) lack of documented patterns of 
development t o  which analyses of processes (such 

maxillary development does this mean they share 
common ontogeny, common ancestry, or both? 

Morphological patterns associated with 
metamorphosis in different groups must be identi- 
fied and compared to reveal generalized historical 
pathways of structural change. Emerson (1988), for 
example, provides an excellent case study using 
shape analysis to test historical patterns of struc- 
tural change in frogs. RFTRA provides a useful 
method for analyzing differences in shape. The 
independent analysis of overall skull shape trans- 
formation provided valuable insights to interpret 
data from functional analyses of metamorphosis in 
the same specimens (see Reilly and Lauder, 1990). 
RFTKA identified ontogenetic similarities, species 
differences in skull design, and morphometric 
distance between forms that could be coded as 
characters. The usefulness of such characters in 
phylogenetic analysis will emerge as more 
comparative data on ontogeny and metamorphosis 
are gathered, and the congruence of independently 
derived phylogenetic trees is compared. Whether 
rnorphometric analyses of ontogeny in different 
salamander families can identify new synapomor- 
phic characters to use in phyletic analyses remains 
to be tested. 

Comparison of Shape Analysis Methods 

T o  examine the relative accuracy of the RFTRA 
method in identifying local and regional shape 
deformation, nletamorphosis of skull shape in 
A17ll,).:rtonlu ti@inum was analyzed using four addi- 
tional shape analysis methods for comparison 
(Figure 6). The samples of larval and transformed 
At7ll)y~totnu tigriturn skulls were especially useful 
for thi5 comparison because they are samples taken 
just before and just after metamorphosis and do not 
differ in external head-width, external head-length 
or skull-width (Reilly and Lauder, 1990). Thus, 
they do not differ in head size and reflect only 
cranial shape changes that occur at metamorphosis. 

as het.erochrony) can be ~ a p p l i e i  to determine All five methods indicate virtually the same 
ch:~r;icter polarities. For example, because sala- metamorphic shape changes (Figure 6 ) .  The snout 
rn:~iidcrs share similar ontogenetic trajectories of area exhibits small local deformation while the 
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m:txillary triangles rotate posteromedially. By far magnitude of affine transformations for landmarks 
the greatest change illustrated by every method is (fit to either a reference or  average form). 
the shift in the landmarks defining 
the otic capsule (which expands) arid 
the frontal arcade (which contracts). 
This brings the rear of the skull 
forward relative to the snout, result- 
ing in a more posterior point of jaw 
articulation relative to the entire 
skull, and decreased skull-length. 
For this data set, all 5 methods 
matched areas of local deformation 
(the snout) and revealed the same 
large rnetarnorphic deformations in 
the posterior aspect of the skull. 
Thus, the KETRA method fits well 
with this application for shape anal- 
ysis. Although a11 5 methods inde- 
pendently produce similar results 
and interpretations regarding shape 
differences, no one method alone 
provided an exhaustive analyic o f  the 
data. Each o f  the prograrm5 
(RETRA, GRF, TPS) ha4 spec~flc 
advantages and thus, these three 
prograrnc complement each othcr to 
provlde a full range of exploratory 
analytical approaches for lanclmark 
data. 

?'he G R F  program is the 
most versatile and easiest to use. 
This program provides 
least sqllares and resistant procrLlStes 
fitting to a base specilllen (as tloes 
the R ~ R A  and general- 

ized least 'quares and resistant 
procrLl"es fitting (to the average 
form). It is very useful ir? graphic 

of variance around 
~ ~ ~ ~ d ~ ~ ~ k  poin l s  for  single groups 
Of 'qpecirnens' In the  GRF 
program has the option of adding 
affine (uniform) filting :ind 
computes tensor strain crosses 

Figure 6. Comparison of five sh;~pc analysis mcthods in describing cranial shape 
metamorphosis in Atnb~torna tigrf,l~l,,~. A, B) Truss analysis (Strauss and Book- 
stein, 1982) of larval A) and tr;~nsformed B) tru5s configurations for cranial shape 
rcconstructcd using mean truss distances (in mm) between landmark coordinates. 
Shape changcs at metamorphosis are identified by comparing A and B. These 
lorms reprcscnt the average shapes input into the remaining analyses as coordinate 
d;ita. C, D, E) Larval skull configurations with computed residual vectors, indicat- 
ing movements of larval landmarks during metamorphosis, from the output of C) 
RFTRA, D) <;encralizcd Resistant Fit ( G R F  program, Rohlf and Slice, 199O), and 
E) PROJECT pmgram (Bookstein). Note that the veclor directions and magni- 
tudcs for individual landmarks are essentially identical for these three methods. F) 
'Thin Pl;lle Spline (TPS program, RohlT) illustrating thc transformed skull configu- 
,;,tion (as in B) uith grid dclorrnat io~~ for skull metamorphosis (grid has an overall 
hori7ontal deformation due to program output). Note the expansion of the otic 
c;\psuIc and contr:rction of the frontal arcade indicated by all five methods. 

indicating the direction and 
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The RF'rRA program has the advantage of 
providing an overall "morphometric distance" 
measure between shapes and a clustering option 
that can be used to visualize overall shape differ- 
ences in  a series of shapes. Even though there are 
statistical and mathematical problems with this 
metric (Bookstein, 1091), i t  provides very useful 
information about the magnitudes of overall shape 
differences in  a sample of forms. In addition, 
vector trends for individual landmarks (for example 
in ontogenctic series) can be easily displayed and 
plotted using the RFTRA program. 

The TPSPL,INE program performs pairwise 
shape comparisons in  terms of: 1) the complete fit 
(translational + rotational + affine (uniform) + 
nun-uniform (warping) components) of one speci- 
men on  to another, 2) the affine (uniform) fi t  alone, 
3) the non-uniform fit (warp) alone, and 4) the 
cfecomposition of the non-uniform f i t  into its partial 
warps (see Chapter 11) .  The partial warps are 
ordered either on the basis of landmark contribu- 
tions to the eigenvectors indicating local (larger 
eigenvectors) or broad scale (lower eigenvectors) 
deformations, or o n  the hasis of the contribution of 
each parti:il warp to the total hending energy of the 
fit. Because an understanding of the contribution 
of these components to shape trrinsformation is now 
emerging, this method (thin-plate spline) provides a 
detailed description of shape differences between 
two landmark shape con~tcllations. 
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Appendix: Specimens Examined 

All specimens used in this study are from the 
Museum of Natural History, University of Kansas, 
Lawrence, KS. 

Anz/~yrfor?la tigrinunl: Colorado Springs, El Paso 
County, Colorado. Late larvae ( N = l l ) ,  Mean 
snout-vent length (SVL) = 78.8 mm: KU89119-122, 
89 124,89128,89 135,89140-1, 89144-5. Transformed 
individuals (N=8), SVL = 91.1 mm: KU89091, 
80096, 89 102, 89 107- 1 1. 

At?z/~j\ton~n tulpoideur~z: Flamingo Bay, Savannah 
Riker Ecology Inboratory, Aiken County, South 
Carolina. Early Larvae (N=7), Stage I11 (Reilly, 
1087), SVL, = 25.0 mm: KU204692, 204694-6, 
204698-9, 204701. Late Larvae (N=7), Stage VI 
(Reilly, 1987), SVL = 39.1 mm: KU204693,204697, 
204700, 2047 12, 2047 14-1 6. Transformed individu- 
als (N=5),  1 yr. old transformed Adults (Reilly, 
1987), SVL = 39.8 mm: KU204722-26. 

Noto~~l~t1znlr~~~i.s viridescerzs: MeCuires Pond, 9.6 km 
So~lth of Carbondale, Jackson County, Illinois. 
Early larvae (N=h),  Stage 111 (Reilly, 1986), SVL = 

16.5 mm: KU203908. Late larvae (N= lo), Stage IV 
(Reilly, 1986), SVL = 22.7 mm: KU203912. Trans- 
formed emergent efts (N= lo), Efts (Reilly, 1986), 
SVL = 24.2 mm: KU203916-7, 203922, 203929, 
203932-4 203942-4. Transformed newts (N=10), 
Adults (Reilly, 1986), SVL = 46.6 mm: KU203974- 
83. 





Part IV 

The Problem of Homology 

This Part was originally to be entitled 
"Morphometrics in the Systematic Context." But of 
the three goals of the Workshop reviewed in the 
Introduction to Part I--teaching data acquisition, 
demonstrating advanced morphometric Analyses 
exploring the conceptual tie between morpho- 
metrics and systematics-the third proved most 
stubbornly resistant. This was not owing to any reti- 
cence on the part of the student participants. In 
question periods, end-of-day reviews, and bull ses- 
sions, they endlessly raised questions about this tie, 
questions that none of the instructors seemed to be 
able to answer satisfactorily. While the techniques 
of data acquisition (Part 11) and the various hybrid 
analyses (Part 111) are capable of dealing with out- 
line or landmark data regardless of its provenance 
(fossils, living specimens, biomedical images, car- 
toons), the basic tools of systematics- character 
states and their changes--do not appear very well 
aligned with the morphometric synthesis we have 
built here. The mismatch may owe to the new 
morphometric emphasis on covariances, to the 
intentional destruction of the idea of any unitary 
phenetic distance, or to the treatment of a land- 
mark configuration as a single "character" in a space 
of dimension too high to suit notions of gap-coding 

or polarity. We shall not explore these philosophi- 
cal-methodological perplexities here. However, 
one conceptual crux of the morphometrics-sys- 
tematics tie was anticipated in the original Work- 
shop plan: the possible difficulties in the course of 
using the same word, "homology," with two different 
meanings, one from evolutionary theory and one 
from geometry. 

In Chapter 17, expanded from a faculty 
lecture, Gerry Smith reviews the classic systematic 
construct of homology, arguing how difficult it will 
be to retrieve the discrete logic of changes in 
homologous characters from the modern morpho- 
metric toolkit of deformations and covariances. In 
Chapter 18, Spafford Ackerly, a student participant 
at the Workshop, presents us a bold experiment in 
extending the notion of landmarks so as to repre- 
sent something "more homologous," in this case, the 
record of a parametric growth process. In Chapter 
19 Annika Sanfilippo and William Riedel show that 
while the analysis of the coordinates of seven 
landmarks was sufficient to differentiate different 
morphotypes, additional, difficult to quantify, 
information from pore patterns, outline shape, and 
appendages is needed in order to differentiate 
traditional species 





Chapter 17 

Homology in Morphometrics and Phylogenetics 

Gerald R. Smith 

Museum of Zoology, University of Michigan 
Ann Arbor, Michigan 481 09 

Abstract identities that diagnose monophyletic groups. Such 
homologies are correctly named by reference to the 

Homology is neither an empirical nor a conceptual 
character (and usually its state), and the mono- 

problem, but a relation enabling a two-part method 
phyletic group it diagnoses (e.g., the cap-like tarsals 

for classifying the descent and modification of 
of the Dinosauria). The homologous states of a 

characters. The two parts are operational and taxic. 
character have a polarized general-to-particular 

Location of homologous characters in terms hierarchical relation, which corresponds, except for 
of landmark topology is a necessary operation prior homoplasy, to the cladistic tree hierarchy for the 
to comparative anatomical and phylogenetic analy- t a a .  
ses. Operational homology is a similarity relation 
defined by positional correspondences among 
internal and external landmarks. In evolutionary 
biology, the relation assumes the existence of 
unknown transformation series of character states 
which descended with modification and branching 
from an unknown common ancestor. The analytical 
construct is a phylogenetic hierarchy of taxa in 
which the observed character states are derived 
expressions of ancestral characters. Operational 
homology cannot remain independent of the evolu- 
tionary concept of homology (similarity due to 
common ancestry) because at some point observed 
similarities must be put into historical context with 
a phylogenetic test that discriminates homology 
from hornopla~y (similarity due to reversal, paral- 
lelism, or convergence). Speculation about 
evolutionary transformations of a character may be 
logically circular until corroborated by congruence 
with the state distributions of other characters in a 
cladistic hypothesis (Hennig, 1966). 

Taxic homologies are corroborated synapo- 
morphies, i.e., shared, derived character-state 

Morphometrics serves to define the relations 
among landmarks that identify operationally 
homologous characters and to quantify shape 
differences across ontogenetic and taxic transfor- 
mation series. Morphometrics plays an important 
post-cladistic role in the analysis of trends and 
responses to evolutionary causes and constraints. 

Introduction 

This review of the relationship between morpho- 
metrics, cladistics, and homology is motivated by 
claims to exclusivity by advocates of operational 
homology and taxic homology. I will argue that 
neither of these approaches, nor a developmental 
approach, can stand alone. Operational homology 
is traditionally associated with morphometrics and 
phenetics; taxic homology is the core of cladistics. 
Morphometrics is the quantitative, comparative 
description of shapes of organisms as measured 
among sets of landmarks on homologous, and 
therefore comparable, anatomical units. Cladistics 
is a method that infers the sequence of branching 
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lineages from hierarchical arrangements of derived 
character-state identities-taxic homologies. Phylo- 
genetics is the analysis of amount and trend in 
evolutionary changes through time, as measured 
along transformations among homologous character 
states. 

Phylogenetic information, based on homolo- 
gous characters from comparative anatomy, 
molecular genetics, behavior, etc., provides a 
context for framing or testing hypotheses about 
evolution of species or clades. Morphometrics may 
contribute to evolutionary biology by quantifying 
comparative information about the states in trans- 
formation series of homologous structures and by 
ordinating trajectories of ontogenetic or taxic trans- 
formations in morphospace. These steps may 
provide characters for cladistic analyses or describe 
evolutionary trends in phylogenetic analyses. 

A "character" is a variable used in cladistic 
estimation or other systematic studies. Morphome- 
tric characters are defined by several (not fewer 
than two) anatomical landmarks. Selection of 
landmarks, characters, and variables depends on 
the concept of homology to justify comparability 
among attributes of different species. Homology, 
defined as similarity due to descent from a common 
ancestor, is the methodological basis for studies of 
character-state transformations and diagnosis of 
monophyletic groups. The definition of homology 
in terms of descent from a common ancestor means 
that comparable structures in related organisms are 
taken to be complementary evolutionary represen- 
tations of the "identical" ancestral structure 
(Simpson, 1961). Two current concepts of homol- 
ogy have developed around the two seemingly sepa- 
rate issues involved: (1) recognition by anatomical 
similarity and (2) definition in terms of descent 
with modification. 

1) Homologous anatomical structures are 
operationally identified by similar material and 
shapes, as indicated by internal landmarks, and 
similar position, as indicated by spatial relations to 
external landmarks, at  appropriate stages of devel- 
opment (Remane, 1956, 1971; Sneath and Sokal, 

1973). The topological relations are of the 
anatomical sort, "anterior to," "dorsal to," and "distal 
to" (Jardine, 1967). For example, a homologous 
pair of bones, nerves, amino acid sequences, or 
DNA segments is recognized by correspondence of 
compositional, spatial, and ontogenetic relations 
among the landmarks in and around each comple- 
mentary member of the pair. Two sets of structures 
that maximally satisfy these internal and external 
landmark relations in appropriate ontogenetic 
stages of different individuals are operationally said 
to be homologous (Boyden, 1947; Remane, 1956, 
1971; Sneath and Sokal, 1963; Withers, 1964; Inglis, 
1966; Fitch, 1966; Key, 1967; Jardine, 1967, 1969; 
Jardine and Jardine, 1967, 1969; Sokal and Sneath, 
1973:78-82; Bookstein et  a]., 1985). Features of 
different organisms hypothesized to be homologous 
in this sense are acknowledged as such by applica- 
tion of the same anatomical name (Owen, 1848), 
e.g., the fifth gill arch of Elasmobranchii; the proto- 
chonch of Gastropoda, the alpha hemoglobin 
sequence of hominoids. Quantitative aspects of 
these homologies usually vary continuously, for 
example when the transformations are tracked 
vertically through the hierarchy. 

2) The evolutionary concept defines homol- 
ogy in terms of the descent of complementary 
structural identities from their hypothetical 
complement in a common ancestor (Simpson, 
1961). In its recently refined form (Patterson, 
1982), this concept creates a special role for the 
relationship between a character identity and the 
group of species in which it is found: A homolog is 
a synapomorphy that helps diagnose a mono- 
phyletic group, i.e., a group that is restricted to all 
of the descendants of a common ancestor. In this 
concept, the monophyly of the group implies the 
homology of the synapomorphic character state 
(Bock, 1969). Analytically, this synapomorphic 
character state is evidence for the monophyly of the 
group (Wiley, 1975). Such a "taxic" homology is 
named with a qualifier indicating the monophyletic 
taxon it diagnoses, e.g., the feathers of Aves, the 
spinnerets of Arachnida. A taxic homology bears 
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an all-or-none relation to other character states 
within a cladistic hypothesis. 

Conflict between advocates of the opera- 
tional and cladistic schools is not new. In 1961, 
Simpson observed that usage seemed to demand 
two different terms, but that if "the argument were 
only about which concept is to bear the name 
'homology', it would be quite useless." l I e  favored 
using "homology" for the evolutionary concept, 
suggesting "morphological correspondence" (Wood- 
ger, 1945; see also Ghiselin, 1069) to indicate the 
identity relation that is methodologically 
independent of evolution. The vocabulary has 
changed because of the growth of morphometrics 
and cladistics, but "homology" retains the dualism it 
has had since Darwin provided a causal mechanism 
for Owen's idea and substituted the common ances- 
tor for Owen's archetype. 7'he dualism consists of 
(1) conccrn to find a conceptual basis and method 
for identifying comparable characters independent 
of the evolutionary conclusions sought, and (2) 
analysis of character identities in the framework of 
descent with modification. I n  the spirit of lnglis 
(1966), 1 will advocate the necessity of iterative 
interaction between operational and taxic hornol- 

ogy. Operational hornology is necessary because 
cladistic methods cannot begin with characters 
chosen because they are known to be descended 
from a common ancestor (it is not possible and if it 
were, it would be circular). Taxic hornology is 
necessary because only a phylogenetic test can 
distinguish homologies from homoplasies- 
"similarities due not to common ancestry but to 
indcpendent acquisition of similar characters" 
(Haas and Simpson, 1046). 

Operational Homology 

The operational concept of homology- 
correspondence of landmark positions from form to 
form (Sneath and Sokal, 1973)-refers to designa- 
tion and definition of characters whose states are 
being compared in a systematic study. This use of 
the homology relation is near that which Owen 
(1848) called general homology<orrespo~idence 
of pa r t s in  relation to an archetypical body plan. 

Several problems will be discussed to clarify opera- 
tional homology: some practical procedures by 
which homology can by identified (e.g., Nieuwen- 
huys and Bodenheimer; 1966, Jardine; 1969; Book- 
stein et  al., 1985), difficulties of definition 
(Bookstein et al., 1985), and the nature of the circu- 
larity in the operational concept of homology 
(Inglis, 1966; Rieppel, 1980). 

Historical background. Simpson (1961) discussed 
a broad range of practical homology criteria, 
emphasizing "minuteness of resemblance and 
multiplicity of similarities" of anatomical structure, 
as well as criteria for recognizing non-homologous 
parallelisnls and convergences. Simpson's discus- 
sion of contemporary statistical methods for eval- 
uating similarity was unenthusiastic, but he 
suggested that, conclusions on affinities (which 
means largely on homologies) are stronger the 
more the characters involved." Simpson's criterion 
for improved inference applies to the number of 
landmarks in operational homology (and the 
number of characters in taxic homology, see below). 

D'Arcy Thompson (1942) elaborated the 
geometrical foundation of the operational concept 
of homology, based on his "naturalist's" concept: 
"invariant relation of position." Woodger (1945) is 
credited with developing the modern logical 
framework for the concept. N. Jardine made it 
more operational. In Jardine's (1967, 1969) system, 
like D'Arcy Thompson's, homology is a function 
specifying the geometrical transformation of one 
form to another: it is an optimized level of corre- 
spondence of position arnong landmarks. A 
sufficient matching correspondence relative to 
external landmarks is a necessary condition for the 
recognition of homology. [Internal landmark 
correspondence may be adequate for structures that 
are sufficiently unique due to the complexity of 
landmarks, e.g. fossil mammalian teeth. But 
internal similarity is not a necessary condition 
(Rock, 1063) if striletural changes are being studied 
across higher taxa (Sattler, 1984), e.g., the 
transitions between fish jaw bones and mammalian 
ear hones.] 



328 Gerald R. Smith 

Dificulties of definition and the role of 
development. Difficulties arise when homologous 
structures have different ontogenies (Kluge, 1985, 
1988; de Queroz, 1985; Roth, 1988), or when differ- 
ent structures have evolved to occupy the same 
position relative to external landmarks (Van Valen, 
1982), or when iterative homologs confuse charac- 
ter ancestry (Roth, 1984; Wagner, 1989). For 
example, as a character, the mammalian upper 
premolar 4 of a taxon must have a number of 
recognizable correspondences of internal and 
external landmark locations to justify its compari- 
son to other fourth premolars in a systematic study. 
We wish not to mistakenly compare a premolar of 
one taxon to a molar of a related group. This 
problem is complicated by similarity of internal 
landmarks of some premolars and molars due to 
their serial homology. At some point in the evolu- 
tionary history of mammals, premolars and molars 
had a common ancestry; at a later point, premolars 
and molars differentiated into daughter lineages. 

Van Valen (1982) defined homology as 
continuity of information. In a detailed history of a 
specific case of the above example, he demon- 
strated that landmark similarity is not always an 
unambiguous criterion for homology. Ontogenetic 
changes, such as growth, movement, regression, 
repetition, addition, deletion, and changes in 
genetic and embryonic origin of parts can create 
missing or iterative homologies that confound 
comparison (Van Der Klaauw, 1966; Ghiselin, 
1976; Roth, 1984, 1988; Kluge, 1985). Wagner 
(1989) described possible relationships between 
iterative homologs in radial symmetry. But tracking 
the continuity of information still requires identifi- 
cation of potentially homologous characters by 
landmark correspondence (quantitative or not). 

Bookstein et al. (1985, Figure 5.1.1) illus- 
trated several kinds of homology relations that 
require additional information for resolution of 
morphological correspondence. Structures with 
accretionary growth may exhibit material as well as 
anatomical landmark relations resulting from 
growth along "point paths" (Skalak et al., 1982; 

Bookstein et a]., 1985, Figure 5.1.la). The paths 
are a source of homologous position information. 
Material landmarks enable visualization of the 
process of growth and its meaning for homologous 
landmarks and homologous development. Land- 
mark fusion and division (Bookstein et al., 1985, 
Figure 5.1.lb,c) in ontogeny and evolution create 
ambiguity regarding new or lost space in the 
structure. Shape change through truncation of 
development (Bookstein et a]., 1985, Figure 5.1.ld) 
also renders landmarks ambiguous and requires 
that we look to developmental processes for 
homologous pathways (Alberch et al., 1979; Roth, 
1984, 1988). 

Missing landmarks create problems for the 
operational comparison of potentially related forms 
(Jardine, 1969), but there are operational methods 
for facilitating comparisons. Changed or missing 
internal landmarks can be imputed from external 
landmarks, using a displacement vector model or an 
elastic mapping model, as illustrated by Bookstein 
et al. (1985, Figure 5.1.2). Accuracy of the inferred 
landmark position depends upon the extent to 
which the morphometric model mimics growth of 
tissues. (Missing terminal additions, due either to 
plesiomorphy or truncation, are a different 
problem, see below.) 

van der Klaauw (1966) provided a classifica- 
tion of different kinds of modifications of homology 
in development (see also Alberch et al., 1979). 
Fitch (1970) and Patterson (1987) reviewed the 
comparable sources of variation in data from 
molecular biology. Wagner (1989) suggested three 
criteria-conservatism, individuality, and 
uniqueness-as three biological properties 
expected of homology on the basis of 
developmental considerations. The theoretical 
importance of developmental information to 
recognition of homology has been emphasized by 
Owen (1848), Gould (1977), Nelson (1978), and 
Roth (1984, 1988). 

Even if developmental information is 
included in the definition of homologous characters 
(e.g., Wagner, 1989), the discernment of its alter- 
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nate states in different lineages ultimately depends 
on correspondence of landmark sets, which must be 
determined empirically as matching similarities 
across topographic comparisons (Jardine, 1969). 
Jardine (1969) explored alternative definitions of 
homology in terms of topology, structure, and onto- 
genetic status, and concluded that topographic 
position was more basic because of changes in the 
migration and orientation of parts during develop- 
ment. 

It is clear that homology must be located by 
landmarks in ontogenetic time as well as anatomi- 
cal space if we are to gain information about the 
role of development in evolutionary processes. This 
can be seen most clearly when ontogenetic changes 
involve serial replacement of homologous charac- 
ters or states, e.g., when teeth or exoskeletons go 
through replacement cycles. The most subtle and 
informative examples of ontogenetic homologs will 
involve discovery of the role of heterochrony in 
evolution (Alberch et al., 1979; Bookstein et al., 
1985). 

In an insightful review of the developmental 
basis for character conservatism, individuality, and 
uniqueness, Wagner (1989) suggested that there are 
problems with the concept of homology. But the 
difficulties cited pertain to the attempt to derive 
process information from a concept with no content 
extrinsic to the theory of evolution. The historical 
existence of descent with modification is assumed 
by evolutionary homology, therefore its role can be 
no more than the classification of character-state 
identities. It is a part of a method for describing the 
character-by-character chronicle, given a hierarchy. 
Using homology as part of cladistic methodology 
(see below) has conceptual utility, but no theoreti- 
cal or predictive content. The difficulty is breaking 
out of the circularity of operational homology. 
Wagner's (1989) excellent discussion of develop- 
ment contributes to understanding the processes of 
transformation of homologous characters, but less 
to the methodological problem of homology. 

Operational tests. Attempts to test homology 
operationally involve landmark consistency among 

the groups constituting the larger taxonomic unit. 
Riedl (1978) and Patterson (1981) discuss proba- 
bilistic contexts for considering homolog identity, 
based on consistency of included homologous 
structures among given groups. Riedl considers the 
consistency of a homologous structure to be a func- 
tion of the number of homologous parts it 
comprises. He  also considers the uniformity of its 
occurrence in the groups that possess it, as well as 
its absence in the groups that lack it. Knowledge of 
groups is an evident requirement. 

Patterson's function calculates the probabil- 
ity P that h homologs will specify the same taxon by 
chance as: 

P = (S! (N-S)!  / N! )"-I 

where N is the total number of groups available for 
sampling (i.e., the number of groups involved in the 
disagreement) and S is the sample of groups 
displaying the homology. The calculated probabili- 
ties that h homologies represent S out of N groups 
by chance ranges from 113 to astronomical values 
for more or less unconvincing homologs, leading 
Patterson to abandon the method (if not the prin- 
ciple) and evaluate the homologies on the basis of 
subjective considerations of taxic distribution and 
anatomy (Patterson, 1982:42; see also Ax, 
1987: 168). 

Patterson (1982, 1987) suggested additional 
tests for rejection or acceptance of homology, inde- 
pendent of evolutionary theory. These include 
similarity, congruence, conjunction (two different 
homologous structures must not both be present in 
the same individual, within constraints imposed by 
symmetry relations and iteration), endoparasitism, 
etc. Of these, only similarity and congruence can 
play a major r o l e i n  hypothesized operational 
homology and cladistic tests, respectively. 

Circularity in operational homology. Potential 
circularity arises from lack of satisfactory internal 
tests of two assumptions underlying decisions about 
operational homology: (1) that the study set of 
OTUs consists of a related group of organisms, and 
(2) that the characters are not parallel, reversed, or 
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convergent homoplasies. Operational methods by 
themselves are insufficient for unambiguous reso- 
lution of homology because of the inadequacy of 
non-cladistic tests. This is most easily seen in the 
following kinds of difficulties: reversed or lost 
characters, parts that changed through amplifica- 
tion of serial homologies (Patterson, 1987), or 
structures that became spatially reoriented during 
ontogeny and phylogeny (Jardine, 1969). Bookstein 
et al. (1985) admitted, "The resolution of conflicts 
in homology, if resolution exists, lies mostly outside 
the arena of morphometrics." Roth (1984), after 
discussing the possibility that independently evolved 
developmental pathways might result in serial and 
(or) parallel homologs, stated, "For good biological 
as well as methodological reasons, it may be 
impossible to distinguish homology from paral- 
lelism within a population, or even between 
species." These authors are speaking of the diffi- 
culty of resolving homology from homoplasy, using 
only information from landmark matching and 
developmental similarity. At this (precladistic) 
stage of analysis, resolution requires external test- 
ing to relate homologous states to the historical 
taxonomic hierarchy upon which they are condi- 
tional (Bock, 1973, 1977; Ghiselin, 1969). 

Taxic Homology 
Referring to homology as "synapomorphy" defines it 
as a derived character state shared by the members 
of a monophyletic group (Patterson, 1982). Discov- 
ery and validation of a shared, derived character 
state as a homology is the objective of a cladistic 
procedure that establishes monophyletic groups and 
identifies the derived character states that diagnose 
them. Not all synapomorphies diagnose mono- 
phyletic groups. Confidence in the homology of a 
synapomorphy is established by its congruence with 
the distribution of the states of other characters 
over a cladogram. The homologies of special inter- 
est are those that uniquely diagnose well-supported 
monophyletic groups. 

This sense of homology, called taxic homol- 
ogy by Eldredge (1979b), corresponds to the special 

similarity function that characterizes cladistic but 
not phenetic classifications. A derived character 
state is homologous with respect to a specific 
branch of a cladistic tree; the homologous state 
diagnoses the monophyletic group that descended 
from the stem on which it originated. The common 
ancestor replaces the hypothetical archetype 
(Rosen, 1973:500; Patterson, 1987:4). In this 
special sense, a character state is not homologous 
with less-derived states of the same character below 
it on the tree or with more-derived states of the 
same character higher in the tree. 

But all states of the character must be 
generally homologous in their hierarchic relations 
throughout the tree to justify the comparisons: 
Hennig (1966:93) regarded homologous characters 
as "transformation stages of the same original 
character." This transformational homology, as it is 
called by Eldredge (1979a), is established by 
evidence that the observed representations of the 
character descended from one source through a 
hierarchic path indicated by the cladistic tree. 
Unlike taxic homology, it is a vertical, not an instan- 
taneous, relation in the tree. 

The homology of each synapomorphy is 
ultimately tested by its congruence with other 
characters (Hennig, 1966:112). Character states 
whose similarities are not concordant with the tree 
are homoplasies (Haas and Simpson, 1948) or 
"convergent homologies" and "parallel homologies" 
(Ghiselin, 1976). I would add a third category, 
"homoplasies that are introgressively transferred 
homologies." 

Circularity in taxic homology. Can taxic homology 
stand alone, without an operational concept for 
identification of comparable characters? The 
possibilities might be illustrated by examples of 
taxic homologs that would not ordinarily be  recog- 
nized by operational methods. For example, 
characters that are not operationally recognizable 
as hornologs because they are dissimilar in compo- 
sition and development may be indicated by a 
cladistic tree to be homologous. The horns of the 
Bovidae and the bone antlers of the Cervidae may 
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be homologous as frontal ornaments at  the level of 
the Pecora of the Artiodactyla, although opera- 
tionally one finds different composition and differ- 
ent development, with little more than frontal 
position to suggest homology. But homology is sug- 
gested by congruence with other characters. 

Non-operationally "similar" synapomorphic 
attributes in different anatomical positions provide 
a more extreme exarnple, and we can begin to see 
the potential for circularity. Operational criteria 
would not ordinarily suggest that the black-and- 
white color patterns of spotted and striped skunks 
are homologous, but the congruence with rnorphol- 
ogy (and scent) leads to such a hypothesis. I'hese 
aynalmrnorphies are congruent; they encourage one 
to search for adcfition:il synapomorphies satisfying 
the congruence criterion. 

The emergence of congruence as a prime 
criterion does not suggest a sufficient, non-circular 
niethodology for the discovery of homology. 'The 
red color o n  the sides of the rainbow trout is 
homologous at some level with the orange color on 
the lowcr jaw of the plesiomorphically similar 
cutthroat tro~lt. "l'he search for synapornorphies" 
could well begin with a plesiornorphic siniilarity, 
corroborated wit11 such a 'llioniology," and supple- 
rncntcd 11y other characters "tested" by congruence, 
bypassing 1:indrnark correspondence and operli- 
tional homology. Given the available 
rnorphological and bioche~nical vari~ihility, ad- 
ditional congruent homoplasies could be found and 
listed, ad hoc, if not :id infiniturn. 

A test inclependent of congruence is clearly 
necessary as a check o n  the possibility of beginning 
with a plesiornorphic si~nil:irity and selectively 
adclir~g homoplasies that agree with it. Since an 
initial step in cladistics is the assernbly of a collec- 
tion of comparable characters, this is an optimal 
time for application of morphometrics of landmark 
data to operationally posit homology. Initial selec- 
tion of characters with a rncthocl independent of 
phylogenetic considerations avoids the possibility of 
adding evidence sorted by prior expectations. (But 
the taxa chosen for comparison are not so indepen- 

dent.) The other necessary defense against circu- 
larity is the use of numerical phylogenetic methods 
based on a suitable criterion for tree selection, such 
as the parsimony methods of Farris (1983; Kluge 
and Farris, 1969) or the maximum likelihood 
methods of Felsenstein (1982). These also provide 
safeguards against biased chains of evidence. 

Homology, synapomorphy, and paraphyly. Are 
homology and synapomorphy redundant terms 
(Patterson, 1982)? This suggestion has been made 
by Patterson, but it is weakened to the extent that 
some synapomorphies do not diagnose mono- 
phyletic groups and some unambiguous homologies 
may characterize paraphyletic assemblages. An 
occasion arises when an apomorphy is shared by all 
but a derivative part of a group-for example, 
where parallel, reversed, lost, or  replaced states 
contribute to the designation of a monophyletic 
subgroup, leaving the homologous state 
incompletely represented in the larger group. The 
lepidotrichia of bony fishes, a paraphyletic group, 
stand as an example because of the loss or 
replacement of lepidotrichia in tetrapods, a derived 
group. as pointed o ~ l t  by Patterson (1982) in 
presenting the opposite point of view. Other cases 
exist wherever character states are introgressively 
transferred between species that are not sister 
groups. Although the logical and methodological 
relationship between homology and synapomorphy 
is funclamental to the homology concept and to 
cladistic methods, not all synapornorphies are taxic 
homologs, and the distinction justifies retention of 
the concents of transformational as well as taxic 
homologies in hierarchical relation to each other 
(Ax, 1987). 

In  a comprehensive summary of the view 
that homologies are synapomorphies, Patterson 
(1082:33) argued that syrnplesiomorphy and 
synapornorphy are terms for homologs that stand in 
hierarchic relation to one another. This is a 
fundamental point, but, contrary to Patterson, I 
take this to imply that hierarchic relations of 
characters validate transformational as well as taxic 
homologies ( ~ e e  above). Patterson (1982) has 
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criticized attempts to document character transfor- 
mations, especially those utilizing fossils, on the 
grounds that they are founded upon paraphyletic 
groups, which are unnatural (unreal) inventions. If 
the groups are unnatural, much of what we think we 
know about evolution is invention of questionable 
reality (Patterson, 1982). Further, if paraphyletic 
groups are by definition without homologies, 
homology has nothing to do with evolution: "If 
phylogenies have to say something about evolution, 
then it is evident that homologies can have no role 
in them" (Patterson, 1982:58). 

There are  several important points in Patter- 
son's exploration. First is the observation that 
paraphyletic groups have dominated classifications 
since their beginnings, and when we restructure 
systematics to monophyletic form, reflecting the 
historical chronicle of evolutionary divergence, our 
inferences about processes can only be improved 
(O'Hara, 1988). In addition, there is the problem 
that historical processes of  transformation are 
unknowable because of our dependence on infer- 
ences based on extinct and paraphyletic (i.e., 
unnatural) groups. I think this problem is misspec- 
ified, however. Inference based on an assemblage 
made paraphyletic by misclassification of a mono- 
phyletic group is no more misleading than one 
made false by our ignorance of extinct group 
members. Conclusions confidently based on groups 
erroneously thought to be monophyletic will be 
most damaging of all. Documentation of anagenic 
transformations through (technically paraphyletic) 
lineages within monophyletic groups can generate 
and test important historical hypotheses (Roth, 
1988). Ironically, tests of evolutionary hypotheses 
are most informative, as well as safest, when based 
on groups at the species level, where the processes 
occur, where morphometric methods are least in 
need of corroboration, and where evolutionary 
units are most likely to be paraphyletic. The natu- 
ral order in a cladistic hierarchy is necessarily 
consistent with most evolutionary processes, as 
understood, as well as the historical narrative 
implicit in phylogenetic trees (Riedl, 1979; O'Hara, 
1988). The results of past cross-testing of these 

bodies of theory and data justify some optimism for 
continuing. The correction of the paraphyly 
problem is desirable but trivial; we should strive 
toward a monophyletic classification for groups 
above the species level. Granted that, for many or 
even most groups, the true cladistic chronicle may 
be unknown and unknowable, nevertheless, molecu- 
lar data and the fossil record provide independent 
consistency tests by which cladistic estimates can be 
improved. 

Patterson (1982%) seemed to be reaching 
still deeper: his rejection of the use of transforma- 
tional homology-the transitions in states from 
ancestors to descendants over a cladogram-ulas 
accompanied by denial of evolutionary content in 
homology, presumably to avoid circularity in the 
study of evolutionary events and processes. His 
argument persuades me that we cannot regard 
homology as a concept with predictive content 
about the process of evolution. Homology cannot 
provide independent confirmation or challenge to 
any evolutionary hypothesis because the concept is 
merely a restatement of descent with modification 
applied to characters rather than taxa. But the 
definition "similarity due to common ancestry" is 
essential as a relational statement that facilitates 
the operational and taxic methods for inferring 
character-by-character chronicles of evolution. 
Assuming that the concept of homology is burdened 
with the circularities discussed above, we can also 
turn to empirical and conceptual aspects of geology 
and molecular biology for the theoretical tensions 
(Laudan, 1977) necessary to develop tests of 
hypotheses. Transformational homologies and 
homoplasies will play decisive roles in investigation 
of predictions from genetic, ontogenetic, ecological, 
stratigraphic, paleontological, and paleoecological 
studies of evolution in the context of cladistic 
hypotheses (Eldredge, 1979b). 

The Relationship between 
Morphometrics and Cladistics 

Morphometrics can contribute identification of 
characters and quantification of character states for 
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cladistics, but cannot contribute directly to cladistic 
inference. Morphometric character analysis is 
either precladistic or postcladistic. Precladistic 
character analysis contributes to the definition of 
homologous characters and the quantitative 
description of character states for cladistic analysis. 
Character states can be quantified by morphometric 
methods and, when necessary, coded for treatment 
by a tree-forming algorithm (see Wagner, 1980; 
Kluge and Farris, 1969). We can define the cladistic 
character and character state in relation to the 
concepts of homology and landmarks as follows: 

A "character" may be strictly defined as an 
among-taxon set of putatively homologous struc- 
tures whose correspondence is recognized by (1) 
similarity of internal and external landmark posi- 
tions on the organisms at appropriate stages of their 
developmental histories, and (2) identity due to 
inheritance from a common ancestor (as initially 
indicated by a previous, more inclusive phylogenetic 
analysis). However loosely the investigator satisfies 
these two criteria, they are necessary to establish 
general homology prior to carrying out a compara- 
tive and phylogenetic study. For example, an 
investigator studying Gardiner's (1982) group, 
"Homiothermia," may assume that numerous paral- 
lel aspects of bird and mammal homiothermy are 
homologous and therefore comparable characters. 
The investigator compiles characters from more 
amniote taxa, based on previous broader studies, 
and cladistically tests the monophyly of the 
Homiothermia as well as the taxic homology of all 
of the characters (see Gauthier et al., 1988). (The 
problem of redundant information content in genet- 
ically or  functionally covarying characters is treated 
by Felsenstein, 1988.) 

A "character state" is the quantified or coded 
condition of a varying character (see Colless, 1967; 
and Hull, 1968). Character states at  one level of 
analysis often become characters at a finer analysis, 
as the character hierarchy parallels the taxic hierar- 
chy. In morphometrics, the quantitative value or 
state of a character might be, for example: 

1) a distance between landmarks; 

2 )  ratio shape-ratios of distances measured over a 
structure defined by landmarks; 

3) a measure of size, e.g., centroid size: the sum of 
squares of all of the interlandmark distances 
(Bookstein, 1991). 

Shape characters are rarely independent of 
size, i.e., are usually allometric, and therefore 
should be analyzed as ontogenetic trajectories 
(Creighton and Strauss, 1985; Kluge and Strauss, 
1985). An ontogenetic character state might be the 
allometric trajectory describing shape difference 
between juvenile and adult structure (Strauss and 
Fuiman, 1985). Diverse morphometric methods, 
such as principal component and factor analysis, 
biorthogonal analysis, medial axis data (Bookstein 
et al., 1985) or Fourier analysis, (e.g., Ferson et  al., 
1985), can be used to define ontogenetic trajecto- 
ries that can be given character-state values. In 
general, these are less rigorously specified than 
Bookstein's (1991) shape variables based on trans- 
formations of triangles. Analytical triangles, digi- 
tized over the form or its parts (e.g., bones or 
sclerites), can yield at  least one character per 
triangle; these may prove to be the most subtle and 
information-rich morphometric products for cladis- 
tic use. Each triangle can provide a within-group 
allometric trajectory, the values of which form a 
hyperbolic metric (Bookstein, 1991). 

The states of morphometric characters 
usually vary continuously and may require some 
interpretive coding for use in most algorithms used 
in phylogenetic reconstruction. Homogeneous 
subset coding and generalized gap coding are solu- 
tions to this problem provided by Archie (1985) and 
Goldman (1988). In principle, states of continu- 
ously varying characters need not be treated as 
coded homology-identities. Most current parsi- 
mony algorithms do not take continuously varying 
characters as input, but this constraint is not inher- 
ent in the parsimony method. In principle, multi- 
state characters may be subjected to Transforma- 
tion Series Analysis (Mickevich, 1982) to optimize 
the distribution and order of their state transfor- 
mations over the tree, although an algorithm is not 
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yet available. The most unconventional aspect of 
the use of continuous characters in estimating 
synapomorphies would be the use of continuously 
varying states as putative estimators of homology, 
with certain states becoming homology identities 
only after becoming cladistic characters in the sense 
of Mickevich (1982). Here, morphometric charac- 
ters would be similar to molecular sequence charac- 
ters in displaying relative homology. Morphological 
characters are less likely to provide satisfactory 
taxonomic distances, presumably because their 
tempo and mode of evolution is less clock-like 
(Fitch and Atchley, 1987; Patterson, 1987). 

In cladistics, the character-state value must 
be accompanied by information about direction of 
evolution as well as similarity of character states. 
Morphometric methods currently do not distinguish 
plesiomorphic and synapomorphic information. 
Inclusion of outgroup taxa in the analysis, and 
designation of the direction of the character states 
to be away from outgroup values, may place the 
morphometric data in the directional context neces- 
sary for cladistic analysis. Optimization of the 
distribution of character states is accomplished by a 
function based, for example, on a parsimony crite- 
rion (Farris, 1983). Quantified ontogenetic infor- 
mation may also be used to indicate polarity and 
sequence among multiple character states 
(Creighton and Strauss, 1985; Strauss and Fuiman, 
1985). 

are not sorted by the systematist's prior evaluation 
of "good" and "bad" characters from other contexts. 
Good taxic homologies arise from numerical parsi- 
mony analysis, although these analyses almost 
always show reversed and potentially parallel 
characters among the taxic homologiesi.e., non- 
unique homologies little different from homoplasies 
play a role in diagnosis of monophyletic groups. 
However, prior selection of taxic homologies by 
their fit to "known" groups, with the discard of 
characters known to show some homoplasy, is not 
different from other methods of subjective prejudg- 
ing. It is potentially circular. 

Phylogenetics. Postcladistic character analysis is 
the use of morphometric methods to describe char- 
acter variation and the direction and amount of 
evolution. This is usually approached by measuring 
the changes in size and shape differences among 
related lineages. Cladistic methods ignore random- 
walk fluctuations and amounts of evolution and are 
unable to control for secondary factors and effects 
of uncontrolled variables that affect processes 
driving groups of characters. One may use mor- 
phometrics and cladistics together to estimate the 
sequence of lineage branching and the patterns of 
responses among characters. Character correla- 
tions may be summarized and analyzed as conse- 
quences of genetic, developmental, functional, and 
ecological factors (Bookstein et al., 1985). 
Together, the cladistic tree and the morphometri- 

When a terminal ontogenetic character state cally derived factors provide information about the 

is missing, morphometric and ontogenetic data are relative timing, amounts, and directions of evolu- 

incapable of discriminating between loss due to tion. When the morphometric factors are examined 

truncation of development and absence due to in the context of ontogenetic or ecological hypothe- 

plesiomorphy, except in the context of a cladistic ses, we have a framework for investigating possible 

hypothesis (Fink, 1982). The first step in solving forces and constraints influencing evolutionary 

this dilemma is assignment of a character-state code change. 

value by reference to outgroups (the larger hierar- Not only is a cladistic framework necessary 
chy), when possible, or entering an agnostic code for such an analysis (Fink, 1982), but the study must 
value into the data matrix when necessary. The utilize a different data set to avoid methodological 
next step is a cladistic analysis, which will provide a circularity (Ghiselin, 1966; Hull, 1967). For exam- 
homology decision based on congruence with other ple, in a test of a hypothesis about the evolution of 
characters (Hennig, 1966). In numerical phyloge- shape change through heterochrony, the shape/size 
netic analysis, all of the characters are used; they trajectories would not be appropriate cladistic 
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characters. Biochemical data are sometimes avail- ses. The validity of a taxic homology is tested 
able for estimating branching sequences, or at least against homoplasy by congruence with other char- 
branch distances. Distances may be useful indica- acters over a hierarchical tree. 
tors of taxonomic distance wherever biochemical 
divergence is consistent and monotonic (Sibley and 
Ahlquist, 1987). Morphological evolution is still an 
objective of such studies, however, and morphologi- 
cal data will continue to be necessary for cladistic 
tests. Once a cladistic frame of reference is estab- 
lished, morphometrically quantified data may be 
analyzed by regression, ANOVA, or factor analysis, 
etc., to provide information about how the morpho- 
logical differences relate to ecological processes 
(Rookstein et al., 1985). 

Summary 

I-Iomology is not a concept with theoretical predic- 
tive content about processes, but part of a method 
for classifying character-state identities in terms of 
their transformations in a hierarchy of mono- 
phyletic groups. (Ilomoloby of characters is not a 
conceptual problem unless the paradigm is some- 
thing other than descent with modification, in which 
case homology is the central mystery to be divined.) 
The ultimate goal in evolutionary biology is to 
understand the history of change and the ecological, 
genetic, and ontogenetic processes by which change 
occurs. Progress toward this goal may not change 
the concept of homology, but it should be aided by 
effective application of methods based on it. 

Operational homology is a character corre- 
spondence, among taxa, based on the optimal 
matching of internal and external landmarks on 
exemplars, samples, or developmental series of 
OTUs. It is usually a quantified construct within 
which landmarks, variables, and characters are 
oriented for comparison in systematic biology. In 
this context, morphometrics can provide quantita- 
tive values for character states. 

Taxic homology is an identity relation that 
diagnoses a monophyletic group. By diagnosing 
monophyletic groups, taxic homologs provide 
evidence for hypothetical ancestral states and a 
historical context for tests of evolutionary hypothe- 

Operational and taxic homology are often 
discussed as concepts that exclude each other's 
validity. But each definition refers to a necessary 
step in the process by which homologous characters 
are chosen, tested, and analyzed in studies of evo- 
lution. The circularity in each half of the dual 
concept is avoided by appropriate use of the other. 

A transformational homology is the 
sequence of modified states of a character over the 
inferred course of descent from a common ancestor 
through a cladistic tree hypothesis. It is the basis 
for study o f  genetic, ontogenetic, and ecological 
processes in the context of phylogenetics. 
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Introduction 

Many features of organisms are potentially useful in 
phylogenetic analyses, including structural arrange- 
ments of the skeleton, behavioral repertories, and 
developmental and transformational features (Roth, 
1984). If based on a continuity of genetic informa- 
tion from one generation to the next, any feature 
may become homologous (Roth, 1988). In molluscs 
one of the most important features of the skeleton is 
the ontogenetic record of growth preserved in the 
shell. The shell records information about rates and 
directions of shell growth through time. This paper 
examines how information about growth rates and 
growth directions might be useful in the identifica- 
tion of homologous landmarks on n~ollusc shells. I 
will refer to rates and directions of shell growth as 
programmatic features of molluscan morphology. 

Growth Functions 

The gastropod shell provides a model illustration of 
molluscan shell growth patterns. The shell aperture 
revolves around the coiling axis expanding at rate 
W, and translates along the coiling axis at a rate T 
(Wand T are defined by Raup, 1966). The aperture 
is a snapshot in time of the shape of the marginal 
mantle tissues and the coiling parameters W and T 
define the aperture's expansion rate and its path. 

While mathematically compact, the spiral 
model can be criticized on the grounds that the coil- 
ing parameters have no obvious biological signifi- 
cance. This analysis attempts to convert the spiral 
model into a more biologically meaningful growth 
function. The growth function specifies the magni- 
tude of the growth vector at  any given point on the 
margin and the rate of divergence of adjacent 
growth vectors. 

Growth functions will be illustrated by a 
computer simulation. The shell forms in Figure 1 
were constructed with identical coiling parameters: 
W = 3.5, T = 2.0. The aperture shapes are also 
identical (elliptical, with ellipticity = 0.8) but the 
orientations of the apertures' long axes vary in 45" 
increments. In each shell form the aperture touches 
the coiling axis. Mathematically, the shell forms in 
Figure 1 are closely related; however, biologically, 
the forms exhibit significant differences in both the 
rates and directions of growth, expressed in terms of 
position on the aperture margin. 

The heart-shaped graphs in Figure 1 repre- 
sent the magnitude of the growth vector at  the 
aperture margin. For example, in aperture A the 
maximum growth rate occurs at (or near) the point 
on the aperture most distal from the coiling axis; the 
location is marked with a circle. The minimum 
growth rate occurs at a point on the "upper left" 
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Figure 1. Simulated shell forms (right) gcncratcd by the 
coiling paramctcrs (after Raup, 1966): I/ = 3.5, T = 2, and 
D =  0, and with elliptical apcrturcs (e = 0.8) at diffcrent 
orientations to the coiling axis (45" increments). The left 
column shows the position of the coiling axis, the aperture, 
and a polar plot of the magnitudcs of the growth vcctor at 
diffcrent positions around the aperture. 

sector of the aperture, also marked with a small 
circle. The asymmetrical heart-shaped graph repre- 
sents the distribution of growth rates around the 
shell margin. 

The polar graphs in Figure 2 represent the 
divergence rute of adjacent growth vectors along the 
aperture margin. The divergence rate is expressed 
in radians per unit distance along the aperture 
margin, A%/Au, where A% is the angle between two 
adjacent growth vectors and Au is the arc distance 
between them, measured along the aperture edge. 
'The divergence field shows a bimodal distribution 

Figure 2. The local divergence of the growth vector field 
around the edge of the aperture. The divergence field is 
bimodal with peaks occurring in the vicinity of the coiling 
axis. A, B, C, and D refer to the shell forms in Figure 1. I 
on the aperture, with high rates of divergence gen- 
erally occurring just "above" and "below" the point of 
adherence of the aperture to the coiling axis. 

To  a first approximation, the surface area of 
shell secretion at any point along the aperture 
margin is proportional to the product of the diver- 
gence function and the growth magnitude function 
squared. The surface area function also shows a 
bimodal distribution along the aperture (not shown 
as a figure). 

A third component of the growth field is 
closely related to the aperture's shape (which is held 
fixed in this example) and is represented by the 
curvature of the growth vector field. Thus, the 
growth vectors sweep around the shell, following the 
aperture's edge. The form of the curvature function 
can be traced directly to the shape of the embryonic 
shell aperture, and hence to embryogenic processes 
of shell formation (Raven, 1966). 



Chapter 18. Using Growth Funct~ons 

Figure 3. blagnitude of the growth vector as a function of 
arc position around the shell margin for the four shell forms 
in Figure I .  Arc lengths of 0 and 1 correspond to points on 
the long axis of the ellipse most distal from the coiling axis. 
The two graphs show the same data but one is shifted by one 

A Programmatic Criterion for Identifying 
Landmarks 

In the preceding analysis, the growth program was 
defined by the magnitude and divergence of growth 
vectors along the aperture margin. Using this 
approach, it is possible to locate growth maxima and 
minima on the margin and to use these positions as 
"programmatic" landmarks. The points of growth 
maxima and minima are biologically relevant 
because they reflect processes of mantle secretion. 

In Figure 1, the growth magnitude was illus- 
trated with a polar graph, and points of maxima and 
minima with circles on the aperture margin. Figure 
3 shows a different representation of these data, 
where the aperture margin is "unrolled" onto a 
straight line, the x-axis, and the growth magnitude 
represented on the y-axis. The zero point on the 
aperture arbitrarily coincides with the position of 
the aperture's long axis. The bottom graph shows 
the same data but shifted by half the aperture's 
length. Figure 3 permits a comparison of the 
growth functions in the different shell forms, by 
inspection of the points of growth maxima and 
minima, and of inflection points showing the 
maximum rate of change of the growth function. 

Figure 4 also shows the four apertures, 
redrawn with large circles indicating maxima and 
minima, and small circles indicating inflection 
points. These "programmatic" landmarks are the 
basis for four simple trusses. Similar trusses could 
be constructed for the divergence field, showing 
points of maximum and minimum divergence of 
growth vectors along the aperture margin. The four 
apertures are unrolled as straight lines at the 
bottom of Figure 4, and registered to one of the 
extrema. 

Transformation Analysis 

In the preceding analysis, components of the growth 
vector field (i.e., the magnitude and divergence) 
were mapped onto the shell aperture using polar 
graphs (Figures 1 and 2). The aperture shape in 
each shell is identical, and the distribution of growth 
vectors around the aperture determines the final 
shell form. Components of the growth field are 
biologically meaningful because they reflect net 
rates of cell growth and division along the aperture 
margin. 

If phylogenetically related, then the shell 
forms in Figure 1 represent modifications of a com- 
mon growth program. In other words, the vector 
field along the aperture margin was deformed (i. e., 
modified) in order to produce the observed diversity 
of shell forms. Representing the deformation of a 
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vector field is a complex problem. Consider, for 
example, the magnitude of the growth vector and its 
distribtltion around the shell margin, as represented 
by the heart-shaped graphs in Figure 1. If geneti- 
cally related, then each heart-shaped distribution is 
a modification of a common growth program. The 
n~odifications are apparently complex because the 
shape of each growth function is slightly different 
(Figure 3). On the other hand, the transformation 
series is hypothetical. Are biological transforma- 
tions constrained to simpler pathways, for example, 
by correlated changes between the growth program 
arid aperture shape? 

Because the aperture shape in tlie four sliells 
is identical, the variation in shell form can be 
related to a deformation of the function that 
(letermines the magnitude (and also the direction) 
of shell growth at any given position on the aper- 
ture. Thus, we see that the maximum and rninirnurn 
growth points shift hoth relative to one another, and 
relative to the long axis of the aperture. 'I'hese 
shifts, or deformations, are representcd in Figure 4 
by a series of trusses, where tlie vertices represent 
the cxtrema and the inflection points on tlie growth 
function. 'I'he differences in shell form are rcadily 
visible as deformations of tlie trusses representing 
the growth data. 

A second method of representing these data 
is by breaking the aperture edge and rolling it out 
onto a straight line (bottom, Fig~lre 4). tiornolo- 
gous landmarks o n  the growth function are rcgis- 
tered to one another, and differences between the 
growth functions can be explained in terms of ( 1 )  a 
uniform deformation of the function, accounting for 
the relative shifts in the position of growth maxima 
and minima, and (2) a non-uniform deformation of 
the function, accounting for shifts in the positions of 
the growth inflection points. 

The preceding discussion was based o n  an 
arbitrary choice of reference points on the growth 
function curve (i.e., extrema and inflection points). 
In principle, we would seek to describe the deforma- 
tion between one growth curve and the next in 
terms of a continuous deformation function, but the 

D -e----c-s-----c 

C--------t--- ---I 
0 0 5 1 registered 

. q 
arc longth 

Figure 4. The large circlcs on thc ;rpcrtures rcprcscnt points 
of mrrxirnum ant1 minimum growth, and the small circlcs 
rcprcscnt the position or  inllcction points on the growth 
function curvc (see Figure 2). Lincs connecting the extrema 
:tnd inflcction points form a truss for each shcll form. 
Dif l rcnccs in geometry bclwccn the shcll forms can be 
cxprcsscd, to a firs1 order, 21s deformations in the trusses. In 
the I,ottom figure, thc apertures have bccn "hroken" and 
rolled out onto a straight linc, thus showing the relative 
positions of the points on the aperture as linear functions. 
The  relative shifts o f  cxlrcma and inflection points rcflcct the 
tr,rndornrations or the growth magnitude ficld bclwccn shcll 
form\. -- -- 

techniques for such an analysis are not well devel- 
oped. In addition we must describe the deformation 
of the entire vector field, not just its scalar compo- 
nent as illustrated above. 

Discussion 

Tlie mollusc shell is an ontogenetic record of growth 
by \keletal accretion. ?'he shell is a developmental 
pathway, recording the trajectories of ccll lineages. 
'I'he developmental path is preserved more or less in 
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plants, turtle shells, or fish scales. In contrast, the 
path is difficult to establish in structures such as 
skulls because the physical connections from one 
growth stage to another are frequently resorbed. In 
skulls, one can specify a sequence of structural 
arrangements, but not the precise path between 
them. 

The fundamental differences in the nature of 
form in different phyla require different styles of 
morphological analysis. In vertebrates, for example, 
considerable attention is given to the configuration 
of structural elements of the skeleton, such as the 
bones of the hand. Morphometric analyses focus on 
spatial deformations of coordinate data (e.g., 
Bookstein et al., 1985). In molluscs, on the other 
hand, studies of shell form diversity tend to empha- 
size the ontogenetic component of the organism. 
The shell is a collection of growth vectors, and mor- 
phometric analyses focus on the geometry of the 
vector field. The vector field represents dynamic 
growth processes and hence reflects transforma- 
tional, as opposed to structural, features of the 
organism (Sattler, 1984). 

Traditionally, the growth field in molluscs 
has been defined in terms of the logarithmic spiral 
model. The coiling parameters define a growth 
vector field, and the shape of the aperture, and its 
position in the field, define the resulting shell form 
(see Bayer, 1978). Mathematically, the aperture's 
shape is decoupled from its path, since differently 
shaped apertures may follow the same growth 
trajectory field (e.g., Raup, 1966). However, biolog- 
ically, the growth "field" is confined to the roughly 
one-dimensional edge of the aperture, and the 
coding of the growth program that produces a given 
shell form must be specified in relation to a particu- 
lar configuration of cells at the shell margin. The 
growth functions derived in this paper are biologi- 
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cally relevant insofar as they represent patterns of 
cell growth, division, and divergence. The growth 

Appendix: Growth Functions 

functions provide a biological basis for defining Following Raup (1966) we define the position of a 
homologous landmarks that reflect dynamic growth point on the shell by its radial distance from the 

processes. coiling axis r, its angular distance around the coiling 
axis 0, and its translational distance along the coiling 
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and 

z = zoi e Cot 0 + rc T(eCOt 0 - 1) 

where a and T are  spiral constants, roi and zOi are 

the radial and translational positions of the ith point 
along the shell margin at the position 0 = 0, and rc is 

the radial position of the aperture's centroid at 
o = 0. 

Differentiating the preceding functions gives 
the growth vector 

where the terms represent the angular rates of 
growth in the radial, circumferential, and transla- 
tional directions respectively, and where 

and 

dz - dh = cot a e Cot (zoi t rcT). 

The magnitude of the growth vector is 

and the local divergence of the vector field is QVG 
The local divergence is estimated by a finite equa- 
tlon: 

A6 
QVG = - Aa ' 

where A6 is the angle between two adjacent growth 
vectors and Aa is the arc distance between them. 

dr - do = roi cot a e C 0 t f f 0 ,  
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Abstract 

Species of the Eocene radiolarian genus Podoqrtis 
from the Caribbean (Deep Sea Drilling Project Site 
29) have been described using five pairs of shape 
coordinates in lateral view. The assemblages are 
from five stratigraphic levels. Principal components 
and resistant-fit theta-rho analyses (RFTRA) were 
effective in distinguishing morphotypes based on 
landmark data. Principal components analysis indi- 
cated that the thoracic and lumbar coordinates 
contribute most to the variation. Cluster analysis of 
the principal component scores, RFTRA and prin- 
cipal components analysis produced groupings of 
specimens similar to those used in conventional 
taxonomy, but with the advantage of quantifying 
similarities and differences. 

The stratigraphic distribution of the sampled 
morphotypes shows the development, through time, 
of two or three distinct populations with continuous 
variation within each morphocline. New mor- 
phologies can be explained by cladogenesis and 
anagenesis. However, the traditional species used 
for stratigraphic interpretations cannot be recog- 
nized by ~lsing seven landmarks alone. Additional 
information from pore patterns, outline shape, and 

appendages are needed to differentiate adequately 
the various morphotypes. 

Introduction 

Geologic history reveals few fossil groups with as 
complete a record as polycystine radiolarians. 
Ranging throughout Phanerozoic time, these proto- 
zoans were apparently as diverse in the Paleozoic as 
they are now. They have left behind a detailed 
evolutionary record that makes them potentially 
one of the most important marine microfossil 
groups. 

Radiolarians are exclusively marine and are 
found in all oceans. They are unicellular, with an 
internal skeleton made of amorphous silica. Poly- 
cystine radiolarians are classified principally on the 
basis of their skeletal shape and symmetry into two 
major groups: Spumellaria and Nassellaria. 
Spumellarians are commonly spherical, discoidal or 
ellipsoidal, with radial spines extending from the 
surface of the shell and often connecting internal 
shells. Nassellarians are characterized by axial, 
often conical symmetry, although various modifica- 
tions can be seen in the multitude of individual 
forms. 
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I n  the nassellarians, an apical spine is 
termed a "horn," while prominent basal spines are 
termed "feet." At level G in Figure 1, where a 
collar stricture separates the first and second seg- 
ments, there is an internal spicular structure clearly 
horiiologous in all the diverse nassellarian forms. 
The cephalic shell wall associated with this internal 
spicule is the basis for distinguishing families. 
Further subdivision depends generally on structures 
peculiar to individual family-level taxa. For exam- 
ple, pore size, shape and arrangement are com- 
monly significant at the species and genus levels, 
but rn:ly also characterize family-level groups. 

Figure 1. (;ctiernli;.-cd nasscl1ari:in sketch indicating the 
1;incltnarks 11scd in this study. 

I t  is usually considered that the stratigraphi- 
cal succession in radiolarians provides evidence for 
gradual change of one species into another. This 
evolutionary process is referred to as phyletic spe- 
ciation or anagenesis. This continuum is arbitrarily 
divided into a number of chronospecies (Mayr, 
1942). Since d~ronospecies are arbitrarily defined, 
some paleontologists (e.g., Eldredge and Could, 
1972) u,ould argue that anagenesis does not pro- 
duce new species and therefore call it phyletic 
evolution o r  micro-evolution (Eldredge and 
('racraft, 1080). 

+ cephalis 
collar stricture 
thorax 

lumbar stricture 

D + abdomen 

distal aperture 

The term "lineage" has been used to describe 
an evolving succession of two or more species. 
Divergences are called speciations. 

C V W W C '  

Reconstruction of a phylogeny is based on 
the search for characters shared by two or more 
organisms. The species is usually considered the 
only non-arbitrary unit in spite of many different 
definitions and limits, being limited in nature only 
to interbreeding members. Supraspecific categories 
such as genera, families, orders etc., are groupings 
chosen by the systematist to organize the diversity 
of organisms on the basis of relationships. 

B X-axis 

To document the evolution of one species 
into another it is necessary to have a good fossil 
record. In recent years oceanographic expeditions 
and the Deep Sea Drilling Project have collected 
long, more or less continuous sequences of highly 
radiolarian sediments representing most of Ceno- 
zoic time from several biogeographic regions suit- 
able for biostratigraphic and paleontological 
studies. 

Radiolarian evolution during the Cenozoic is 
illustrated by many lineages among the nassellari- 
ans (Sanfilippo et a]., 1985). One such lineage- 
the Eocene Podocyrtis lineage, in the family Ptero- 
corythidae - is used in this morphometric study. 
These phyletic lineages, each regarded as compris- 
ing a genus or subgenus, are based on one or two 
characters e.g., the long-term gradual morphologic 
change observed in the subgenus Lampten'um 
(Figure 2) as a decrease in the thoracic size and 
increase in the size (decrease in the number) of the 
abdominal pores. Speciations are observed in a few 
genus-level taxa and we treat the two resulting 
branches as different subgenera. 

Traditional Taxonomy 
The Eocene radiolarian genus Podocyrtis offers an 
interesting group for the study of morphological 
diversity over approximately 13 million years. The 
morphotypes display complicated patterns of varia- 
tlon. 
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This lineage exhibits continuous morpho- 
logic:il change through time (Figure 2). Any sample 
contains a range of variability, ~ v i t h  some specimens 
resembling the commonest form in the older sarn- 
ples, and other specimens resenlbling the forms in 
younger samples. It is the "center of gravity" of the 
rnorpliology that changes ~inidirectionally. The 
Porloc:),t~i.s lineage has previously been described 
(Riedel and Sanfilippo, 1970; Sanfilippo and 
Riedel, 1073; Nigrini, 1974; Sanfilippo et a/., 1985) 
from a large number of tropical Deep Sea Drilling 
and Ocean Drilling Project sites. The early 
Potlocjtr- ti.^ papa1i.s gives rise to three lineages in the 
Eocene. Within each lineage we recognize several 
stratigraphically useful anagenetic species. This 
genus has been chosen for the analysis of changes in 
shape using shape coordinates (I<ookstein, 1991) to 
explore the changes in variation of five populations 
as morpliospecies appear and tlis:~ppear over the 
time interval studied. 

Figure 3 illustrates the lineage ~inder  investi- 
gation. Levels sampled from DSDI' Site 29 are 
indicated in the left column. Species rnarked with 
an open arrow are included in this study. The range 
chart is a composite, based on information from a 
number of widely scattered localities, and therefore 
some of the species represented i n  i t  are absent at 
Site 29. To the nominate subgenus Porlocyrti.~ are 
assigned members of the anagenetic lineage leading 
from P. prrpc11i.s via P. dirir>lc.su and P. phyxis to P. 
atripla. Included in this study are P. tlirir~zc.so nior- 
photypes which are clearly transitional between P. 
pci110li.s and P. rir?~plrz. They differ from P. pupalis in 
their larger size and the presence of a lumbar 
stricture, and from P. rirtlj~l(l in their general form, 
being spindle-shaped rather than conical. 

The subgenus Lrirrzptcriirrtl comprises those 
forms that developed from P. paprili.~, beginning 
with P. ci,r1llor111n and evolving via P. sitlirosa, P. 
nlitra, and P. chalcrra into P. goctlicrr~n. 

The forms P. (L.) fii.sciolnfn and P. (L.)  
truc~hoiics are closely related to members of the 
subgcnus Lcir~lptc~rirtrn but their placement in this 
anagenetic lineage has not been fully ascertained. 

Nigrini (1974, p. 1069) considered P. fasciolata a 
geographic variant (Indian Ocean) of P. ampla. 
However, P. fascioluta was later found (Sanfilippo 
and Riedel, 1974) to co-occur with P. arnpla in the 
Indian Ocean as well as in many other localities. 
Because its characteristics correspond better with 
those of P. sirluosu it was transferred to the sub- 
genus Lurnpterium to indicate this relationship. At 
the time of its acme, P. fu.~ciolutu far outnumbered 
the co-occurring P. sinuosa. 

P. (L.) trachodes, which is similar to P. (L.) 
rnitru in its general shape, is distinguished from the 
latter by its rough abdomen. It is considered a 
branch from the Lurnpteriunl lineage. 

The anagenetic Lar?lpterir~m lineage shows a 
decrease in thoracic volume (second segment) and 
an increase in the abdominal volume (third seg- 
ment) over time. 

Conventional descriptions and diagrams 
(Figure 2) are unable to accommodate all the 
variation and all the intermediate forms included in 
each species at each level in the continuum. They 
illustrate only the general form at a single level 
during the range of that particular species. The data 
necessary to describe the variation cannot be illus- 
trated this way. Techniques developed for 
morphometric studies provide a uniform way of 
describing the variation and transformations 
involved in the evolution of these forms. 

Morphometrics 

Materials 

This study utilized five Middle Eocene sediment 
samples (each approx. 50 cc) from the Caribbean 
(DSDP Site 29, at  Lat. 14" 47.15' N, Long. 69" 19.38' 
W: samples 29B-8-5, 91-93 cm; 29-9-6, 72-74 cm; 
29-12-2, 87-89 cm; 29-16-5, 14-16 cm; 29B-10-2, 29- 
31 cm). For each sample, thirty to fifty specimens 
comprised of Podocyrtis morphotypes (Figure 2 )  
were randomly chosen from prepared strewn slides 
(sieved at 63 microns) mounted in Canada balsam. 
Each slide contains approximately 30,000 radiolari- 
ans, of which 1-596 belong to the genus Podocyrtis. 
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A total of 195 specimens were used in this analysis. 
T o  avoid problems associated with tilting, only 
specimens with their longitudinal axis parallel or 
nearly parallel to the glass slide were chosen. Each 
stratigraphic level was analyzed separately. To  
avoid preconceptions about the species content, 
all the individuals were lumped into one 
experimental taxon without reference to species 
level designations. Thus the phenetic patterns of 
variability and the relationship between and within 
previously designated species within this genus can 
be evaluated. 

Measurement Techniques 

Members of Podocydis are basically conical, consist- 
ing of the horn and three segments (cephalis, thorax 
and abdomen). Each specimen was digitized using 
a V150 Videometric System developed by Ameri- 
can Innovision of San Diego, California. A pro- 
gram was written to rotate the coordinates to a 
specific orientation so that the longitudinal axis, 
chosen to represent the baseline for the homolo- 
gous landmarks, is placed along the Y-axis of the 
coordinate system, with landmark B at the origin 
(Figure 1). The final output is written to a file as 
seven pairs of (x,y) coordinates. Only one side of 
each specimen is digitized. "R" is a derived land- 
mark - the point where the longitudinal axis inter- 
sects the line connecting the opposite sides of the 
distal aperture. Morphological variation is tradi- 
tionally expressed in width and length measure- 
ments of the segments in addition to a description 
of outline shape, presence and nature of horn and 
feet (Figure 2). A photographic record was made 
of each individual. 

Landmarks 

The shape of a group of three or more landmarks 
can be described and analyzed by selecting two 
landmarks as a "baseline" fixed in position and 
scale. The effect of changing the choice of baseline 
does not alter the original form (Bookstein, 1984a; 
1984b). After standardization of the distance 
between one particular pair of landmarks, these two 
landmarks are at a constant separation (Bookstein, 

1986; 1991). In our case the baseline is set to 100 
by dividing each set of landmark coordinates by the 
AB distance and multiplying by 100. Movements in 
relation to the baseline induce correlations among 
distinct shape coordinates (Bookstein, 1986). Each 
landmark is designated by an  (xy)  coordinate pair 
(shape coordinates) relative to the baseline. 
Multivariate analysis of shape coordinates results in 
an extraction of the main factors describing the 
morphological variations within a sample, which 
can be translated into variables useful in taxonomic 
work. 

The seven landmarks (Figure 1) in the 
lateral view of Podocyitis morphotypes describe a 
morphological space that can be captured by five 
pairs of shape coordinates. The landmarks can be 
described as follows: A is the top of the cephalis, G 
is the change of contour at the collar stricture 
marked internally by the internal spicular structure, 
F is at  the widest level of the thorax, E is the change 
of contour at  the lumbar stricture marked by an 
internal shelf in the skeleton, D is at  the widest 
level of the abdomen, C is a t  a level where the shell 
wall changes from porous to hyaline. These land- 
marks are digitized using the Videometric V150 
software. The complete data set is given in the 
Appendix and on a supplied disk. Software rotates 
the baseline AB to the vertical, and all the other 
landmarks are digitized in relation to this line. 
Scaling is performed in a separate operation using 
LOTUS 123. Point B of the baseline is a derived 
landmark, chosen so that the line from A to B 
approximately corresponds to the longitudinal axis 
around which the form is considered symmetrical. 
Landmarks F and E describe the increase or 
decrease in relative thoracic size for each species. 
Differences in the position of landmark D in rela- 
tion to E and C indicate differences in the shape of 
the third segment from inverted conical (papalis), 
via inflated (sinuosa), to conical (ampla). Points F 
and D represent the widest points of the thorax and 
the abdomen respectively. Repeated collection of 
these coordinates indicated a greater error in locat- 
ing them than the coordinates at the other points 
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because they occur on the gentle curve of the out- 
line of the two segments. The %, and BxLv coordi- 

nates for the distal aperture and the derived 
midpoint, respectively, should equal zero since the 
line BC is placed along thex-axis with B at the 
origin. However, rounding errors in the calcula- 
tions sometimes cause these numbers to have 
values slightly different from zero. 

Results of NTSYS-pc Principal 
Components and Cluster Analysis 

We have used NTSYS-pc version 1.40 (Rohlf, 1988) 
to do a principal components analysis using the 
correlations among five pairs of (xa)  shape coordi- 
nates. The steps were: 1) standardize each data 
matrix by columns; 2) compute a matrix of correla- 
tions among the variables (columns); 3) extract five 
eigenvectors from the correlation matrix; 4) project 
and plot the standardized data onto the eigenvec- 
tors; and 5) make scatterplots of the specimens. In 
addition, scores for five principal components were 
computed, plotted and clustered to reveal possible 
groupings. 

Principal component analysis 

Results of the principal components analysis are 
reported below in stratigraphical order starting with 
the lowermost (oldest) level. The three first princi- 
pal components explain 80-90% of the variance in 
each of the five samples. The first principal com- 
ponent accounts for up to 66% of the total variance, 
and corresponds to change in shape of the thoracic 
segment. The second principal component, which 
accounts for 13-2296 of the total variance, repre- 
sents mainly variation in the width element of the 
abdomen and the distal aperture. As can be seen in 
Figure 3A-E, morphologic as well as stratigraphic 
differences can be described adequately by the first 
and second principal components. Table 1 gives 
the loadings on the first and second principal com- 
ponents for each of the ten variables in each of the 
five samples, and the eigenvalues in percent (96) 
explaining the variance expressed by the first two 
principal components. 

The panel of Figure 3 are as follows. A'-E': 
Plot of eigenvector A"-E": Information relating to 
the measured variables having the greatest 
influence on PCA 1 and PCA 2. Thoracic width 
and length components are plotted as dots, and 
lumbar width and length components as triangles. 
B"': Using the same scale as the data plot at this 
level, information (solid triangles) on the 
abdominal width component (X-axis) and its 
distance from the aperture (Y-axis). Insert D"' 
gives the same information (open circles) at the 
DSDP 29-9-6 sample level. 

Sample DSDP 298- 10-2 

The coordinates indicative of the thoracic mor- 
phospace (Ex#; Fx8) load very highly on the first 

principal component (Table 1). The scatter dia- 
gram (Figure 3A) of the two first principal 
component scores show two distinct clusters 
(papalis tdiamesa and sinuosa). One contains mor- 
photypes dominated by a large thorax, traditionally 
identified as P. papalis and P. diamesa, while the 
other cluster, traditionally identified as P. sinuosa, is 
made up of members with a small thorax. There is 
an inverse relationship between the width of the 
thorax (F,) and its distance from the distal aperture 

(Fy). This is illustrated in the accompanying data 

plot (Figure 3A") which contains additional infor- 
mation relating to the measured variables. The x-  
axis gives widths and the y-axis lengths of the tho- 
racic (dots) and the lumbar (triangles) coordinates. 
The length component is the distance from the 
point at which the width component is digitized to 
the distal aperture. Since variation in the size of 
the cephalis is small, changes in position of the 
lumbar stricture along the longitudinal axis describe 
changes in the thoracic morphospace. This indi- 
cates the importance of the relative size of the 
thorax to the total size of the morphotype in sepa- 
rating two distinct groups within the genus Podocyr- 
tis. Increases in the distance to the widest point on 
the thorax (F,), as well as the lumbar (Ex) stricture, 

from the longitudinal axis correspond to an  increase 
in the volume of this segment. The influence, 
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magnitude, and direction of these components on 
the principal component scores can readily be seen Sample DSDP 29-12-2 
in the accompanying plot of the eigenvector coeffi- 
cient< (Figure 3A'). Figures 3A and A' together are 
used as a biplot (Krzanowski, 1988, p. 128). 

Sample DSDP 29-1 6-5 

Three more or less distinct groups of specimens are 
represented in the scatter diagrams (Figure 3B - 
situ~osu, rlir~t?zesu, pupulis). The appearance of the 
third cluster (diut?lesu) is indicative of a speciation 
before or at this level (observed as a gap in the 
existing v:triation) at least as far as the data in the 
seven lanclmarks chosen for this study are con- 
cerned. Again, the shape coordinates influencing 
the thoracic morphospace load highly on the first 
PC, as do the abdominal (D,) and apertural (C,) 

widths (Figure 3B'). Along PC 1 in Figure 3B, there 
is a trend between members of the clusters labeled 
riicrt1lc.r-u and pupc~lis, indicating a gradation in the 
degree of inflation of the abdomen. Members of 
the sitlltosri cluster are distinct on the basis of this 
character, as can be seen in the data plots from this 

The first PC corresponds to change in shape of the 
thoracic segment. Scatter diagrams (Figure 3C) of 
the first two principal component scores indicate 
three clusters (sinuosa +mitra + fasciolata, ampla 
and pupalis). One specimen, which plots further to 
the right of the sinuosa +mitra + fasciolafa- cluster 
than expected, is a representative of a strati- 
graphically earlier level (not represented here), 
possibly reworked, at which these morphotypes 
have a larger thorax. Using characters other than 
the ones employed here (alignment of pores, 
absence of costae, presence of a thickened peris- 
tome), this specimen would be identified as P. fas- 
ciolutu. The vectors seen in the eigenvector plot 
(Figure 3C') indicate that the thoracic and lumbar x 
and y coordinates have greatest influence, placing a 
specimen along PC-axis 1, and that the E and F 
vectors, in pairs, have the same magnitude and 
direction for x and y. Abdominal and apertural 
widths are important for determining positions 
along the second principal component axis. 

sample (Figure 313"'). I n  Figure 3B, the pupulis- 
group actually includes two dicrt?zc.rrr specimens Sample DSDP 29-9-6 
becau\e their thoracic and lumbar components are The first principal component represents variation 
more \~mllar to thoye of the pcrpcrlir-group. The in the shape of the thorax due to increase or 
diritnera-group include$ one priprrllr member. It decrease of its morphological space as compared to 
plots lower than the other prrpnlis members on the the total morphological space. Scatter diagrams of 
second principal component. One 

group. I cxprcsscd by the first two principal components. I 

reworked sitzuosu is more similar to 

?'lie eigenvector plot (Figure 
3B') shows the redundance of the 
two pairs of thoracic shape 
coordinates and the influence of the 
width component at the collar stric- 
ture ((3,). The nature of the collar 

stricture in this genus (as well as the 
farnily) makes this an unreliable 
measurement since the orientation 
of the specimen influences this 
shape coordinate. 

the dia171esa group than to its Own 
Table 1. Loadings on the first and second principal components for each of the ten 
v;iri;il~lcs in each of the five samples. Eigenvalues in percent explain the variance 
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Figure 4. UP(ihiA clustering of individual scorcs of PC 1 - 
PC 5 rcvcals two distinct clustcrs of Eocenc Podocyrtis in 
DSDP sample 29-16-5. Cluster I forms the largcst cluster 
corresponding to "large thorax" morphotypcs, cluster la  
rcfcrable to pul1a1i.r and clustcr Ib referable to P. diar?lesa. 
Cluster II includcs "small thorax" morphotypcs rcprcscnted 
by P. sirluosa. (A-P papalis, Q-c diurilesa, d - q  sirllrosa). 
r = 0.862. 

the first two principal component scores again show 
discontinuous variation represented by two clusters 
(mitru + trrrchodes and pupalis, Figure 3D). The 
third cluster (umplu) seen in the level stratigraphi- 
cally below is no longer distinguishable. Sampling 
at closer intervals and further examination of this 
assemblage is necessary in order to verify whether 
the "cluster" represents the results of a branching 
event, of extinction, or of absorption into one of the 
two clusters at this level. The second principal 
component, which explains 18'30 of the total vari- 
ance, is not effective in separating any clusters 
within the assemblage. As can be seen in the plot 
(Figure 3D1), the second principal component is 

influenced by vectors C, and D,, both of which 
show continuous variation within a small range in 
the data set and therefore do not separate any 
groupings. Figure 3D' indicates that the vectors 
most useful in separating groupings along the first 
principal component are Ex$, Fx8, Gx8 and Dye It 

can also be noted that Ex$ and Fx8 are of the same 

magnitude. One of them is sufficient for distin- 
guishing the groupings. However, within the elon- 
gated mitru + traclzodes cluster, although continuous 
variation exists in the abdominal (D,) and apertural 

(C,) width components, this PC separates the nar- 
row P. nzitra morphotypes from the wider P. 
truc~hodes morphotype (Figure 3D). 

The data plots (Figure 3DM, DM'), showing 
thoracic and lumbar width components relative to 
their respective distances from the aperture, clearly 
indicate the separation of two groups based on the 
inverse relationship between these components. 
The data reflecting the abdominal maximum width 
and distance of this point from the aperture play a 
smaller role in distinguishing the groupings. 

Sample DSDP 29B-8-5 

The first PC corresponds to high positive loadings 
on the distance from the longitudinal axis of the 
maximum thoracic (F,) and lumbar (Ex) widths and 

high negative loadings on the corresponding Y- 
coordinates. The scatter diagram (Figure 3E) of 
the two first principal component scores shows two 
distinct clusters (cllulara+mitra and papalis). The 
ckalaru tmitra cluster comprises a large number of 
morphotypes displaying continuous variation in the 
thoracic components without apparent gaps. In 
identifying the species within this cluster it becomes 
apparent that, although there is continuous varia- 
tion in the thoracic shape, the ancestral forms, (P. 
mitra) have larger scores on PC 1, while the 
descendants (P. cltalara) have smaller scores on PC 
1. One specimen close to the papalis cluster has a 
somewhat smaller score on PC 2 than the other P, 
papalis members. This specimen is identified as P. 
ampla, reworked from a stratigraphically lower 
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level. From Figure 3E' it can be seen that the 
apertural (CXLV and abdominal ( D  vectors have 1 ""1 
the greatest influence on PC 2. The most interest- 
ing vector from the viewpoint of conventional 
taxonomy is Dy, indicative of the shape of the 

abdomen. One of the morphological distinctions 
between P. ar~lplu and P. papuli~~ is the fact that 
while the former is conical in general shape the 
latter is inverted conical. Moreover, the maximum 
width of P. atnpla is normally greater than in P. 
papalis, although this is not clearly demonstrated in 
this sample. 

Cluster Analysis 

Cluster analysis was carried out using 
procedures available in NTSYS-pc. A distance 
matrix was computed and the unweighted pair- 
group method, arithmetic average (UPGMA) 
clustering method was used. Results were plotted 
in the form of phenograms (results from only one of 
the analyses are shown and discussed here). 

Cluster analysis of individual specimen 
scores (from DSDP sample 29-16-5) using distances 
and UPGMA clustering of the five principal com- 
ponents reveals two distinct clusters (marked I and 
I1 in Figure 4) corresponding to the conventional 
taxonomic groupings - the "large thorax" group 
pupuli.~ (A-P) and diut?zesu (Q-c), and the "small 
thorax" group sinuosa (d-q). Within the 
papulistdiutnesa group, two clusters, representing 
the two species, can be seen. Because of differ- 
ences in the thoracic volume as compared to mem- 
bers of their own groups, two specimens of diarnesu 
are displaced within the pupuli.7 cluster, one papulis 
within the diat?zesu cluster, and one reworked older 
morphotype of sinr~osu within the diar?zesu cluster. 
Although taxonomic differences are adequately 
described by the first and second principal compo- 
nent, all five principal components were included in 
this analysis to reveal as many species clusters as 
possible using all the available data. 

Comparison with Results of Resistant- 
Fit Theta-Rho (RFTRA)-Analysis 

The same data set of landmark coordinates used for 
the principal components analysis was edited into a 
series of 195 files, one for each specimen, in the 
format required for RFTRA analysis (Chapman, 
Chapter 12). For the group of specimens from each 
of the five assemblages, a matrix of RFTRA 
distances was determined (using Chapman's R- 
OUTD program), and each of these matrices was 
subjected to a UPGMA analysis, using his R- 
CLUSTR program (Figure 5). For two of the five 
samples, Least-Squares Theta-Rho-Analysis 
(LSTRA) distance matrices were also established, 
for comparison with the clustering results on the 
corresponding RFTRA matrices. LSTRA distances 
are of course somewhat less than their RFTRA 
counterparts, but the clustering results on the two 
types of matrices were indistinguishable. 

Figure 5 shows the dendrograms of RFTRA 
distance coefficients clustered using UPGMA, for 
the five investigated assemblages of Podoqrtis 
specimens. In stratigraphic order from oldest to 
youngest, they are A, DSDP 29B-10-2; B, 29-16-5; 
C, 29-12-2; D, 29-9-6; E, 29B-8-5. Letters to the left 
of each dendrogram correspond to the code for 
each specimen given in the tables constituting the 
Appendix. 

In the oldest sample, DSDP 29B-10-2, there 
are two groups separated at a distance of 3.5 
(Figure SA), corresponding to the two clusters 
revealed by cluster analysis of the specimen scores 
from principal components analysis. In DSDP 29- 
16-5 there are two distinct groups (marked I and I1 
in Figure 5B) separated at a distance of 3.0, one of 
them divided into two subgroups (Ia and Ib) at a 
distance of 1.5. Group I1 comprises specimens that 
would be assigned to P. sinuosa, and completely 
matches the similar group resulting from clustering 
the principal component scores. Subgroup Ia 
comprises all the specimens of P. pupalis and one 
specimen of P. diarnesa, whereas the corresponding 
group from clustering the principal component 
scores excludes one of the specimens of P. papalis 
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and includes one additional specimen of P. dianzesu. 
Inspection of the data reveals that the two 
specimens of P. (li(rrucsa included in this subgroup 
have ~vider thoraxes than other specimens of this 
species in this sample, but this difference is too 
subtle to be detected by viewing the specimens. 
Subgroup Ib from both RFTRA and clustering 
principal component scores is composed of 
specimens of P. dictr?zesa plus one P. sitluosa. This 
specimen represents an older morphotype of P. 
sinrtosrr, which was discussed with the results of the 
principal component analysis in the section 
referring to this sample. It had a larger thorax than 
later specimens of this species. DSDP 29-12-2 has 
two groups separated at a distance of 3.9 (Figure 
5C).  One of these (group I in Figure SC) is 
comprised exclusively of P. papalis and is identical 
with a parallel group detected by clustering the 
principal component scores. Group I1 is divided 
into two subgroups at a distance of 2.5. Subgro~ip 
IIa contains only P. umplrr, which corresponds to a 
cluster from clustering principal component scores 
as well. Subgroup IIb, again identical in RFTRA 
and PC clustering, comprises specimens of P. 
sinuosn, P. fil.vciolata and P. rrzitra. There is some 
indication of these forming subgroups, but the 
numbers of specimens in each are too small to form 
the basis for any reliable conclusions. 

In DSDP 29-9-6 there are two distinct 
groups (detected identically by clustering the prin- 
cipal component scores) separated at a distance of 
about 5.0 (Figure SD). Group I comprises exclu- 
sively specimens of P. pupalis. Group I1 comprises 
specimens of P. rfzitra and P. tracllodes. In principal 
components clustering, there are indications of two 
subgroups which separate the two species, with the 
exception that the P. rlzitru subgroup contains one 
specimen of P. trudzodrs; in RFTRA this separation 
into two species is less clear. 

In the youngest sample, DSDI' 29B-8-5, 
RFT'IIA shows two groups separated at a distance 

of 5.4 (Figure 5E). Group I comprises P. papalis 
and one specimen of P. ampla. This group is simi- 
larly separated by clustering the principal compo- 
nent scores, and the single specimen of P. ampla is 
discussed with the results of principal components 
analysis, in the section referring to this sample. 
Group I1 is neatly divided into two subgroups (one 
comprising P. clzalura and the other P. mitra) at a 
RFTRA distance of 2.4. Principal component 
clustering indicates a subgroup comprising late 
specimens of P. chalura, but early specimens of this 
species are mixed with their ancestral species in the 
other subgroup. 

Conclusions 
This study demonstrates the utility of using shape 
coordinates in describing individual variation in 
radiolarian assemblages. Principal components 
analysis points out which variables are the most 
important in grouping the specimens based on five 
pairs of shape coordinates. Cluster analysis of 
individual specimen scores using distances and 
UPGMA clustering of the five principal compo- 
nents reveal distinct clusters confirming the group- 
ings suggested by principal components analysis. 
The eigenvector plot comprehensively illustrates 
the importance of each shape coordinate on the 
respective principal component score and thus, for 
plotting purposes, its position along the principal 
component axis. The scatter diagrams of specimens 
from the five sampled levels at DSDP Site 29 on the 
first principal component show two or three distinct 
clusters corresponding to changes in the shape of 
the thorax. The appearance of a third cluster in 
DSDP samples 29-16-5 and 29-12-2 indicates a gap 
in the variation of thoracic shape - a branching 
event. Although continuous variation exists in the 
thoracic shape component of the mitra+chulara 
cluster, the first principal component separates P. 
chalara (the descendant) from P. mitra (the ances- 
tor) in the topmost sample. Traditional taxonomy 
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separated these species based on 
than the thoracic ones, namely, 
abdominal pores. 

characters other 
the size of the 

The relationship of P. farciolafa to the 
Lampterium subgenus (sinuosa-cluster in sample 29- 
12-2) rather than the Podoqrtis subgenus (ampla- 
cluster) is borne out by the fact that the first princi- 
pal component groups morphotypes representing 
sinuosa and fmciolata together, and separates 
ampla types. 

For DSDP sample 29-9-6, the second princi- 
pal component represents changes in abdominal 
(D,) and distal ((;;) aperture widths. The two 
species P. tracllodes and P. mitra are within a cluster 
of continuous variation in this width component. In 
conventional taxonomy these two species are distin- 
guished by characters other than the ones here 
included, differences relating to changes of the 
abdominal outline from smooth to knobby. 

Both the RFTRA and clustering of the 
principal component scores of the shape coordi- 
nates scale the data to remove size, but in different 
ways. The results are very similar, with only minor 
disagreements. - 

The eigenvector plots indicate that the two 
pairs of shape coordinates relating to the thorax 
(EX# and Fxly) can be reduced to one thoracic shape 

coordinate, effective in separating two or three 
clusters. Difficulties in reproducibility of the shape 
coordinate pair relating to the maximum width of 
the thorax, discussed in "measurement techniques," 
speak for discarding these coordinates and for 
retaining the shape coordinate pair for the lumbar 
stricture which is less error-prone. Further strati- 
graphic sampling will be required to resolve 
whether the placement of the clusters representing 
morphological space is both morphologic and 
stratigraphic. 

To  discriminate the traditional species used 
for stratigraphic and paleoenvironmental interpre- 
tations, one needs more information on each 
specimen than the seven easily captured landmarks 

used in this study. The additional characters 
needed are more difficult to quantify, and a case 
could be made for continuing their use as qualita- 
tive descriptors until the needs of a particular 
research objective justifies the expenditure of time 
and effort necessary to express them numerically 
(e.g., the measurement of rates of morphologic 
change, quantification of degrees of difference or 
similarity etc.). 

Acknowledgments 

We thank Jeannie Westberg-Smith for generous 
technical advice and programming the V150 system 
to make the necessary calculations. We express our 
sincere appreciation to Linda Tway for valuable 
assistance in all phases of this study and for critical 
review of the manuscript. Leslie M. Marcus and F. 
James Rohlf, as editors and colleagues, provided an 
extensive critique of the entire manuscript, and 
especially its statistical aspects. 

The research was supported in part by NSF 
Grant OCE87-07417. 

References 
Bookstein, F. L. 1984a. A statistical method for 

biological shape change. J. Theor. Biol., 
107:475-520. 

Bookstein, F. L. 1984b. Tensor biometrics for 
changes in cranial shape. Ann. Hum. Biol., 
11:413-437. 

Bookstein, F. L. 1986. Size and shape spaces for 
landmark data in two dimensions. (With Dis- 
cussion and Rejoinder). Stat. Sci., 1:181-242. 

Bookstein, F. L. 1991. Morphometric tools for 
landmark data. Cambridge University Press. In 
press. 

Bookstein, F., B. Chernoff, R. Elder, J. Humphries, 
G. Smith and R. Strauss. 1985. Morphometrics 
in evolutionary biology. The Academy of Natu- 
ral Sciences of Philadelphia, Spec. Publ. No. 15, 
277 pp. 

Elderedge, N. and S. J .  Gould. 1972. Punctuated 
equilibrium: an alternative to phyletic gradual- 
ism. Pp. 82-115 in Models in paleobiology 



358 A. Sanfilippo and W. R. Riedel 

(Schopf T. J. M., ed.). Freeman, Cooper and 
Co., San Fransisco, 250 pp. 

Eldredge, N. and J. Cracraft. 1980. Phylogenetic 
patterns and the evolutionary process: method 
and theory in comparative biology. Columbia 
CJnivresity Press, New York, 349 pp. 

Krzanowski, W. J. 1988. Principles of multivariate 
analysis: A user's perspective. Clarendon Press, 
Oxford, 563 pages. 

Mayr, E. 9 2  Systematics and the origin of 
species. Columbia CJniversity Press, New York, 
334 DU. 

1 .  

Nigrini, C. A. 1974. Cenozoic Radiolaria from the 
Aral~ian Sea, DSDP Leg 23. Pp 1051-1121 in 
Initial reports of the deep \ea drilling project, 
Volurne 23 (Davies, 7'. A., B. P. Lyuendyk, et 
al.). Washington, D. C., U.S. Government 
I'rinting Office, 1183 pp. 

Riedel, W. I<. and A. Sanfillppo. 1070. Radiolaria, 
Leg 4, Deep Sea Drilling Project. Pp 503-575 in 
Intitial reportc of the deep sea drilling project, 
Volume 4 (Bader, R. G., R. D. Gerard, et al.). 

Washington, D. C., U. S. Government Printing 
Office, 753 pp. 

Rohlf, J. F. 1988. NTSYS-pc. Numerical taxonomy 
and multivariate analysis system (Version 1.40). 
Exeter Publishing, Ltd. New York. 

Sanfilippo, A. and W. R. Riedel. 1973. Cenozoic 
Radiolaria (exclusive of theoperids, artostrobi- 
ids and amphipyndacids) from the Gulf of 
Mexico, DSDP Leg 10. Pp 475-611 in Initial 
reports of the deep sea drilling project, Volume 
10 (Worzel, J. L., W. Bryant, et  al.). Washing- 
ton, D. C., U. S. Government Printing Office, 
pp. 475-61 1. 

Sanfilippo, A. and W. R. Riedel. 1974. Radiolaria 
from the west-central Indian Ocean and Gulf of 
Aden, DSDP Leg 24. Pp 997-1035 in Initial 
reports of the deep sea drilling project (Fisher, 
R. Id., E.  T. Bunce, et al.). Washington, D. C., U. 
S. Government Printing Office, 1183 pp. 

Sanfilippo, A., M. J. Westberg-Smith and W. R. 
Riedel. 1985. Cenozoic Radiolaria. Pp. 631- 
712 irz Plankton stratigraphy (Bolli, H. M., K. 
Perch-Nielsen and J. B. Saunders, eds.). Cam- 
bridge University Press, Cambridge, 1032 pp. 

Appendix 

Data matrices for five sample levels from Deep Sea Drilling Site 29, are listed below in stratigraphic order, 
youngest to oldest. The rows correspond to species as indicated, and the columns to the X and Y 
coordinates of the seven landmarks, representing: A cephalis, G collar stricture, F thorax, E lumbar 
stricture, D abdomen, C distal aperture, and B midpoint of distal diameter (See Figure 1). Code letters 
preceding species names tie these data t o  the cluster analysis (Figure 4) and RFTRA diagrams (Figure 5). 
The data set represents the digitized and rotated landmarks. Scaling has not yet been performed. 

I ~ a n i n l e  DSDP 2OB-8-5. 01-03 cm. 

ccphalis collar Lhorrlx Iu~nbar  a t~domen  aperture midpoint code species 1 
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nlitra 
r?lilra 
ntilra 
chalara 
chalara 
cllalara 
chalara 
cl~alara 
cl~alara 
chalara 
cltalara 
cl~alara 
chalara 
chalara 
chalara 
chalara 
cl~alara 
papalis 
papalis 
papalis 
papalis 
papalis 
~ a p a l i s  

S;implc DSDP 29-9-6, 72-74 cm. 
ccphalis collar thorax lumbar abdomcn aper ture  midpoint code species 

Ax Ay <ix Gy Fx F Ex Ey Dx Dy Cx Cy Bx B 
Y Y 

0 348 30 300 58 244 57 230 106 35 80 1 1 2 A t~titra 
0 352 29 310 50 230 59 226 100 XI 80 1 0 1 B nntra 
0 338 33 300 56 238 56 226 91 24 79 1 1 0 C rnilra 
0 384 25 3 4  51 278 52 261 93 27 80 1 0 0 D r?lilra 
0 380 28 337 57 277 58 258 102 31 83 2 0 1 E ntilra 
0 358 31 324 58 263 56 245 91 48 70 2 0 0 F ntilra 
0 334 22 296 51 232 52 216 91 40 77 1 0 0 G r?tilra 
0 366 37 323 67 252 64 234 103 28 78 2 1 2 H 171ilra 
0 326 29 287 61 210 57 201 90 31 74 0 1 0 I n~itra 
0 329 23 295 52 225 53 212 91 41 78 3 1 0 J ntitra 
0 293 26 263 57 201 58 183 90 39 68 3 0 0 K r?litra 
0 325 25 282 54 219 53 203 84 36 71 6 0 1 L mitra 
0 314 23 280 57 211 57 194 92 42 69 2 1 1 M ntitra 
0 346 24 306 50 251 53 230 90 36 64 2 0 1 N ntitra 
O 322 28 279 56 212 58 197 91 28 67 3 1 1 0 milra 
0 322 26 282 51 208 50 194 81 41 61 0 0 1 P milra 
0 298 25 261 54 206 53 188 99 72 70 0 0 0 Q trachodes 
0 296 25 254 51 192 49 176 91 63 72 1 0 1 R trachodes 
0 314 29 273 61 210 60 193 107 37 87 3 0 0 S trachodes 
0 313 22 279 51 213 51 203 102 43 80 0 1 1 T trachodes 
0 318 26 275 51 211 51 202 97 36 83 0 1 1 U trachodes 
0 288 23 249 50 101 51 178 93 47 75 1 0 0 V rracl~odes 
0 302 23 267 50 206 49 189 93 57 73 3 0 1 W tracltodes 
0 304 23 267 55 214 57 195 98 42 71 1 0 1 X tracllodes 
O 308 27 267 56 206 54 186 102 49 81 0 0 1 Y trachodes 
0 278 27 231 83 112 81 71 77 55 56 1 1 0 Z papalis 
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papalis 
papalis 
papalis 
papalis 
papalis 
papalis 
papalis 
papalis 
papalis 
papalis 
papalis 
papalis 
papalis 
papalis 
D U D U ~ ~ S  

Sample DSDP 29-12-2,87-89 cm. 
cephalis collar thorax lumbar abdomen aperture midpoint code species 

Ax *y Gx Gy Fx Fy Ex Ey Dx Dy Cx Cy Bx By 
0 281 28 243 94 129 96 116 103 31 82 3 0 0 A arnpla 
0 325 35 280 93 164 94 153 110 48 75 0 1 0 B ampla 
0 314 23 281 77 158 76 149 114 36 94 6 0 1 C arnpla 
0 255 28 217 82 115 83 104 103 36 73 2 1 1 D arnpla 
0 320 24 275 69 163 70 147 100 40 90 0 0 1 E ar?tpla 
0 327 31 290 93 190 96 176 122 71 92 3 0 0 F ampla 
0 268 24 229 78 113 78 91 78 71 50 0 0 1 G papalis 
0 261 32 220 73 108 75 90 73 72 49 0 0 0 H papalis 
0 276 27 238 85 107 84 94 84 78 54 1 0 0 I papalis 
0 249 25 210 75 97 70 75 69 61 54 0 0 1 J papalis 
0 234 27 200 72 89 73 58 72 46 56 0 1 1 K papalis 
0 218 26 176 72 80 70 67 69 53 46 0 1 0 L papalis 
0 268 26 226 55 173 55 155 87 40 61 1 0 0 M sinuosa 
0 279 28 240 54 188 55 171 95 80 67 0 1 1 N sirtuosa 
0 252 25 218 51 163 53 147 88 66 61 0 1 1 0 sirtuosa 
0 273 27 237 56 176 60 161 94 71 72 0 0 0 P sirtuosa 
0 251 22 218 54 163 56 148 84 56 48 0 0 0 Q fasciolata 
0 264 25 238 61 186 64 165 107 51 57 0 0 1 R fasciolata 
0 247 28 218 57 160 63 148 93 53 49 0 0 0 S fasciolata 
0 239 30 194 55 146 55 126 86 60 57 2 0 1 T fasciolata 
0 267 27 236 57 184 61 165 96 72 62 2 1 1 U fasciolata 
0 267 21 235 53 179 56 163 92 46 59 0 1 1 V fasciolafa 
0 261 28 225 51 179 50 154 83 43 64 0 0 1 W mitra 
0 287 23 246 51 195 54 174 86 25 62 3 1 0 X mitra 
0 261 24 223 52 168 52 155 84 23 65 1 0 1 Y ntitra 
0 296 29 256 56 195 57 181 87 34 69 2 0 0 Z mitra 
0 273 28 236 55 183 57 166 85 40 65 0 0 1 a ntitra 
0 295 25 258 54 205 56 187 92 32 67 1 0 0 b mitra 
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Sample DSDP 29-16-5, 14-16 cm.  
cephdlis collar thorax lumbar abdomen aperture midpoint code species 

- Ax A Y  Gx y Fx Fy Ex Ey Dx Dy Cx Cy Bx By 
0 260 28 217 80 109 76 88 71 72 45 0 1 2 A papalis 
0 263 25 228 75 115 72 90 68 74 43 4 0 1 B papalis 
0 265 28 226 77 114 75 99 73 85 45 0 0 1 C papalis 
0 251 28 213 72 94 70 81 69 70 52 0 0 0 D papalis 
O 2-61 28 203 72 108 67 84 63 71 40 0 0 1 E papalis 
0 252 25 209 77 101 72 78 69 69 46 0 1 2 F papalis 
0 246 28 203 76 117 73 80 70 68 48 2 1 1 G papalis 
0 270 27 238 73 134 70 101 67 91 45 0 0 0 H papalis 
0 263 31 222 77 116 77 97 75 82 49 2 0 1 I papalis 
0 250 30 206 71 119 70 88 71 77 46 0 0 0 J papalis 
0 242 23 204 68 107 6 81 63 67 45 4 0 0 K papalis 
0 264 27 230 81 123 77 92 72 75 48 0 0 1 L papalis 
0 268 26 224 78 132 70 91 68 76 49 2 0 0 M papalis 
0 272 31 229 91 102 91 89 90 78 53 4 1 0 N papalis 
0 219 25 208 70 96 69 84 65 71 43 2 1 0 0 papalis 
0 240 28 199 73 100 68 78 66 67 44 1 0 0 P papalis 
0 314 22 266 78 152 79 143 86 111 60 1 1 0 Q diamesa 
0 312 28 257 76 157 78 143 85 83 60 1 0 0 R diamesa 
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