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SUMMARY 

The optimality conditions for the optimal shape remodelling of linearly elastic plates are obtained by 
introducing the total variation of a function defined on a variable domain, although the variation of a 
function has been taken on a fixed domain in most literature on calculus of variations. Using these 
optimality conditions, a solution scheme involving an iterative algorithm is proposed, together with several 
numerical examples. 

INTRODUCTION 

The problem of optimal shape design distinguishes the category of structural design problems 
where the objective is to predict optimal geometric configuration or layout for a structure. 
Prager's work' includes developments on this type of problem among his broad contributions 
to various aspects of study in structural optimization. More material by Zienkiewicz and 
Campbell,' Francavilla et u L , ~  Dems and M ~ o z , ~  Haug et u L , ~  Ramakrishnan and Francavilla,6 
Kristensen and M a d ~ e n , ~  Chun and Haug,8 Queau and Trompette' and Imam" reflects progress 
in the development of means for the formulation and computational solution of shape design 
problems. A thorough survey of the literature on shape optimization is included in the review 
article by Haug." Although a substantial amount of literature has been developed on the shape 
optimization problem, almost all of the studies are concerned with finding the optimal design 
within a constant volume or cost constraint, but without using the idea of remodelling of 
structures. 

In this paper, a variational formulation is presented for the optimal shape design of two- 
dimensional linearly elastic bodies. The idea of optimal structural remodelling" is introduced 
to consider shape optimization, where the objective is to predict an optimal shape modification 
to  a specified shape. Optimal remodelling refers to the selection of the best form of modification 
within an available amount of resource, and can be classified into three different formulations: 
(1) reinforcement remodelling in which the objective is to find optimal distribution of reinforce- 
ment (addition of material), (2) lightening remodelling in which the objective is to find the 
optimal distribution of removal of material, and (3) compound remodelling in which simul- 
taneous removal and reinforcement of material (redistribution) may take place in an optimal 
way. This remodelling formulation seems to be broader and more practical in engineering 
application than conventional optimal structural design methods. Indeed, the conventional 
formulation can be regarded as a special case of this type of problem, i.e. of the compound 
remodelling problem, and it provides a way to modify existing structures. Moreover, the 
optimality conditions which will be derived below provide the basis for an approach to a 
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computational method for such problems starting from the existing structures. Details of such 
a treatment of these problems can be found in the thesis of Na" for plane stress problems as 
well as for torsion problems of a linearly elastic bar. Following Na,13 we shall study shape 
optimization problems specifically for plane linear elasticity in this paper. 

With the introduction of the remodelling functions, the optimality conditions are derived 
for compound remodelling along various types of boundary, according to the objective of 
minimizing mean compliance measured as tl'c minimum total potential energy. Based on the 
derived optimality conditions, a computational scheme is proposed and applied to solve several 
example problems: it includes a case where the optimal modification calls for the introduction 
of a hole into an original shape specified as simply-connected. Finite element discretization is 
made in the stage of actual numerical computation. 

DESIGN PROBLEM FOR MINIMUM MEAN COMPLIANCE 

Consider a doubly-connected plane section of an elastic body, the thickness of which in the 
normal direction is assumed to be unity, as shown in Figure 1. In Figure 1, u is the displacement 
vector, i the specified traction vector, 6 the body-force vector, and n denotes a unit vector 
outward normal to the boundaries. An external boundary I'" of a physical domain fi is composed 
of the parts of the boundary ry, where the traction vector 't is specified, r': where the 
displacement vector u is specified, and I'fo where the traction is zero, i.e. it is a traction-free 
boundary. Similarly, an internal boundary r' is composed of segments r:, r: and r;. The total 
potential energy of the body is given by 

t 

Figure 1. A doubly-connected plane section of an elastic body 
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where u = [uij] is the stress tensor related to the strain tensor E = [ E ~ ~ ]  by the constitutive equation 

with 

and strain given in terms of displacement u by 

4 U )  = (%,, + %,,)/2 (4) 

u = Q  o n r t a n d r :  ( 5 )  

For prescribed displacement over portions r: and r: of the boundaries, 

The first variation of the total potential energy with respect to the displacement field on the 
fixed domain R yields the virtual work principle: 

uO(u, v)  =fo(v) Vv s.t. v = 0 on r: and (6) 

where v = 6u is the variation of u on the fixed domain R, and 

aO(u, v )  = Eijklgkl(U)&ij(V) d o ,  
(7) 

In (6) and (7)’ the subscript R is used to reflect the dependence of the functionals on the 
‘fixed’ domain R. Equation (6) further implies the equilibrium equation and the associated 
boundary conditions: 

-ai,(u),, = 6i in R 

aij(u)nj = on ry and rf 
u=Q onr?andr ’ ,  

Now an optimal design problem is defined as follows: find the shape of a domain R that 
yields the minimum mean compliance 

min fCl(u) 
ClEM 

where M is a proper admissible set of possible design domains. Since (6) yields 

n(u) = min n(v)  = -&(u) 
v t K n  

the design problem is equivalently stated as 

max min ~ ( v )  
CleM ve& 

(9) 

where Ko is the admissible set of displacement fields defined in the domain R which satisfy 
the kinematic boundary condition on I‘: and r:. 

The admissible set M of possible design domains is in general restricted by an isoparametric 
relation in their measure, and will be defined more precisely in the following section. 
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REMODELLING FUNCTIONS TO DEFINE THE DESIGN DOMAIN 

In order to identify a doubly-connected domain in the polar co-ordinate system, the radius 
functions Rg( 0 )  and R6( 0 )  are introduced to define the external boundary rg and the internal 
boundary I';, respectively, of a given doubly-connected domain Ro. The external and internal 
boundaries ro and I" of a modified domain R are identified in turn via the radius functions 
Ro( 0 )  and R i( 0).  It is assumed that all the possible design domains have star-shaped external 
and internal boundaries, as shown in Figure 2; that is, for I't (and ro) there exists a point 
(Xzr, Yz!) such that any radial segment intersects the boundary I'g (and ro) just once. Similarly, 
for I?, (and r i )  such a point (Xir ,  Yir) can also be found. 

The remodelling functions are then defined in terms of the radius functions according to: 

RO( e)  = I?:( e )  + p;( e )  - p:( e)  ve 
R i( e)  = R;( e )  - p:( e)  + pi( e)  ve 

The functions p:(8) and p:(8) ,  which are orthogonal to each other, define reinforcement 
remodelling and lightening remodelling, respectively, along the external boundary. The similar 
definitions are made to the functions p j ( 8 )  and p i ( 6 )  along the internal boundary. 

Figure 2. Domain identification through remodelling functions 

Note that if p:( 0 )  3 0 and p?( 0 )  3 0 V8 along the externpl boundary, we have Ro( 0 )  2 R:( 0 )  
for intervals of reinforcement, while Ro( 0 )  S R:( 0 )  wherever the domain is reduced. Similarly, 
by constraining as p:( 0 )  2 0 and pi(  0 )  2 0 VB along the internal boundary, the conditions 
R'(8)  Rb( 0 )  or R'( 0 )  3 Rb( 0 )  are satisfied for reinforcement or for lightening, respectively. 

The net amount of material volume for reinforcement, say V,, and for lightening, say V-,  
can be represented by 

V + ( p ~ , p : ) = f ~ o z w p : ( 2 R ~ + p ~ ) d 8 + t  p:(2R;-p:)de 

(13) 
Jo2w 

V-(py, p ; ) = i  [02T pY(2Rt-p?) do+$ 
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If compound remodelling is considered, the design modifications are constrained via 

V-(P?,  P i )  3 rvo, V+(P!, P 9  rvo (14) 

for given number 0 < y < 1, where V,  is the material volume of the original elastic body. Note 
that there is no explicit restriction on where material is to be added or removed along the 
boundaries. 

If only a reinforcement remodelling is to be considered, the maximum amount of material 
to be added is restricted as in (14), i.e. 

Similarly, for lightening only 
V+( P!, P:)  ss YV, 

V-( PY, Pf) 3 YVO 

(15) 

(16) 

OPTIMALITY CONDITIONS 

A compound remodelling only along the external boundary is considered as an example problem 
to explain the basis for both reinforcement and lightening remodellings. Once the optimality 
conditions are obtained for a compound remodelling along the external boundary, the method 
to derive the optimality conditions can easily be extended to any remodelling problems along 
the internal boundary. Details for such more general remodelling problems can be found in 
Na.13 The whole external boundary is subjected to be designed for obtaining optimality 
conditions, although a special case that the design is limited only along the traction-free 
boundary will be considered as a concrete example of a shape optimization problem. 

The optimal design problem (11) is now defined in terms of the remodelling function 
P = { P ~ , P ~  as 

max min ~ ( v )  (17) 
, € M  V t K ,  

where K ,  = and the set M is designed such that p E M if 

-P:(e)sso vo 
-P : ' (e )so  vo 

PP( O)P?( 0) = 0 vfl (18) 

- v-( p:', 0) + y v, s 0 

V+( P:, 0) - Y v, s 0 

Here, V, and y are given a priori, and the notation Q(p) is used to show dependence of the 
domain Q on the remodelling function p. Introducing the Lagrange multipliers X =  
{Ar, A/, A,, A,, A,} to the constraints on the remodelling functions, the Lagrangian is defined as 

2 T  

J% A) = d p ,  U) + J Arp! do + J,2T hip? do 
0 

where u is the solution to the minimization problem 

min ~ ( v )  
VE K, 

and A, 3 0, A /  2 0, A, 3 0 and A, 3 0. 
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For the variation of the total potential energy .r(p,u) with respect to p, it is necessary to 
consider the variation of the displacement u due to change of the domain, especially along the 
boundary. Let 6u denote the variation of the displacement u for the domain defined by the 
remodelling function p, and let 6,u represent the total variation of u due to the variation of 
p. The relationships between 6,u and 6u are given as follows: 

8,ul = 6ui + U , , ~ S , ~  on ro (21) 

where 

61p = ( 6 ~ : -  6py) cos 6 

6,p = ( 6 ~ : -  6py) sin 6 

The boundary conditions in (8) require that 

6,u=0 onr0, 

and 6,u is arbitrary on both r: and rfo. Thus, the relation (21) leads to 

We suppose here that the traction along the boundary ry is independent of the shape change 
of the domain. 

Taking the variation of the Lagrangian (19) with respect to the remodelling function p gives 
r 2a r 2a 

6,L(p, A) = 6,.rr(p, u) + J d6+  J A&: d0 
0 0 

where 

Here, Snp = ajpnj, ro = r: u r$ u Yz, I?' = rf u ri u I': and ry( 0) denotes the intervals (or the 
unions of intervals) in the polar co-ordinate system identifying the part of the boundary ry. 
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Note that the following equivalence expression has been used: 

Using the relations (8) and (22), and enforcing the relations on the variation of remodelling 
functions such that 

6,p  dT = (R: + p: - py)( Spy - Spy) dB on ro 
the expression for 6,.rr(p, u) is simplified to 

6 p . r r ( ~ , u ) = /  [ ~ ( ~ ) - 6 , ~ , l ( R ~ + p ~ - p ~ ) ( 6 p ~ - 6 p ~ ) d ~  
r:(e) 

[U(u)-a,(u)n,(u,, cos 8+uszsin 8) +l r 3 e )  

-6,u,l(R:+P~-P:)(6p:-6p:) do 

Here 

denotes the specific strain energy, i.e. strain energy per unit volume. Thus, from (23) and (26), 
S,L(p, A) = 0 yields the following conditions to be satisfied by the optimal remodelling: 

1. For reinforcement remodelling p: 

[ U(U) - 6,u , ] (R;+p:-p: )  - A,(R:+p:) +A,- A o p y = O  V8 E 8) (28) 

v8 E r",e) (29) 

[U(U) - 6 , ~ , ] ( R ; + p : - p : )  - (u, - A,(R;+P:) + A , -  hop: = O  V8 E 8) (30) 

[ U(u) - a,(u)n,( uL,l cos 8 + u , , ~  sin 8) - 6,u , ] (R;+p:-p: )  - A,(R:+p:) + A ,  - hop? = 0 

2. For lightening remodelling py 

-[ U(U) -- 6 , u , ] ( R ; + p : - p y )  + A,(R:-py)  + A i  - Aopfl=O VO E r(r(8) (31) 

ve E r:( e)  (32) 

(33) 

A,>o, A,~:=o o n r O  (34) 

[ U(u) - a,(u)n,( uSl cos 8+ u , , ~  sin 8) - ~ , u , ] ( R : + ~ : - ~ : )  +A, (R: -py )  +Al-Aop:  = 0 

-[u(u) - ~ , U , I ( R ; + ~ ; - ~ ~ )  + t : ~ ,  +A,(R:-~:)  + A ~  - hop(: = o VO E r:(e) 
Taking the variations of L(p, A) with respect to the Lagrange multipliers produces the conditions 
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In order to obtain the meaning of the derived optimality conditions, let us consider the 
special case of compound remodelling along the free boundary when body forces are absent, 
i.e. b = 0. Define 

I, = { 8 :  8 E Ty( e) and pp( e )  > 0 )  
I/ = { e :  ee  r:(e) and py(8 )  > 0 )  

From the relations (28) and (34)-(36), 

U(U) = A, ve E I, 
h , = [ A , - U ( u ) ] R ~  V8EIrand O E I l  

From the relations (31) and (34)-(36), 

U(U) = A, ve E I~ 
hl=[U(u)-A,]RZ V8EIrand OaI, 

(39) 

It can be said from (40) and (41) that the specific strain energy distribution U(u) is constant 
along the parts of the free external boundary where design modifications are made in an optimal 
way, and that the constant A, provides an upper bound and the constant A, provides a lower 
bound to the value of U(u) along the free external boundary. This further implies that 

A , > O  and A , > O  (42) 

V _ = y V o  and V+=yVo  (43) 

so that the relations (37) and (38) lead to 

at the optimally modified domain. 

connected domain. 
The same procedure is applicable to other remodelling problems, even for a multiply- 

A SOLUTION SCHEME 

For simplicity of discussion, the compound remodelling along the free boundary is considered 
when body forces are absent. The solution procedure to be described here is based upon the 
meaning of the derived optimality conditions (28)-(38), i.e. (39)-(43) for the present case. 
Although it is possible to use the optimality conditions (28)-(38) for a solution scheme, for 
example, for the so-called Uzawa method,14 to find saddle points of a given Lagrangian, the 
use of the conditions (39)-(43) is, in general, expected to give rather fast convergence to the 
solution. The main idea of the solution method is to obtain the values of two positive constants 
A, and A, which should be determined such that the relation (43) is satisfied and which also 
bound the distribution U(u) both from above and from below. At the same time, the distribution 
U(u) should be constant along the parts of the free boundary where design is modified. 

An iterative solution procedure is given as follows. Let p:'"', py'"', A;"', A:"', 1;"' and I!"' 
identify the rnth iterates of the respective functions and quantities. Suppose that these iterates 
are determined so that the relations (34)-(36), (39) and (43) are satisfied. Define 

where P+ denotes a projection by which the (rn + 1)th iterates of the remodelling functions 
Pp( m+ 1) and py("+') are formed to satisfy the condition of being non-negative. Here, dp'"' and 
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dy'"' represent the design correction functions to be defined. Consider change A U with respect 
to a domain change represented by AR. There would be a positive real number 8 such that 
in the polar co-ordinate system the change A U is expressed as 

To avoid the evaluation of the first-order partial derivative of U(u) along the boundary, a 
modification of the relation (45) is used: 

where p is a positive real number. Inversion of the relation (46) produces an expression for 
the domain change along the radial direction AR required to obtain a necessary amount of 
change AU at a boundary 

where S is a positive real number. Since the distribution U ( 0 )  should be constant along the 
parts of the free boundary where design is modified in an optimal way, identifying AU with 
the difference between U and the constant value which is assumed temporarily as known leads 
to the definition of AR with required design correction. Thus, the design corrections are defined 
by 

where 8:'") and Sy'"' are positive real numbers, R:") is the mth iterate of the radius function 
Ro, and U'"' is the mth iterate of a specific strain energy distribution along the free external 
boundary. The (m + 1)th iterate values for two constants A:"+') and A(,m+') are expected to 
be an upper bound and a lower bound, respectively, to the (rn + 1)th iterate of the distribution 
U. These values are to be determined as the (m + 1)th iterates of the remodelling functions 
p;(m+')  and p?("+') defined in the relation (44) satisfy the relation (43). 

For each iteration step, the computation of two constants Ahrn+') and Ajrn+l)  requires an 
inner loop of iteration, since the sets I!"+') and IIm+*) are unknown. Define 

and 

(50) 
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Substitution of the relation (44) into the relation (43) with use of the relations (49) and (50) 
leads to 

Substitution of the relation (48) into (51) yields two quadratic algebraic equations for two 
constants Ahm+') and A(,"+'). It is necessary to choose one solution for each constant, which is 
within the range of consideration of a current distribution U'"). 

Initialization: m = 0 

The solution procedure can be summarized as follows: 

and appropriate values are taken for Ah*' and Ato'. 

Iteration : m t m + 1 
2. Choose proper magnification factors 6:'"' and 67'"). 
3. Solve the boundary-value problem (8) by discretizing the weak form (7) for the domain 
identified with the remodelling functions p:(") and p:'"', and compute the specific strain energy 
distribution 

along the free external boundary. 
4. Predict the constant specific strain energy levels AL"'" and A:"+') by the following inner 
iteration scheme: 

4.1. Set Ah;;') = Ah"' and A("+') S ( 0 '  = A',"', where the subscript in parentheses means the inner 
iteration step. 

Inner iteration : k t k + 1 
4.2. Identify 1;Tk;') and I&;') with Ah'$?!) and A(,;;ct_':) from U'"' such that 

1;zT') 3 I:") and I&;') 2 11"' 

4.3. Compute Ahmk;') and A(,;;') from the relation (51) by substitution of the relation (48) 
where Ah""' and A!"'+') are replaced by A$&') and A$$'), respectively. 

4.4. Compare Ah';k;') with A("+') and A$;') with A$?-':). If the differences in their iterate 
values are less than a specified amount, set Ah"+')= 'a(k) ("+I) and A(,"+')= h s ( k )  ("+I' . Otherwise go 
back to step 4.2. 
5. Compute dy'"' and d:'"' from (48), and obtain the new remodelling functions pj)("+') and 
p?("+'). Identify the sets I!"+" and I!"+') corresponding to p:("'+') and p?("+'). 
6. Check the difference ( p:("+')--py(")), ( P O ( " + ' ) -  I P I  '(")), (Ah"+"-A~"') and (A(,"+')-A(s")), 
and the change in the value of the objective function. If these are small enough and constancy 
of U'"' on the intervals 1;") and I$") is achieved to satisfy the optimality conditions, then the 
process is completed. Otherwise, go back to step 2. 
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While Uzawa's method assumes the iteration for p!!, p?, A, and A, using the specific strain 
energy 

p y ( m + l )  = max (0,  p : ( m ) +  ~ ! m ) (  u(")- A h"))) 

for properly chosen constants C!"', C!"', C;"' and C(,"', the solution procedure described in 
this work has the inner iteration loop to find the energy levels A, and A, such that the global 
constraints, V+ = y V ,  and V- = yV,, are exactly satisfied in each iteration step. In general, 
sufficiently small constants Cb"' and C:") have to be taken in Uzawa's method ( 5 3 ) ,  and this 
leads to rather slow convergence since the design correction on and py strongly depend up 
the energy levels A, and A,. However, the present scheme proposed resolves this disadvantage 
of Uzawa's method by using the inner loop to find the energy levels A, and A,. 

For other remodelling and design problems, the inner iteration loop has to be modified 
according to the optimality conditions. 

FINITE ELEMENT DISCRETIZATION 

The numerical treatment of the design problem is based on a discretized model of the design 
domain and its boundaries. At each iteration step in the computational procedure, the 
remodelling function p is approximated on a line element for the boundaries. The solution to 
the boundary-value problem (8) is approximated by a finite element method using linear 
triangular elements. It is noted that the use of a linear finite element draws special attention 
to the evaluation of the specific strain energy U along the boundaries. This is particularly 
important because the evaluation of U requires evaluation of the first derivatives of the 
displacement u. Along the boundaries under the consideration of design modification, the finite 
element mesh is arranged such that elements are as regular as possible and their centroids are 
near enough to the boundaries. In this way the specific strain energy evaluated at the centroid 
of a linear triangular element which has a boundary line element as one of its edges can be 
regarded as an approximate measure of U at the centre of a boundary line element. In other 
words, this value of U becomes a representative value for a boundary line element. Then the 
sets I, and I[ are identified in terms of boundary line elements and two constant energy levels 
A, and A ,  are computed, from which movements of the centre points of the boundary elements 
are calculated. Nodal values of the design corrections d; and dy are computed through 
interpolation of movements of the centre points of the boundary line elements. Since this 
numerical procedure inevitably involves the error in the amounts of material volume for the 
modification, simple scaling is performed at each iteration step on remodelling p to satisfy the 
global constraints exactly in the sense of finite element discretization. 

The whole finite element mesh is regenerated according to the design changes de and dj', if 
they are large enough. If otherwise, only the nodal positions of the boundary nodal points are 
changed. 

EXAMPLE PROBLEMS OF SHAPE REMODELLING 

The solution scheme described is applied to solve several design problems of plane stress in 
order to demonstrate its capability. Each example problem is solved for a set of values of 
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specified amount of material for the modification. The values are given in terms of the ratio 
of specified amount of material for the modification to the amount of material for the prescribed 
initial design. The purpose in presenting such a sequence of solution is to demonstrate changes 
in shape with increasing percentage of modification. 

The typical finite element model chosen for a given simply-connected domain is shown in 
Figure 3. Under the same loading conditions this model can represent two different structures, 
depending upon the boundary conditions. When the sliding boundary condition is assumed 
along the boundary identified with the line connecting the points a - k ,  the model becomes 
the one representing one-quarter of the whole structure, so that the lines connecting the points 
a-b and b-c become lines of symmetry. When the rigidly fixed boundary condition is assumed 
along the same boundary, the model by itself represents the whole structure. In the former 
case, shape modification along the boundaries identified with the lines connecting the points 
a-e and c-d is for the free boundaries. In the latter case, the change of the points ‘ar and ‘c’ 
involves the shape modification along both the free boundaries and the rigidly fixed boundaries, 
since the points ‘a’ and ‘c’ belong to the rigidly fixed boundary. 

d 
Syrnrn loading 

\r 990’0Lbf 

d 
Syrnrn loading 

74 Nodal points 

126 Elements 

Figure 3. Typical finite element model of a simply-connected domain 

The design problem of lightening remodelling is solved for these two different cases under 
the same loading condition shown in Figure 3, with numerical data of Lame’s constants 
h = 1.2 X lo7 psi and G = 0-8 X lo7 psi. Their numerical results are shown in Figures 4 and 5. 

Another simply-connected domain is chosen for the design problem of reinforcement 
remodelling. Figure 6 shows the typical finite element model representing the one-quarter of 
a whole structure with the specified loading condition. The lines connecting the points a-b and 
b-c, are lines of symmetry. Reinforcement remodelling is considered along the free boundary 
identified with the line connecting the points a-h-g-f, for the case that a uniform horizontal 
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15 14 13 12 11 10 9 

/ 

7 

6 

5 
- 

74 Nodal points 

126 Elements 

15 Boundary nodal points 
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Given domain 

Optimal domain (10.0%) 

Optimol domain ( 20 0%) 

Optimal domain (30.0%) 

Figure 4. Given and optimal domains: lightening along the free boundary of a simply-connected domain for maximum 
mean stiffness (sliding condition) 

15 14 13 12 11 10 9 

74 Nodal points 

126 Elements 

15 Boundary nodal points 

Given domain _ _ - _ _ _  

Optimal domain (10 0%) 
4 

: Optimal domain (20.0%) 

: Optimal domain (30.0%) 

Figure 5. Given and optimal domains: lightening along the boundary of a simply-connected domain for maximum 
mean stiffness (fixed condition) 
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f 300 Ibf 

e 600 Ibf 

d 600 Ibf 

c 300 Ibf 

thickness = 0.01 in 

82 Nodal points 

143 Elements 

" 
12 in 

Figure 6. Typical finite element model of a fillet 

traction is applied along the boundary f, e, d and c. The amount of the traction is given in 
Figure 6 as equivalent nodal forces. The numerical results are shown in Figure 7. 

The design problem of lightening remodelling as the generation of a hole is considered for 
a simply-connected domain, for which Figure 8 shows the typical finite element model with 
the specified symmetric loading condition. The rigidly fixed boundary condition is assumed 
along the boundary identified with the line connecting the points a-b-c, and the free boundary 
condition is assumed along the boundaries identified with the lines connecting the points a-e 
and c-d. The numerical results are shown in Figure 9. 

As the last example problem, the compound remodelling along both the internal and external 
boundaries is considered for a doubly-connected domain. Here, reinforcement, lightening or 
a combination of both can occur either along the free external boundary or the free internal 
boundary. The typical finite element model for one-quarter of a whole structure is shown in 

12 11 10 9 

82 Nodal points 

143 Elements 

12 Boundary nodal points 

: Given domain - - - - _ -  

4 

: Optimal domain (5.0%) 

3 

2 

1 

Figure 7. Given and optimal domains: reinforcement along the free boundary of a fillet 
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103 Nodal points 

182 Elements 

generation of a hole 

103 Nodol points 

182 Elements 

15 Boundary nodal points 
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Figure 9. Given and optimal domains: hole generation inside a simply-connected domain for maximum mean stiffness 
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Figure 10. Typical finite element model of a doubly-connected domain 
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Figure 10 with the specified loading condition. The lines connecting the points a-b and c-d 
are lines of symmetry. The numerical results are displayed in Figure 11. 

Numerical results obtained so far show the capability of the proposed solution scheme to 
predict optimal shapes, even with relatively crude finite element models and with approximations 
related to the computation of specific strain energy distributions along the boundaries. 

It should be noted that, for almost all of the cases, mean compliance has reached its minimum 
just after a few steps of iteration-between 6 and 10, depending upon the problem. However, 
it takes more iteration steps to achieve constancy of specific strain energy along the parts of 
boundaries where the shape modification is made. This means that a small change in the shape 
does not induce a substantial change in mean compliance. 

Origin o Origlnol 

After moving 

Figure 12. Movement of internal nodes 

It is also worth while to describe a method to move internal nodes of the finite element 
model according to the design change of each iteration. In the above examples, a projection 
method shown in Figure 12 is applied. If the amount of the movement of a node on the 
boundary is AR in the direction N, then the nodes chained to the boundary node from the 
origin is shifted by the rule 

ARi = ARri/ r 

Here ri is the distance of the ith node from the origin, r the distance of the boundary node 
from the origin, and ARi is the amount of the movement of the ith node. The direction of the 
movement of each node follows the one of the boundary node. This projected method, in 
general, provides similar accuracy on the finite element approximation at each iteration to the 
one for the initial design step. 

Application of the same solution method to torsion problems can be found in Na et aLi5 
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