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NUMERICAL EXPERIMENTS ON TURBULENT FLOW 
USING THE RANDOM VORTEX METHOD 
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SUMMARY 

Chorin's random vortex method is used to predict the growth of a large-scale coherent vortex structure in 
the early stages of the development of turbulence in a two-dimensional co-flowing shear layer. The numerical 
algorithm has been simplified to such an extent that the numerical analysis can be performed on a 
microcomputer. The numerical solution exhibits the same early turbulent instabilities and vorticity pairings 
as found in recent flow-visualization experiments. Tn addition the results are in reasonable agreement with 
experimental measurements of mean velocity, root mean square fluctuations and Reynolds stresses. One 
could thus test the shear layer sensitivity to initial conditions and the upsteam boundary conditions. 

INTRODUCTION 

In a co-flowing shear layer there exists a region of flow conditions where the turbulent structure 
exhibits a distinct two-dimensional character.',2 This occurs primarily in the formative stages 
of an early turbulent regime, beyond which the flow structure becomes affected by three-dimen- 
sional phenomena. 

Recent advances in numerical vortex methods due to Ch0r i1-1~~ made them particularly 
suitable for the analysis of the mechanism of large-scale vortex structures in turbulent flows. The 
two-dimensionality of early turbulence allows the vorticity to be treated as a scalar quantity. In 
this way a numerical model can be constructed which, although neglecting vortex stretching and 
tilting, is capable of accurately predicting the scalar vorticity transport. Unlike finite difference 
methods, the vortex method of Chorin is capable of resolving multiple length scales, and is 
devoid of numerical instabilities at  high Reynolds numbers. Furthermore, it maintains computa- 
tional efficiency by partitioning small regions of high fluid shear (of particular physical interest) 
into arbitrary small computational elements. 

These small regions interact on a large-scale to reveal coherent large-scale structures of the 
flow field. Although three-dimensional vortex codes have been applied to turbulence,6 their 
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deteriorating accuracy at  high Reynolds numbers, when the numerical diffusivity exceeds the 
physical viscous effects, makes their use as a research tool of questionable value. 

Early investigations by Rosenhead7 showed that vortex methods can produce the same 
coalescence of vorticity as observed experimentally. Other  investigator^,^^^ using more accurate 
numerical procedures, produced similar results for complex flows. Although the calculations 
required relatively long computing time, they demonstrated that the vortex method can predict 
the correct shear laycr growth rate, eddy pairing, turbulent shear stress profile and root mean 
square velocity fluctuations measured at moderate Reynolds numbers. 

Here it is shown that early turbulence exhibits inertial and viscous characteristics which allow 
considerable simplifications of the numerical algorithm. Besides providing an accurate prediction 
of ‘early turbulence’, the algorithm is sufficiently economical for use on a microcomputer, lending 
itself as a relatively simple technique for numerical experiments. 

METHOD 

In the vortex method, computational particles of vorticity, or ‘blobs’, are tracked in the Lagrangian 
sense. This is accomplished as follows. 

According to Kelvin’s theorem the circulation in a material blob of fluid is time-invariant. 
Hence we can partition the vorticity 4 in a fluid domain into non-overlapping blobs and assign 
the circulation of that region to a single point xi, yielding 

N 

t =  2 tj 
j =  1 

This sum converges in the sense of distributions to the total vorticity as the blob size becomes 
vanishingly small. 

By the method of fractional stepslo we solve first for advection and then for diffusion. The 
Navier-Stokes equations are for this purpose expressed in terms of the vortex transport equation 

subject to the continuity requirement 

divu = 0 (3) 

and initial and boundary conditions: u( - m, t )  = 1; u(t) = 0. 

((x, t = 0) = ( (0)  

Solution for R + co 

The vorticity, {, for each blob is governed by the Poisson equation for the stream function $ j  

v2*.= - 5 .  
whence 

Its solution is expressed in terms of the convolution of the Green function 
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where G, is smoothed near the origin to remove the s ing~lar i ty .~ 
The motion of a blob at xi is then determined by integrating 

Hald" proved that this approximate solution converges to that of the Euler equation with an 
order of accuracy that depends on the form of the smoothing function. 

Solution for R # cc 

In this case, the diffusion of vorticity is manifested by a random walk, as shown by Chorin.?' 
The walk displaces each blob by a distance sampled from a Gaussian random variable of zero 
mean, and its variance is given by 

G' 2At AU 
L ? - R  L 

This approximates the Green function expressing the solution of the vorticity diffusion, namely 

(7) - - ~~ 

Since the standard deviation of a random walk is a measure of the expected statistical error, it 
follows from (7) that, in contrast to a finite difference algorithm, errors yet smaller when the 
Reynolds number, R,  increases. 

Errors are also introduced in the numerical initial conditions (3) when the continuous and 
essentially smooth vorticity field is discretized numerically into pointwise particles of vorticity 
or blobs. These errors can have a significant influence on the accuracy of the method. Controlling 
the errors, and identifying the sources which contribute to them is therefore of crucial importance 
for successful application of the random vortex method to a practical flow problem, as illustrated, 
for example, by Laitonel' in the case of gas flow with solid particles. 

EXPERIMENT 

The subject of the numerical experiments is the classical case of the formation of a turbulent 
shear layer in a planar flow behind a splitter plate, as described in particular by Roshkoi3 and 
explored experimentally by Brown and Roshko,' among others. The vortex vector field we 
computed, corresponding to the wind-tunnel experiments of Batt14 where the velocity above the 
plate was U, = 700cm/s and that below the plate was U 2  = 70cin/s, is presented in Figure 1. 

Vorticity was generated at the rear edge of the plate to satisfy the Kutta condition. The 
circulation strength of the vortex sheet satisfying this condition is r = (AU)L, where L is a 
characteristic length scale. For numerical analysis the sheet is modelled by N discrete vortices 
per unit length, each over a segment of length h = L / N .  To satislji the Courant stability condition, 
the computational time step, At, is such that vortices are advected a distance k = UAt. The 
circulation of each discrete vortex is thus T, = (A U )  UAt .  

Physically the vortex sheet satisfies the time-mean vorticity distribution in the flow field. 
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Figure 1. Flow simulation computed by the discrete vortex method. The splitter plate ends at  x = 0 with A U  = 630cmis; 
R = 4240; 5 = - 0.1 250; t = 20.4% 

Mathematically this forces the initial flow to conform to its elliptic nature, rather than developing 
through a parabolic marching scheme. 

The resulting flow pattern depicted in Figure 1 exhibits the organized vorticity coalescence 
observed experimentally. This calculation was performed on a desk-top Hewlett Packard 
microcomputer in 48 h. 

SHEAR LAYER 

Numerical simulations duplicated the air flow experiments of Batt,I4 where U ,  = 700cm/s and 
U ,  = 70cm/s. Ashursti5 has shown that the random walk produces the Jx momentum thickness 
growth rate, with a transition to linear growth in the turbulent region. Neglecting the random 
walk still yielded the correct linear growth rate in the downstream turbulent region. However, 
his calculations failed to predict the early growth rate. Ashurst concluded that the turbulent 
growth rate is a consequence of Euler’s equations (i.e. no random walk simulation of viscous 
dissipation). 

In the present work we find similar results; this observation also yields an economical 
modification of the numerical algorithm. In the early stages of the flow the random displacement 
is introduced in (6a) and (6b); however, it is eliminated after each vortex has moved through the 
transition point. 

The random walk introduces an initial disturbance into the field. Numerically this procedure 
is in keeping with linear instability theory, where early turbulence is assumed to develop from 
a two-dimensional instability. Physically this instability is created by the high viscous forces 
which dominate the inertial forces at the edge of the splitter plate. Here the Reynolds number 
is very low: 

inertial force p Uz 6 
viscous force PU 

<< 1 - 

since the shear layer thickness, 6, is small. As we move downstream the inertial forces tend to 
dominate over the vorticity diffusion expressed by the random walk. Therefore, this physical 
process was neglected, on the presumption that downstream the flow is governed by Euler’s 
equations. 

The random walk also generates a ‘white noise’ spectrum; hence the wavelengths of the 
disturbance is set by the most unstable wave in the initial growth region. This corresponds to 
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those vortices most unstable to small perturbations in their position, which in general are those 
which 'walked' the furthest distance in one time step. The furthest distance a vortex is likely to 
'walk' is two standard deviations; this is apparent from (7), from which it follows that 

" = J ( E g )  L (9) 

Although this relationship is realized only within the framework of numerical modelling, it 
does present an heuristic picture of the dependence of the transitional nature of the shear layer 
on the Reynolds number and velocity difference. 

Experimental studies by Bradshaw,' as well as others, support the connection between initial 
disturbance conditions and shear layer structure. For example, Winant and Browand2 have 
shown that periodically forcing a shear flow with controlled disturbances at a fixed frequency 
can delay the transition point. Acton8 also found in a numerical simulation that altering the 
initial instability by decreasing its amplitude causes a delay in the initial roll-up of the shear layer. 

COHERENT STRUCTURE 

Past the region of unstable waves that form by perturbing the separating layer, we find the 
formation of discrete coherent clusters of vortex blobs, as displayed in Figure 2, produced as a 
result of the non-linear interaction that occurs in the course of vortex pairing. These interactions 
are governed by the Biot-Savart law. Further downstream, the clusters roll around each other. 
This type of vortex pairing, as extensively discussed by Winant and Browand,' is responsible 
for entraining the irrotational fluid between merging vortex clusters. 

In numerical experiments we obtained pairing and triplet mergers of clusters. The type of 
amalgamation or merging depends highly on small variations in the original vortex structure. 
Often some vortices 'drop out' of the merger and are left between clusters, as seen in Figure 2. 
Furthermore, the initial mergers are intermittent. 

Physical phenomena of multiple length scales are, in effect, modelled by the random vortex 
method. Brown and Roshko' suggested that each discrete scale of the coherent structure must 
participate in an amalgamation event to produce the linear growth rate observed globally. They 
pointed out that these amalgamation events should exhibit a 'jitter', which is indeed well 
manifested by numerical results. In order to emphasize this effect we assigned a variable wave 
number to each discrete vortex. Effectively this produced a long-range cut-off circle, past which 
the stream function for a vortex blob vanished. In the computer program, the wave number 
assigned to each discrete vortex was allowed to vary linearly with time. Aref and Siggiag showed 
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Figure 2. Continuation of Figure 1 with f = 60.95s 
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Figure 3. Computed mean horizontal velocity (0). compared with Batt'sI4 data (0) 
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Figure 4. Computed RMS fluctuation in horizontal velocity (O) ,  compared with Batt'sI4 data (0) 
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Figure 5. Computed Reynold's strcss ( O ) ,  compared mith Batt'sI4 data (0) 
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that assigning a truncated wavelengths to each discrete vortex preserved energy as well as isotropic 
vortex interaction. However, in our work the truncated wavelength was allowed to grow with time. 

Numerical experiments were carried out to examine the effect of various minimum wavelengths. 
Each vortex was created at the edge of the splitter plate to satisfy the Kutta condition. A variable 
wavelength was assigned to each vortex blob as it was shed at the rear edge of the plate and its 
value increased with downstream distance. In this way, the instabilities found close to the splitter 
plate depended upon individual discrete vortices, and behaved in accord with the growth predicted 
by linear instability theory. However, downstream the instabilities were governed by the dynamics 
of the large-scale structure, since the length scales incorporated the effects of significant 
interactions such as vortex pairing. 

A minimum starting cut-off of 2 cm yielded reasonable results for mean velocity, root mean 
square fluctuations and Reynolds stresses; these arc presented in Figures 3 ,4  and 5, respectively. 
In these calculations, the variable wavelength was always greater than the mean spacing of the 
large coherent structure. For example, after 300 time steps, the wavelength cut-off was 8 cm. 

It is of interest to note that a numerical experiment performed with a fixed cut-off of 8cm 
yielded statistics identical to those of Figures 3-5. However, the computing time was significantly 
larger, since each vortex in the flow field had to participate in the interaction, yielding a 
computational time varying as N 2 ,  where N is the total number of vortices. 

Although the quantitative results using the variable wavelengths and fixed wavelengths are 
quite similar to each other, the flow ficlds appeared very different. In particular, the roll-up of 
small scale instabilities yielded large elliptically shaded structures, similar to those photographed 
by Winant and Browand.3 The spiral arms, resembling nebulae in appearance, depicted the effect 
of vortex pairing in a fashion much more similar to experimental observations than the results 
of the fixed wavenumber calculation presented in Figure 1. 

The variable cut-off is not a numerical artefact, since the statistical quantities measured are 
independent of this feature, yet it does change the visual appearance of the shear layer. An 
improved understanding of the mechanism of kinematic interactions between large and small 
vortices of various wavelengths should elucidate their effect in a tangible way. 
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