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SUMMARY 
Sheet metal forming is simulated by finite element methods using a stress resultant constitutive law in this 
paper. A Lagrangian description of axisymmetric and plane-strain shell deformation is first reviewed. Then 
a stress resultant constitutive law in rate form is presented, where the effect of thickness reduction due to 
large plastic deformation is considered. A finite element formulation in terms of stress resultants and their 
work-conjugate generalized strain rates is derived based on the virtual work principle. A hemispherical 
punch stretching operation and a plane-strain draw operation are simulated by a finite element program 
based on the finite element formulation. The results of these finite element simulations are in good.agreement 
with those using the through-the-thickness integration method. The results of the hemispherical punch 
stretching simulation suggest that the coupling term of moments and membrane forces of the modified 
Ilyushin yield function should be eliminated to avoid numerical instability under stretching-dominated 
conditions for this rate-independent plasticity formulation. Further, the results suggest that the hardening 
rule in a power-law form based on the small-strain approach must be modified to take account for finite 
deformation effects of combined stretching and bending. Under the plane-strain draw operation, the sheet 
experiences a large amount of bending before the final stretching. The simulation based on the stress 
resultant constitutive law can produce this essential aspect of deformation pattern as that of the through- 
the-thickness integration method, whereas a simulation based on a membrane theory cannot. In conclusion, 
the results of these simulations indicate that a finite element program based on the stress resultant 
constitutive law can simulate sheet-forming processes with much shorter computational time than that 
based on the through-the-thickness integration method. 

1. INTRODUCTION 

Many mathematical models have been proposed to simulate sheet metal forming processes from 
the viewpoints of materials, geometries and boundary conditions. The goal is to predict the 
formability of sheets and the punch forces of the processes. With the help of high-performance 
computers, we can now investigate the underlying physical phenomena in sheet metal forming 
processes by finite element methods. Different finite element models including membrane, solid 
and shell models have been proposed. The membrane model is the simplest one. However, the 
membrane model is not applicable where the bending of sheets becomes significant and domi- 
nant, for example, in drawing and binder wrap processes (for example, see References 1 and 2). 

In general, the processes where bending becomes significant are simulated by the solid model or 
the shell model. For example, Wifi,3 Anderson4 and Makinouchi’ adopted the solid model in 
their works, whereas Oiiate and Zienkiewicz,6 Triantafyllidis and SamanW7 Triantafyllidis 
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et ~ l . , ~  Wang and Tang’ and Lee et aL9 adopted the shell model. For the solid model, more 
elements are needed to describe these shell-type structures so that a large system of equations 
must be solved. For the shell model, although it is more effective than the solid model, it still takes 
a substantial amount of computational time and computer memory space for its three-dimen- 
sional calculation with integration in the thickness direction. Therefore, stress resultant constitu- 
tive laws have been proposed over the years to simulate the deformation of plate and shell 
structures under large plastic deformation in order to avoid the through-the-thickness integration 
to save computational time. 

After Ilyushin” developed the yield surface in the resultant space for perfectly plastic materials, 
many stress resultant constitutive laws have been developed to analyse the deformation and 
load-carrying capacity of plate and shell structures. For instances, based on the Tresca yield 
criterion, the limit loads of cylindrical shells were examined under axisymmetrical loading by 
Hodge’ and Onat,” and the elastic-plastic behaviour of cylindrical shells was examined by 
 brook^.'^*'^ Based on the von Mises yield criterion, the buckling phenomena of plates were 
investigated by Cri~field,’~. l6 and the elastic-plastic behaviour of shells was investigated under 
cyclic bending by Bieniek and F ~ n a r o ; ’ ~  however, these research works do not include the effects 
of material strain hardening. With the material strain hardening included, the elastic-plastic 
behaviour of shells was analysed under cyclic bending and pre-loadings by Eidsheim and 
Larsen.I8 Further applications of this type of theories are the analyses of viscoplastic shells,” 
dynamically loaded plates,” stiffened plates” and composite laminated plates.22 Also, the 
elastic-plastic behaviour of plates with a linear hardening was examined under a point load by 
Papadopoulos and Taylor,23 and the large deformation of a cylindrical panel problem was 
analysed by Morman et aLZ4 

In this paper, we first review the kinematic relation between the displacements and generalized 
strains for a shell element under axisymmetric and plane-strain conditions based on the work of 
Wang and Tang.’ In their kinematic formulation, finite deformation effects are considered by 
keeping the high-order terms and using the true strain definition. Their kinematic formulation is 
based on the Kirchhoff assumption with consideration of thickness change. We adopt a recent 
stress resultant theory of Chou et al.25-27 where the hardening rule and modified Ilyushin yield 
surface of Chou et aLZ6 are constructed from the constitutive behaviour of power-law hardening 
materials within the context of the small-strain approach. Based on the virtual work principle, 
a finite element formulation in terms of stress resultants and the work-conjugate generalized 
strain rates is derived for finite deformation elastic-plastic problems. In the formulation, we 
neglect the high-order terms of the product of the out-of-plane co-ordinate and curvature in the 
integration through the thickness. The contact processes are simulated by the equilibrium 
equations of Tang,” where both non-slip and slip contacts are considered. Also, in the finite 
element discretization process, the displacements are interpolated by Hermitian cubics. A 
Newton-Raphson scheme for numerical calculations to satisfy the virtual work principle is 
adopted in developing a finite element program. 

Two sheet metal forming processes are investigated in this paper. The first is an axisymmetric 
punch stretching operation where a circular flat sheet is pressed by a dome-shaped punch through 
a circular arc-flanged die. The effect of a locked bead is considered by attaching a very stiff spring 
to the end of the sheet to control the flow of the sheet into the die. The results of the surface strains 
and punch forces are compared with those obtained from the through-the-thickness integration 
method based on the work of Wang and Tang.’ The second sheet metal forming process is 
a plane-strain draw operation where a sheet is allowed to draw into the die. This can be 
accomplished by placing a compliant spring at the end of the sheet. The sheet experiences 
a dominant bending and then unloading in contrast to that under the stretching operation. The 
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results of the simulation are then compared with those obtained from the through-the-thickness 
integration method. Finally, the efficiencies of the computations based on the stress resultant 
theory and the through-the-thickness integration method are compared and discussed. 

2. DEFORMATION OF AXISYMMETRIC AND PLANE-STRAIN SHELL ELEMENTS 

A Lagrangian description is adopted here to describe the large deformation of a thin shell with 
reference to the undeformed flat configuration as shown in Figure 1. Denote u and w as the 
horizontal and vertical displacements, respectively, of a material point x on the reference surface 
(i.e. the middle surface) of the undeformed flat configuration with the normal in the y direction. 
We assume that the normal of the shell middle plane remains normal after deformations. 
According to the work of Wang and Tang,' the meridian and circumferential stretch ratios of an 
axisymmetric shell element, I l  and A 2 ,  at a normal distance z away from the reference surface of 
the current (deformed) configuration are described, respectively, as 

and 

Here I?) and A?' are the stretch ratios of the reference surface in the meridian and circumferential 
directions, respectively. They can be expressed as 

and 
2:"' = ((1 + u x ) 2  + 0 : ) 1 ' 2  

where the subscript x denotes the 
curvatures of the reference surface in 

K 1  

and 

(0 )  (x + 4 
1 2  =- 

X 

partial differentiation with respect to x. The principal 
the meridian and circumferential directions are 

where the subscript xx represents the second partial derivative with respect to x. 

Y 
A 

INITIAL 

Figure 1 .  Initial and current configurations of a shell element 
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The strain rates bi and i2 are defined from the true strain definition as 

where x r ’ / A r ’  = i y  (no summation on y) are the strain rates of the reference surface. In this paper, 
Greek subscripts range from 1 to 2. With the assumption of the material incompressibility, the 
current distance z of a material point from the reference surface can be related to its initial 
distance q from the undeformed reference surface by 

dz - = (A, A z ) -  
dtl 

(4) 

Therefore, the initial distance q from the middle surface can be expressed as a function of z, by 
integrating equation (4), as 

Z 2  + (K1 + K 2 ) -  + K 1 K Z -  2 

The rate i can be derived from the material incompressibility as 

For plane-strain shell elements, the above relations are still valid but with ,I2 = 1 and K~ = 0. 

3. A STRESS RESULTANT CONSTITUTIVE LAW IN RATE FORM 

In an elastic-plastic analysis, a constitutive relation in rate form is usually needed because plastic 
deformation depends upon the prior deformation history. In Chou et ~ l . , ’ ~  a stress resultant 
constitutive law in rate form has been derived. We here reduce this rate form for axisymmetric 
and plane-strain applications. A convected co-ordinate is used for description of deformation. 
The x-y co-ordinate system as shown in Figure 1 is chosen such that the membrane shear forces 
and twisting moments vanish because of symmetry. The physical components of the stress 
resultant S referring to the deformed base vectors can be expressed as 

s = {Nl, N2, M1, M2) 
where N1 and N2 denote the membrane forces, and M1 and M 2  the bending moments. The 
physical components of the work-conjugate generalized strain E referring to the deformed base 
vectors are 

where el and e2 denote the midplane strains and K~ and K~ the curvatures. 

the elastic parts 8; and the plastic parts Ep, 

E = {el, e2, K1, K 2 >  

The physical components of the generalized strain rate Ei are assumed to be decomposed into 

(7) 
where the subscript i range from 1 to 4. It should be mentioned that the decomposition of the rate 
of deformation into additive elastic and plastic parts is generally true when the elastic strains are 
small (e.g. see Reference 29). We assume this additive decomposition for the generalized strain 
rate in equation (7) in order to maintain the simplicity and practical applicability of the theory for 
the range of the strains typically encountered in sheet metal forming applications. 

hi = 8; + Ep 
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The physical components of the plastic generalized strain rate ,k! are defined, according to the 
associate flow rule, as 

where A is a proportionality and F is the yield function. The use of physical components in 
equations (7) and (8) is justified only when the deformed base vectors remain orthogonal. The 
yield function F is assumed to be a linear function of the normalized stress resultant invariants 
IN, I M  and I M N : 2 6  

(9) 
where the parameters a and p depend on the strain-hardening exponent n of the uniaxial 
stress-strain relation from a tensile test. In equation (9), represents the normalized equivalent 
stress resultant, and I N ,  I M  and I M N  are the second-order invariants of the normalized stress 
resultants (without shear and twisting contributions). These invariants are expressed as 

F = {IN + alM + f l I I & f N 1 } 1 ' 2  = Z 

I N  = N! + N; - NIN2 

I M  = Mi + M: - Mlfi2 
and 

IYN = M1 + N2M2 - f N1 - N2M1 

where ml = Nl/ooh, iV2 = N2/aoh, Ml = 4Ml/aohZ and M 2  = 4M2/aoh2. In these expressions, 
uo is the initial yield stress and h is the current plate thickness. 

The physical components of the stress resultant rate $ and the elastic generalized strain rate kc 
are assumed to be related via the usual elastic modulus D" as 

Si = D e e ;  = D;j(Ej  - Ey) (10) 

where the subscripts i and j range from 1 to 4. The physical components of the elastic modulus D" 
referring to the deformed base vectors are assumed as 

Eh 
[D'] = - 

1 - v 2  

1 v  0 0 

v 1  0 0 

h2 vh2 
0 0  - -  

12 12 
vh2 h2 0 0 - -  
12 12 

where E is Young's modulus and v is Poisson's ratio. It should be noted that a convected 
co-ordinate is used in our kinematic formulation. The deformed base vectors are orthogonal to 
each other and exhibit no in-plane rotation under axisymmetric and plane-strain deformation. 
Under these conditions we can use the time rate instead of the co-rotational rate of the physical 
components of S based on the deformed base vectors in equation (10). 

The hardening rule for power-law hardening materials, as proposed in Chou et is 

(1 1) = I\lh 

where n is the hardening exponent of the uniaxial stress-strain relation from a tensile test, and 
the normalized equivalent plastic generalized strain. Here 

is 
is accumulated over the deformation 
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history as 

where t represents time. The relation between A and A is A = AE/(aih) .  Here A is expressed as 

where I , ,  lk and I i c  are the second-order invariants of the normalized plastic generalized strain 
rates. These invariants are expressed as 

I d  = ;’I2 + ;;2 + ;;;; 
I .  K = i p 2  1 +k;’+k;f; 

and 

where i, = bl E/ao, f ,  = t 2E /ao ,  f, = kl Eh/3ao and k2 = ic2Eh/300. 

remain on the yield surface in the stress resultant space. Under this condition, we have 
Next, the consistency condition dictates the stress resultant state during the plastic flow to 

aF . a F .  aE . 
as, ah ah 
-Si + - h = - A  (14) 

where h = - (kt + k 2 ) h  is assumed. Multiplying equation (10) by aF/aSi and combining with 
equations (8) and (14) give the proportionality for plastic flow rate 

aF aF 
~ O L E ,  - - (El  + E 2 ) h  .. as,,, ah 

A =  az aF aF 
aA ask as, - + + - - ; I -  

where the subscripts k, I ,  m and n range from 1 to 4. 

into equations (8) and (10) as 

In equation (16), the tangent moduli D:; are defined as 

The rate form of the stress resultant constitutive law is derived by substituting equation (15) 

(16) Si = D?? E .. 
V 1 

where I, are the elements of the unit matrix. In equation (17), dE/aA can be written as 

af: aEaA E f:~-, 
aA- ajlalz= a _ -  
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Also, aF/aSi  and aF/ah  can be derived from the yield function in equation (9) as 

a F  -- - 1 { l ( 2 N l  - N 2 )  + 

_ -  as2 aF - L { L ( 2 N 2 -  o;z h2 N 1 ) + F ( M 2 - ? ) }  

_-  aF - 1 {*(2M, - M z )  + 

as, o : ~  h2 

as3 g;z h4 ( N l  - +)} 
(2Mz  - M l )  + 

( N 2  - $)} h 
-- 

and 

where 5 = sgn(IMN) (t = 1 when I M N  > 0 and 5 = - 1 when IwN < 0). 
Within the context of the small-strain approach, the undeformed geometry is treated as the 

reference and is assumed not to change. Therefore, in the hardening rule of the small-strain 
theory, h is the initial thickness and treated as a constant. However, we will use the current 
thickness as the input to the normalized hardening rule of equation (11) for our finite-strain 
formulation here. It should be noted that the hardening rule in equation (1 1) is the exact one for 
the von Mises materials under pure membrane forces when h is taken as the current thickness 
within the finite deformation approach. 

4. FINITE ELEMENT FORMULATION 

The virtual work principle in terms of the physical components of the stress measure and the 
strain rate measure for axisymmetric problems can be d e r i ~ e d ~ ~ ~ ~ ' ~ '  as 

(a1611 + o2612)d~dAo = (fiSU + f366)dA (19) I 
where o1 and oz are the principal Kirchhoff stresses in the meridian and circumferential 
directions, respectively, ho  is the initial sheet thickness, dAo denotes the differential area in the 
initial configuration, d A denotes the differential surface area in the deformed configuration, and 
f l  and f3 are the current surface load components in the x and y directions, respectively. From the 
virtual work principle in equation (19) and the kinematic relation in equations (3)-(6), the virtual 
work principle in terms of stress resultants can be derived by integration through the thickness. 

In sheet metal forming operations, the thin-shell assumption is generally true for the sheet 
when the thickness is small compared with the radius of curvature. The high-order terms of K,Z 
due to the contribution of i are therefore neglected because of the thin-shell assumption. The 
virtual work principle in terms of the physical components of the stress resultants and the 
generalized strain rates is expressed as 

I { ( N l  - M 2 ~ 2 ) 8 & 1  + ( N 2  - Mllc1)6t2 + M1Gri.l + M26kZ}A~)l.~)dAo 

=](/lai + f36W)dA 
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where N ,  and My are the principal membrane forces and bending moments referring to the 
current configuration, e ,  are the midplane strains, and K, are the curvatures. Note that the 
material incompressibility is assumed in the derivation of equation (20). 

The stiffness equations in rate form can be derived using equation (20) and the constitutive 
relation in equation (16). As in the work of Wang and Tang,' Hermitian cubic polynomials are 
used as the interpolation functions for u and w and three-point Simpson's rule is used for 
numerical integration over the element domain dAo. The nodal velocity vector U of the ith node 
is arranged as 

Then the resulting stiffness matrix equation is expressed as 
(21) 

K U = F  (22) 

f j ( i ) T  = (u(i) ,  ti!), kW, 6;)) 

where F is the nodal force rate vector from equation (20). The contribution from the ith element 
to the stiffness matrix K in equation (22) can be written as 

K(€(I)) = NT[HTQH + ( N ,  - M , K ~ ) ~  + ( N 2  - MIKl)b + Mlc + M2d]NdAo (23) I 
where N is a (6 x 8) element interpolation matrix defined as 

= Ni(E(1)) 

In the above equation i and are defined as 

and 

In equation (23), H is a (4 x 6) strain matrix 

H = kT, hT, PT, S'P 
where gT, hT, pT and qT are listed in Wang and Tang.' In equation (23), Q is a (4 x 4) matrix 

1 O O K 2  

M1 0 0 
0 0  0 M2 0 0 

where D e P  is the elastic-plastic stiffness matrix in equation (17). Also, a, b, c and d in equation (23) 
are the (6 x 6) symmetric matrices derived by Wang and Tang.' 

We follow the method of Tang" to satisfy the contact constraint and equilibrium check. Note 
that the external moments at any contact node are set to be zero. The above derivations are for 
the axisymmetric case. Under plane strain conditions, equations (19)-(23) remain valid with 
A 2  = 1 and K~ = 0. 

5. A HEMISPHERICAL PUNCH STRETCHING SIMULATION 

Based on the standard procedure of finite element methods, the formulations in Sections 2-4 are 
employed in a finite element program to simulate a hemispherical punch stretching operation as 
schematically shown in Figure 2. The hemispherical (axisymmetric) punch stretching operation 
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Binder Punch 
I I 

Figure 2. A hemispherical punch stretching operation 

includes a punch, a die, a binder, and a piece of sheet metal. The geometric parameters of the 
punch stretching operation are rp (the punch radius) = 5043 mm, r d  (the die profile radius) 
= 6.35 mm, ro (the punch opening radius) = 52-83 mm, and h (the sheet thickness) = 1.2 mm. The 
elastic material properties of the sheet metal are E = 206 GPa and v = 0.3. The uniaxial tensile 
stress-strain relationship for the sheet metal is taken as 

cr = EE for o <  no 

cr = KE''" for u 2 uo 

where n is the hardening exponent, oo is the reference yield stress, and K represents a reference 
stress. Here we take oo = 103 MPa and n = 4.76. For the given stress-strain relation, equation 
(1  8) should be modified as 

The value of p in Coulomb's friction law for contact surfaces is assumed to be 0.17.' The 
equivalent spring constant Kb for the binder resistance is set at 1 GN/mm which is very large to 
simulate the stretching operation. 

In order to investigate the accuracy and computational efficiency, the numerical results of the 
simulation based on stress resultants are compared with those based on the through-the- 
thickness integration method. For conveniences of presentation, the computation based on stress 
resultants is referred to as the two-dimensional (2-D) computation and the computation based on 
the through-the-thickness integration method is referred to as the three-dimensional (3-D) 
computation. 

When the modified Ilyushin yield function in equation (9) is adopted, the computation becomes 
divergent when the punch travel distance d reaches 20.9 mm. The distributions of the bottom 
surface strains are not smooth just before the divergence and these numerical results are presented 
in C h o ~ . ~ '  At this punch travel distance, we find that these elements under stretching-dominated 
conditions experience unloading and then reloading. This unstable numerical phenomenon 
possibly originates from the vertex existing on the yield surface along the pure stretching 
direction. 

To remove the numerical instability due to the vertex, we neglect the coupling term Z M N  by 
setting fl = 0 in the modified Ilyushin yield function. We refer to this yield function with fl = 0 as 
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Figure 3. A comparison of the modified llyushin yield s_urface, the Type I1 yield surface, and the llyushin yield surface in 
the N , - M ,  plane. 

the Type I1 yield function. Figure 3 shows the modified Ilyushin and Type I1 yield surfaces for 
n = 4.76 and the original Ilyushin yield surface in the R, - M, plane. As shown in the figure, the 
size of the Type I1 yield surface is larger than that of the modified Ilyushin yield surface under 
combined bending and membrane force conditions. It should be mentioned that the original 
Ilyushin yield surface is for perfectly plastic materials and can be expressed by equation (9) with 
a = 1 and p = l/$. However, for power-law hardening materials a and fl in equation (9) depend 
upon the hardening exponent. In the normalized co-ordinate system shown in Figure 3, the 
original Ilyushin yield surface appears to be smaller in size under pure bending and combined 
bending and membrane force conditions than the others. In other words, when the original 
Ilyushin yield function is used to describe the evolution of the yield surface in the stress resultant 
space, the bending capability of the plate or shell element is possibly underestimated under pure 
bending and combined bending and membrane force conditions. 

Figure 4 shows the distributions of the bottom surface strains of the 3-D computation and the 
2-D computation based on the Type I1 yield function at the punch travel distances d of 8, 16,24 
and 32 mm. Note that the bottom surface strain is the most critical strain measure for this type of 
problems because it includes the contributions from both the membrane stretching and bending 
in our shell formulation. A comparison shows that the Type I1 yield function gives very good 
results for the punch distance d up to 24 mm, where the maximum radial strain becomes very 
large at about 16 per cent. In this type of sheet forming processes, the central area oflhe punch 
contacts the sheet first, and then the contact region expands. As the contact region expands, 
combined bending and stretching deformation gradually changes to stretching-dominated de- 
formation. The contact surface is conditionally restricted to slip due to the frictional constraints. 
This means that the slip is restricted in the contact area and the area just outside the contact area 
must be stretched more to satisfy the geometric requirement. Therefore, the position of the 
maximum radial strain gradually moves out as the contact area expands. 

At d = 32 mm, the trends of the distributions of the bottom surface strains of the 2-D 
computation are the same as those of the 3-D computation. However, the maximum bottom 
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Figure4. A comparison of the distributions of the bottom surface strains of the 3-D computation and the 2-D 
computation based on the Type I1 yield function for the hemispherical punch stretching operation 

surface strain of the 3-D computation becomes larger than that of the 2-D computation. As we 
continue to increase the punch travel distance, the maximum strains of both the 2-D and the 3-D 
computations accelerate quickly to very large values where the necking failure should occur. This 
kind of localization phenomenon has been discussed by Triantafyllidis and c o - ~ o r k e r s . ~ * ~  The 
strain localization phenomenon occurs at a much larger punch travel distance for the 2-D 
computation than that of the 3-D computation. The reason is that the hardening rule of the stress 
resultant theory is obtained with the small-strain assumption. The hardening rule becomes stiffer 
than that of the finite deformation formulation (Chou et ale2’) at large generalized strains. Due to 
the stiffer hardening rule, the punch force of the 2-D computation at large punch travel distances 
is larger than that of the 3-D computation as shown in Figure 5. 

In order to improve the results of simulations, the hardening rule in equation (1 1) is modified to 
become more compliant at large strains by multiplying a parameter ql  in an ad hoc manner 
according to the investigation in Chou et aL2’ Now the modified hardening rule is expressed as 

where 
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Figure 5. A comparison of the punch forces of the 3-D computation and the 2-D computation based on the Type I1 yield 
function for the hemispherical punch stretching operation 

Table I. A comparison of the results of the 3-D and 2-D computations at the 
punch travel distance of 24 and 32 mm in a hemispherical punch stretching case 

d Error or time 
(mm) P Items 2-D 3-D saving (%) 

Maximum E, 0-153 0-160 4.4 
24 017 Punch force 7455N 6832 N 9.1 

CPU time 9.96 min. 3 1.62 min. 68.5 

32 0.17 Punch force 12419N 10540N 17.8 
CPU time 13.28 min. 41.89 min. 68-3 

Maximum E, 0.256 0.283 9.54 

when < 100, and 
1 

) + I  = 4(1 - e - ( ~ - ~ ~ ~ ) / ~ ~ ~  
when A > 100. 

Figure 6 shows the distributions of the bottom surface strains of the 3-D computation and the 
2-D computation based on the Type I1 yield function and the modified hardening rule. Figure 7 
shows the punch forces as functions of the punch travel distances for the 3-D computation and 
the 2-D Computation based on the Type I1 yield function and the modified hardening rule. As 
expected, the results of the 2-D computation with the modified hardening rule agree well with 
those of the 3-D computation. 

Tables I and I1 summarize the results of the maximum bottom surface radial strain err, the 
punch force, and the CPU time for both the 2-D and the 3-D computations. These computations 
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Figure6. A comparison of the distributions of the bottom surface strains of the 3-D computation and the 2-D 
computation based on the Type I1 yield function and the modified hardening rule for the hemispherical punch stretching 

operation 

TableII. A comparison of the results of the 3-D computation and the 2-D 
computation based on a modified hardening rule at  the punch travel distance of 

32 mm in a hemispherical punch stretching case 

d Error or time 
(mm) Items 2-D 3-D saving (%) 

Maximum E,, 0.166 0160 3.75 
24 0.17 Punch force 6838 N 6832 N 0.08 

CPU time 1002 min. 31.62 min. 68.3 

Maximum E,, 0.279 0.2 8 3 1.41 
32 017  Punch force 10894N 10540N 3.36 

CPU time 13.68 min. 41.89 min. 67.3 
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Figure 7. A comparison of the punch forces of the 3-D computation and the 2-D computation based on the Type I1 yield 
function and the modified hardening rule for the hemispherical punch stretching operation 

were carried out on a VAX-8650 computer of Ford Motor Company. The results of the 2-D 
computation listed in Table I are based on the power-law hardening rule. The results of the 3-D 
computation are taken as the benchmarks to assess the error and saving of computational time of 
the 2-D computation. In Table I, at the punch travel distance d = 24 mm, the errors of the 
maximum radial strain and the punch force of the 2-D computation are 4.4 and 9.1 per cent, 
respectively. These errors are relatively small in engineering applications. The reason for these 
errors is possibly due to the deviation of the direction of the outward normal to the Type I1 yield 
surface from that of the complementary potential surface of Chou et ~ 1 . "  A parametric study of 
the direction of the outward normal to the Type I1 yield surface in the N,-M, plane indicates that 
the direction near the N1 axis deviates to the Nl direction when compared with that of the 
complementary potential surface of Chou et ~ 1 . ' ~  Most importantly, the computational time of 
the 2-D computation is about 32 per cent of that of the 3-D computation. At d = 32 mm, we still 
have the same computational time saving for the 2-D computation. However, the error of the 
maximum radial strain becomes large at about 10 per cent, and the error of the punch force 
increases to about 18 per cent. The reason for these large errors is that the 3-D computation 
generates localization (or necking) earlier than the 2-D computation since the hardening rule of 
the stress resultant theory is stiffer. 

Table I1 shows a comparison of the 2-D results based on the modified hardening rule with 
those of the 3-D computation at d = 24 and 32 mm. The results of the 2-D computation are very 
close to those of the 3-D computation. For example, the largest error of the maximum radial 
strain is about 4 per cent at d = 24 mm, and the largest error of the punch force is about 4 per Cent 
at d = 32 mm. The time-saving advantage is still the same. 
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6. A PLANE-STRAIN DRAW SIMULATION 

A plane-strain draw operation is schematically shown in Figure 8. The plane-strain draw 
operation includes a punch, a die, a binder and a piece of sheet metal. The geometric parameters 
of the plane-strain draw operation are r,, (the punch profile radius) = 5.5 mm, rd (the die profile 
radius) = 10.5 mm, w (the punch width) = 10.5 mm and h (the sheet thickness) = 1-0 mm. The 
material parameters of the sheet are E = 206.8 GPa, v = 0.3, uo = 106.07 MPa and n = 5. This 
case is considered as well-lubricated and the values of p in Coulomb’s friction law is assumed to 
be 0.02. The limit force of the equivalent elastic-plastic spring for the binder resistance is set at 
250 N/mm to simulate the draw operation. This operation is simulated to assess the applicability 
of the stress resultant theory under bending dominated and unloading conditions. 

Figure 9 shows the distributions of the thickness strains of the 3-D computation and the 2-D 
computations based on both the modified Ilyushin and Type I1 yield function at the punch travel 
distance d = 20 mm. There are three locations where the thickness reduction becomes localized 
due to bending operations. The 2-D computations based on the stress resultants give the exact 
locations and the approximate magnitudes for the thickness strains at  these locations. This 
localization of thickness reduction cannot be obtained from the simulation based on the 
membrane theory.’ The results based on the membrane theory are shown as the horizontal line in 
Figure 9 for comparison. Also, there is no significant difference between the 2-D results based on 
the Type I1 and modified Ilyushin yield function. 

Figure 10 shows the distributions of the bottom surface strains of the 3-D computation and the 
2-D computation based on both the modified Ilyushin and Type I1 yield function at the punch 
travel distance d = 20 mm. The results of the 2-D computations are very close to those of the 3-D 
computation regardless of using the modified Ilyushin yield function or the Type I1 yield function. 
As indicated in Chou et ~ l . , ~ ’  the stress resultant theory gives a very good prediction of plastic 
deformation of a plate element when the plastic strain is moderately larger than the elastic strain. 
However, when plastic deformation becomes very large, finite deformation effects must be 
considered. Then the hardening rule must be modified in the stress resultant approach as in the 
hemispherical punch stretching case, For this draw operation, the maximum plastic strain is not 

Binder 

Punch 

-w- 

Binder 

Figure 8. A plane-strain draw operation 
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Figure 11.  A comparison of the punch forces of the 3-D computation and the 2-D computation based on the Type I1 yield 
function for the plane strain drawing operation 

Table 111. A comparison of the results of the 3-D and 2-D computations at the 
punch travel distance of 20 mm in a plane-strain draw case. (I  represents the 
modified Ilyushin yield function and I1 represents the Type I1 yield function.) 

Items 2-D 
-~ . - . . -  ~ ~~ 

Maximum value of 00785 (I) 
Thickness strain 0.0765 (11) 
Punch force 260.81 N/mm (I) 

26289 N/mm (11) 
CPU time 73.03 min. (I) 

63.99 min. (11) 

Error or time 
3-D saving (%) 

- - 
00772 1.68 

0.92 
256.82 N/mm 1.55 

236 
174.03 min. 58.03 

63.23 

as large as that in the hemispherical punch stretching operation. Therefore, the 2-D computations 
give excellent results at moderately large plastic strains. Figure 11 shows the punch forces as 
functions of the punch travel distances for the 3-D computation and the 2-D computation based 
on the Type I1 yield function. The results based on the modified Ilyushin and Type I1 yield 
function are virtually the same. As shown in the figure, the results of the 3-D and 2-D com- 
putations agree well. 

Table 111 lists the results of the 3-D and the 2-D computations at the punch travel distance 
d = 20 mm. When the results of the 3-D computation are used as the benchmark, the error of the 
maximum value of the thickness strain is less than 2 per cent, and the error of the punch force is 
less than 3 per cent. However, the time-saving advantage is about 60 per cent. These results 
indicate that the stress resultant theory can be used to simulate the elastic-plastic behaviour of 
plates under bending dominated conditions with the saving of computational time. 
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7. CONCLUSION 

For the first time, the results of the non-linear geometric and material behaviour of thin sheets in 
forming operations based on a stress resultant theory are presented in this paper. The stress 
resultant theory includes a quadratic yield function, a hardening rule, and the associated flow 
rule. This theory was employed in a finite element program to simulate a hemispherical punch 
stretching and a plane-strain draw operation. From the results of the simulations, we conclude 
that the 2-D computations based on the stress resultant theory can take account for the coupling 
of membrane force and bending moment and, most importantly, have a significant advantage in 
computational time, taking only about 40 per cent of those of the 3-D computations based on the 
through-the-thickness integration method. When compared to the results of the 3-D computa- 
tions, the errors of the maximum radial strain and punch force are small and acceptable when the 
maximum strain is less than 20 per cent. Note that 20 per cent strain is well above the typical 
strain level in sheet forming operation for automotive outer panels. 

The error of the maximum radial strain becomes large when the maximum strain is greater 
than 20 per cent in the hemispherical punch stretching operation. The reason is that the 
power-law hardening rule is too stiff at large strains when the finite deformation effects become 
important (Chou et ~ 1 . ~ ’ ) .  Therefore, the stress resultant theory generates the local phenomena 
such as necking later than the 3-D computation. At the final stage of the stretching operation the 
sheet is under stretching-dominated conditions. In general, necking starts to accelerate at the 
strain approximately l / n  for biaxially stretched sheets depending upon the thickness variation 
and the loading path. We therefore expect to have the localization phenomenon when the strains 
become close to l/n. The results of the 2-D and the 3-D computations start to deviate significant 
at  the strain level near l /a  see Figure 4. After the hardening rule is modified, the results of the 
stress resultant theory are improved at large plastic strains. Therefore, the stress resultant 
constitutive law can be possibly used to simulate sheet metal forming processes provided that 
there are more comparisons of the 2-D and the 3-D computations under more complex loading as 
well as different punch and die geometry conditions. Further work is needed to find the 
theoretical basis for modification of the hardening rule at large plastic strains under combined 
membrane force and bending conditions when the finite deformation effects are considered. 
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