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Excitatory amino acids (EAA) such as glutamate and 
aspartate are probably the neurotransmitters of a 
majority of mammalian neurons. Only a few previous 
studies have been concerned with the distribution of 
the subtypes of EAA receptor binding in the primate 
brain. We examined NMDA- and quisqualate-sensi- 
tive [3H]glutamate binding using quantitative autora- 
diography in monkey brain (Macaca fascicularis). 
The two types of binding were differentially distrib- 
uted. NMDA-sensitive binding was most dense in 
dentate gyrus of hippocampus, stratum pyramidale 
of hippocampus, and outer layers of cerebral cortex. 
Quisqualate-sensitive binding was most dense in den- 
tate gyrus of hippocampus, inner and outer layers of 
cerebral cortex, and molecular layer of cerebellum. 
In caudate nucleus and putamen, quisqualate- and 
NMDA-sensitive binding sites were nearly equal in 
density. However, in globus pallidus, substantia ni- 
gra, and subthalamic nucleus, quisqualate-sensitive 
binding was several-fold greater than NMDA-sensi- 
tive binding. In thalamus, r3H]glutamate binding was 
generally low for both subtypes of binding except for 
the anterior ventral, lateral dorsal, and pulvinar nu- 
clei. In the brainstem, low levels of binding were 
found, and strikingly the red nucleus and pons, which 
are thought to receive glutamatergic projections, had 
approximately 1/20 the binding observed in cerebral 
cortex. 

These results demonstrate that NMDA- and quis- 
qualate-sensitive [3H]glutamate binding are observed 
in all regions of primate brain, but that in some regions 
one subtype predominates over the other. In addition, 
certain areas thought to receive glutamatergic projec- 
tions have low levels of both types of binding. 
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In the last 15 years, excitatory amino acids (EAA) 
such as glutamate and aspartate have been identified as 
thc probable neurotransmitters of a large percentage of 
neurons in mammalian brain (Watkins et al., 1990; 

Young and Fagg, 1990). Because EAA are involved in 
general cellular metabolic functions, they were not orig- 
inally considered to be likcl y neurotransmitter candi- 
dates. Electrophysiological studies demonstrated con- 
vincingly the potency of these substances as depolarizing 
agents and eventually discerned specific subtypes of 
EAA receptors that responded preferentially to EAA an- 
alogs (Dingledine et al., 1988). Coincident with the elec- 
trophysiological studies, biochemical studies indicated 
that EAA were released from slice and synaptosome 
preparations in a calcium-dependent fashion and were 
accumulated in synaptosomc preparations by a high-af- 
finity transport system. With these methodologies, EAA 
release and uptake were found to be selectively de- 
creased in the projection regions of a variety of neuronal 
pathways after the pathways were lesioned. Studies us- 
ing immunocytochemical methods to stain conjugated- 
glutamate or aspartate have also demonstrated the wide 
distribution of presumed glutamatergic and aspartergic 
neurons (Otterson and Storm-Mathisen, 1987; Giuffrida 
and Rustioni, 1989; Conti et al., 1988). Initial experi- 
ments in cerebellum indicatcd that the granule cells use 
glutamate as a putative neurotransmitter (Young et al., 
1974). Cortico-cortical association pathways were also 
linked to glutamate (Fonnum et al., 1981; Barbaresi et 
al., 1987). Subsequently, numerous pathways, including 
afferents, intrinsic neurons, and efferents of the hippo- 
campal formation, were found to use EAA as neurotrans- 
mitters (Fagg and Foster, 1983; Fonnum, 1984; Storm- 
Mathisen, 1977). Cortical inputs to subcortical regions 
such as thalamus, caudate/putamen, red nucleus, pons, 
and spinal cord were shown to use EAA as probable 
neurotransmitters (Bernays et al., 1988; Christie et al., 
1986; Fosse and Fonnum, 1987; Giuffrida and Rustioni, 
1988; Rouzaire-Dubois and Scarnati, 1987a,b; Young et 
al., 1981, 1983). Most of these pathways have been 
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examined in rodents and cats, but some have been in- 
vestigated in primate (Young et al., 1981 and 1983). 

Electrophysiological studies now indicate the pres- 
ence of at least four subtypes of EAA receptors in brain 
(Watkins et al., 1990; Young and Fagg, 1990). Three of 
these receptors are linked to ion channels: the kainate, 
AMPA, and N-methyl-D-aspartate (NMDA) receptors. 
The fourth receptor type modulates inositol triphosphate 
metabolism and is sensitive to quisqualate (as in the 
AMPA site) but is not particularly sensitive to other 
selective ion channel-activating AMPA or quisqualate 
agonists (Nicoletti et al., 1985; Rescasens et al.. 1987). 
Thus, quisqualate-sensitive ['H]glutamate binding rep- 
resents binding to both the AMPA and metabotropic 
receptors (Cha et al., 1990). Biochemical studies in ho- 
mogenates and autoradiographic studies on tissue sec- 
tions have demonstrated NMDA-, quisqualate-sensitive 
['Hlglutamate binding sites that have pharmacological 
properties similar to those of the physiologically defined 
NMDA and quisqualate receptors, respectively (Young 
and Fagg, 1990). 

Only a limited number of studies have been per- 
formed showing the distribution of receptor subtypes in 
the primate brain (Geddes et al., 1989; Jansen et al., 
1989). In this study, we examined the regional distribu- 
tion of NMDA-sensitive and quisqualate-sensitive 
[3H]glutamate binding in many regions of monkey brain 
as part of an ongoing series of studies of plasticity of the 
motor system in monkeys (Dauth et al., 1985; Gilman et 
al., 1987; Shimoyama et al., 1988). 

MATERIALS AND METHODS 
Four adult Macaca ,fascicularis monkeys weighing 

2.5-3.5 kg were anesthetized with pentobarbital and 
killed by an intravenous injection of saturated KCI. The 
brain was rapidly removed and froLen in isopentane on 
dry ice. Coronal sections of 20 pm were taken serially 
from the rostral caudate through the deep cerebellar nu- 
clei of the brain and assayed for [3H]glutamate binding 
within 36 hours of sectioning. Two sections were taken 
for histological analysis every 20 sections. One section 
was stained with cresyl violet for cell bodies, the other 
with osmium tetroxide for myelin. Sections for ['HI 
glutamate autoradiography were taken at the level of the 
rostral caudate, anterior commissure, medial globus pal- 
lidus, subthalamic nucleus, ventral anterior thalamic nu- 
cleus, substantia nigra, and deep cerebellar nuclei. Sec- 
tions were given three 5 minute prewashes at 4°C in SO 
mM Tris-HC1 buffer containing 2.5 mM CaCI, at pH 
7.2. Duplicate sections were then incubated with 20 nM 
(3Hlglutamate (specific activity 40 Ciimmol) in 50 mM 
Tris-HC1 buffer with 2.5 mM CaCI, in the presence or 
absence of 2.5 pM quisqualate, 1 mM NMDA, both 2.5 

pM quisqualate. and 1 mM NMDA or 1 mM glutamate. 
After a 45 minute incubation at 4"C, sections were rinsed 
three times with cold buffer and once in cold acetone 
with 2.5% glutaraldehyde (viv) and then rapidly dried. 
Rinse times were less than 10 seconds. Sections were 
apposed to tritium-sensitive LKB Ultrofilm 'H for 3 
weeks along with plastic standards from American Ra- 
diolabeled Chemical, Inc. that had been calibrated to 
dpm/pg protein in our laboratory. After exposure the 
films were developed in D- 19 and analyzed for binding 
density with computerized densitometry . 

The BRS2 quantitative imaging program from Im- 
aging Research, Inc. (St. Catherine, Ontario, Canada) 
was used to digitize the autoradiograms. The program 
converted the density readings to dpmipg protein by 
comparison to the standards (Pan et al., 1983). The data 
from the BRS2 program were then converted to fmol/mg 
protein. 

Five to 20 individual readings were taken from 
each structure bilaterally and from each level at which 
the structure appeared. In cortex, readings were taken 
from both the outer (1-111) and inner IV-VI) layers. The 
individual readings from each structure along with iden- 
tifying information were incorporated into a database us- 
ing the SYSTAT statistical analysis program. All subse- 
quent transformations, merging and averaging of data, 
both within and across subjects, was accomplished with 
SYSTAT. A mean value for each structure was com- 
puted from the data from duplicate sections. Specific 
binding data were calculated as described below. The 
mean values of the data were then computed by structure 
across all section levels of the brain for each structure in  
each animal. The values for each structure from each 
animal were used to calculate the means and standard 
errors for each structure listed in the tables (Tables I, IT). 

The cortical outer layedinner layer (OiI) binding 
ratios were calculated from the specific binding under 
each displacer condition, i.e., total binding minus bind- 
ing in the presence of 2.5 pM quisqualate and total bind- 
ing minus binding in the presence of 1 mM NMDA. 
Mean values of these data were then computed and tab- 
ulated as described above (Table 111). 

The specific binding for the glutamate subtypes 
was calculated from the total binding data in the follow- 
ing manner: 

S(NMDA) = B(3H-g1utamate) - b(NMDA) 
S(quis) = B(3H-glutamate) - b(quisqua1ate) 

where S ( ) = specific subtype binding, B ( ) = total 
binding, b ( ) = nonspecific binding as defined by 
binding in the presence of 1 mM NMDA (for NMDA- 
sensitive binding) or 2.5 pM quisqualate (for quis- 
qualate-sensitive binding). With these equations, it was 
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possible to determine specific NMDA-sensitive and quis- 
qualate-sensitive glutamate binding. 

RESULTS 

NMDA-sensitive and quisqualate-sensitive sites 
were differentially distributed (Tables I ,  11; Figs. 1 ,  2). 
Binding was highest for each of the subtypes in hippo- 
campus and cerebral cortex (Table I). 

NMDA-sensitive binding was most dense in hip- 
pocampal formation and cerebral cortex. In the hippo- 
campal region, NMDA-sensitive binding was dense in 
dentate gyrus, stratum pyramidale of CAI,  and entorhi- 
nal cortex. In cerebral neocortex, NMDA-sensitive bind- 
ing was highest in the outer layers, with Brodmann areas 
8, 12, and 6 having the highest binding. Inner layers 
showed variable densities depending on the region. 
There was an area of decreased apparent binding asso- 
ciated with the increased white matter in layer IV. A thin 
band of higher density NMDA-sensitive binding was ob- 
served at the border between layers IV and V. Primary 
motor cortex, which had no band of increased binding, 
showed the highest ratio of OiI binding in cerebral cor- 
tex. Temporal association cortex (Brodmann areas 21, 
22, and 24), entorhinal, and insular cortex showed the 
lowest OiI ratios (Table 111). 

Quisqualate-sensitive binding was most dense in 
dentate gyrus and stratum pyramidale of CAI in hippo- 
campal formation with intermediate densities in subicu- 
lum and entorhinal cortex. In cerebral cortex, quis- 
qualate binding was highest in density in outer layers of 
prefrontal cortex (Brodmann areas 45 and 46) and insular 
cortex. There was less of a band of increased binding in 
layer V and the 011 ratios of quisqualate-sensitive bind- 
ing were lower than those for NMDA-sensitive binding. 
In motor cortex, the OiI ratios were approximately 1.3- 
2.3 (compared to 2.2-3.2 for NMDA-sensitive binding). 

The basal ganglia showed marked regional hetero- 
geneity of NMDA-sensitive and quisqualate-sensitive 
binding (Table 11). In caudate/putamen quisqualate-sen- 
sitive binding was somewhat higher than NMDA-sensi- 
tive binding. Giobus pallidus binding of both types was 
considerably lowcr than caudateiputamen. In external 
globus pallidus quisqualate-sensitive binding was higher 
than NMDA-sensitive binding by 2: I and in internal glo- 
bus pallidus by nearly 8: 1 .  Similar relationships held for 
the substantia nigra pars reticulata and subthalamic nu- 
cleus. 

In the thalamus, binding was generally only of low 
density. The exceptions were the anterior ventral nu- 
cleus, which had a NMDA:quisqualate binding ratio of 
2:3; the pulvinar, which displayed a high density of 
NMDA-sensitive binding; the lateral and medial dorsal 
nuclei, where quisqualate-sensitive binding was denser 

than the NMDA-sensitive binding; and the parvocellular 
portion of the ventral posteromedial nucleus, which had 
mainly quisqualate-sensitive binding. The overall den- 
sity of [3H]glutamate binding was substantially less in 
other thalamic regions than in the cerebral cortex. In 
particular, very low densities of binding were found in 
the motor thalamus and the geniculate nuclei. 

In the brainstem, binding densities were again low 
except for the central gray zones, superior colliculus, and 
vestibular nuclei. In the central gray, NMDA-sensitive 
binding predominated. In superior colliculus , quis- 
qualate-sensitive binding was more dense. In the granule 
cell layer of the cerebellum, quisqualate-sensitive bind- 
ing was nearly equal to NMDA-sensitive binding. In the 
molecular layer, however, quisqualate-sensitive binding 
was four times higher than NMDA-sensitive binding, 
and quisqualate-sensitive binding in the molecular layer 
was twice as dense as that in the granule cell layer. The 
deep cerebellar nuclei displayed low binding densities 
for both subtypes. 

DISCUSSION 
Several different techniques for measuring NMDA- 

and quisqualate-sensitive ['Hlglutamate binding have 
been reported (Young and Fagg, 1990). Some methods 
are more selective than others and new assays are being 
developed continually. ['HIGlutamate can be used to la- 
bel all the EAA receptor subtypes, although the subtypes 
must be identified by competition studies because gluta- 
mate itself does not distinguish between the sites. 
NMDA appears to interact with a homogeneous group of 
['Hlglutamate binding sites whereas quisqualate inter- 
acts with receptors linked to ion channels and receptors 
linked to inositol triphosphate metabolism (Monaghan et 
al., 1989; Young and Fagg, 1990). Quisqualate-sensitive 
['Hlglutamate binding is highly chloride sensitive and is 
stimulated at least four-fold in the presence of 40 mM 
chloride and 2.5 mM calcium chloride (Cha et al., 
1988). In the presence of calcium, chloride, and KSCN, 
the quisqualate agonist AMPA will compete for a subset 
of quisqualate-sensitive sites, presumably those on the 
ion channel linked quisqualate receptor (Cha et al., 
1988). This so-called "metabotropic" quisqualate recep- 
tor is insensitive to AMPA (Nicoletti et al., 1985; Palmer 
et al., 1989; Rescasens et al., 1987). Quisqualate-sensi- 
tive ['H]glutamate binding probably measureb binding to 
both quisqualate-linked EAA subtypes, i.e., the ion 
channel and the metabotropic receptor (Young and Fagg, 
1990). 

Quisqualate inhibits ['H]glutamate binding in a bi- 
phasic manner with a high-affinity component in the low 
nanomolar range and a low-affinity component in the 
high micromolar range (Greenamyre et al., 1985; Cha et 
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TABLE I. NMDA-Sensitive and Quisqualate-Sensitive ['H]Glutamate Binding in Macaca 
fascicularis Cerebral Cortex" 

Brodmann area 

NR4DA-sensitive, Quisqualate-sensitive, 
Inner (I) and fmolimg protein, f m o l h g  protein, 

outer (0) layers" mean ( S E M ) ~  mean (SEM)" 

Frontal motor 
4 
4 
6 
6 
Supplementary motor 
Supplementary motor 

Association 
8 
8 

12 
12 
45 
45 
46 
46 

24 
24 

Anterior cingulate 

Insular cortex 
Insular cortex 

Parietal sensory 
1 &2 
1 &2 
3 
3 

5 
5 
7 
7 

'Temporal 

Association 

Auditory 
A1 
A1 

21 
21 
22 
22 

Association 

Hippocampal region 
Entorhinal cortex 
Entorhinal cortex 
Subiculum 
Presubiculum 
Stratum moleculare, CAI 
Stratum pyramidale, CAI 
Stratum pyramidale, CA3 
Stratum molecular dentate gyms 

I 
0 
I 
0 
I 
0 

I 
0 
I 
0 
I 
0 
I 
0 

I 
0 
I 
0 

I 
0 
I 
0 

I 
0 
1 
0 

I 
0 

1 
0 
I 
0 

I 
0 

108 (26) 
350 (64) 
162 (49) 
405 (58) 
179 (52) 
368 (49) 

257 ( 154) 
550 (190) 
198 (10) 
434 (80) 

NA 
NA 
NA 
NA 

211 (48) 
324 (65) 
263 (33) 
387 (43) 

201 (57) 
351 (91) 
180 (54) 
373 (85) 

176 (107) 
346 (171) 
IS4 (94) 
296 (165) 

151 (43) 
301 (84) 

175 (48) 
295 (58) 
209 (37) 
324 (53) 

155 (52) 
244 (66) 
210 (57) 
207 (81) 
243 (56)  
310 (68) 
228 (46) 
382 (87) 

132 (19) 
300 (53) 
202 (47) 
298 (52) 
218 (31) 
300 (37) 

203 (49) 
307 (58) 
249 (32) 
325 (21) 
290 (37) 
434 (70) 
3 12 (70) 
392 (96) 

247 (35) 
302 (44) 
293 (46) 
344 (44) 

185 (39) 
246 (59) 
164 (31) 
258 (59) 

165 (54) 
275 (85) 
182 (58) 
264 (106) 

161 (43) 
247 (69) 

202 (42) 
265 (57) 
254 (43) 
294 (61) 

218 (46) 

233 (38) 
243 (60) 
247 (26) 
301 (45) 
229 (27) 
363 ( 5 5 )  

270 (61) 

*Values are the mean (SEM) of 4 monkeys. NA = not available. 
"Inner layers (I) were layers IV-VI, outer layers (0) were layers 1-111. 
bNMDA-sensitive [3H]glutamate binding was determined in 20 nM ligand in SO mM Tris-HCI buffer plus 
2.5 mM CaCI,; binding in 1 mM NMDA was subtracted from total ['Hlglutamate binding. 
'Quisqualate-sensitive [3H]glutamate binding was determined by subtracting binding in the presence of 
2.5 FM quisqualate from total ['H]glutamate binding in 20 nM ligand, SO mM Tris-HCI buffer plus 2.5 
mM CaCI,. 
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TABLE 11. NMDA-Sensitive and Quisqualate-Sensitive [3H1Glutamate Binding in Subcortical 
Regions of Macaca fascicularis* 

Structure 

NMDA-sensitive, Quisqualate-sensitive, 
fmolimg protein, fmol/mg protein. 

mean (SEM)" mean ( S E M ) ~  

Claustrum 
Septum 

Basal ganglia 
Caudate 
Caudate. ventral tail 
Putamen 
Globus pallidus, external 
Globus pallidus, internal 
Substantia nigra pars compacta 
Substantia nigra pars reticulata 
Subthalamic nucleus 

Anteroventral 
Centrum medianum. parafascicular 
Lateral dorsal 
Lateral geniculate 
Medial dorsal 
Medial geniculate 
Pulvinar 
Ventral antcrior 
Ventral lateral, medial 
Ventral, lateral. oral 
Ventral posteroinferior 
Ventral posterior 
Ventral posteromedial 
Ventral posteromedial, parvocellular 

Central gray 
Superior colliculus 
Inferior colliculus 
Pontine nuclei 
Red nucleus 
Vestibular nuclei 

Granular layer, cerebellar cortex 
Molecular layer, cerebellar cortex 
Dentate nucleus 
Fastigial nucleus 
Interposed nucleus 

Thalamus 

Brainstem 

Cerebellum 

145 (29) 
242 (36) 

160 (50) 
163 (41) 
147 (30) 
38 (24) 
4 (10) 

17 (14) 
14 (21) 
18 (19) 

159 (105) 

61 (16) 
-21 (10)' 

27 (31) 
- 1 1 (-) 
529 (-) 
22 (21) 

2 (17) 
17 (30) 

-9 (12) 
9 (12) 

15 (13) 
56 (27) 

6 (14) 

205 (58) 
119 (57) 

0 (13) 
-5 ( 1 )  

-12 (3) 

170 (29) 
259 (23) 

219 (26) 
196 (23) 
216 (23) 
66 (10) 
31 (6) 
37 (11) 
48 (15) 
49 (18) 

227 (9 1 j 
28 (20) 
77 (42) 
6 (10) 

66 (19) 
62 (-1 

267 (50) 
56 (19) 
44 (19) 
54 (32) 
I I (10) 
31 (14) 
39 (14) 

103 (12) 

114 (42) 
101 (40) 
46 (22) 
13 (12) 
22 (25) 
66 (48) 

233 (27) 
437 (63) 
29 ( 1 1 )  
6 (1)  
8 (1) 

*Values are the mean (SEM) of data from 4 monkeys cxcept where indicated. 
(-j = Estimate based on 1 animal. NA = not available. 
aNMDA-sensitive [3H]glutamate binding was determined in 20 nM ligand in 50 mM Tris-HCI buffer plus 
2.5 mM CaC12: binding in 1 mM NMDA was subtrdctcd froin total ['HH]glutamate binding. 
bQuisqualate-sensitive I3HJglutamate binding was determined by subtracting binding in the prcsence of 
2.5 FM quisqualate from total ['Hlglutarnate binding in 20 nM ligand, 50 mM Tris-HCI buffer plus 2.5 
mM CaCL,. 
'Negative values occur when binding in the presence of NMDA (or quisqualate) was actually slightly 
higher than total binding. 

al., 1988). The high-affinity quisqualate-sensitive sites 
appear biochemically to resemble quisqualate-linked ion 
channels and quisqualate-linked metabotropic receptors. 
The low-affinity quisqualate-sensitive sites are probably 
equivalent to the NMDA-sensitive sites (Greenamyre et 
al., 1985). Approximately 95% of thc high-affinity quis- 

qualate-sensitive sites can be blocked by 2.5 pM quis- 
qualate. This concentration of quisqualate has minimal 
effects on the low-affinity site. Quisqualate receptors can 
also be selectively measured in Tris-chloride buffer with 
calcium in the presence of 1 mM NMDA and 1 p,M 
kainate. 
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Fig. 1 .  Computerized images of coronal sections demonstrat- 
ing NMDA-sensitive (left) and quisqualate-sensitive (right) 
binding in association (A,B) and motor (C,D) cortices of pri- 
mate brain. The images are subtraction images of specific bind- 
ing. They were obtained by subtracting from total [3Hlgluta- 
mate binding the binding remaining in either 1 mM NMDA (to 
measure NMDA-sensitive binding) or 2.5 pM quisqualate (to 
measure quisqualate-sensitive binding). The subtractions were 
carried out on a computerized image processing system from 

NMDA-sensitive ['Hlglutamate binding is not 
chloride sensitive and can be measured adequately in the 
absencc of chloride or  calcium (Greenamyre et al . ,  1985; 
Monaghan et al.,  1989; Young and Fagg, 1990). Thus, 
NMDA-sensitive receptors can be measured in Tris-ac- 
etate with 2.5 pM quisqualate and 1 p M  kainate. Alter- 
natively, NMDA-sensitive ['Hlglutarnate binding can be 
measured in the presence of calcium and chloride by 
examining only the binding that is sensitive to a high 
concentration of NMDA. 

Image Research, Inc., St. Catherine's, Ontario, Canada. The 
bars on the left indicate the density scales for the images to the 
right of the bar. Note that NMDA-sensitive sites are denser in 
outer layers of motor cortex than inner cortex and no dense 
band is scen in layer IV of motor cortex. In area 2 1 ,  a dense 
band of binding is observed in layer IV. Abbreviations: 4, 6, 
2 1, and 22 refer to the respective Brodmann areas; I is insular 
cortex. 

The assay used in this study is less selective than 
some current binding assays, but selective information 
was obtained by a n a l y h g  NMDA- and quisqualate-sen- 
sitive binding alone. In this study, however, quisqualate- 
sensitive [3H]glutamate binding probably represents 
binding to both the quisqualate-sensitive ion channel and 
the metabotropic receptor. In addition, not all 
['Hlglutarnate binding in primate brain was inhibited by 
1 m M  NMDA and 2.5 ~J-M quisqualate; in some regions 
considerable binding remained. 
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Fig. 2. Computerized images of NMDA-sensitive (left) and 
quisqualate-sensitive (right) binding in coronal sections of 
basal ganglia (A,B), hippocampus (C,D), and cerebellum 
(E,F). The images are subtraction images of specific binding 
and were obtained as described in Figure I .  The bars indicate 
the density scales for the images to the right of the bar. The 
same bar applies to basal ganglia and hippocampus. Abbrevi- 

ations: P, putamen; GPE, external globus pallidus: GPI. inter- 
nal globus pallidus; E, entorhinal cortex; D, niolecular layer of 
dentate gyrus; M1, stratum moleculare of CAI; P1, stratum 
pyramidale of CAI; P3. stratum pyramidale of CA3; M, mo- 
lecular layer of cerebellum; G, granule cell layer of cerebel- 
lum. 

Most biochemical studies of EAA receptor sub- 
types have been carried out in rodent tissue where they 
display strikingly independent regional distributions many areas one subtype predominated over the other. 
(Young and Fagg, 1990). Quisqualate- and NMDA-sen- 
sitive [3H]glutamate binding was also differentially dis- 

tributed in the primatc brain. Although both binding sub- 
types were present in each area of brain examined, in 

NMDA receptors are gated by magnesium in a 
voltage-depcndcnt fashion and thus are maximally acti- 
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TABLE 111. Cortical NMDA-Sensitive and Quisqualate-Sensitive 
Binding: Outerhner Layers* 

Mean outeriinner ratios 

Cortical area NMDA Quisqualate 
4 
6 

8" 
Supplementary motor area 

12 
45 
46 
24 

I &2 
3 
5 
7 

Auditory cortex 
21 
22 
Insular cortex 
Entorhinal cortex 

3.24 
2.50 
2.06 
2.14 
2.20 
NA 
NA 
1.54 
1.75 
2.07 
1.97 
1.92 
I .99 
I .69 
1.55 
I .47 
1.57 

2.27 
1.47 
1.38 
1.51 
1.30 
1 .so 
1.25 
1.22 
1.32 
1.57 
1.67 
1.45 
1.53 
1.31 
1.16 
1.17 
1.24 

*Ratios of values in Table 1. NA = not available 
"Brodmann areas. 

vated in situations in which other neurotransmitters de- 
polarize the neuron. The availability of selective NMDA 
receptor antagonists has made it possible to examine the 
role of these receptors in normal behavior. NMDA re- 
ceptor blockade has been associated with disruption of 
long-term potentiation, a model of memory formation 
(Collingridge and Singer, 1990). The high density of 
NMDA-sensitive [3H]glutamate binding in forebrain, es- 
pecially hippocampus and cerebral cortex, is consistent 
with the proposed role these receptors have in learning 
and memory (Collingridge and Singer, 1990). NMDA 
antagonists have been found to be anticonvulsants, 
which is consistent with the high density of NMDA bind- 
ing in cerebral cortex, the presumed site of action of 
anticonvulsants (Meldrum et al., 1983; Schwarcz and 
Meldrum, 1985). 

In cerebral cortex, NMDA-sensitive binding was 
most dense in outer layers (layers I to 111). There was an 
apparent zone of decreased binding in layer IV. This 
finding may be an artifact due to quenching of the tritium 
emissions by the increased white matter in this layer 
(Rainbow et al.. 1984; Geary and Wooten, 1985; Kuhar 
and Unnerstall, 1985). Intermediate densities were ob- 
served in layers V and V1. In neocortical areas, except 
for motor cortex, a thin band of NMDA-sensitive bind- 
ing was observed at what appeared to be the junction 
between layers IV and V. The differential di5tribution of 
these binding sites may be related to specific cortical 
afferent systems. Nonspecific afferents from thalamus 

synapse on the distal dendrites of layer 111 pyramidal 
cells and specific thalamocortical projections synapse 
heavily in layer 1V (Brodal, 1981). Feedforward associ- 
ation fibers from primary sensory cortex synapse in layer 
IV of association cortex (Pons et a]., 1987). These feed- 
forward fibers mediate fast synaptic transmission and 
pyramidal cell excitation. Feedback pathways from other 
areas of cerebral cortex, however, synapse on layer 111 
pyramidal dendrites and modulate neuronal activity 
(Pons et al., 1987). NMDA receptors are activated in an 
apparent voltage-dependent manner because of their 
voltage-dependent blockade by magnesium. Thus, the 
strength of these responses is likely to be modulated by 
the activity of other excitatory inputs. The high density 
of NMDA binding in outer layers of cerebral cortex and 
at the layer IV-V junction is consistent with the presence 
of NMDA modulatory function in these areas of mam- 
malian cortex (Thomson, 1986; Addae and Stone, 1986). 

In the hippocampal formation, both NMDA- and 
quisqualate-sensitive binding were present in high den- 
sities. This is in keeping with prior studies indicating that 
the entorhinal pathway to dentate gyrus and stratum py- 
ramidale and moleculare of CAI is EAAergic, as are the 
prqjections from dentate granule cells to CA3 neurons, 
from CA3 neurons to CAI pyramidal cells, and from 
CA1 pyramidal cells to subiculum (Fagg and Foster, 
1983; Storm-Mathisen, 1977). This series of EAAergic 
pathways is thought to be important in learning and 
memory (Collingridge and Singer, 1990). Long-term po- 
tentiation in hippocampal lormation is disrupted by both 
quisqualate and NMDA antagonists. 

The neocortical and hippocampal distribution of 
EAA receptors is very similar to those found by Geddes 
et al. (1989) who studied NMDA receptors in the baboon 
and Jansen et al. (1989) who studied NMDA, AMPA, 
and kainate binding sites in human cortex. All groups 
find the same hippocampal and outer cortical binding. 
Geddes et al. do not comment on the apparent zone of 
decreased binding in layer IV. Whether this is due to a 
species difference or a difference in the methodologies is 
not clear. 

NMDA receptor antagonists affect motor function, 
resulting in decreased muscle tone and ataxia (Green- 
amyre, 1986; Schwarcz and Meldrum, 1985). These ef- 
fects are probably due to NMDA receptor blockade in 
structures such as pons, spinal cord, and cerebellum. 
NMDA binding in these regions is low even though elec- 
trophysiological and behavioral studies indicate an im- 
portant rolc for thesc receptors in motor function. Mis- 
matches between binding densities and presynaptic 
neurotransmitter pathways have been noted in other sys- 
tems (Kuhar, 1985). Whether some receptors are spare 
receptors in certain regions is unclear but striking mis- 
matches do appear to exist in the EAA system. 
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Quisqualate receptors are thought to be responsible 
for EAA-induced fast synaptic transmission (Dingledine 
et al., 1988; Watkins et al., 1990). Thus, the finding that 
most regions of brain contain high densities of quis- 
qualate binding was expected. Certain areas of brain con- 
tain predominantly quisqualate binding. Notably, the 
subthalamic nucleus, which plays an important role in 
motor function, has a moderate density of quisqualate- 
sensitive binding sites and a low density of NMDA bind- 
ing. Subthalamic neurons receive an excitatory input 
from cerebral cortex that is mediated by quisqualate re- 
ceptors (Rouzaire-Dubois and Scarnati, 1987a,b). Quis- 
qualate-sensitive binding sites are also higher than 
NMDA-binding in globus pallidus and substantia nigra 
pars reticulata. These two regions receive presumed ex- 
citatory input from the subthalamic nucleus (Smith and 
Parent, 1988). Based on these findings, quisqualate an- 
tagonists would be expected to have potentially benefi- 
cial effects in the treatment of basal ganglia disorders 
(Klockgether and Turski, 1989). The recent development 
of selective quisqualate receptor antagonists will allow 
examination of these receptors in basal ganglia function. 

In the cerebellar cortex, quisqualate-sensitive bind- 
ing predominates in the molecular layer (Garthwaite and 
Beaumont, 1989; Olson et al., 1987; Blackstone et al., 
1989; Cha et al., 1990; Kano et a]., 1988). Studies of 
cerebellar Purkinje cell-deficient rodents indicate that 
quisqualate-sensitive sites are localized on Purkinje cells 
(Olson et al., 1987; Cha et al., 1990). This binding up- 
regulates when deprived of granule cell afferent input. 
Studies in cerebellar cultures also suggest that quis- 
qualate binding is localized predominantly on Purkinje 
cells (Joels et al.. 1989). NMDA binding is most dense 
in the granule cell layer and decreases in density in ro- 
dents with a granule cell-dcficient cerebellum (Olson et 
al., 1987). NMDA receptors may mediate afferent input 
from the inferior olives and certain studies suggest that 
this pathway uses aspartatc as a neurotransmitter. 

In conclusion, NMDA- and quisqualate-sensitive 
[3H]glutamate binding sites are widely distributed in the 
central nervous system of Macaca fascicularis. The 
binding pattern is very similar to that seen in human and 
baboon brains. Areas of high binding correspond to areas 
of high EAA innervation. However, some areas of high 
EAA innervation (notably red nucleus and pons) do not 
have high densities of binding sites. 
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