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A cluster expansion is introduced for the determination of the optical absorption properties of 
cluster states in substitutionally disordered molecular crystals. This method is based on the Green’s 
function expansion in terms of the localized cluster states in the energy region of the guest sub- 
band. The general features of the method are illustrated by calculations for a simple two-dimen- 
sional molecular crystal. The physical parameters for the calculation are based on the vI1 benzene 
vibrational exciton. Both polarized and unpolarized cluster optical absorptions display strong 
asymmetries, with respect to the isolated guest spectral line. Calculations are performed on the 
monomer, dimer, trimer, and tetramers (three kinds) of the benzene crystal ac-plane. 

Es wird eine Clusterentwicklung fur die Bestimmung der optischen Absorptionseigenschaften 
der Clusterzustande in substitntionsfehlgeordneten Molekularkristallen eingefiihrt. Diese Methode 
beruht auf der Entwicklung der Greenschen Funktion nach den lokalisierten Clusterzustanden im 
Energiebereich der Gast-Subbanden. Das allgemeine Vorgehen dieser Methode wird durch Rech- 
nungen fur einen simplen zweidimensionalen Molekiilkristall illustriert. Die physikalischen Para- 
meter fur die Rechnungen basieren auf dem Benzen-v,,-Schwingungsexziton. Sowohl die polari- 
sierte als auch die unpolarisierte optische Clusterabsorption zeigt starke Asymmetrie bezuglich 
der isolierten Gast-Spektrallinie. Rechnungen werden fur die Monomere, Dimere, Trimere und 
Tetramere (drei Arten) der Benzenkristall-ae-Ebene durchgefuhrt. 

1. Introduction 
The understanding of the optical properties of isotopic mixed molecular crystals 

has improved appreciably in recent years [l, 21. The introduction of the Coherent 
Potential Approximation (CPA) and the moment expansion method for isotopically 
mixed molecular crystals provided a useful tool for the determination of the optical 
spectra of these crystals for varying concentrations of the isotopic component [ 1 to 51. 
However, the CPA and moment methods fail to provide information on the fine struc- 
ture of the density-of-states function and the optical absorption spectra [6 to  81. The 
fine structure in the density-of-states function and in the optical spectra is generated 
by the presence of clusters of guest3) molecules in the mixed crystal. The effect of 
these clusters is pronounced for guest molecules below the percolation concentration 
[2 ,  6, 91 for large guest perturbation strength, relative to  the exciton bandwidth. 

I n  this paper we shall extend the cluster expansion method used by Hoshen and 
Jortner [9] for the density-of-states of substitutionally disordered crystals. I n  the 
previous work, clusters in a one-dimensional system were investigated. I n  the present 
work we shall explore a two-dimensional crystal structure topology applicable to some 
benzene crystal excited states. I n  Section 2 the cluster method is expanded to include 
crystals with several molecules per unit cell. The optical properties related to these 

l) Ann Arbor, Michigan 48 109, USA. 
2, Supported by NSF Grant DMR75-07832 A01 and NIH Grant NSO8116-08. 
3, “guest” is the definition of any one of the two substitutional components depending on 

convenience - usually that on which the eigenstate of interest is preferentially localized on. 
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clusters are determined in Section 3. In  Section 4 the cluster method is applied to 
clusters in two-dimensional systems. Numerical data are given in Section 5 for a vibra- 
tional exciton in a substitutionally disordered benzene crystal. These numerical 
results compare well with available experimental data. 

2. A Cluster Expansion Method for the Density of States Optical Properties 
Hoshen and Jortner [9] derived an expansion for the portion of the density-of-states 

function generated by the guest clusters embedded in the host crystal containing one 
molecule per primitive unit cell. The same formulas can be applied with slight modifi- 
cations to crystals containing several molecules per unit cell. We shall consider an 
exciton state for the pure crystal derived from a single molecular state 

In  (2.1) k denotes the wave vector, IT the order of the interchange group [lo] and v 
the exciton branch where v = 1, 2,  ... , IT. The BiY(k) coefficients of the “one site ex- 
citon wave function”, / k ,  i), corresponding to  site i in the unit cell, can be determined 
by diagonalizing the matrix L(k)  whose elements are given by 

where go is the Hamiltonian of the pure host crystal. The one site exciton wavefunc- 
tions are given in terms of the localized excitations In, i) : 

Lij(L) = ( k ,  iJ f i 0  lk, j) , (2.2) 

]k, i) = (Na)-1/2 2 eik(R*+Sc) In, i) . (2.3) 
n 

St denotes the position of the i-th molecule in the n-th unit cell and R,, denotes the 
position of the origin on the n-th unit cell. ?I is the number of unit cells. 

The basic expression for the density of states of the mixed crystal is 12, 111 

where eo(E) is the density of states per molecule of the pure host crystal, G is the 
disordered (perturbed) crystal Green’s function and B ( E )  is a determinant given by 

D(E)  = 11 - G“(E) VI . (2.4a) 
GO(B) is the Green’s function matrix for the unperturbed crystal (pure crystal) with its 
elements being given by 

Gti;nzj(E) = (72, i~ lm, i> > (2.4b) 

where Go is the pure crystal Green’s function operator. (The matrix elements (2.4b) 
are sometimes called superexchange interactions.) The perturbed matrix elements 
are given by: 

(n ,  4 V lm, i> = rl&&,j , ( 2 . 4 ~ )  
where 7 = 1 when the site ni is occupied by a guest molecule and 7 = 0 when the site 
ni is occupied by a host molecule. d is the difference between the excitation energy 
of a single guest molecule and a single host molecule. (2.4) can be further simplified 
by partitioning the Go(E)  and B matrices into four submatrices. 

h 

GO(E) is given as [9] 

(2.5) 



Molecular Exciton Cluster States and Spectra with Application to  Benzene 481 

Gig includes Green's function matrix elements connecting guest molecules only, whereas 
Gi,(E) connects host molecules only. G&,(E) and G&(E) include elements connecting 
guest and host molecules only. 

The dimensions of the Gig(E) and Ggh( E )  square submatrices are CUN and (1 - C )  aN, 
respectively. C denotes the guest concentration. Similarly V is constructed: 

Vg is a diagonal matrix of the Sam3 order of G&(E): 

vg = nr,. (2 .7)  
0, is a null matrix of the order of G h ( E ) ,  and Ig is the identity matrix. 

Utilizing (2.5), (2.6) and (2 .7) ,  (2.4a) can be recast: 

D ( E )  = det 11, - 3GOgg(E)j . (2.8) 
The determinant of (2.8) can be further reduced if we assunie [9] that the super- 

exchange interactions [6, 21 are non-zero between only a finite number of molecules. 
This approximation is valid when Id/ is large relative to the bandwidth [9]. Under 
the above assumption Gi,(E) can be represented in a quasidiagonal form 191, where 
each member of the submatrices along the diagonal represents a particular cluster of 
guest molecules. There will be N,, such subrnatrices Gk,(E) of order n and shape a. 
C & ( E )  can be represented as 

0 

(2.9) 

It should be noted that the cluster definition depends on the perturbation strength 
A .  Only for large /dl relative to the bandwidth can the clusters be defined in the 
classical sense in terms of the direct interactions rather than the superexchange inter- 
actions. D ( E )  is given by 

(2.10) 

where D,, has the form 

The density of states for the guest band eg is given by [9] 

~ g ( - @ )  = ,E Pna E a(E - Ern(na)) * 
na m 

(2.12) 

E,(na) is the m-th root of D,,(E), and P,, is the probability of locating cluster nci in 
the crystal. 
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3. Optical Properties 
The dipole strength per unit of energy is given by [5, 21 

1 
J ( E )  = ;51 Im ( 0 1  fi6fi 10) , (3.1) 

where 10) is the ground state wave function, G is the crystal Green’s operator func- 
tion and f i  is the dipole operator. 

h 

G can be given: 

6 ( E )  = &‘O(E) + &(E)  , ( 3-21 
where Go and 6l represent the unperturbed part (pure host crystal) and perturbed 
part of the Green’s function G ,  respectively. 

Our concern will be only with G1, since G1 contains the guest clusters contributions. 
It is given by: 

For the guest region of E we can define 

h 

A h 

C h h  

61 = GOP(I - &$)-1 G O .  

T(E) = ; (01 f i @  10). 

I^ = i Ik, v’) (k, v’I (3.5) 

(3.3) 

(3.4) 
1 

Applying the projection operator 

v ’ = l  k 

twice on T ( E ) ,  T(E) can be recast for the v-th exciton branch in the form: 
1 T’(E) = ; I(0l Iu, v)I2 (Ov( Go Ik’v’) @ 

k’V* 

@ 2 (k’v’l @(I  - 1k”v”) (k“, 9’1 GO Iu, v). (3.6) 
V’V” 

T v ( E )  can now be represented by 
T”(E) = Ip”I2 [E - E”(O)]-’ S”(E) , 

where E”(0) denotes the eigenvalue for Ik = 0, v), p’ is given by 

P” = (01 P 10, v> 
and S’(E) has the form 

(3.7) 

(3.8) 

1 
X”(E) = - (0, vj f ( I  - G O f ) - 1  10, v) = 

3Tf 

= (aivn)-l 2 2 BZ(0) Bj”(0) (Zi( f ( T  - G0P)-1 ]mi)  . (3.9) 
1 i m j  

Let us define a matrix 1.V such that  
W = V ( 1  - G 0 V ) - l .  (3.10) 

Utilizing (2.5), (2.6) and (2.7) the matrix W can be written in the form 

(3.11) 
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Since the summation over li and mi in (3.9) is carried only over guest molecules 
only the W,, elements in (3.11) are not zero. I f  the G:,(E) i s  arranged according to  
(2.9), 8” can be written in the form 

(3.12) 

where Mgi is given by 

Z,, denotes a set of molecules belonging to  a guest cluster of type na, and Pnu is the 
probability of locating such a cluster in the crystal. Then contributions to the imagi- 
nary part of SY(E) are from the zeros of Dnu(E). However, forbidden transitions do not 
contribute to the imaginary part of S”(E). Some of the Ern(nci) roots of Dn,(E) cor- 
respond to forbidden transitions. Common factors corresponding to these roots can 
cancel out in the ratio MgJ(E)/Dna(E). In  this case the following expression can be 
written for the reduced form of N;,(E)/D,,(E) : 

(3.14) 

where r represents reduced terms. 
Utilizing the identity 

(3.15) 1 
Im - = nS(x) 

X 

(3.16) 

The summation over m is carried over the roots of D E ) ( E ) .  [D:L~)(E)]‘ denotes a deriva- 
tive with respect to E ,  

dD;Lr’(E) . 
dE 

[D:ir)(E)]’ = (3.17) 

4. The Benzene Crystal Green’s Functions 
The Benzene crystal belongs to  the Di: space group and contains four interchange 

equivalent molecules per unit cell [lo]; thus there are four branches for the exciton 
band [2, 10, 12 to  161, CI = 4 in (2.1) and the four site exciton wave functions (k, i) are 
given by (2.3). The site vectors [17] S, of (2.3) are 

S , = O ,  (4.la) 

s 2 - L  - a (a1 + a,) (4.1 b) 

s 3  = -+ (a2 + a31 > (4.1 c) 
and 

(4.1d) 
where q, a2 and a, are the three primitive lattice vectors. The Green’s function matrix 
elements for the pure host crystal are given by (,ee (2.4b)) 
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where E”(k)  are the eigen-values of the pure crystal Hamiltonian HO, and where the 
coefficients SIL determine the vector S, (see (4.1)) 

S, = Sjlal + Xj2a2 + Sj3a , .  (4.3) 
For the benzene crystal, in the restricted Frenkel limit [17], and replacing the sum- 

mation in (4.2) by integration, we get 

--x 
n -x 

ds’ exp [iz’(ml - n, 4- Xjl - Xil)] . (4.4) s E - E”(Z’, y’, 2’) 
dz’ ~ X P  [iz’(m, - n3 + Sj, - Xi3)] 

-n --x 

It should be noted that here [ 171 Bi, = & 1. 
In  the present work we shall impose further restrictions on the inter-molecular 

interaction parameters. We shall assume that there are only three sets of non-zero 
interactions, corresponding to nearest neighbor interchange equivalent molecules. 
These are 

A = (0, 11 r f o  10, 2) , 
B = (0 ,  11 iio 10, 3) , 
c = (0 ,  11 I j j o  10, 4) . 

(4.5) 
(4.6) 
(4.7) 

Thus the L(h) matrix elements are given by 

L,,(A) = 4A cos r;) __ cos (?), 

L,,(k) = 4c cos (2) cos (2). 
L13(k) = 4B cos r?) cos (?), (4.10) 

(4.11) 

E”(z’, y’, 2’) has the form 

2 2  
x’ y’ + y’ 2’ + 2’ E”(x‘, y‘, 2‘) = 4 U cos - cos - - C cos - cos 2 2 ;  

(4.4) can be rewritten for the parameters (4.5) to  (4.12) as: 
n/2 

--x --n 

where h(x, y, z )  is given by 

h(x ,  y, Z )  E E1(x, y, Z) = 4A cos x cos y + 4B cos y cos z + 4C cos z cos x . (4.14) 
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The Green's functions matrix elements corresponding to the three nearest neighbor 
interchange equivalent molecules can be expressed in the form 

(4.15) 

--x/z --n --x 

--n --n 

The explicit representations of (4.15) to (4.18) are involved expressions of integrals 
of complete elliptic integrals of the first and the third kind, and are given in a separate 
paper [lS]. 

5. The Effect of Clusters on the Optical Properties of Vibrational Excitons 
in the Benzene Crystal 

I n  this section we shall adopt the conventional crystallographic classification of 
the benzene crystal primitive vector. We shall treat the v, vibrational exciton band 
[137 191. Our host will be perdeuterobenzene and our guest benzene where [20] d = 
= 168 em-l. We shall set 

a , = a ,  (5.la) 
a , = c ,  (5.lb) 
% = b .  (5.1~) 

In addition we shall use the notation given by Laufer and Kopelman [15] for the 
interaction parameters A ,  B, C :  

( 5 . 2 )  

A = J ~ I , I I  , 
B = M1,Iv 7 

c = MI, I11 3 

T a b l e  1 

Interaction parameters given by various investigators 
for the C,H, vI1 band 

(cm-l) (cm-l) parameter set 
1 _~ 

0.7 ~ 4.1 I 0.9 
2.8 i 0.5 

1 W I * )  'r-o.4 
2 [241*) 

*) See also references [lo, 13, 161. 
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Table  2 
Cluster notations and probabilities for a square lattice 

topology and nearest neighbors interactions 

P%% 

c(1 - c)4 

2 c y 1  - c), 

2 c y 1  - c)* 

4c3( 1 - c ) ~  

2c4(1 - C ) ~ O  

8c4(1 - c)' 

4c4(1 - c ) ~  

4c4(1 - c ) ~  

c*(1 - c)8 

cluster shape**) 
(schematic) 

X 

x-x-x 

1 
x-x 

x--x--x-----x 

1 
x-x-x 

x-x 

I 
x-x 

1 x-x-x 

x-x L! 
*)The additional notation in brackets for the Z, 
specifies shapes that correspond to the same eigen- 
value sets given in Table 4. 
**) x denotes a guest molecule belonging to a cluster. 
The lines connecting guest atoms correspond to a 
distance of I(b + c)/21. 

where M I ,  11, M1,111 and MI, Iv denote interactions between adjacent interchange 
equivalent molecules in the planes spanned by the pairs of (a,  b ) ,  (b ,  C )  and (c,  a)  
vectors, respectively. The interaction Mr,lll is the strongest int.eraction (see Table l), 
hence we shall limit this discussion to clusters in the (b ,  c )  crystal plane. The notations, 

Table  3 
Intensities of the allowed transitions of E"(0) for the 

C,H, vI1 vibrational exciton band 

exciton branch I 1p~12 i polarization 
1' (in relative units)*) (crystal axis) 

2 
3 
4 

0.50 
0.45 
0.05 

a 

b 
c 

*) See reference [13]. 
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Table  4 
Secular determinants for cluster states*) 

487 

Zl  
z2 

z, 
z,, 
z,, 
z,, 

U 

u2 - v2 

u3 - 2uv2 
UQ - 3u2v2 + v4 

UQ - 3u2v2 
u4 - 4u2v2 

U l ’ i  i 

Z, 
Z, 
Z, 

Z,, 

Z,, 

Z,, 

the topology, and the probabilities P, for clusters up to  the forth order are given in 
Table 2. 

There are three allowed optical transitions for k = 0. Each transition is polarized 
along one of the crystal axes. The polarizations of these transitions are given in 
Table 3. 

The density of states function for the clusters can be obtained utilizing (2.12). The 
roots E,(na) of (2.12) can be determined by solving the determinants of (2.11). The 
determinant llna and the roots (m) corresponding to  the various factors of Bm are 
in Table 4. 

The optical properties related to  the clusters for the various polarizations are given 
by the imaginary part of T”(E)  of (3.7), which is given in terms of Im  X’(E), see (3.16). 
Pna of (3.16) is given in Table 2 whereas Mg;r)((E)/B~;‘”(E))  is displayed in Table 5. 

It should be noted that our cluster states are given within the framework of a two- 
dimensional model. Hence, the ratio 

RY) = I/u 

Ri2’ = 2 / ( ~  + v), Ril’ = 0 
Rim’ = 4 / ( ~  - v)/(u2 - 2v2); 

Rim’ = ( 4 ~  - 2 ~ ) /  
m =  2 , 3  

(u2 + uv - v2); 

m = 1,2  

m = 3 ,4  
Rim) = ( 4 ~  - 6v)/(u2 - 3 ~ ~ ) ;  

RiS’ = 4 / ( ~  -f- 2v) 

Table  5 
.i?jm) parameters (equation (5.3)) for the optical properties of the cluster states*) 

Rim.) 

R!jl) = 1/u 

RL’) = 2/(u - V) 

m = 2 , 3  
Rim’ = 4 / ( ~  + v)/(u2 - 2~’);  

= 
2 (4u + 2v)/ 

( U Z  - uv - v2); 
m = 3 , 4  

m = 3,4 
Ram’ = ( 4 ~  + 6v)/(u2 - 3 ~ ~ ) ;  

Bk4’ = 4/ (u  - 2v) 
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corresponds only to two distinct solutions for the three allowed polarizations. In  (5.3) 
n~ stands for the E F )  eigenvalue of the Z,, cluster, and i = 1 for v = 2 ,  3 whereas 
i = 2 for v = 4. 

6. Numerical Results 
The Green’s functions of (4.15) to  (4.18) are displayed in Fig. 1, utilizing parameter 

set S o .  1 of Table 1. It is apparent from Fig. 1 that g3(E) ,  which corresponds to the 
largest interaction MI,III, is larger in absolute value than gl(E) and g,(E) which cor- 
respond to the smaller interactions MI, II and MI,  Iv, respectively, for E values outside 
the exciton host band; i.e. - 17.2 > E > 22.8. As the perturbation strength increases, 
the difference between g3(E) and both gl(E) and g,(E) increases for the appropriate 
eigenvalues E. 

The relative intensities given by I m  T”(E)  (see (3.7)) of the various cluster lines cor- 
responding to parameter set No. 2 Table 1 (up to  the tetramers) are displayed in 
Fig. 2 .  The pertinent feature of the absorption lines is that strong lines are locat’ed 
below the monomer line for v = 2, 3 as shown4) in the left portion of Pig. 2 
(for Im W)) ,  whereas for Y = 4 the strong lines are above the monomer line. Results 
given in Fig. 3 correspond to the unpolarized absorption I m  T of the vll vibra- 
tional exciton (sum of the three polarized components). The unpolarized spectrum 
is very similar to the Y = 2 spectrdm (and Y = 3), because of the relative strength of 
these two transitions. On the other hand, the density of states p is synimetrical with 
respect to the monomer line. In  addition, the monomer line has contributions from 
the trimers and tetramers. In  contrast, the monomer optical line has very little 

-0.20 - 
-20 0 20 

E icm-!, - 
Fig. 1. Real and imaginary part,s of the Green’s functions matrix element gi(E). Bottom figures 

- g3(E). The Green’s functions are given for parameter set No. 1 of Table 1 
denote diagonal element go(E).  Top figures denote off-diagonal elements g,(E): - - - g,(E), 

g,(E), - 

4, The v = 3 lines are not shown because they resemble to a very large extent the Y = 2 lines. 
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‘O t 
5 CUQ 

2 

D 

5 

0 

5 

I 

b 

0 

5 

0 

5 

0 

L- E- 

Fig. 2 Fig. 3 

Fig. 2. Relative optical absorptions ((see (3.7) and (3.16)), for exciton branches v = 2 (a polarized) 
and v = 4 ( b  polarized) given in Table 3, with parameter set No. 2 given in Table 1, and pertur- 
bation d = 168 em-l. The absorption lines are given for the clusters listed in Table 2. Lines a, b, 
and c correspond to clusters Zh1, Z,, and Za3, respectively. Concentrations (C) are in mole fractions 

Fig. 3. Unpolarized absorption Im (2’) and density of states e for parameter set and perturbation 
as in Fig. 2 

contribution from the higher clusters, and the spectrum is very much “monomeric” 
in nature. The dependence of the intensities of the cluster lines on the concentration 
exhibits first an increase with concentration for all species, then goes through a maxi- 
mum a t  some concentration and then decreases. It should be noted that throughout 
the concentration range in Fig. 2 and 3 the monomer lines are relatively strong even 
for c = 0.5. At this concentration we can observe a marked reduction in intensity 
for all species, since we are approaching the percolation concentration [2,6] for the two- 
dimensional square lattice: cp = 0.59. At the percolation concentration we begin to 
obtain contributions to our spectra from the infinite cluster. It should be noted that 
our scheme (including only monomers, dimers, trimers and tetramers) gives over 
99.9% of the total guest spectra for c = 0.01, but diminishes to about 8076 a t  c = 0.2. 
At c = 0.5 the monomers, dimers, trimers and tetramers account only for l27$ of 
the guest optical spectra. The effect of varying the pure crystal band-width is given 
in Fig. 4. The narrowing of the band yields cluster lines with reduced spacing. However, 
the relative intensities of the cluster lines do not change as the band-width changes, 
as can be expected from (3.16). 
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E- 

t a7w ?7 170 

41 b 

15Y 175 
E- 

Fig. 4. Comparison of the optical absorption Im( T) and the density of states e for two different 
sets of interaction parameters. a) and c) correspond to parameter set 2 of Table 1, whereas b) and d) 
correspond to set 1. The perturbation is: A = 168 cm-l. The notation for the lines are the same 
as in Fig. 1. The lines on the bottom figures b) and d) are in the same order as the lines in the top 

figures a) and c). Note the different E scales. Here C= 0.3. 

7. Conclusion 
In  the previous sections we have been able to apply the cluster formalisni for a two- 

dimensional lattice. The results for the vI1 vibrational exciton are in qualitative agree- 
ment with the experimental data given by Hall [21]. The most noticeable resemblance 
between the theoretical and experimental data is the asymmetry in the optical lines, 
as well as the dominance of the monomer line bellow c = 0.5. In  a coming [22] ex- 
perimental paper a more detailed comparison between theory and experiment will 
be given for the ijl1 vibrational exciton. Although the theory given above was applied 
to a relatively simple model, i t  can be used for more complex systems. If, in addition 
to the nearest neighbor interactions, next nearest neighbor interactions are con- 
sidered then the lines due to nearest neighbor interactions will be split into sets of 
dense lines, close to the original line positions. Taking even farther interactions, we 
would get more splittings, leading to a net result of broadening of the original nearest 
neighbor lines. This process would bring us closer to the experimental results. The 
main difficulty with such a process is the complexity of the cluster structure [25,26]. 
There would be many types of clusters even for the lower members (pentamers, 
hexamers, etc.). The Green's functions corresponding to a large number of intermolec- 
ular interactions would be very complicated and difficult to  evaluate. 
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