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SUMMARY 
The first part of the paper presents the implementation and performance of a new absorbing boundary 
condition (ABC) for truncating finite element meshes. This ABC can be applied conformally to the surface 
of the structure for scattering and antenna radiation calculations. Consequently, the computational domain is 
reduced dramatically, thus allowing the simulation of much larger structures, and results are presented for 
three-dimensional bodies. The latter part of the paper discusses optimization issues relating to the solver's 
CPU speed on parallel and vector processors. It is shown that a jagged diagonal storage scheme leads to a 
four-fold increase in the FLOP rate of the code, and a standard matrix profile reduction algorithm substantially 
reduces the inter-processor communication. 

1. INTRODUCTION 

The finite element method (FEM) is attractive for modelling three-dimensional problems because 
of its O(N) memory requirement and its flexibility in geometry design and modification. The O(N) 
memory feature provides favourable scaling properties as the problem size increases. Its geometrical 
adaptability provides the versatility required for designing complex systems. Thus, FEM has 
become the method of choice for electromagnetics CAD software, and its applications continue 
to increase. 

In spite of the obvious attractions of FEM for general purpose 3D electromagnetic field solvers, 
it has a few drawbacks. Since the method was initially used for solving bounded problems, its 
extension to open problems is not easy. In open problems we are interested in the behaviour of 
the fields infinitely far away from the structure of interest. However, it is impractical to extend 
the finite element mesh very far from the scattering or radiating structure. The normal practice is 
to extend the mesh a few element lengths from the body and apply boundary conditions on the 
mesh termination surface. These boundary conditions, which are local to the element and hence 
preserve system sparsity, are called absorbing boundary conditions (ABCs). Although, numerous 
ABCs exist for 2D problems,*~* ABCs for 3D vector problems are comparatively few. Peterson3 
derived vector ABCs for spherical mesh truncations; however, in most practical cases the sphere 
is the least economical shape of mesh truncation in terms of .computer resources. In an earlier 
papep we derived ABCs which can be enforced on surfaces conformal to the structure of interest 
(Figure l ) ,  thus optimizing computational cost. Since that time we have implemented these ABCs 
in a general purpose, 3D finite element solver with S U C C ~ S S . ~  In this paper we present some results 
which demonstrate that these ABCs indeed optimize the usage of computational resources without 
significant degradation in accuracy. 

Besides the optimization of the mesh truncation strategy, we carried out optimizations on the 
numerical aspects of the code. Since a finite element code involves operations on sparse matrices, 
indirect addressing is a necessary part of the programming task. This feature, combined with very 
short vector lengths for the sparse matrix, result in poor vectorization and parallellization. 
Essentially this is the price paid for O(N) storage and improved scalability of the technique. In 
an earlier papeP we had detailed our efforts in parallellizing such a code on various distributed 
memory, multiprocessor architectures. The parallelization strategies that we had used were 
extremely successful; the code, however, ran very slowly on vector machines. In this paper we 

CCC 0894-3370/96/050335-10 
0 1996 by John Wiley & Sons, Ltd. 

Received 22 April 1995 
Revised I9 October 1995 



336 A CHATTERJEE, J. L. VOLAKIS AND L. C. KEMPEL 

Figure 1. Scatterer enclosed in conformal mesh termination boundary 

employ a novel data storage scheme for speeding up the computation on vector architectures and 
present a strategy for reducing inter-processor communication on multiprocessor machines. 

2. CONFORMAL ABCS 

2.1. Theory 

In this Section we present a brief description of the conformal ABCs and examine their 
performance with respect to spherical ABCs. At first we generalize the Wilcox expansion7 for a 
vector field in the Dupin co-ordinate system to read 

where Ri = pi + n, i = 1, 2 and pi is the principal radius of curvature associated with the outgoing 
wavefront at the target. In this expression, (r,, rz) form the orthogonal tangential components and 
n is the normal component to the ABC surface. The lowest-order term in (1) represents the 
geometrical optics spread factor for a doubly curved wavefront and reduces to the standard Wilcox 
expansion7 for a spherical wave. Next, we apply the fi x V x operator to the electric field (E) 
to arrive at the first-order absorbing boundary condition. 

fi X V X E - (ik,, + K, - 1.) E, = O (2) 

for a conformal mesh termination boundary. In this expression, k, is the free space wave number, 
the subscript t denotes the tangential component of a vector, and: 

where K ~ , ~  are the two principal curvatures of the ABC surface. 

simplifying the resulting expression to yield 
The second-order ABC is obtained by using the fi x V x operator once more and subsequently 

E, + V X {fi (V X E),) + + 3K, - Kg - 21. 
Km 

(3) 
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where K~ = K~ K~ is the Gaussian curvature, the subscript n denotes the normal component of a 
vector, and: 

K 
D = 2jk0 + 5 ~ ,  - 

Km 

The finite element implementation becomes simpler, and in some cases symmetric, if the term 
V,E, can be replaced by a double derivative. Fortunately, on considering the series expansion of 
the term fi x V x V,E, and simplifying, we have 

V, (V . E,) = jk,V,E, ( 5 )  

Thus we can rewrite the second-order conformal ABC as 

E , + V x  (fi(VxE),) V,(V E,) (6) 
Km 

To make ( 2 )  and (6) implementable in finite element systems, the results are simplified by 
taking the dot product of the expression with E, using the divergence condition, the vector wave 
equation and some vector id en ti tie^.^ The first-order conformal ABC in readily implementable 
form is given by 

where So is the mesh truncation surface and Pl(E) = fi x V x E, with the subscript denoting the 
order of the ABC. 

The second-order ABC reduces to 

where the tensors a, 9 and the scalar p are given by 
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It should be remarked that the normal component of each surface edge must be made continuous 
across inter-element boundaries (triangular patches in our case) for the contour integral associated 
with the third term in (8) to vanish. Moreover, it can be shown that the first-order ABC (7) is 
always symmetric whereas the second-order ABC (8) is symmetric only when K~ = K* on the 
boundary surface or when the surface is cylindrical and linear edge bases are employed. For a 
detailed analysis of symmetry considerations, the reader is referred to Reference 5. 

2.2. Results 

In this Section, we present a few results for validating the conformal ABCs derived in the 
previous Section. A complete description of the numerous geometries that were validated using 
these ABCs can be found in Reference 5. In Figure 2 we plot the backscatter pattern for a PEC 
cylindrical inlet having a diameter of 1-24h and a height of 1475h. The mesh termination surface 
is conformal to the scattering structure and is placed 0-45h from the target. The resulting problem 
had only 144,392 unknowns compared to the 191,788 unknowns for a rectangular truncation 
scheme. A spherical mesh termination would have swelled to about 265,000 unknowns, sampling 
density and outer boundary distance remaining the same. Thus, use of the conformal ABC reduced 
the problem size by about 45 per cent and computation time by a similar, if not greater, amount. 
The savings in computational resources are quite significant even when we compare the rectangular 
and cylindrical termination schemes - a 25 per cent reduction in problem size and a similar 
decrease in computation time. 

The next issue is about accuracy. We have tested this geometry extensively by increasing the 
distance of the absorbing boundary, but the far-field results remained unchanged. The discrepancy 
between the measured data, the BOR and the FE-ABC computation is quite puzzling. However, 
confidence in the FE-ABC data may be found from the fact that a similar modelling effort by 
Shankar'O using FDTD follows our computation very closely. It should also be remarked that the 
far-field pattern for different mesh truncation surfaces - rectangular box and cylindrical box - 
were exactly the same; the inaccuracy, therefore, cannot be attributed to the quality of the 
conformal ABC. 

The next geometry presented in this paper is unique in its own way. A conesphere is basically 
a hemisphere attached to a cone. It is a difficult geometry to mesh since a surface singularity 
exists at the tip of the cone. The singularity can be removed in two ways: (i) by creating a small 
region near the tip and detaching it from the surface; or (ii) by chopping off a small part near 
the tip of the cone. The second option inevitably leads to small inaccuracies for backscatter from 
the conical tip; however, we chose this option since the conical angle in our tested geometry was 
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extremely small (around 7") and the mesh generator failed to mesh the first case on numerous 
occasions. In Figure 3 we plot the backscatter patterns of a 4-5A long conesphere having a radius 
of 0.5A for 88 and $4 polarizations. The mesh truncation surface is a rectangular box placed 
0.4A from the surface of the conesphere. The far-field results compare extremely well with 
computations from a body of revolution code." 

The proposed ABCs have also been implemented for truncating finite element meshes in 
computing the radiation and scattering patterns of printed antennas on conformal platforms as 
illustrated in Figure 4. Various patch configurations situated on cylindrical platforms were con- 
sidered for the purpose of examining the performance of ABCs for this application. Among those 
studied, we present the analysis of a 2 cm x 3 cm patch antenna printed atop a metallic cavity 
which is filled with a 5 cmx6cmx0-07874cm substrate having a dielectric constant of er = 
2.17. This cavity is recessed in a metallic cylinder (whose infinite dimension is along the z axis) 
with a radius of 15.28 cm, and the scattering and radiation calculations for this patch were carried 
out at 3 GHz. The second-order vector ABC was placed TA, from the cavity aperture while the 
lateral walls of the ABC were placed 0.5A0 from the cavity aperture. The monostatic scattering 
with observation in the x-y plane due to an H,-polarized plane wave is shown in Figure 5 for 
different values of T. The FE-ABC method recovers the creeping wave interactions even when 
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Figure 3. Backscatter pattern of a perfectly conducting conesphere for ~$4 and 08 polarizations. Black dots indicate 
computed values using the FE-ABC code (referred to as FEMATS) and the solid line represents data from a body of 
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Figure 4. Cavity-backed patch antenna with ABC mesh termination 
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Figure 5 .  Comparison of FE-ABC and FE-BI methods for computing the H,-polarized monostatic scattering of a cavity- 
backed patch. The inset illustrates the convergence with respect to ABC displacement for 0" to 10" of the pattern 

the ABC surface is quite close to the cavity aperture. The H-plane antenna pattern for an axially 
polarized patch is shown in Figure 6, where the probe feed is placed at +f = 0" and zf = 
-0.375 cm (with + - 0" and zf = 0 corresponding to the centre of the patch). As in the case of 
scattering, the radiation pattern calculated via the FE-ABC method is seen to be in excellent fT 

20.0 

10.0 

0.0 

-10.0 

3 

9 -30.0 

P 
g -20.0 
3 

&I 

-50.0 - 180.0 -90.0 0.0 90.0 180.0 

4.0 1 

Figure 6. Convergence of FE-ABC method for computing If-plane radiation pattern of a cavity-backed axially polarized 
patch. The reference data are provided by a rigorous FE-BI formulation for the same cavity-backed antenna 
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agreement with the pattern computed by the more rigorous finite element-boundary integral (FE- 
BI)'* approach even when the mesh is terminated only 0.3A from the aperture. We remark, 
though, that the FE-ABC method is considerably more flexible than the FE-BI approach and may 
be used for coated and doubly curved platforms. 

3. VECTORIZATION/PARALLELLIZATION STRATEGIES 

Since our focus is on solving large problems, the code must be optimized to run fast on vector 
and parallel architectures. In Reference 6 we detailed our parallellization strategy and presented 
results on speed-up and inter-processor communication. However, the performance of the code on 
vector processors was not very encouraging. In the subsequent Sections we outline our optimization 
scheme for vector computers and present techniques for reducing inter-processor communication 
on distributed memory architectures. 

3.1. Vector optimization 

Since a sparse matrix has a very small number of non-zeros per row by definition and only 
the innermost loops are vectorizable, it is difficult to obtain good vector performance from such 
codes. Further, indirect addressing is an inherent part of sparse data structures - a feature which 
allows us to exploit the O(N) storage characteristic but reduces speed on vector machines. 
Therefore, there are two main problems which limit the vectorizability of a sparse matrix code - 
short vector lengths and indirect addressing. The latter problem cannot be corrected but the first 
bottleneck can be removed. This is done by storing the matrix in a different format such that the 
vector lengths are approximately equal to the order of the system being solved. In the traditional 
storage system - compressed sparse row (CSR) format - the non-zeros of the matrix and their 
corresponding column numbers are stored in a long complex and integer vector, respectively, with 
another short integer vector to store the number of non-zeros per row. However, this does not 
permit vectorizability since the average vector length is very small - 16 in our case. The ITPACK 
formatI3 alleviates the short vector length problem by storing the entire matrix in a rectangular 
block. In this block, the number of rows equals the row count of the original matrix and the 
number of columns equals the maximum number of non-zeros in a row of the matrix; rows 
containing fewer non-zero elements are padded with zeros. This scheme works very well for 
matrices where the average non-zeros per row are approximately the same. In our case, this 
storage technique is not very beneficial since approximately 30 per cent of the space is lost in 
zero padding. 

The storage format that works best for our type of matrix is called the jagged diagonal format.14 
The rows are ordered in decreasing order of the number of non-zeros per row. The rows containing 
the maximum number of non-zero entries are thus placed at the top of the matrix and the rows 
with the minimum non-zero entries are shuffled to the bottom. In the actual storage scheme, the 
leftmost elements of each row are stored as a dense vector with an additional vector indicating 
the column numbers of each element. The matrix is thus stored as a collection of vectors of 
decreasing length. The inner loop of the matrix-vector multiplication routine traverses the entire 
length of a jagged diagonal, which can be of the order of the system being solved. This feature 
greatly enhances vectorization. The storage requirement of the above format can be made to be 
the same as the previously mentioned CSR format through careful programming. The altered 
matrix-vector multiplication routine then runs at around 275 MFLOPS on a Cray C-90, whereas 
the older code with CSR storage peaked at 60 MFLOPS. The dot product reaches speeds of 550 
MFLOPS and the vector updates execute at 600 MFLOPS. It must be mentioned that the CRAY 
C-90 is a substantially faster machine than the Cray YMP but the CSR formatted matrix-vector 
multiplication routine runs about four times slower on the C-90. Therefore, we can reliably state 
that the method of jagged diagonals is the best sparse matrix storage scheme in terms of computer 
storage and vectorizability . The still slower execution speeds of the matrix-vector multiply 
compared with the vector update is due to the indirect addressing in the inner loop which causes 
memory contention. 
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3.2. Reduction of processor communication 

In the previous Section we discussed optimization from the viewpoint of a vector processor. In 
this Section we propose a scheme for reducing interprocessor communication on multiprocessor 
architectures. In Reference 6 we outlined our success in parallellizing the computationally intensive 
portions of a finite element code on distributed memory architectures. It was also pointed out that 
further speed-ups could be achieved only through reducing data communication among the 
various processors. 

The majority of processor time in a finite element code is spent in the equation solver. In our 
code, we employ an iterative solver since it preserves the sparsity of the finite element matrix, 
making minimal demands on computer storage. In the biconjugate-gradient algorithm, there are 
principally two operations in which the most intensive communication takes place. The first is 
the sparse matrix-vector multiplication and the second is the search vector update at the end of 
each iteration. 

In the matrix-vector multiply, each processor computes a block of the result vector by 
multiplying the corresponding block of rows of the sparse matrix with the operand vector. Since 
the operand vector is distributed among the processors, data communication is required. Each 
processor does two things: (i) it sends out a request for those matrix entries it does not own but 
needs for performing the multiplication; and (ii) sends out some of the matrix entries it owns on 
request from other processors. The communication pattern is determined by the sparsity structure 
of the matrix, which in our case is derived from an unstructured mesh. Therefore the communication 
pattern is unstructured and irregular. However, on reordering the matrix using a standard profile 
reduction algorithm (part (b) of Figure 7), the coefficient matrix becomes banded. As a result of 
the banded structure of the matrix, communication should occur only between adjacent processors. 
In fact, by storing a few extra matrix entries in each processor, inter-processor communication 
can be removed altogether in the matrix-vector multiplication phase. This should result in 
substantial speed-up of the algorithm on multiprocessor machines. However, the time taken for 
communication due to the vector update in the last stage of the iterative algorithm still remains 
the same. 

4. ' CONCLUSION 

In this paper we have talked about optimization strategies that were employed to improve our 
finite element code from the algorithmic and the numerical point of view. We have achieved 
notable success on both fronts. 

The problem size was reduced by a significant amount owing to the use of conformal ABCs, 
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and the savings are only going to increase as the problem size gets larger. Higher-order ABCs 
may enable us to bring the mesh termination surface even closer to the target, enabling us to do 
larger problems with the available computer resources. The numerical aspect is also important for 
addressing the utility and the feasibility issues for solving practical 3D problems in a reasonable 
amount of time. As processor speeds increase and parallel architectures mature, the speed and 
performance of the code will vastly improve. Therefore, issues concerning the performance of the 
finite element-ABC technique and its implementation on large-scale computing architectures will 
continue to be important in the years to come. 
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