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We present an approach to the admission control and resource allocation problem in connection-oriented networks that offer multiple
services to users. Users’ preferences are summarized by means of their utility functions, and each user is allowed to request more than one
type of service. Multiple types of resources are allocated at each link along the path of a connection. We assume that the relation between
Quality of Service (QoS) and resource allocation is given, and we incorporate it as a constraint into a static optimization problem. The
objective of the optimization problem is to determine the amount of and required resources for each type of service to maximize the sum
of the users’ utilities. We prove the existence of a solution of the optimization problem and describe a competitive market economy that
implements the solution and satisfies the informational constraints imposed by the nature of the decentralized resource allocation problem.
The economy consists of four different types of agents: resource providers, service providers, users, and an auctioneer that regulates the
prices based on the observed aggregate excess demand. The goods that are sold are: (i) the resources at each link of the network, and (ii)
services constructed from these resources and then delivered to users. We specify an iterative procedure that is used by the auctioneer to
update the prices, and we show that it leads to an allocation that is arbitrarily close to a solution of the optimization problem in a finite
number of iterations.

1. INTRODUCTION

The idea of a single shared physical network that will
support multiple heterogeneous applications, that is, appli-
cations with different traffic characteristics and different
Quality of Service (QoS) requirements, is widely regarded
as the way to meet the telecommunication challenges
of the future. Packet-switched, connection-oriented net-
works have been proposed to offer the QoS guarantees
in integrated-services networks, because in connectionless
networks individual packets may exhibit a significant vari-
ation in network service quality.
The challenge in integrated-services connection-oriented

networks is to determine general admission and resource
allocation schemes that have the following desirable fea-
tures: (i) they meet the QoS requirements of the ser-
vices provided by the network; (ii) they efficiently allocate
resources by appropriately distributing the QoS among the
various resources at each link along the path of a connec-
tion; (iii) they satisfy the user’s preferences and simulta-
neously are social-welfare maximizing; and (iv) they sat-
isfy the informational constraints imposed by the network;
specifically they take into account the fact that the net-

work is an informationally decentralized system where
the number of users is unknown, and each user’s prefer-
ences and input traffic characteristics are private informa-
tion. Consequently, the development of efficient admission
and resource allocation schemes requires: (a) a quantifi-
cation of the interaction between resource allocation and
QoS requirements; such a quantification will be described
by expressions that are function of the allocation of mul-
tiple resources at each link, as well as the allocation of
resources along multilink paths; and (b) the discovery of
mechanisms that delegate resource allocation decisions to
individual users, yet they lead to social welfare maximizing
solutions.
The above considerations have guided most of the

research on admission control and resource allocation in
integrated-services networks. The same considerations, in
particular (iv) and (b), have led to the use of microe-
conomic methods in the investigation of the aforemen-
tioned problems. Two basic microeconomic approaches
have been used for the development of efficient decen-
tralized resource allocation schemes in integrated-services
networks: resource-directed and price-directed (Hurwicz
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1973). In the resource-directed approach, each user (agent)
computes the marginal values for his current resources, and
communicates them to the rest of the users. The alloca-
tion is then changed so that users with an above average
marginal utility receive more of this resource and users
with a below average marginal utility receive less. This
approach has been used in Kurose and Simha (1989) to
develop decentralized algorithms for optimally allocating
a single resource to a set of interconnected computing
agents. In the price-directed approach, an initial allocation
of resources is made and an arbitrary set of systemwide
initial resource prices is chosen. Prices then are iteratively
changed to accommodate the “demands” for resources until
the total demand for a resource exactly equals the total
amount available. Most of the results on decentralized
resource allocation currently available in the literature are
based on the price-directed approach (Cocchi et al. 1993,
MacKie-Mason and Varian 1995b, Jordan and Jiang 1995,
Jiang and Jordan 1995, Wang et al. 1997, Murphy and
Murphy 1994, Murphy et al. 1994, Parris et al. 1992, Par-
ris and Ferrari 1992, Kelly 1994, Kelly et al. 1998, Gupta
et al. 1997, Courcoubetis et al. 1997, MacKie-Mason and
Varian 1995a, Low and Varaiya 1993, de Veciana and
Baldick 1998, Thomas and Teneketzis 1997). Because we
follow the price-directed approach to resource allocation
in this paper, we critically review the results reported in
(Cocchi et al. 1993, MacKie-Mason and Varian 1995b,
Jordan and Jiang 1995, Jiang and Jordan 1995, Wang et
al. 1997, Murphy and Murphy 1994, Murphy et al. 1994,
Parris et al. 1992, Parris and Ferrari 1992, Kelly 1994,
Kelly et al. 1998, Gupta et al. 1997, Courcoubetis et al.
1997, MacKie-Mason and Varian 1995a, Low and Varaiya
1993, de Veciana and Baldick 1998, Thomas and Teneket-
zis 1997) so that we can point out to the contributions of
our work.
The work currently available on decentralized resource

allocation by price-directed methods has addressed, either
by analysis (Jiang and Jordan 1995, Wang et al. 1997,
Murphy et al. 1994, Kelly 1994, Kelly et al. 1998, de
Veciana and Baldick 1998, Gupta et al. 1997, Courcou-
betis et al. 1997, MacKie-Mason and Varian 1995a, Low
and Varaiya 1993, Thomas and Teneketzis 1997), or simu-
lation and analysis (Cocchi et al. 1993, Murphy and Mur-
phy 1994, Parris et al. 1992, Parris and Ferrari 1992, Gupta
et al. 1997), a subset of the issues outlined in the second
paragraph of this section. A significant part of this work
has dealt with single link networks (Wang et al. 1997, Mur-
phy and Murphy 1994, Parris et al. 1992, de Veciana and
Baldick 1998), or with the allocation of a single resource
per connection (Wang et al. 1997, Murphy and Murphy
1994, Parris et al. 1992, de Veciana and Baldick 1998, Jiang
and Jordan 1995, Murphy et al. 1994, Kelly et al. 1998,
Gupta et al. 1997, MacKie-Mason and Varian 1995a).
In several papers (Jiang and Jordan 1995, Wang et al.

1997, Murphy et al. 1994, Kelly et al. 1998, Gupta et al.
1997, Low and Varaiya 1993, de Veciana and Baldick 1998,

Thomas and Teneketzis 1997) the following general phi-
losophy to resource allocation by price-directed methods
has been adopted: (1) formulate a centralized constrained
optimization problem where the objective is the maximiza-
tion of a social welfare function and the constraints are
imposed by the QoS requirements and the availability of
network resources; and (2) use pricing methods to devise a
decentralized scheme that realizes the solution of the cen-
tralized problem and satisfies the informational constraints
imposed by the network. The existence of a solution to
the centralized problem is shown, and market methods are
used to structure and develop the solution. The existence
of a set of prices that induce users to request the “optimal”
allocation is established and, in some cases (Wang et al.
1997, Gupta et al. 1997, Low and Varaiya 1993, de Veciana
and Baldick 1998, Thomas and Teneketzis 1997), an iter-
ative scheme for adjusting the prices based on the users’
requests is described. However, none of the papers specify
a mechanism to force the successive prices to converge to
the “optimal” set of prices.
In this paper, we follow the price-directed approach

and the philosophy presented in the previous paragraph,
to address the admission control and resource allocation
problem in integrated-services networks. Our formulation
of the admission control and resource allocation problem
captures the issues and considerations discussed in the sec-
ond paragraph of this section. In particular, we consider
a connection-oriented network that offers multiple services
to users. Users’ preferences are summarized by means of
their utility functions, and each user is allowed to request
more than one type of service. No assumption is made on
the functional form of the utility functions, although some
mild regularity conditions are imposed. We assume that the
relation between QoS and resource allocation is given (see
discussion in §2), and we incorporate it as a constraint into
a static optimization problem. The objective of the opti-
mization problem is to determine the amount and, required
resources for each type of service to maximize the sum
of the users’ utilities. We prove the existence of a solu-
tion of the optimization problem, and describe a competi-
tive market economy that implements the solution and sat-
isfies the informational constraints imposed by the nature
of the decentralized resource allocation problem. The econ-
omy consists of four different types of agents: resource
providers, service providers, users, and an auctioneer that
regulates the prices based on the observed aggregate excess
demand. The goods that are sold are: (i) the resources at
each link of the network; and (ii) services constructed from
these resources and then delivered to users. We specify an
iterative procedure that is used by the auctioneer to update
the prices, and we prove its convergence. In particular, we
show that it leads to an allocation that is arbitrarily close to
a solution of the optimization problem in a finite number
of iterations.
The contributions of this paper are: (1) the formulation

of a general optimization problem that has the following
features: (a) incorporation of the QoS requirements along
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paths; (b) allocation of resources along paths with multiple
links; (c) allocation of multiple type of resources at each
link; (d) independent self-interest users that request multi-
ple types of service; (2) the proof of existence of a welfare
maximizing solution; and (3) the construction of an algo-
rithm for finding a welfare maximizing solution with arbi-
trary precision in a finite number of steps.
The remainder of the paper is organized as follows: In §2

we formulate the optimization problem. In §3 we prove the
existence of a solution, and in §4 we describe (§4.1) and
analyze (§4.2) the competitive market economy that leads
to an optimum allocation. In §5 we summarize the results,
discuss their implications, and present some open problems
that arise from this approach.

2. PROBLEM FORMULATION

Consider a communication network that consists of a set
L = �1�2� � � � �L� of links. The network offers one-way
connections to a set N = �1�2� � � � �N � of users. There is
also a set Mi = �1�2� � � � �Mi� of different types of connec-
tions associated with each user i. Each type is characterized
by the origin, the destination, and the quality level of the
connection. By quality level we mean specific quality of
service (QoS) guarantees (for example guarantees on max-
imum packet loss and delay), that the network is obliged to
provide once the connection is accepted. Users can request
a multiple number of connections over the network.
We represent user i’s request by the vector xi =


xi1� x
i
2� � � � � x

i
Mi
�, that takes values in �Mi+ . In particular, xij

is the number of type j connections requested by user i.
User’s i preferences on �Mi+ are summarized by means of a
quasilinear utility function xi0+ui
x

i�, where xi0 > 0 is the
numeraire commodity (Mas-Colell et al. 1995). The choice
of representing users’ preferences by quasilinear objective
functions imposes the constraint that there are no income
effects on network service demand; that is, changes in
income or budget available to the users does not change
the amount of network services they wish to purchase. This
is a typical simplifying assumption in the economic lit-
erature when the budget share of the services of interest
is small, e.g., when network services are only a relatively
small amount of the users’ total expenditures.
Users announce their requests to the network during the

call setup phase. The network then, assigns virtual circuits
(routes) to each origin-destination pair. We denote by Vi� j

the set of links that belong to the route of a type j connec-
tion requested by user i. Once the routes are established the
network needs to determine the number of connections that
will be accepted as well as the amount of resources (e.g.,
bandwidth and buffers) that need to be allocated along the
path of each connection in order to guarantee its requested
quality level. The allocation of resources must also max-
imize a social welfare function

∑
i∈N ui
xi�, which is the

total utility of the users.1

We assume that there is a set K= �1�2� � � � �K� of differ-
ent types of resources that the network allocates at each link

in order to meet the QoS requirements of a connection that
is accepted. For example, if bandwidth and buffers are the
two types of resources that the network allocates in order to
establish connections, then K = �1�2�. In this case, k = 1
refers to bandwidth and k = 2 refers to buffers. We denote
by r

i� j
l� k the amount of a type k resource that is reserved at

link l for a connection of type j requested by user i. Also,
the maximum amount of a type k resource that can be allo-
cated at link l is denoted by Rl�k > 0. We denote by Fi� j ,

the set of all resource allocations r i� j
�= �r

i� j
l� k�l∈L� k∈K, that

guarantee the quality level specified by the type j connec-
tion requested by user i.2 This set results from relations that
describe the interaction between resource allocation and
QoS requirements along routes; such relations can be found
in Thomas and Teneketzis (1997). In this paper we assume
that the sets Fi� j of all resource allocations that guarantee
the end-to-end QoS requirements are known and given.
The following assumptions are made on the utility func-

tions ui
·� and the sets Fi� j :

Assumption (A1). The function ui
·� is continuous, differ-
entiable, locally nonsatiated,3 and strictly concave in X,
for all i ∈ N.

Assumption (A2). The sets Fi� j , i ∈ N, j ∈ Mi, are com-
pact and strictly convex.4

Assumption (A1) implies that the underlying prefer-
ence relations are rational, continuous, strictly convex, and
locally nonsatiated on X (Mas-Colell et al. 1995). Assump-
tion (A2) is technical and is needed to establish the exis-
tence of optimal allocation strategies that can be obtained
as the result of a tatônment process. In general there may
not exist a convex relation between QoS and resource allo-
cation along paths within the network; see Thomas and
Teneketzis (1997). In such a case, we take the sets Fi� j ,
i ∈ N, j ∈ Mi to be the maximum strictly convex subsets
of the sets specified by the relationship between QoS and
resource allocation. A discussion of this issue is presented
in §5.
Based on the above, we formulate the following opti-

mization problem:

max
x� r

∑
i∈N

ui
x
i� 
MAX 1�

subject to

xi ∈ Xi� i ∈ N� (1)

r i� j ∈ Fi� j � i ∈ N� j ∈Mi� (2)∑
i∈N

∑
j∈Mi

xijr
i� j
l� k � Rl�k� l ∈ L� k ∈K� (3)

where 
x� r�
�= �xij� r

i� j�i∈N� j∈Mi
,

Xi �= {
xi ∈ �Mi � 0� xij � B <�� j ∈Mi

}
� (4)

and B is a sufficiently large real number. The restriction
of xi to the compact space Xi is made for technical rea-
sons that appear in the proof of existence of a solution to
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(MAX 1). This assumption does not affect the optimality
condition, since an infinite value for xij would violate the
constraint on the available resources—see (3), and notice
that the amount of resources r i� jl� k , k ∈K needed at each link
l ∈Vi� j to establish the type j connection for user i, cannot
all be zero.
In summary, our problem formulation incorporates the

following features: (1) the QoS requirements are included
into the service provisioning problem, via constraints (2);
(2) multiple types of resources r i� jl� k , k ∈ K are allocated at
each link l of the network; (3) a virtual path Vi� j consists
of multiple links; and (4) a user can request multiple types
of services based on his own preferences. A critique and
discussion of the assumptions and features of the problem
formulation are presented in §5.
In the next section we establish the existence of a solu-

tion to (MAX 1).

3. EXISTENCE OF A WELFARE-MAXIMIZING
SOLUTION

The main result of this section is summarized by the fol-
lowing theorem:

Theorem 3.1. There exists a solution to problem
(MAX 1).

Proof. We first fix r to an allocation that satisfies (2).
Then, Weierstrass’s Theorem (Simon and Blume 1994,
p. 823) guarantees that the problem (MAX 2) defined
below, has a solution.

max
x

∑
i∈N

ui
x
i� 
MAX 2�

subject to

x ∈ X� (5)∑
i∈N

∑
j∈Mi

xijr
i� j
l� k � Rl�k� l ∈ L� k ∈K� (6)

where (5) is an abbreviation for (1).
If we show that the maximum value function U
r�

�=∑
i∈N ui
xi
r��, i.e. the objective function of (MAX 2) eval-

uated at a maximizer x
r�, is a continuous function of r ,
then the continuity of U
r� together with Assumption (A2)
and the Weierstrass’ theorem will guarantee the existence
of a solution to the following problem:

max
r

U 
r� 
MAX 3�

subject to

r i� j ∈ Fi� j � i ∈ N� j ∈Mi� (7)

The existence of a solution to the original problem
(MAX 1) is then established, since a solution to (MAX 3)
is also a solution to (MAX 1).
We now show that U
r� is continuous. For that matter

we use Proposition 3.1, that is given below. The proof of
the proposition is presented in Appendix A.

Proposition 3.1. Consider the correspondence � �R �→X
defined by �r = �x ∈ X � g
x� r�� 0�, where X is compact
and g is a continuous function in X×R. Assume that for
all r ∈ R there exists x ∈ X with g
x� r� < 0. Then � is
continuous in R.

Define the correspondence

� � R �→ X� �r = �x ∈ X � g
x� r�� 0��

where R
�= �D·L

+ , X is the same as in (5), and g � X×R→
�K·L is defined by gl�k
x� r� =

∑
i∈N

∑
j∈Mi

xijr
i� j
l� k − Rl�k,

l ∈ L, k ∈K. The set X is compact. Furthermore, g is con-
tinuous on X×R and gl�k
0� r� < 0 for all l ∈L and k ∈K.
Therefore the conditions of Proposition 3.1 are satisfied
and � is a continuous correspondence in R. By Assump-
tion (A1) the objective function of (MAX 2) is continu-
ous on X. The Maximum Theorem (Border 1989, Theo-
rem 12.1, p. 64) then implies that the correspondence

� � R �→ X�

�r =
{
x ∈ �r � x maximizes

∑
i∈N

ui
x
i� on �r

}
�

is closed and upper hemicontinuous and that the function

U
r�=∑
i∈N

ui
x
i� for x ∈�r�

is continuous on R. This completes the proof of Theo-
rem 3.1. �

4. A COMPETITIVE MARKET INTERPRETATION

In the previous section we established the existence of a
(welfare-maximizing) solution to problem (MAX 1). We
are now interested in the existence of an algorithm that can
lead to a solution of (MAX 1), and satisfies the informa-
tional constraints imposed by the nature of the network. To
establish the existence of such an algorithm we proceed as
follows: First, we describe a competitive market economy
that consists of three types of agents and an auctioneer that
regulates the prices through an iterative procedure that is
based on the aggregate demand and supply. Then, we prove
that the procedure used by the auctioneer leads to an allo-
cation that is arbitrarily close to a solution of (MAX 1),
in a finite number of steps. This result is given by Theo-
rem 4.1, which is presented later in the section. We now
proceed with the description of the market.

4.1. Description of the Market

The economy consists of four different types of agents:
resource providers, service providers, users, and an auction-
eer that was mentioned before. We assume that the resource
providers, the service providers, and the users are price tak-
ers. That is, they behave as if their behavior has, and can
have no effect on the equilibrium prices that are reached by
the market allocation process. The raw materials that are
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sold are the resources at each link of the network. The price
for a type k resource at link l is denoted by �l�k. These
resources are treated as if they were owned by the resource
providers, who then sell them to the service providers. The
service providers, in turn, buy resources at each link in
order to produce flow services, which they sell to end users.
For example, a service provider might want to produce a
“bounded-delay guaranteed” service from node A to node
B. To do so, it will purchase the use of buffers and band-
width at each link along some path between A and B in
amounts sufficient to provide the promised service. Users
purchase services from service providers; they do not pur-
chase the primitive resources, nor do they need to know
how many buffers or how much bandwidth is being dedi-
cated to their service, nor the path of links that has been
established for their flows.
Although we construct the problem as one in which

there are two markets—for network resources and for
services—our algorithm works by solving only for a vec-
tor of resource prices. We are able to do this because the
assumption of price taking that we impose on our agents
enables us to directly derive the service prices as a deter-
ministic function of the resource prices.5 Nonetheless, the
characterization of the problem in terms of the two separate
markets for separate resources and services is significant,
because the information hiding conditions described above
are maintained: The users do not need to know the resource
prices, nor the resources being purchased and combined to
provide services on their behalf. In the sequel we describe
each of the above agents separately.

Resource Providers. Resource providers own the
resources (bandwidth, buffers, etc.) at each link of the net-
work. We assume that they are price takers and that there
is no cost associated with the supply of their resources
to the market. The aggregate supply y
�� at prices �

�=
��l�k�l∈L� k∈K is given by

y
�� ∈ argmax
y∈Y

∑
l∈L

∑
k∈K

�l�kyl� k� (8)

where Y
�= �y ∈ �KL � 0 � yl�k � Rl�k� l ∈ L� k ∈ K�, and

K�L are the cardinal numbers of the sets K�L respectively.
Since there is no cost associated with the production, (8) is
trivially satisfied for every � � 0, when yl�k = Rl�k, for all
l and k. Therefore,

y
��= {
Rl�k

}
l∈L� k∈K for every �� 0� (9)

Service Providers. Service providers accept requests
for connections from users. Each request is characterized
by the triplet: origin, destination, and quality level, and is
indexed by the pair i� j, where i ∈ N refers to the user
and j ∈ Mi refers to the type of connection. For each
user request i� j, the service provider establishes a one-
way route V i� j between the origin and the destination and
allocates resources r i� j
�� that minimize the cost of the
connection and guarantees the requested quality level. We
assume that the service providers are price takers and that

they can freely enter or exit the market. An implication of
this is that their profit is zero. Based on the above, service
providers allocate resources to each type of connection by
determining

r i� j
�� ∈ arg min
ri� j∈Fi� j

∑
l∈V i� j

∑
k∈K

�l�kr
i� j
l� k� (10)

for each i ∈ N and j ∈Mi. Once resources have been allo-
cated, service providers announce to users the following
prices:

pij
��
�= ∑

l∈V i� j

∑
k∈K

�l�kr
i� j
l� k
��� i ∈ N� j ∈Mi� (11)

Users. Users request one way connections from the
service providers. As mentioned before, each request is
characterized by the triplet: origin, destination, and qual-
ity level. Service providers announce prices pij
��, i ∈ N,
j ∈ Mi, and users respond by requesting x
�� number of
connections. Users’ demands satisfy

xi
��∈argmax
xi∈Xi

[
ui
x

i�− ∑
j∈Mi

xijp
i
j
��

]
for all i∈N� (12)

For each i ∈N, the optimization problem in (12) is equiv-
alent to the standard utility maximization problem (Mas-
Colell et al. 1995).

Auctioneer. The auctioneer regulates the market prices
based on the aggregate excess demand vector z
��

zl�k
��
�=∑

i∈N

∑
j∈Mi

(
xij
��r

i� j
l� k
��

)−yl�k
���

l ∈ L� k ∈K� (13)

Later, in the proof of Theorem 4.1, we show that z
�� is a
continuous function of � (see Proposition 4.1).
During the setup phase users announce to service

providers the types of connections (origin, destination,
quality level) that they are willing to buy. Then, the ser-
vice providers establish the routes V i� j for each type of
connection i� j, i ∈ N� j ∈ Mi. After the routes have been
established, an iterative procedure begins, during which the
auctioneer announces prices �, and then uses the corre-
sponding aggregate excess demand function z
�� to com-
pute the next set of prices �. Every time a new price vec-
tor � is announced by the auctioneer, the service providers
determine the amount of resources r
�� that according
to (10) guarantee the requested quality level and mini-
mize the cost per connection. Then, the prices (11) are
announced to the users. Based on these prices users respond
by requesting x
�� number of connections, that satisfy (12).
The response of the resource providers to any price vector
announced by the auctioneer is given by (9).
A detailed description of the algorithm used by the auc-

tioneer to update market prices is presented in Appendix B.
In Figure 1, we present in block-diagram form the auction-
eer’s algorithm and provide an explanation about the vari-
ables that appear in the description of the algorithm.
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Figure 1. Auctioneer’s algorithm.

M = M 0 , c = 0 , v(0) = 1

Yes

Announce  prices:
λ  ,k = M(( -1)K+k,c)   M(0,c)   for all   ,k

M(m,c) = M(m,c   1) + M(m,c   1) - M(m,c) , m = 0,1,...,LK

v(m) = m, m=1,...,LK

z  ,k ( λ ) < 0  for all   ,k ?

v(c) = 0 ?

for some m ?

v(c) = min{( -1)K+k : z  ,k ( λ ) > 0}

No

No

No

Yes
v(c)=min{m: M(m,c) = 0}

r( λ )    r ~~

x( λ )    x  ~~

END

M(m,c) = -1
for some m ?

No

v(c)=min{m: M(m,c) = -1}

Choose  D

c = {m: v(m) = v(c), m = c}

M(m,c) = 0

Yes

Yes

The algorithm starts by choosing a positive integer value
for the parameter D. As shown in §4.2, where we prove the
convergence of the algorithm, the value of D determines
how close is the allocation that results from the algorithm
to a solution 
x̄� r̄� of problem (MAX 1). In particular, we
show that by increasing the value of D, we can come arbi-
trarily close to 
x̄� r̄�. However, by increasing D we also
increase the number of iterations needed for the algorithm
to terminate. Two other elements used by the algorithm are
the 
LK+1�× 
LK+1� matrix M and the 
LK+1� col-
umn ". The following notation is used for the entries of
these matrices: M
i� j� is the element in row i and column
j of matrix M , and "
i� is the element in row i of column
v. Initially, matrix M is assigned the value

M0 =



D D+1 · · · D+1
0 −1 · · · 0
���

���
���

0 0 � � � −1


 � (14)

Finally, the symbols 
�⊕ denote modulo LK subtraction
and addition, respectively. The proof of convergence of the

auctioneer’s algorithm is given by Theorem 4.1, which is
presented in the section that follows.

4.2. Analysis of the Market

4.2.1. Preliminaries. In this section we show that the
recursive process, used by the auctioneer and described in
§4.1 and Appendix B, leads in a finite number of itera-
tions, to an allocation that is arbitrarily close to a solution
of problem (MAX 1).
We proceed as follows. First, we present briefly some

known results that are crucial for the analysis of the mar-
ket. Then, we prove Theorem 4.1, which is the main result
of this section. The known results used in the analysis of
the market can be found in Scarf (1973, Chapters 2–4, 6,
Appendix 1). Here we present them in a way that suits the
needs of our analysis.
Define the simplex S:

S
�=
{
q ∈ �LK+1

+ �
LK∑
m=0

qm = 1
}
�
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where L and K are, as before, the cardinal numbers of
the sets L and K respectively, and denote by sm, m =
0�1� � � � �LK, its sides, that is,

sm
�= �q ∈ S � qm = 0�� m= 0�1� � � � �LK�

Consider the regular grid of vectors on S, that is the
list P of all vectors of the form 
n0/D�n1/D� � � � � nLK/D�,
with ni representing nonnegative integers summing to D.
We introduce a special type of subsimplex in S, called
the primitive set, that is a key concept for the proof of
Theorem 4.1.

Definition 4.1. The LK+1−n vectors qj0� � � � � qjLK−n of
P along with the n sides si1� � � � � sin of S, form a primitive
set in S if no vector q ∈ P is interior to the simplex defined
by xi1 � 0� � � � � xin � 0 and qm � min�qj0m � � � � � q

jLK−n
m �, for

m �= i1� � � � � in.

We now introduce the family � of 
LK+1�× 
LK+1�
matrices

n0�0 · · · n0�LK

n1�0 · · · n1�LK
���

���
nLK�0 · · · nLK�LK


 � (15)

that have the following properties: The entries are integers
between −1 and D+ 1 and the column sums are equal to
D. For the purpose of our analysis we associate to each
column of M ∈�, a vector or a side from the simplex S
and also a label from the set �0� � � � �LK�.

Association of a Vector or Side from the Simplex with
a Column. The following rule is used to associate to a col-
umn of M ∈�, either a vector from the regular grid P, or a
side of the simplex S : If column c has at least one negative
entry then it is associated with side si, where i = min�m �
M
m�c�=−1�; if column c has nonnegative entries, it is
associated with the vector 
M
0� c�/D� � � � �M
LK�c�/D�.

Association of a Column with a Label. To specify the
rule that associates each column of M ∈ � with a label
from the set �0� � � � �LK�, we first need to make the fol-
lowing definitions:
For each q ∈ S with q0 > 0 define the price vector �′:

�′ = {
�′
l� k

}
l∈L� k∈K

�=
{
q1
q0
�
q2
q0
� � � � �

qLK
q0

}
� (16)

Define also the following subsets of S:

C0
�= {

q ∈ S � q0 = 0 or zl�k
�
′�� 0�

for all l ∈ L� k ∈K
}
� (17)

Cl�k

�= {
q ∈ S � q0 > 0 and q
l−1�K+k = 0

or zl�k
�
′�� 0

}
� l ∈ L� k ∈K� (18)

where

zl�k
��=
∑
i∈N

∑
j∈Mi

xij
��r
i� j
l� k
��−Rl�k� l ∈ L� k ∈K� (19)

and r
��� x
�� are solutions of the problems:

min
ri� j∈Fi� j

∑
l∈L

∑
k∈K

�l�kr
i� j
l� k for all i ∈ N� j ∈Mi� (20)

max
xi∈Xi

[
ui
x

i�− ∑
j∈Mi

xij
∑
l∈L

∑
k∈K

�l�kr
i� j
l� k
��

]

for all i ∈ N� (21)

The definition of the sets C0 and Cl�k, l ∈ L� k ∈ K
assumes that the sign of the aggregate excess demand
zl�k
�� is well defined for all l ∈ L� k ∈ K. Later in the
section we show that z
�� is a continuous function of �
(Proposition 4.1). This makes the above definitions feasible,
because z
·� is a function of � and not a correspondence.
We assign to each column c of M the following label

"
c�: If column c is associated with side si then "
c�= i;
if c is associated with vector q then, if q ∈C0 set "
c�= 0,
otherwise set "
c�=min�
l−1�K+k � q ∈ Cl�k�.
The main result of this section is based on a combina-

torial theorem due to Scarf (1973, Theorem 2.5.1). Scarf’s
theorem and the main idea of the proof, that are both cru-
cial for the analysis of our algorithm, are presented in the
next paragraph.
Consider a labeling process that assigns to each side sm

(m = 0� � � � �LK) of the simplex S the integer m, and to
each vector of the regular grid P an arbitrary integer from
the set �0� � � � �LK�. Then according to Scarf (1973, Theo-
rem 2.5.1), there exists a primitive set each of whose vec-
tors or sides has a different label. The proof of this theorem
is based on the following iterative procedure, (IP1):

(IP1) 1. Define a unique replacement operation for a
single side or vector of a primitive set in S, that leads to
another primitive set in S.

2. Start with a primitive set all of whose vectors and
sides have distinct (nonzero) labels, except for a single pair
whose labels are identical.

3. Replace one of the elements (vector or side), in the
pair with the identical labels, using the operation defined
in Step 1.

4. If the new vector or side has a zero label, terminate
the procedure. Otherwise, replace the element in the prim-
itive set that has the same label with the element that was
just brought in, and repeat Step 4.
The above procedure will terminate only with a primi-

tive set of the required type. It is shown in Scarf (1973,
pages 47–48) that the algorithm never returns to the same
position and that every required replacement can be carried
out. Therefore, since there are a finite number of possible
primitive sets that can be composed from the sides of the
simplex and the vectors of the regular grid, the algorithm
will terminate in a finite number of steps.
The concepts and results presented above provide the

background necessary to proceed with the analysis of the
market described in §4.1.

4.2.2. Convergence of the Auctioneer’s Algorithm. The
main result of §4.2 is given by the following theorem.
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Theorem 4.1. The algorithm described in §4.1 and
depicted in Figure 1 leads, in a finite number of steps, to a
price vector � that induces an allocation x
��� r
�� which
is arbitrary close to a solution x̄� r̄ of problem (MAX 1).

Proof. The proof is based on the combinatorial result
(Scarf 1973, Theorem 2.5.1) presented above, and proceeds
in three steps:
(i) We first define a labeling process for the sides of S

and the vectors of P, that satisfies the conditions of The-
orem 2.5.1 in Scarf (1973). This establishes the existence
of a primitive set T in S with vectors and sides that have
distinct labels.
(ii) We show that the auctioneer’s algorithm, described

in §4.1, leads in a finite number of steps to the set T (as it
implements the steps of the iterative procedure (IP1)).
(iii) We prove that for any q ∈ T with q0 > 0, the price

vector given by (16), induces an allocation that is arbitrarily
close to a solution of (MAX 1).
We now proceed to prove the statements made in Steps

(i)–(iii).
(i) Consider the following labeling process for the sides

of S and the vectors of P: Side sm is labeled with integer m;
and q ∈ P is assigned the label of its associated column of
M ∈� (see the two association rules defined above). This
labeling process satisfies the conditions of Theorem 2.5.1 in
Scarf (1973), thus, it establishes the existence of a primitive
set T ⊂ S such that all of its sides and vectors have distinct
labels.
(ii) We show that the auctioneer’s algorithm implements

the steps of (IP1).
By construction, the auctioneer’s algorithm is an iterative

process with steps (structure) identical to those of (IP1).
Therefore, we only need to prove that the auctioneer’s algo-
rithm satisfies the conditions of Steps 1 and 2 of (IP1).
Let M ∈ � be a matrix associated with a primitive set

in S,6 and consider the following rule for replacing an ele-
ment (side or vector) of the primitive set: Find the column
c of M associated with the element of the primitive set
that is replaced; replace c by the sum of columns c
 1
and c⊕1 minus the column c itself, as in the auctioneer’s
algorithm; find the vector or side associated with that col-
umn and use it as a replacement for the original element
of the primitive set. Then, according to Scarf (1973, Chap-
ter 2 and Appendix 1), this replacement operation leads to
another primitive set in S. The replacement is also unique.
Consequently, the replacement operation in the auctioneer’s
algorithm satisfies the conditions of Step 1 of (IP1).
Let A0 ⊂ S be the subsimplex associated with the matrix

M0, introduced in the description of the auctioneer’s algo-
rithm (see Equation (14)). Matrix M0 satisfies the condi-
tions of Theorems 6.2.1 and 6.2.9 in Scarf (1973, note 6),
therefore A0 is a primitive set in S. Furthermore, according
to our association rule, all the vectors and sides of A0 have
distinct labels from the set �1� � � � �LK�, except for a single
pair whose labels are identical. Therefore, A0, the initially
chosen primitive set in the auctioneer’s algorithm, meets
the conditions of Step 2 of the iterative process (IP1).

Consequently, the auctioneer’s algorithm leads, in a finite
number of steps, to the primitive set T in S with vectors
and sides that have distinct labels. The set T contains at
least one vector from the regular grid P which is in the
interior of the simplex S (i.e., a vector the components of
which are all positive).7

(iii) We prove that for any q ∈ T with q0 > 0 , the price
vector given by (16), induces an allocation that is arbitrarily
close to a solution of (MAX 1). According to the labeling
process, T has a nonzero intersection with each one of the
sets C0�Cl�k, l ∈ L� k ∈ K, defined by (17), (18), respec-
tively. Define

C
�= C0∩

( ⋂
l∈L� k∈K

Cl�k

)
�

In Proposition 4.2 we prove that C is nonempty, and in
Proposition 4.3 we show that for every q ∈ C, the alloca-
tion x
�′�� r
�′� (induced by the price vector �′ defined by
(16)) solves (MAX 1). Consequently, if we make the reg-
ular grid sufficiently fine (by increasing the parameter D),
we can guarantee that the primitive set T has a nonzero
intersection with C. This result, along with the continuity
of the functions x
�′�� r
�′� with respect to �′ (shown in
Proposition 4.1), prove the statement of Step (iii).
Propositions, 4.1, 4.2, and 4.3, that we referred to above,

are presented below. Their proofs are given in Appen-
dices C, D, and E, respectively.

Proposition 4.1. The allocation x
��� r
�� and the aggre-
gate excess demand z
�� are continuous functions of �.

Proposition 4.2. The set C is nonempty.

Proposition 4.3. For every q ∈ C� x
�′�� r
�′� solves
(MAX 1).

This concludes the proof of Theorem 4.1. �

5. CONCLUSIONS—REFLECTIONS

We have presented an approach for optimal admission
and resource allocation control in multiservice connection-
oriented networks.
The main contribution of our work in this paper is the

specification of a convergent and decentralized iterative
procedure that leads to a solution of a fairly general admis-
sion and resource allocation problem.
The main features of our approach are the following:
(1) The objective of the resource allocation process is to

maximize the total value of the network to its users.
(2) The agents are price takers in the markets in which

they participate.
(3) There is no cost associated with the supply of net-

work resources.
(4) The sets Fi� j are strictly convex, for all i� j .
(5) Resource allocation decisions are based on the solu-

tion of a constrained static optimization problem.
We now discuss and critique each one of the above fea-

tures.
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(1) In this analysis we assumed that the objective func-
tion of interest was to maximize the sum of individual net-
work users’ utility functions. It may not be obvious why
this is a reasonable objective to consider.

It is important to realize that our point of view is pri-
marily normative, not descriptive. That is, we have taken
a particular objective function—one which we believe is
often reasonable, but see below—and studied whether a
network resource pricing scheme exists that can achieve an
optimum for that particular function, and how one might
implement that allocation with a market-based algorithm.
Thus, we have demonstrated the feasibility of using pric-
ing to achieve a particular performance goal. We are not
claiming that this goal describes any particular actual net-
work environment. Nor are we making the stronger norma-
tive claim that this objective function should be adopted in
any particular setting.

What we have shown is that economic market methods
can be harnessed to implement network resource alloca-
tions that fulfill a particular objective function. We believe
that this work provides a template for developing mar-
ket methods for implementing other objective functions
as well. For example, some might think it appropriate
for short-run allocation problems, when network resource
capacities are relatively fixed and there is little opportunity
for entry by competing resource providers, to devise auto-
mated market mechanisms that maximize the sum of user
utilities plus resource provider profits (possibly with some
particular weighting on how this total surplus is shared
between the users and the providers). To study this prob-
lem we would augment the (MAX1) objective function by
adding the sum of resource provider profits, and then pro-
ceed to analyze the existence and implementation of an
optimizing price vector.

We do, in fact, believe that maximizing the sum of user
utilities is a reasonable description for a wide variety of
network allocation problems. Suppose we are considering
a corporate intranet. If the corporation’s overall objective is
to maximize its profits (in present value), then the appro-
priate interpretation of our problem is to define each user’s
“utility” as that user’s contribution to corporate profit as
a function of the network services it consumes. In other
words, the corporation is not (directly) interested in how
personally happy an employee is with the network, but on
how much value the network enhances the employee’s pro-
ductivity. Then the sum of user utilities will be the con-
tribution of network services to corporate profits, which is
precisely the firm’s objective function for this part of the
overall management problem. Although it may seem dif-
ficult to come up with a reasonable representation of the
effect of network services on each user’s contribution to
corporate profits, at some level this is precisely the prob-
lem corporations need to solve for allocating equipment,
office space, subordinates and so forth to each employee—
it is well beyond the scope of our research to worry about
how the corporation specifically formulates these valuation
functions.

In a market context, it might be in the interest of a net-
work resource provider to design a marketing system with
the goal of maximizing its profits, rather than maximizing
the realized utility of its customers. However, if the network
provider is competing with other providers and networks
are interconnected, then in long-run equilibrium it will tend
to be the case that the successful allocation schemes are
those that have the net effect of maximizing users’ utilities.

Thus, although our method of using prices to allocate
network resources cannot be directly applied to every allo-
cation problem with any reasonable objective function, we
believe that it has broad applicability to many existing sit-
uations. In any case, when our objective function is the
desired goal, we have carefully analyzed the existence and
implementability of a pricing scheme to support that objec-
tive.
(2) In §4.1 we imposed the price-taking assumption

to the agents of the market economy. In some network
allocation settings price-taking will not be a reasonable
assumption, for at least some of the agents. For example,
suppose that we are concerned with a single physical net-
work owned by a single resource provider. That provider,
then, would be a monopolist. If that provider had the goal
of profit-maximization, say, then it would likely know or
quickly learn that it could earn more profits by directly
manipulating price. In terms of Equation (9), the resource
provider might offer yl�k less than Rl�k for some prices �,
in order to drive up the price and increase profits (selling
fewer units at a sufficiently higher price). Likewise, there
might be only a single service provider. Indeed, in a cor-
porate intranet, the information services division might be
both the resource provider and the service provider to the
users (corporate employees in general).

How useful is the price-taking assumption? It is not
essential for a proof that an algorithm exists that will clear
the markets and reach some equilibrium allocation of net-
work resources. However, in general, that allocation will
not be a solution of our original optimization problem,
(MAX1). As a general matter we could show that equilib-
rium allocations based on behavior other than price-taking
will lead to less efficient allocations, that is, allocations
that do not maximize the sum of user utilities subject to
the technology constraints (1)–(3). Therefore, for the pur-
pose of this work we do not study markets in which agents
exhibit different types of strategic behavior, but limit our-
selves to the price-taking behavior that we can show can
be harnessed to yield a solution to (MAX1).

Restricting attention to the price-taking case may not in
practice be as restrictive as it seems. Consider the exam-
ple of a corporate intranet with a single monopoly provider
of resources and services. If the management instructs the
resource and service provider to behave “as if” it is a price
taker (and provides compensation incentives that make it in
the provider’s best interests to do so) then the desired out-
come can be achieved. Essentially, this requires compensat-
ing the provider based on the value of the allocation to the
company as a whole, rather than based on the provider’s
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own local “profits.” If the network is to be managed with
an agent-based control system, the agents should be pro-
grammed to act as price takers, whether or not other pro-
grammable strategies might seem more desirable from the
local viewpoint of the agents.

In a more open, conventionally market-based system,
such as a commercial market for virtual data circuits, it
is also possible that at a given moment some participants
might have some market power, which is to say that they
are cognizant of an opportunity to improve their position by
acting strategically with respect to price-setting, rather than
as a price taker. In such a setting, it might not be possible to
directly control behavior to make those participants behave
“as if” they are price takers. However, if there are no artifi-
cial barriers to entry by other providers—for example, if it
is possible for another competing firm to build an intercon-
nected network of links with buffers and bandwidth—then
it will tend to be the case that in a long-run equilibrium
surviving agents will be those who behave as price takers
(competition will drive others out of the market). There-
fore, we believe there are many circumstances under which
the conditions will exist, or can be imposed, that are nec-
essary for our method to provide an equilibrium that is a
solution to (MAX1).
(3) When we introduced the resource providers’ prob-

lem in §4.1, we assumed that there is no cost in supplying
network resources (bandwidth, buffers, etc.) to the market.
This cost can be incorporated into our model if we subtract
it from the objective function of the optimization problem.
We believe that the new problem will have the same qual-
itative properties with the problem presented in this paper,
thus it may lead to a similar type of result.
(4) In §2 we made the assumption that the sets Fi� j are

strictly convex. This condition is necessary for the conver-
gence of the market-based algorithm.8 If this condition is
not satisfied for some pair i� j , then, in order to be able to
use the algorithm, we need to replace Fi� j with its maxi-
mum strictly convex subset. An important future problem
therefore, is to specify an algorithm for finding that relaxed
set, and also to be able to characterize how inefficient is
the resulting allocation compared to the optimum solution,
if we knew how to find it.
(5) Our approach to resource allocation is based on

the solution of a static constrained optimization prob-
lem. Resources are not reserved in anticipation of future
requests, and response to users’ requests may be delayed
until the next allocation epoch. If we wanted to consider a
formulation where at allocation instances resources will be
reserved in anticipation of future requests, we would have
to take into account statistics of future arrivals and statistics
of service times among other things. These statistics may
not be readily available; even if they were, we believe they
would lead to an intractable decentralized dynamic stochas-
tic optimization problem. We leave the study of such a
problem as a future challenge.

APPENDIX A

Proof of Proposition 3.1

We first show that � is upper hemicontinuous. The graph
of � , Gr �

�= �
x� r� ∈ X×R � g
x� r�� 0� is a closed set.
This follows from the fact that g is continuous in X×R
and therefore it is lower-semicontinuous in X×R (Border
1989, p. 15). Therefore � is a closed correspondence of R
into X. Since X is compact, it follows from Border (1989,
Proposition 11.9(b)), that � is upper hemicontinuous in R.
Next we show that � is lower hemicontinuous. Thus, we

must prove that for every r ′ ∈R and each open set G in X
meeting �r ′ there is a neighborhood 0
r ′� such that

r ∈0
r ′� ⇒ �r ∩G �= �� (A.1)

We proceed to determine for every r ′ ∈R and every open
set G in X meeting �r ′, a neighborhood 0
r ′� such that
(A.1) is satisfied. For that matter, we define the correspon-
dence, �� � R �→ X, by

��r �= �x ∈ X � g
x� r� < 0�� (A.2)

and show that the lower inverse of G under �� , defined by

��−1G2
�= �r ∈ R ���r ∩G �= ��� (A.3)

is a neighborhood of r ′ that satisfies (A.1).
We first show that ��−1G2 is an open set. By assumption,

��r �= �. Furthermore, since g is upper semicontinuous (as
it is continuous) on X×R� the graph of �� , defined by

Gr�� = �
x� r� ∈ X×R � g
x� r� < 0��

is open. Consequently, �� is an open correspondence,
hence it is lower hemicontinuous (Border 1989, Proposi-
tion 11.9(c)). Since �� is lower hemicontinuous and G is an
open set, ��−1G2 is open (Border 1989, Definition 11.3).
We proceed now to establish (A.1) with ��−1G2 playing

the role of 0
r ′�. Let r ′ ∈ R and consider an open set G
in X such that

�r ′ ∩G �= �� (A.4)

Then from (A.4), the fact that cl 
��r ′�= �r ′,9 and the iden-
tity, cl 
��r ′�∩G⊆ cl 
��r ′ ∩G�, we conclude that cl 
��r ′ ∩
G� �= �. Consequently, ��r ′ ∩G �= �. Therefore by (A.3),
r ′ ∈ ��−1G2 and ��−1G2 is an open neighborhood of r ′. Fur-
thermore, by (A.3),

r ∈ ��−1G2 ⇒ ��r ∩G �= �� (A.5)

Since ��r ⊆ �r , (A.5) gives that for every r ∈��−1G2� �r ∩
G �= �. Thus, (A.1) is satisfied, as (A.4) holds and ��−1G2
is an open neighborhood of r ′. The lower hemicontinuity
of � is thus established.
Therefore, � is continuous in R, since it is both upper

hemicontinuous and lower hemicontinuous in R. This com-
pletes the proof of Proposition 3.1. �
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APPENDIX B

Description of Auctioneer’s Algorithm

The algorithm is based on the construction of a specific
sequence of 
LK+1�× 
LK+1� matrices, each of which
is obtained from the previous one by replacing a single
column. The replacement for column c equals the sum
of columns c
 1 and c⊕ 1 minus column c itself. The
sequence begins with the matrix M0, given in (14). As
shown in the proof of Theorem 4.1, replacing a column
of M0, other than the first, results in a matrix that has the
same properties as M0; that is, its entries are between −1
and D+1 and the column sums are equal to D.
The rule determining the column that is replaced at each

step is the following:

Initial Step: The first column of M0 (m = 0) is labeled
with the integer "
0� = 1 and each column m (m =
1�2� � � � �LK) is labeled with the integer "
m�=m. Thus,
all columns of M0 have distinct labels except for the first
two, whose labels are identical. The algorithm begins by
replacing the second column (according to the procedure
described above).
Iteration Step: An integer "
c� ∈ �0�1� � � � �LK� is
assigned to a new column c , that is brought into the matrix
as a replacement, according to the following rule: If the
column has a negative entry, then "
c� is the smallest sub-
script for which this is true. If the column has a zero entry,
then "
c� is the smallest subscript for which this is true.
If none of the above is true, then the label of column c is
determined by observing the aggregate excess demand z
��
that results from the announcement of the price vector

�l�k =M

l−1�K+k� c �/M
0� c�� l ∈ L� k ∈K�

to the market;10 if zl�k
�� � 0 for all l ∈ L� k ∈ K then
"
c�= 0; otherwise, "
c�=min�
l−1�K+k � zl� k
��> 0�.

The matrix resulting after an integer "
c� is assigned to
a new column c has one of the following two features:

(F1) 1. None of the columns is associated with the
label 0.

2. All of the columns have distinct labels, except
for a single pair whose labels are identical.

3. One member of the pair of columns with iden-
tical labels has just been brought into the matrix.
(F2) All columns of the matrix have distinct labels that
span the set �0�1� � � � �LK� (in this case the column whose
label is 0 has just been brought into the matrix).

If the matrix constructed by the algorithm has feature
(F1), the algorithm proceeds by eliminating from the matrix
that column in the pair with identical labels that has not
just been brought into the matrix. If the matrix constructed
by the algorithm has feature (F2), the algorithm terminates.
As shown in §4.2, any matrix that is constructed by the
algorithm and has feature (F2) contains at least one column
with all positive entries. This implies that the auctioneer
announces at least one set of prices before the algorithm

terminates. The demand x
�� and the resource allocation
r
�� corresponding to the auctioneer’s latest prices are arbi-
trarily close to a solution of (MAX 1).

APPENDIX C

Proof of Proposition 4.1

We first use the strict convexity of the sets Fi� j to show
that the solution r
�� to (20) is unique. Then we use the
Maximum Theorem, to show that r
�� is continuous. The
solution x
p
��� to problems (21) is then shown to be con-
tinuous in p
��. This, along with the continuity of p
��
shows that x
�� is also a continuous function of �. The
continuity of both x
�� and r
�� validates the statement of
the proposition.
We show that for each � the solution r
�� to (20) is

unique. Assume that, for given i ∈ N� j ∈ Mi the solution
r i� j
�� to problem

min
ri� j∈Fi� j

∑
l∈L

∑
k∈K

�l�k r
i� j
l� k� (A.6)

is not unique. Therefore, there are at least two distinct vec-
tors, r and ṙ that both solve (A.6). By the strict convexity
of the set Fi� j we have that, r̈

�=3r + 
1−3�ṙ� 0 < a < 1
belongs to the interior of Fi� j . This implies that we can find
a vector r̄ ∈ Fi� j , whose elements are strictly less than the
corresponding elements of r̈ . Thus,∑
l∈L

∑
k∈K

�l�kr̄
i� j
l� k <

∑
l∈L

∑
k∈K

�l�kr̈
i� j
l� k � (A.7)

But,∑
l∈L

∑
k∈K

�l�k r̈
i�j
l�k=3

∑
l∈L

∑
k∈K

�l�k r
i�j
l�k + 
1−3�

∑
l∈L

∑
k∈K

�l�k ṙ
i�j
l�k

=∑
l∈L

∑
k∈K

�l�kr
i�j
l�k
��� (A.8)

Equations (A.7) and (A.8) lead to a contradiction, thus
r
�� is unique.
We proceed by showing that r
�� is a continuous func-

tion of �. Let i ∈ N� j ∈ Mi, and consider the correspon-
dence �i�j ��LK

+ �→�LK
+ defined by �i�j
��= �r i� j ∈�LK

+ �
r i� j ∈ Fi� j�= Fi� j . Then, �i�j is constant and therefore con-
tinuous in �LK

+ . It is also compact-valued since Fi� j is
a compact set. The function f i� j � �LK

+ → �, defined by
f i� j
r i� j� = −∑

l∈L
∑

k∈K �l�k r
i� j
l� k is continuous on �LK

+ .
Therefore, the conditions of the Maximum Theorem (see
Border 1989, Theorem 12.1, p. 64) are satisfied and the
solution r i� j
�� to problem (A.6) is an upper semicontin-
uous correspondence at �. This result, along with the fact
that r i� j
�� is unique, establishes the continuity of r
�� at
every �.
In the sequel we show that x
�� is also a continuous

function of �. Let i ∈ N, and consider the following prob-
lem:

max
xi∈Xi

[
ui
x

i�− ∑
j∈Mi

pijx
i� j

]
� (A.9)

where pi� j
�= ∑

l∈L
∑

k∈K �l�k r
i� j
l� k
��.
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The function ui
·� is continuous and strictly convex
on �M

+ . Therefore, according to Mas-Colell et al. (1995,
Proposition 3.D.2 (iii) and Proposition 3AA.1) the solution
xi
pi� to (A.9) is continuous at all vectors pi

�= �pij�j∈Mi

that satisfy pij > 0, for all j ∈ Mi. This result, along with
the continuity of pi with respect to �, implies that x
�� is a
continuous function of �. The continuity of both x
�� and
r
��, establish the fact that the aggregate excess demand
function given by (19) is a continuous function of �. This
completes the proof of Proposition 4.1. �

APPENDIX D

Proof of Proposition 4.2

We show that C is nonempty by constructing a vector q̄
that belongs in C.
Fix r to a feasible allocation and consider prob-

lem (MAX 2) that is presented in §3. The compactness
of X, the linearity of constraint (6), and the continuity of
ui
·� for all i ∈ N, guarantee, by the Weierstrass Theorem
(Simon and Blume 1994, p. 823), the existence of a finite
solution x
r� to (MAX 2). Notice also that X is convex,
ui
·� is concave for all i ∈ N (by Assumption (A1)), and
that the following constraint qualification holds true: x̂ = 0
belongs in X and is such that

∑
i∈N

∑
j∈Mi

x̂ij r
i� j
l� k < Rl�k,

for all l ∈ L� k ∈K. Therefore, according to Bazaraa et al.
(1993, Corollary, p. 210), there exists a vector �
r� ∈ �LK

+
that satisfies
∑
l∈L

∑
k∈K

�l�k
r�

(∑
i∈N

∑
j∈Mi

xij
r�r
i� j
l� k −Rl�k

)
= 0� (A.10)

and is such that

U
r�=max
x∈X

min
��0

7
x� r���� (A.11)

where

7
x� r���
�= ∑

i∈N
ui
x

i�−∑
l∈L

∑
k∈K

�l�k

(∑
i∈N

∑
j∈Mi

xij r
i� j
l� k −Rl�k

)

(A.12)

is the Lagrangian, x
r� is a solution to (MAX 2), and U
r�
is its maximum value function.
Based on the above, if r̄ is a solution to prob-

lem (MAX 3) (also presented in §3), then
(
x
r̄�� r̄

)
solves (MAX 1). The maximum value function of (MAX 1)
is then given by

max
r∈F

max
x∈X

min
��0

7
x� r���=7
x̄� r̄� �̄�� (A.13)

where x̄
�=x
r̄�� �̄

�=�
r̄�, and r ∈ F is an abbreviation for
(7).
Consider the vector q̄, defined by

q̄0
�=
(
1+∑

l∈L

∑
k∈K

�̄l� k

)−1

� (A.14)

q̄
l−1�K+k
�= �̄l� k

(
1+∑

l∈L

∑
k∈K

�̄l� k

)−1

� l ∈ L� k ∈K� (A.15)

We establish that q̄ ∈ C. Note that, by construction,
q̄ ∈ S. Also, since 
x̄� r̄� is feasible to (MAX 1),
∑
i∈N

∑
j∈Mi

x̄ij r̄
i� j
l� k −Rl�k � 0 for all l ∈ L� k ∈K� (A.16)

Thus, according to (17) and (19), q̄ ∈ C0. We proceed by
showing that q̄ belongs to the sets Cl�k, for all l ∈ L and
k ∈K.
If q̄
l−1�K+k = 0 for some l ∈ L� k ∈K then q̄ ∈ Cl�k (see

(18)). In the sequel we consider the case where q̄
l−1�K+k >
0. In this case we proceed as follows: We first show that r̄
and x̄ solve (20) and (21) respectively, for �= �̄. Then we
show that
∑
i∈N

∑
j∈Mi

x̄ij r̄
i� j
l� k −Rl�k = 0� (A.17)

These two results establish, according to (16)–(21), that
q̄ ∈ Cl�k.
To show that r̄ , x̄ solve (20) and (21), respectively,

for � = �̄, we denote by r
�̄� and x
�̄� the solutions to
problems (20) and (21) and note that, since x̄� r̄ solves
(MAX 1), r̄ is a feasible solution to (20) and x̄ is a fea-
sible solution to (21). Therefore the following inequalities
are true:
∑
l∈L

∑
k∈K

�̄l�k r̄
i�j
l�k �

∑
l∈L

∑
k∈K

�̄l�k r
i�j
l�k
�̄�� i∈N�j∈Mi� (A.18)

ui
(
xi
�̄�

)− ∑
j∈Mi

xij
�̄�
∑
l∈L

∑
k∈K

�̄l� k r
i� j
l� k
�̄�

� ui
x̄
i�− ∑

j∈Mi

x̄ij
∑
l∈L

∑
k∈K

�̄l� k r
i� j
l� k
�̄� � i ∈ N� (A.19)

From the above it follows that

7
(
x
�̄�� r
�̄�� �̄

)
�7

(
x̄� r
�̄�� �̄

)
�7
x̄� r̄� �̄�� (A.20)

where, the first inequality is obtained from (A.19) by sum-
ming over all i and adding the term

∑
l∈L

∑
k∈K �̄l� k Rl�k,

and the second from (A.18) by multiplying by −x̄ij , sum-
ming over all i� j, and adding the term

∑
i∈N ui
x̄i�+∑

l∈L
∑

k∈K �̄l� k Rl�k. Assume that r̄ � x̄ do not solve (20)
and (21) for � = �̄. This implies that at least one of the
inequalities in (A.18), (A.19) is satisfied with strict inequal-
ity. Therefore (A.20) gives

7
(
x
�̄�� r
�̄�� �̄

)
>7
x̄� r̄� �̄�� (A.21)

From (A.13) we obtain that

max
r∈F

max
x∈X

min
�=�̄

7
x� r���=7
x̄� r̄� �̄�� (A.22)

and this leads to a contradiction, since (A.21) violates
(A.22). Therefore, r̄ � x̄ solve (20) and (21) respectively, for
�= �̄.
We next show that

∑
i∈N

∑
j∈Mi

x̄ij r̄
i� j
l� k −Rl�k = 0� (A.23)
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Equation (A.10) for r = r̄ gives

∑
l∈L

∑
k∈K

�̄l� k

(∑
i∈N

∑
j∈Mi

x̄ij r̄
i� j
l� k −Rl�k

)
= 0� (A.24)

This combined with (A.16) and the fact that �̄l� k � 0 for
all l ∈ L� k ∈K, implies that

�̄l� k

(∑
i∈N

∑
j∈Mi

x̄ij r̄
i� j
l� k −Rl�k

)
= 0 for all l ∈ L� k ∈K�

(A.25)

By assumption, q̄
l−1�K+k > 0. Therefore �̄l� k > 0, which
combined with (A.25), leads to (A.23).
We have thus established the fact that q̄ ∈Cl�k, for all l ∈

L� k ∈K. This completes the proof of Proposition 4.2. �

APPENDIX E

Proof of Proposition 4.3

Let q ∈C. Then q0> 0 because q ∈Cl�k. Furthermore, since
q ∈ C0 and q0 > 0, we have that

∑
i∈N

∑
j∈Mi

xij
�
′� r i�jl�k
�

′��Rl�k for all l∈L� k∈K� (A.26)

We also have from (20) and (21) that x
�′� ∈ X and
r i� j
�′� ∈ Fi� j , for all i� j. Therefore x
�′�� r
�′� is a feasi-
ble solution to problem (MAX 1).
Let x� r be any other feasible solution to (MAX 1). From

(20) and (21) we get

∑
l∈L

∑
k∈K

�′
l�k r

i�j
l�k�

∑
l∈L

∑
k∈K

�′
l�kr

i�j
l�k
�

′�� i∈N� j∈Mi� (A.27)

and

ui
(
xi
�′�

)− ∑
j∈Mi

xij
�
′�
∑
l∈L

∑
k∈K

�′
l� k r

i� j
l� k
�

′�

� ui
x
i�− ∑

j∈Mi

xij
∑
l∈L

∑
k∈K

�′
l� kr

i� j
l� k
�

′�� i ∈ N� (A.28)

respectively. From the above it follows that

7
(
x
�′�� r
�′���′)

�7
(
x� r
�′���′)

�7
x� r��′�� (A.29)

where the first inequality is obtained from (A.28) by sum-
ming over all i and adding the term

∑
l∈L

∑
k∈K �′

l� k Rl�k,
and the second from (A.27) by multiplying by −xij , sum-
ming over all i� j, and adding the term

∑
i∈N ui
xi�+∑

l∈L
∑

k∈K �′
l� k Rl�k.

From (A.29), we have

∑
i∈N

ui
(
xi
�′�

)−∑
l∈L

∑
k∈K

�′
l�k

(∑
i∈N

∑
j∈Mi

xij
�
′�r i�jl�k
�

′�−Rl�k

)

�
∑
i∈N

ui
x
i�−∑

l∈L

∑
k∈K

�′
l�k

(∑
i∈N

∑
j∈Mi

xij r
i�j
l�k−Rl�k

)
� (A.30)

Note that q ∈ Cl�k implies that q
l−1�K+k = 0 (i.e. �′
l� k = 0),

or that∑
i∈N

∑
j∈Mi

xij
�
′� r i� jl� k
�

′�� Rl�k� (A.31)

If q
l−1�K+k > 0, then from (A.26) and (A.31) it follows that∑
i∈N

∑
j∈Mi

xij
�
′� r i� jl� k
�

′�= Rl�k� (A.32)

Therefore,

∑
l∈L

∑
k∈K

�′
l� k

(∑
i∈N

∑
j∈Mi

xij
�
′� r i� jl� k
�

′�−Rl�k

)
= 0� (A.33)

because for all l ∈ L� k ∈ K either �′
l� k = 0 or∑

i∈N
∑

j∈Mi
xij
�

′�r i� jl� k
�
′�−Rl�k = 0.

Since x� r is a feasible solution to (MAX 1) we have that∑
i∈N

∑
j∈Mi

xij r
i� j
l� k � Rl�k for all l ∈ L� k ∈K� (A.34)

Multiplying (A.34) by �′
l� k � 0 and summing over all

l� k, gives

∑
l∈L

∑
k∈K

�′
l� k

(∑
i∈N

∑
j∈Mi

xij r
i� j
l� k −Rl�k

)
� 0� (A.35)

Inequalities (A.30), (A.33), and (A.35) give∑
i∈N

ui
(
xi
�′�

)
�
∑
i∈N

ui
x
i�� (A.36)

which shows that x
�′�� r
�′� solves (MAX 1). This con-
cludes the proof of Proposition 4.3. �

ENDNOTES

1. The numeraire quantities xi0, i ∈ N, are omitted without
loss of generality from the objective function, because they
do not affect the marginal conditions for optimization.
2. We assume that r i� jl� k = 0 if link l doesn’t belong to the
path V i� j assigned to that connection.
3. That is, for every x ∈X and every 8 > 0, there is x0 ∈X
such that �x0−x�� 8 and ui
x

0� > ui
x�, where �x0−x�
is the Euclidean distance between points x0 and x.
4. A set is strictly convex if every proper convex combina-
tion of two points of the set belongs to the interior of the
set.
5. In the concluding §5, we discuss the role of the price-
taking assumption in our market-based implementation.
6. Scarf (1973, Theorems 6.2.1 and 6.2.9) derives condi-
tions for a matrix M ∈M, in order for the vectors or sides
of S that are associated with the columns of M to form a
primitive set in S.
7. Otherwise T would be formed by sides and/or vectors
of P that belong to the sides of S, thus, it would coincide
with S which is not a primitive set (as it contains vectors
of P in its interior).
8. We have seen in §3, that compactness is the necessary
condition for the existence of an optimal allocation.
9. cl
A� denotes the closure of a set A.
10. M
p�q� denotes the element in the p row and q col-
umn of matrix M .
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