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Abstract

Markets for digital information goods provide the
possibility of exploring new and more complex
pricing schemes, due to information goods’ flexi-
bility and negligible marginal cost. In this paper we
compare the dynamic performance of price sched-
ules of varying complexity under two different
specifications of consumer demand shifts. A mo-
nopolist producer employs a simple direct-search
method that seeks to maximize profits using vari-
ous price schedules. We find that the complexity of
the price schedule affects both the amount of explo-
ration necessary and the aggregate profit received
by a producer. The size of the bundle offered, the
rate of population change, and the number of itera-
tions a producer can expect to interact with a pop-
ulation in total all affect the choice of schedule. If
the number of iterations is small, a producer is best
off randomly choosing a high-dimensional sched-
ule, particularly when the bundle size is large. As
the number of interactions between the producer
and a given consumer population increases, then
two-parameter schedules begin to perform best, as
their learnability allows the producer to find highly
optimal prices quickly. Our results have implica-
tions for automated learning and strategic pricing in
non-stationary environments arising from changes
in the consumer population, in individuals’ prefer-
ences, or in the strategies of competing firms.

1 Introduction
The distinguishing characteristic of information goods is their
negligible incremental cost of reproduction and distribution
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once the good is initially produced. As a producer can almost
costlessly package these goods in a wide variety of configura-
tions, markets for digital information goods provide the pos-
sibility of exploring new and more complex pricing schemes.
With multiple items (say, articles) to sell, a producer might
offer a single price per article (linear pricing), sell the whole
lot for a subscription price (bundling), or any number of other
variants. Collectively, the family of schemes possible for
multiple items (units of a single good, or combinations of
different goods) are known as “nonlinear” pricing, as the rev-
enue received is a nonlinear function of the number of items
sold. Bundling is one example of nonlinear pricing that has
received substantial recent attention. Conditions under which
bundling information goods is desirable are well-recognized
in the economics literature [Chuang and Sirbu, 1999; Bakos
and Brynjolfsson, 1999].

Prior authors [Wilson, 1993] have calculated the benefit
of bundling and other nonlinear pricing schemes based on
the assumption that the producer knows the distribution of
consumer preferences. Typically producers do not have com-
plete knowledge of all relevant parameters of this distribu-
tion, and can only offer an estimate of the profit-maximizing
price schedule. Thus, at any point in time, there are two re-
turns from an offered price schedule: a current profit, and
incremental information about the underlying consumer pref-
erences which may be used to extract higher profits by chang-
ing the price scheme parameters — or even the price scheme
itself — in the future.

The pricing problem is then inherently dynamic as infor-
mation acquired in the current “period” affects actions in later
periods. In a given period the producer generally does not of-
fer the price scheme expected to maximize current or myopic
profits given its current information about consumer prefer-
ences. Instead, it deviates from this strategy in order to set
prices that constitute a better experiment by revealing more
information about the true underlying preferences. While this
experimentation clearly has long-run benefits, there are short-
run opportunity costs in terms of the profits foregone by not
acting myopically. The firm must therefore select pricing pa-
rameters that balance current profits, exploitation, and learn-
ing the nature of consumer demand, exploration [Thrun and
Møller, 1992]. The pricing problem of the information goods
producer is even more acute, as the relative advantage of a
pricing schemes depends on its potential profitability as well



as its learnability.
The identified benefits of exploration for the firm rest on

various assumptions. First, it is assumed that the underlying
preferences to be learned are stationary. In addition, the stan-
dard approach assumes that a producer will have a long pe-
riod of interaction with a population once the optimal prices
are learned, so learning costs can be absorbed into long-run
profit. This clearly need not be the case. For example, in
many instances the set of information goods being offered
by various producers is rapidly changing. This will result
in an observed change in consumer preferences, represented
as willingness-to-pay per item, will appear to change even if
the underlying preference structure has not changed. Addi-
tionally, competing producers will regularly change their of-
ferings, causing consumer preferences for a given producer’s
goods will shift. Finally, individual consumer tastes do evolve
over time, as does the composition of heterogenous agents in
the market.

Our work is motivated in part by the relative ease of chang-
ing price schemes for electronic goods: price listings are
stored in electronic databases, and communicated through the
data network. Powerful computational resources can be ap-
plied to analyzing consumer information in order to estimate
improved pricing schemes (“data mining” is a prominent ex-
ample of this). Likewise, purchasers — even retail customers,
but certainly large business buyers — have cheap computa-
tional power to assist them in analyzing and responding to
changing and possibly complex pricing schedules.

In this paper, we investigate the learning problem for the
provider of information goods in a changing environment.
In particular, we investigate whether or not there is a rela-
tionship between the complexity of a pricing schedule and
the provider’s ability to quickly learn consumer preferences.
Further, we explore the relationship between the costs of ex-
perimentation and the complexity of the price schedule. In
addition to the usual trade-off between exploitation and ex-
ploration for a price scheme (its learnability), we also are
concerned with the robustness of a pricing scheme to changes
in consumer preferences (its adaptability). We explore two
models of consumer change, each of which correspond to
different scenarios about how a consumer population might
evolve.

In [Brooks et al., 1999], we examined a version of this
problem in which a monopolist learned a pricing schedule
while facing a static population. We argued that the transient
profits were important since the population could change. In
this paper, we make that change explicit and examine the per-
formance of price schedules of varying complexity.

In the very short run, learning a simpler schedule is not
beneficial – choosing random parameters in a more complex
schedule tends to yield more profit. However, in the medium
and long run, the benefits of learning with a moderately com-
plex two-parameter schedule outweigh the higher steady-state
profit that can be extracted by an optimized complex sched-
ule. In this case, the ease of learning the simple schedule wins
out. The size of the bundle being offered also plays a role in
selecting a schedule; fully nonlinear pricing schedules tend
to perform better by comparison when the number of articles
offered by a firm is large.

1.1 Economics of learning

The use of prices to learn about consumer preferences is not
new in the economics literature. Grossman, Kihlstrom and
Mirman [1977] were among the first to quantify the extent
to which a firm may experiment with prices that are not my-
opically optimal, thus giving up short-run profits, in order to
learn the slope of the demand curve it faces. Subsequent au-
thors have attempted to generalize the problem and identify
the conditions under which “complete” learning will occur
in the long run in stationary environments. For example,
Aghion, Bolton, Harris and Jullien [1991] determine such
conditions, which include payoff functions that are smooth
and quasi-concave, but note that neither adequate nor inade-
quate learning is generic.

The existing literature almost universally assumes that the
preferences to be learned are stationary. In a rare exception,
Keller and Rady [1999] identify the path of optimal actions
for a monopolist facing an unknown demand curve that al-
ternates between two states according to a continuous time
Markov process. They find that for a given level of noise
and a given discount rate, low rates of state changes will lead
to “extreme” experimentation where the monopolist tracks
the true state rather well, while higher rates of state changes
will lead to “moderate” experimentation where the monopo-
list chooses actions near the action associated with the long-
run average state and thus learns very little of the current true
state of the world. They find that the transition from one ex-
perimentation regime to the other is discontinuous.

In our research we study provider price learning in environ-
ments that exhibit less restrictive forms of non-stationarity.
Second, because we focus on information goods, we allow the
provider to consider a variety of nonlinear pricing schemes,
rathern than merely the linear scheme (a uniform price for
each goods sold). Under these conditions, we are unable to
obtain analytic solutions. We instead use simulation to an-
swer our questions, guided by analytical solutions for simpli-
fied versions of the problem.

1.2 Machine Learning in Nonstationary
Environments

Within the machine learning community, there has recently
been an emphasis on learning nonstationary functions. Early
examples of this include reinforcement learning algorithms
such as Q-learning and TD-learning [Sutton and Barto,
1998], which can track a nonstationary function, and signal-
processing algorithms such as Parzen windows [Duda and
Hart, 1973], which can learn a changing probability distri-
bution without the use of a parametric model. While these
methods are able to successfully learn a nonstationary fuc-
tion in the limit, they require a large amount of data (a prob-
lem when data collection is costly), and neither explicitly ad-
dresses the exploration/exploitation tradeoff.

Strategies for exploring optimally have also been examined
in machine learning [Thrun and Møller, 1992] and optimal
control [Fe’ldbaum, 1965]. Typically these approaches either
use a different definition of optimality (e.g., each data point
is equally costly) or more restrictive assumptions about the
nature of the problem to be optimized, such as stationarity.



There has also been work within the multiagent systems
community on learning to interact with other agents. Vidal
and Durfee [1998] show how agents can use nested models
to more easily predict the actions of another agent. Wellman
and Hu [1998] examine multiagent learning in a 2x2 game
and shows how agents can simultaneously learn a Nash equi-
librium strategy. Unlike our research, this work focus primar-
ily on the long-run properties of the agent system and does
not specifically address the costs of learning.

2 Model

We model a population of consumers served over time by one
producer of information goods. The producer has � new and
unique information items, called articles, to offer in each dis-
crete time period. Consumer preferences (values) for articles
differ across articles for a given consumer, and across con-
sumers. Given these preferences, each consumer will buy
some number of articles when the producer offers them ac-
cording to some price schedule. Thus, the producer receives
a revenue (actually, incremental profit because we assume
incremental costs are zero) associated with a specific price
schedule. However, the producer does not know the underly-
ing distribution of consumer preferences, and thus must learn
the mapping from price schedules to profits. In this section
we describe consumer preferences and optimizing behavior,
and the specification of the provider’s problem.

2.1 Consumers

Consumers are risk-neutral expected utility maximizers.
Each purchases the set of articles that yields the largest non-
negative expected surplus according to his or her individual
preferences.

Each consumer wants at most one copy of any particular
article. A consumer does not value all articles equally, and a
particular article might be valued differently by different con-
sumers. We model consumers using a simple two-parameter
model introduced by Chuang and Sirbu [1999]. Preference
heterogeneity across consumers is obtained by allowing them
to have different parameter values. This formulation has the
advantage of being analytically tractable while still provid-
ing significant nonlinearities in aggregate consumer demand
when consumers are heterogeneous.

The two parameters are � , a consumer’s value for its most-
preferred article, and � , the fraction of the � articles available
for which the consumer has a positive valuation. The valua-
tion �����	��
 of the � th most-preferred article by consumer � is a
linear function of these variables, expressed by:

�����	��
�

� �����������	�������� 
��  !�!�"�$#%�&�'�( �  !�!�"�$)%�&�'�+* (1)

If the firm offers a price schedule in which the total payment
depends only on the number of articles purchased by con-
sumer � , ,-�	./�&
 , then consumer � ’s surplus from reading the.10 most preferred articles is the aggregate value less any pay-

ments made to the producer, 2/�3
54%6�7�� 81� �����	��
'�$,-�	.10� 
 . Each
consumer chooses .90� to maximize 2:� .

For the current version of this paper we limit consumer
heterogeneity by assuming that � , the value of the most pre-
ferred article for each consumer, is the same for all con-
sumers. Consumers differ in their values of �;� , which are
distributed uniformly between

(
and � . The probability den-

sity of article values is thus <9�=�>
�
?�A@ � .
The consumer population varies over time, which is why

the producer must be concerned about transitional perfor-
mance; it cannot count on long-run profits to absorb any
learning costs. We consider two separate models of consumer
population change, each of which is plausible in different
scenarios. In the first, each consumer’s � is drawn from a
fixed distribution. Periodically, the consumer population is
removed and replaced with a new set of consumers drawn
from the same distribution. The nonstationarity arises from
differences in the particular realizations of each population.
This would be an appropriate model for a setting in which
subsets of a consumer population interact with a producer for
a short period of time and then are sated and replaced by new
consumers. The second model incorporates change in the un-
derlying population. The distribution from which consumers
are drawn drifts according to a random walk. This produces
a model in which consumer preferences drift over time, and
avoids the solution in which the producer simply learns the
mean of the underlying distribution.

By exploring different of models of population change, we
hope to both identify strategies that are effective for different
sorts of nonstationarity and avoid generating solutions that
are dependent upon a particular underlying model. In addi-
tion, we hope to gain further insight as to what sorts of models
of consumer change actually merit further exploration.

2.2 Producer
A monopolist produces � articles in each period. Its objec-
tive is to maximize cumulative undiscounted profits.1 Follow-
ing the standard stylized assumptions for information goods,
the marginal cost of duplicating and delivering any article is
zero. Likewise there is no cost to bundling articles together
to sell as a package.

The producer cannot track individual consumers across
transactions, and is either unable to observe the number of
articles read by a specific consumer, or to gain any advantage
by using such information. This implies that a producer may
freely choose from the family of price schedules described
in Section 3, but must offer all consumers the same sched-
ule. Therefore a price schedule can be represented by ,-�	.!
 ,
which gives the total payment a customer makes if she pur-
chases . articles.

We assume that the producer does not know the distribu-
tion of � and � across the consumer population, and in fact
does not even know that preferences take the form given in
(1), above. In a given period the producer announces a price
schedule ,-�	.!
 and receives a profit.

We can evaluate a given price schedule by comparing its
results with the maximal profit available. The maximum so-
cial surplus would be obtained if each consumer purchased

1Discounting can be incorporated without changing the nature of
our results.



�&�'� , as the marginal cost of production and distribution is
assumed to be zero. Individual consumers would obtain a
gross surplus of �

�����
� , or �

� �
� per consumer in expectation.

A firm that could observe each consumer’s �;� could extract
this entire surplus. It would perfectly price discriminate by
making a take-it-or-leave-it offer tailored to each individual
for the full surplus. Since this is the maximal possible social
surplus, this case serves is the upper bound on the maximum
profit that a less-informed provider could earn.

In the next section we describe the price schedule fami-
lies a producer may choose from. Each family has one or
more parameters that are set by the provider. It is over these
parameters that the provider explores in order to increase cu-
mulative profits.

3 Price schedules
In this section we briefly characterize the pricing schedules
which are available to the producer in our model, and analyze
the performance of each when there is no value from learn-
ing. This allows us to present a hierarchy of complex price
schedules and to separate their differing abilities to produce
profits from the costs and benefits of learning. In Section 5
we introduce the opportunity to learn consumer preferences
in a nonstationary environment, and study the interaction be-
tween learning and pricing choices.

We assume that a producer has access to a set of � articles
that it can offer for sale to a consumer population. Producers
then have the problem of first selecting a price schedule and
then the prices within that schedule. As previously indicated,
the producer must offer the same schedules to all consumers.
Typically, the schedules considered for the sale of physical
goods are limited to either pure bundling or linear pricing,
both of which use just a single price parameter. However,
the range of feasible choices is much greater for information
goods, as they have high fixed or first copy cost, but negligi-
ble marginal production and distribution costs. For example,
once a single digital copy of a good such as a newspaper ar-
ticle is produced, the marginal cost for additional copies is
essentially zero. To explore this larger space of possible price
schedules, we study a scenario in which a producer of infor-
mation goods considers the following set of schedules, which
range in complexity from 1 to � parameters:
� Pure Bundling. Consumers pay a fixed price

�
for access

to all � articles.
� Linear Pricing. Consumers pay a fixed price � for each

article purchased.
� Two Part Tariff. Consumers pay a subscription fee < ,

along with a fixed price � for each article.
� Mixed Bundling. Consumers have a choice between a

per-article price � and a bundle price
�
.

� Block Pricing. Consumers pay a price � � for the first �
articles, and a price � � for remaining articles.
� Nonlinear Pricing. Consumers pay a different price � �for each article � .
The expected surplus for each schedule is presented in Ta-

ble 1, as a function of the bundle size � and the population

size . . In the limit of ���	� and .
�	� , an exact anal-
ysis of the schedules is possible [Brooks et al., 1999]. These
values, scaled by dividing by �+. , are given in column 3 of
Table 1.

For finite size bundles and an infinite population size, the
dependence of the profit upon the various parameters—the
profit landscape—can be punctuated by discontinuous peaks
or cliffs for small bundles, e.g. ��
 � ( , but is smooth for
sufficiently large bundles, e.g. � 
 � ( ( . The ideal two-part
tariff landscape for � 
 � ( and � 
 � ( ( are displayed in
Figs. 1a and b. A combination of analysis and numerical
analysis was used to derive the optimal profits in column 4,
which are again scaled by dividing by �+. .

For finite size populations, the profit landscapes acquire
numerous bumps, as illustrated in Fig. 1c. A cross-section of
two realizations of the profit landscape for the � 
?� ( ( two-
part tariff schedule, along with a cross section of the ideal� 
 � ( ( landscape, is shown in Fig. 2. Although the bumps
decrease in height with population size, for a schedule such
as two-part tariff for which the profit landscape has a broad
central peak, for sufficiently small populations the bumps can
be high enough to shift the peak location substantially from
that of the ideal landscapes of columns 3 and 4. As a corol-
lary, the landscape can shift substantially from one realization
of the landscape to another (i.e. two different random selec-
tions of . consumers from the same distribution of � and � ).
The bumps can also be hazardous to algorithms that attempt
to find the global maxima.

0 20 40 60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f

P
ro

fit

p = 3.14538

p = 3.49723

p = 3.39913

Two–part landscape cross–sections for N=100

Figure 2: Cross sections of ideal .���� , � 
 � ( ( land-
scape (green) and two realized . 
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?� ( ( landscapes
(red and blue). Cross sections are for values of per-article pa-
rameter � fixed at the values indicated in the figure, which are
chosen to be those at which the absolute peak in the landscape
occurs.

Column 5 of Table 1 gives the peak profits for finite con-
sumer populations, averaged over 10,000 landscapes, each
of which was generated by choosing 100 random consumers
from the given distribution. The peaks were determined by
running the amoeba optimization algorithm 100 times on



Schedule Parameters � opt � ��� � 
 � opt ��� ( ( � � 
�� opt ��� ( ( � � ( ( 
 ��� opt ��� ( ( � � ( ( 

Pure Bundling

�
0.8750 0.9010 0.9497 (0.0878) 0.0666

Linear Pricing � 0.8750 0.8999 0.9044 (0.0515) 0.0042
Two Part Tariff <�� � 1.0370 1.0710 1.1043 (0.0777) 0.0464

Table 1: This table presents characteristics and optimal profits for a series of price schedules, when applied to the following
population: �5
?� ( , � 
?� ( ( , and � drawn from �	� ( � ( * 
�� * Column 3 gives the optimal profit per good sold that can be earned
by each schedule, with a bundle size � � � and a population size . � � . Column 4 gives the corresponding results for a
bundle size � 
?� ( ( and a population size . � � . Column 5 gives the corresponding results for a bundle size � 
?� ( ( and a
population size . 
 � ( ( . The standard deviation across different realizations of the landscape are given in parentheses. Column
6 indicates the average additional profit that can be obtained by re-optimizing a landscape after redrawing a new population,
assuming bundle size � 
?� ( ( and population size . 
?� ( ( .
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Figure 1: a) Ideal profit landscape with � 
?� ( and two-part tariff pricing. Contour plot of normalized profit, with contour lines
starting at 0, 1.00, 1.05, 1.10, etc., ranging up to 1.75. Peak profit of 1.6500080 is attained at �=< 
�
 * ����
�����
�� � 
��:* ��
���
�
�
 
 .
b) Ideal profit landscape with � 
 � ( ( and two-part tariff pricing. Contour plot of normalized profit, with contour lines starting
at 0, 0.80, 0.825, etc., ranging up to 1.25. Peak profit of 1.07104834 is attained at �=< 
�
 * ��
�
������ � 
��>* �����>������
 . c) Realized
profit landscape with � 
 � ( ( and two-part tariff pricing, with 100 randomly generated consumers. Contour plot, with contour
lines as in b).



each landscape and choosing the highest peak found over
the 100 runs. Previous experimentation had established that
this was much more than sufficient to find the global peak
for the two-part tariff landscape. Taking the two-part tariff
case as an example, the average peak profit of 1.1043 is mea-
surably higher than the peak of the ideal landscape, which
is 1.0710. This comes about because a realized landscape
is bound to have portions which are both lower and higher
than the ideal, and we are selecting the highest point on each
landscape. The numbers in parentheses represent the stan-
dard deviation across different realizations of the landscape,
which was much larger for pure bundling and two-part tariff
than for linear pricing.

Since the landscapes can shift even when there is no under-
lying drift in the distribution according to which consumers
are chosen, it is of interest to characterize how these shifts
affect the overall profit. To do this, for each successive land-
scape we evaluated both the peak profit for that landscape and
the profit that would have been attained at the price parame-
ters for the previous landscape. The resultant difference is
reported in column 6 of Table 1. This difference provides a
sense of the amount of gain there is to be had from trying
to track a changing but statistically stationary consumer pop-
ulation, as opposed to simply riding out the statistical fluc-
tuations. The actual amount of gain may be less if the op-
timization algorithm fails to find the new global optimum in
the landscape whenever the landscape shifts, either by getting
stuck at a local optimum or having insufficient time before the
landscape changes again.

For smaller consumer populations, we have verified that
the amount of potential gain is larger. This is to be expected,
as the relative size of the bumps in the landscape is larger.

4 Amoeba
Amoeba is a variant of the simplex algorithm [Nelder and
Mead, 1965] for nonlinear unconstrained optimization prob-
lems. (This simplex algorithm should not be confused with
the simplex algorithm for linear programming.) The amoeba
algorithm maintains at each iteration a nondegenerate sim-
plex, which is a geometric figure in . dimensions of nonzero
volume that is the convex hull of .�� � vertices, ������� � � * * * ��� 6 ,
and their respective function values. Amoeba alternately re-
flects, contracts, and expands the simplex in an attempt to lo-
cate an optimum in a function’s landscape. In each iteration, a
new point (in this case, prices) is chosen and the correspond-
ing value (profit) is determined.2

Particularly relevant for our work is the fact that amoeba
does not make use of any gradient information when finding
optima. This makes it a particularly suitable choice for this
problem, as the profit landscape the producer must search is
dotted with peaks and discontinuities (e.g., profit landscape
in Figure 1c.)

Amoeba was designed for searching a fixed, deterministic
landscape. In order to contend with a changing profit land-
scape, we have made some straightforward extensions. First,
amoeba is essentially a “memoryless” algorithm - the simplex
only contains the last .�� � observed points. In order to detect

2For a detailed survey on amoeba refer to Walters [1991].

a change, a producer using amoeba must be able to observe
that a previously visited point now yields a different profit.
This is done by keeping a hash table of points and profits.

When amoeba determines that the landscape has changed,
it discards the . lowest-profit points in the simplex and gen-
erates new, random points. All .�� � points in the simplex are
then revisited. This introduces a bias that the previous ‘best’
point will be in the vicinity of the new optima; it will tend
to pull amoeba in its direction. Empirically, this technique
seems to perform well, thanks to amoeba’s ability to converge
quickly as long as the initial simplex is large enough.

5 Learning experiments
In order to determine which price schedules yield the great-
est aggregate profit, we conducted a set of experiments. In
each experiment, the consumer population was periodically
replaced, creating a shock in the landscape.

As discussed in section 2, we consider two separate models
of consumer population change. In the first, each consumer’s� is drawn from a fixed distribution � ( � ��� . At periodic inter-
vals, the consumer population is removed and replaced with a
new set of consumers drawn from the same distribution. The
nonstationarity arises from differences in the particular real-
izations of each population. The second model incorporates
change in the underlying population. Again, consumers are
drawn from a distribution � ( � ��� . At periodic intervals, they
are removed and replaced. In this case, � is altered. A sep-
arate random variable � 
 �	� � � � � is generated and added
to the previous � , producing a random walk by the bounds of
the distribution. In these experiments, � 
 ( * � . The new con-
sumer population is then drawn from this new distribution.

In these experiments, ��� was fixed at 10. Experiments
were conducted for � 
�� ( and � 
�� ( ( goods. For each
population change model, we conducted experiments where
the shock occurred every 10, 50, and 250 iterations. This pro-
duces cases in which the population changes more quickly, at
approximately the same rate as, and more slowly than amoeba
is able to converge.

Figure 3 shows cumulative profit per iteration when the
population changes every 10 iterations. The figures show� 
 � ( and � 
 � ( ( resampling from fixed and drifting
populations. We see that in the very early stages, nonlin-
ear pricing performs well, but after about 20 iterations it is
overtaken by the two-parameter schedules, two-part tariff and
mixed bundling. Even though these schedules start at worse
points in the profit landscape, these schedules are more eas-
ily learned, and show the quickly dominate nonlinear pricing,
despite the latter’s higher steady-state profit.

Figure 4 shows cumulative profit when the population
changes every 50 iterations. We see that the two-parameter
schedules overtake nonlinear pricing even more quickly as
the amount of nonstationarity is reduced.

Figure 5 shows cumulative profit when the population
changes every 250 iterations, or once within the course of the
experiment. In this experiment, bundle size makes a differ-
ence; by the end of the experiment, when � 
 � ( , nonlinear
pricing has had long enough to reach an optima and overtake
the two-parameter schedules. When � 
 � ( ( , it still lags



200

400

600

800

1000

1200

1400

1600

1 10 100

P
ro

fit

Iteration

Average Profit per Iteration (N = 10)
Resampling from a fixed distribution every 10 iterations

Linear

Pure

Two-part Nonlinear

Mixed

400

600

800

1000

1200

1400

1600

1 10 100

P
ro

fit

Iteration

Average Profit per Iteration (N = 10)
Resampling from a drifting distribution every 10 iterations

Two-part Nonlinear

Mixed

Linear

Pure

0

2000

4000

6000

8000

10000

1 10 100

P
ro

fit

Iteration

Average Profit per Iteration (N=100)
Resampling from a fixed distribution every 10 iterations

Two-part

Nonlinear
Mixed

Pure

Linear

0

2000

4000

6000

8000

10000

1 10 100

P
ro

fit

Iteration

Average Profit per Iteration (N=100)
Resampling from a drifting distribution every 10 iterations

Linear
Pure

Two-part
Mixed

Nonlinear

Nonlinear

Pure

Two-part

Mixed

Linear

Figure 3: Cumulative profit per iteration when the population changes every 10 iterations



400

600

800

1000

1200

1400

1600

1 10 100

P
ro

fit

Iteration

Average Profit per Iteration (N = 10)
Resampling from a fixed distribution every 50 iterations

Two-part
Nonlinear

Mixed

Linear

Pure

400

600

800

1000

1200

1400

1600

1 10 100

P
ro

fit

Iteration

Average Profit per Iteration (N=10)
Resampling from a drifting distribution every 50 iterations

Two-part

Nonlinear

Mixed
Linear

Pure

0

2000

4000

6000

8000

10000

1 10 100

P
ro

fit

Iteration

Average Profit per Iteration (N=100)
Resampling from a fixed distribution every 50 iterations

Nonlinear

Two-part

Mixed Linear

Pure

0

2000

4000

6000

8000

10000

1 10 100

P
ro

fit

Iteration

Resampling from a drifting distribution every 50 iterations

Average Profit per Iteration (N = 100)

Two-part

Nonlinear

Pure

Mixed

Linear

Figure 4: Cumulative profit per iteration when the population changes every 50 iterations



400

600

800

1000

1200

1400

1600

1 10 100

P
ro

fit

Iteration

Average Profit per Iteration (N = 10)
Resampling from a fixed distribution every 250 iterations

Nonlinear

Two-part

Mixed

Linear

Pure

400

600

800

1000

1200

1400

1600

1 10 100

P
ro

fit

Iteration

Average Profit per iteration (N = 10)
Resampling from a drifting distribution every 250 iterations

Nonlinear

Two-part

Mixed

Linear

Pure

0

2000

4000

6000

8000

10000

1 10 100

P
ro

fit

Iteration

Average Profit per Iteration (N = 100)
Resampling from a fixed distribution every 250 iterations

Nonlinear

Mixed

Linear

Two-partPure

0

2000

4000

6000

8000

10000

1 10 100

P
ro

fit

Iteration

Average Profit per Iteration (N=100)
Resampling from a drifting distribution every 250 iterations 

Nonlinear

Pure

Two-part

Linear

Mixed

Figure 5: Cumulative profit per iteration when the population changes every 250 iterations



behind. (Recall that nonlinear pricing schedules have � di-
mensions.) Also worth noting is that after 250 iterations, the
two-parameter schedules have converged on a solution; once
the population changes, they are able to quickly shift to a new
optima. In the case of two-part tariff, this is due to the large,
flat mesa at the top of its hill. As discussed in section 3, re-
alizations of two-part tariff tend to have local optima that lie
within a plateau at the peak of the landscape. This makes it
easy for a producer using two-part tariff to quickly locate a
new optimum once the population changes. In addition, all
solutions on this plateau tend to perform well, making the
schedule resistant to consumer nonstationarity as modeled.

Another interesting detail is the different performance of
mixed bundling as the bundle size increases. Recall that
mixed bundling offers consumers a choice of a per-article
price or a bundle price. This can be a disadvantage, as learn-
ing about one parameter does not appear to provide much
assistance in learning the other. The two-part tariff, on the
other hand, has more closely related parameters. Empirically,
a producer using mixed bundling often winds up learning one
parameter and abandoning the other, making it effectively a
one-parameter schedule. This seems to happen more when� 
�� ( . Perhaps the smaller nonzero region makes it more
difficult to isolate and tune the effects of each parameter.

6 Conclusion
In this paper, we have explored some simple models of con-
sumer nonstationarity and compared the performance of firms
using different price schedules in this nonstationary environ-
ment. We have have seen that two-parameter schedules, and
the two-part tariff in particular are attractive schedules as
they are both robust to changing consumer population and
learned rather quickly. This provides further evidence that
when a producer is interested in maximixzing its aggregate
profit in an uncertain environment, it must consider not only
the steady-state profits yielded by a particular schedule, but
also the ease with which this schedule can be learned as this
greatly affects the profits earned in the interim periods.

This work has only scratched the surface of learning in a
nonstationary environment. We plan to extend it in several
ways. First, we would like to explore more complex models
of nonstationarity, including continuous change, as well as
evolutionary models in which consumer replacement is tied
to their satisfaction. This also gives us an avenue to introduce
learning on the part of the consumers.

Competition is an essential next step. Our previous
work [Brooks et al., 2000] examined a scenario in which
producers learn to discover niches in an unknown but static
population. Extending this to examine niche formation and
discovery in a dynamic world is a promising extension.

Finally, we would like to extend the current model of con-
sumer preferences. While the Chuang-Sirbu model is useful
for its tractability, it does not have the richness one might like.
For example, it doesn’t consider substitutes or complements,
and it assumes that the producer can show a set of � goods to
the consumer, who then picks the ones she likes. If, instead,
the producer must select these goods based on a prediction of
the consumer tastes, the problem becomes much more com-

plex.
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