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Abstract: Except for purely nonparametric methods, statistical methods depend on assumptions about the
distribution of the data studied. While these assumptions are easily checked for a single univariate dataset
with diagnostic plots, in the massively univariate model used with functional MRI (fMRI) it is impractical
to check with a massive number of plots. In previous work we have demonstrated how to diagnose model
assumptions and lack-of-fit for single-subject fMRI models using a working assumption of independent
errors; our work depended on images and time series of summary statistics that, when simultaneously
viewed dynamically, identify problem scans and voxels. In this article we extend our previous work to
account for temporal autocorrelation in single-subject models and show how analogous methods can be
used on group models where multiple subjects are studied. We apply these methods to the single-subject
Functional Image Analysis Contest (FIAC) data and find several anomalies, but none that appear to
invalidate the results for that subject. With the group FIAC data we find one subject (and possibly two
more) that demonstrate a different pattern of activity. None of our conclusions would be arrived at by
simply looking at images of t statistics, demonstrating the importance of model assessment through
exploration of the data and diagnosis of model assumptions. Hum Brain Mapp 27:442–451, 2006.
© 2006 Wiley-Liss, Inc.
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INTRODUCTION

The standard approach to modeling functional MRI
(fMRI) data is a linear regression model, with one model for
each voxel. This so-called massively univariate approach
embodies a series of assumptions at each voxel. Specifically,
a linear model assumes (1) mean zero errors, which implies
that the model is “correct” and does not lack any important
predictors; (2) constant error variance, in particular, that the
magnitude of the errors does not vary systematically; (3)

independent errors or errors that follow a specified depen-
dence structure; and (4) errors that follow a normal distri-
bution. The first three assumptions are required to ensure
that the estimates obtained (e.g., percent BOLD change) are
optimal, in that they are unbiased and have the minimum
possible variance. The last assumption is required for the
calculation of P values, which determine the statistical sig-
nificance of the estimated effects. When any of these four
assumptions are in question, the validity of the final results
are unsure, as there might be an increased rate of false-
positives; just as troubling, there may be increased false-
negatives, that is, reduced power.

For a single univariate dataset, the diagnosis of linear model
assumptions is straightforward and routine: The residuals
(data minus fitted value) are plotted in various ways to identify
any structure (to check assumption 1), to see if the residuals’
variance changes systematically (assumption 2), whether the
residuals exhibit autocorrelation (assumption 3), and whether
the residuals follow a normal distribution (assumption 4). For
fMRI, when fitting 100,000 linear models, however, it is im-
practical to examine 100,000 sets of residual plots. To address
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this problem we have created a set of tools to critically assess
the linear model assumptions of fMRI [Luo and Nichols, 2003],
and implemented these ideas in a toolbox for SPM2 (Wellcome
Department of Imaging Neuroscience, London, UK), Statistical
Parametric Mapping Diagnosis (SPMd, Department of Biosta-
tistics, University of Michigan, Ann Arbor, http://www.sph.u-
mich.edu/ni-stat/SPMd/).

The general strategy of SPMd is to create images and time
series (or “subject series,” for group data) that summarize
evidence of assumption violations. The summary data is
then interactively explored to identify voxels and scans with
possible problems, and then view the “detail,” the model fit
at individual voxels, or the residual images for specific time-
points (subjects).

The purpose of this work is to demonstrate the SPMd
toolbox with the publicly available Functional Image Anal-
ysis Contest (FIAC, http://www.madic.org/fiac) data,
showing how to assess violations of the assumptions on an
individual subject and group analysis. We also report on
two new but minor modifications to our method which
account for autocorrelation and the particulars of group-
level data.

MATERIALS AND METHODS

For each voxel of fMRI data, a general linear regression
model (GLM) is fitted by:

Y � X��� (1)

where Y is an N vector response, X is an N � p design matrix
of predictors, � is a p vector of unknown parameter, and ε is
an N vector for unknown, random errors. Traditionally,
linear model errors are assumed to be identically, indepen-
dently and normally distributed, ��N(0,�2I) (where “�”
denotes “is distributed as”), and which leads to the ordinary
least squares (OLS) estimates �̂�(XTX)�1 X	Y and residuals
e � Y � X�̂. While fMRI data are known to be temporally

correlated [Friston et al., 2003], in our initial work [Luo and
Nichols, 2003] we used a working assumption of indepen-
dence and sought to detect traditional violations of linear
modeling assumptions.

Whereas traditional linear model diagnosis consists of
examining plots of residuals, we use diagnostic statistics
which are functions of the residuals. Table I shows the
diagnostic statistics used and the assumptions they assess
[see Luo and Nichols, 2003, for details]; we call these mea-
sures Model Summaries, as these statistics summarize the
quality of the model fit at each voxel. Where a null distri-
bution is available, we transform the statistic into a �log10 P
value image so that all statistic measures have a common
scale. For example, the Cook-Weisberg tests for heteroge-
neous variance by regressing the squared residuals on a
potential explanatory variable; if the regression is signifi-
cant, it supplies evidence that the variance varies with the
explanatory variable and that the errors do not all have the
same variance.

While Model Summaries are images that assess model fit
at each voxel, Scan Summaries (Table II) are N vectors (time
series for intrasubject fMRI data, subject-series for group
data) where each element assesses problems over an entire
image. The two other components of our method are Model
Detail and Scan Detail. Model Detail consists of traditional
diagnostic plots, showing residual and data fit plots for a
single voxel. Scan Detail is simply the standardized residual
images, viewed in series, so as to localize the spatial and
temporal extent of an artifact.

In Luo and Nichols [2003] we recommend starting with
Scan Summaries, to identify any problem images, and then
viewing Model Summaries, to localize problem voxels; then
for each voxel with possible problems, using the Model
Detail to assess the traditional model assumptions and the
goodness-of-fit; lastly, if a particular scan appears to have an
artifact, the Scan Detail can be used to find exactly what
portion of the brain is affected by the artifact. Taken to-
gether, these four views of the data can be used to efficiently

TABLE I. Diagnostic statistics used to create Model
Summary images

Diagnostic
statistic/Model
Summary Assumption assessed Null distribution

Cook-Weisberg Homogeneous Var.
Var(εi) � �2

Chi-squared

Durbin-Watson Zero autocorrelation
Cov(εi,εj) � 0

Beta

Cumulative
periodogram

Independence Var(ε)
� �2I

Kolmogorov-
Smirnov

Shapiro-Wilk Normality ε �
Normal

(tabulated)

Outlier count (over
scans)

Homogeneous errors
artifacts

Binomial

Standard deviation Artifacts

These statistics are used to create images, where each voxel assesses
the validity of a particular assumption.

TABLE II. Diagnostic measures used to create scan
summary time series

Scan summary Interpretation

Global intensity Whole-brain signals or
artifacts

Outlier count (over voxels) Shot noise, artifacts
Preprocessing parameters, e.g.,

head motion
Suggests cause of artifacts

Experimental predictors For investigating mismodeled
signal in residuals

Averaged residual periodogram Whiteness of residuals,
spectral content of
physiological/unmodeled
variation

Since no explicit model is fit over the image, there are no formal
diagnostic statistics available. Rather, these measures are heuristics
that are sensitive to artifacts that corrupt part or all of an image.
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assess the assumptions of the model and understand any
possible violations.

In this article we extend our previous work in two ways:
We use models with temporal autocorrelation (V 
 I) in
single-subject fMRI datasets, and we apply the method to
multisubject, group level data. To account for autocorrelated
errors, we let, W � V̂�1/ 2 where V̂ is an estimator of the
autocorrelation V. We can then “pre-whiten” data (Y) and fit
(X�) by pre-multiplying by W on both sides of Eq. (1), giving
WY � WX� � W�. We write this whitened model as:

Y* � X*� � ε* (2)

where �*�N(0,�2WVWT). If V̂ is an accurate estimator of V,
then WVWT � I and �* will be independent, and OLS can be
applied to the whitened model and optimally precise esti-
mates �̂* will be obtained. This entire estimation method is
known as generalized least squares (GLS). Finally, we write
the GLS residuals as e* � Y* � X*�̂*.

Diagnosis of autocorrelated models proceeds just as with
independence models, except that the assumptions are now
on the whitened model (Eq. 2) and tested on the whitened
residuals e*. One difficulty with whitened models is that
each whitened scan contains information from multiple
scans. That is, each element of Y* is a linear combination of
several elements of Y, as per Y* � WY; likewise, each ele-
ment of e* is a combination of multiple timepoints. This is a
problem, since if there is a single corrupt scan, say Yi, the
artifact will be spread over multiple rows of Y*, expanding
the impact of the corrupt scan and making the detection of
the artifact more difficult. Our solution for this is to examine
both the fit of the whitened model and the original (unwhit-
ened) model using the whitened estimates. That is, in addi-
tion to plotting Y*, X*�̂* and e*, we plot Y, X�̂* and e�*�

� Y � X�̂*; in this way we use the optimal whitened
estimates �̂* but observe the fit in terms of the original data
units.

Diagnosis of multisubject group models follows in the
same general framework as above (reviewing Scan Summa-
ries, then Model Summaries, etc.) with three differences.
First, since observations are now over subjects, there is no
plausible explanation for interscan correlation, and so the
autocorrelation and dependence diagnostics are not used.
The most useful diagnostic measures are instead simple
outlier counts and normality diagnostics, which can detect
unusual subjects. The second difference concerns misregis-
tration of each subject’s results. While motion correction is
an issue with intrasubject analyses, a much more serious
concern is the success of the intersubject registration (a.k.a.
spatial normalization). Additionally, we should worry about
remaining differences in functional anatomy. For example,
individual subjects could each exhibit robust results, but if
the loci of their activations do not align over subjects, there
will be no positive result, or one may obtain a misleading
positive result if one only examines a t statistic image. A way
to address these concerns is to simply look at the data, which
leads to the third difference between single-subject and

group fMRI analyses diagnosis, the possibility of direct vi-
sualization.

Unlike a single-subject fMRI analysis, it is in fact practical
to simultaneously visualize the entire dataset in 2-D sec-
tions, due to the (unfortunately) typical small group sizes.
This allows for assessment of intersubject variation in struc-
tural as well as functional anatomy. For anatomical images,
we systematically check the alignment between individuals
in the group and between the group and the atlas at the
landmarks described in Table III. These landmarks are cho-
sen as they are easy to identify and will be sensitive to
misregistration; certainly, if particular regions are of key
interest they should be examined on each subject’s anatom-
ical image. On functional images, typically consisting of one
difference (or contrast) image per subject, we first check
alignment with anatomy and then explore the functional
data. We explore the mean functional data noting where
voxels are lost due to susceptibility artifacts. In the differ-
ence images we look for gross patterns that distinguish one
or more individuals; if the principal activation can be clearly
seen in each subject, we characterize any variability in loca-
tion of the activation over subjects.

Instead of going into extensive software details (e.g.,
which button to click), we instead focus on the general
heuristics implemented in the SPMd toolbox. The only
operational details of SPMd that are essential are: (1) it is
Matlab-based on an extension to SPM; (2) it requires a
completed SPM analysis directory in which to operate;
and (3) it consists of two separate steps, a “Compute”
stage where scan summaries, model summaries and scan
detail are precomputed, and a “Visualization” stage,
where the different summaries and detail data are inter-
rogated.

Data

We use the FIAC single-subject’s block-design data (Sub-
ject 3, “fonc3” and “fonc4”) and the group dataset [Dehaene-
Lambertz et al., 2006]. For the group data we use the sum-
mary data for 15 subjects for the difference of the DSt-DSp

TABLE III. Landmarks for assessing intersubject
registration

Location/view Description

Cortical surface,
using all
orthogonal
views

Rostralmost frontal cortex.
Anterior surface of occipital pole.
Ventralmost extent of temporal pole.
Dorsalmost cortical surface.
Lateralmost left and right cortical surface.

Mid-sagittal plane
and coronal
sections

Anterior-, superior-, and posteriormost
extent of corpus callosum.

Border between cerebellum and occipital
cortex.

Inferior surface of medial orbitofrontal
cortex.

Axial slices Ventricle surfaces, check for gross size
differences.
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(Different Sentences – Different Speaker) and SSt-SSp (Same
Sentence – Same Speaker) effects.

All data are analyzed with SPM2 (last patch dated July 26,
2005). We carefully describe some methodological aspects of
SPM that we have found poorly documented. Single-subject
data are realigned to the first scan analyzed. A brain mask is
found by retaining all voxels with intensity greater than 80%
of a working intracerebral mean image intensity, where the
working mean is determined using all voxels having inten-
sity greater than 12.5% of the total volume mean. For intra-
subject fMRI modeling, low-frequency noise is determinis-
tically modeled with a Discrete Cosine Transform (DCT)
basis (0.0078-Hz cutoff, 7 predictors). Additionally, non-
white noise is stochastically modeled using a global auto-
correlation model based on a first-order Taylor series ap-
proximation to an AR(1) model expanded about 
0 � 0.2,
Cor��i,�i�k)�
0

�k���k�
0
�k��1(
0�
). Specifically, the covariance

of � is taken to be a linear combination of matrices corre-
sponding to 
0

�k� and �k�
0
�k��1 (Q1 and Q2, respectively), with

coefficients estimated with ReML; the ReML estimates are
based on the unconstrained N by N covariance matrix of the
raw data Y, for the subset of voxels whose OLS F statistic for
effects of interest is significant at 0.001 [Friston et al., 2002].
The resulting covariance estimate is normalized into a cor-
relation matrix V, and is then used with GLS at each voxel.

RESULTS

In both the single-subject and the group analysis, we
progress from scan summaries, to model summaries, to
model detail, and, finally, to scan detail.

Single-Subject Analysis

For the single-subject data, we first review the global
aspects of the analysis, specifically the autocorrelation mod-
eling. For the two runs considered there are roughly the
same number of voxels in mask (26,578 and 26,246 voxels for

“fonc3” and “fonc4,” respectively) with a �0.96-L search
volume; for each run, �3% of the in-mask voxels contrib-
uted to the autocorrelation estimation (840 and 1,031 voxels,
respectively).

The estimated global ACFs are very similar to 
0�k�, sug-
gesting that the best global AR1 model was close to an AR(1)
with � around 0.2. Another view on the autocorrelation is
through the global periodograms, the residual power spec-
trum obtained by averaging over all voxels’ spectrums. Fig-
ure 1 shows two average periodograms, one for an analysis
with no whitening and one with whitening with the approx-
imate AR model. (The zero power at low frequencies is due
to the DCT basis eliminating those frequencies from the
residuals.) For the analysis without whitening (indepen-
dence model), a relatively flat spectrum is seen, although
with some high-frequency spikes. In contrast, the perio-

Figure 1.
Average periodogram for a single subject (fiac3, fonc4), for a
model assuming independence (A) and assuming an approximate
AR1 model (B). These periodograms indicate that the spectrum of
the original data is nearly flat, and the effect of the AR1’s whitening
is to actually induce excess high-frequency variation.

Figure 2.
(A) Scan summaries for the Fonc4 data, with the temporal cursor
on scan 56. Note that scan 56 has 300% more outliers than would
be expected by chance, and following that scan there is a decrease
in the global intensity. (B) Scan detail (standardized residual im-
ages) for images 54–58; the value under each image is the stan-
dardized residual under the crosshair. These images show the
source of the artifact, a hyperintensity in the orbitofrontal region,
just above an air–tissue interface.
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dograms of the analysis with whitening (AR model) show
relative suppression of low frequencies and amplification of
high frequencies. Below we comment on the success of the
autocorrelation model after considering other diagnostics.

The scan summaries (Fig. 2, top) provide information on
problems on a scan-by-scan basis. The plots show no dra-
matic problems, except that regressions of movement pa-
rameters on the experimental design are significant, indicat-
ing stimulus correlated motion. For example, in fonc4 all
movement parameters except pitch and roll have significant
F statistics. However, visual inspections of the movement
time series indicate that the problem is not severe. The plot
of expected outlier counts is typically near 100%, indicating
a nominal rate of outliers, although a few spikes are prom-
inent; we revisit these below.

Next we review the model summaries, starting with the
correlation diagnostics. Figure 3 shows –log10 P value im-
ages of the Durbin-Watson (Zero Autocorrelation, “CORR”
test) and Cumulative Periodogram (Independence, “DEP”
test) test statistics, for both an independence model and the
approximate AR1 model. For the independence model, both

the CORR and DEP test image appear somewhat “bright,”
indicating evidence of correlation (e.g., for fonc3, CORR and
DEP identified correlation at 22% and 16% of brain voxels,
respectively, when only a nominal 5% rate is expected). With
the AR1 model, the CORR image is “dark” and the DEP
image is even brighter (for fonc3, CORR only identifies 3.8%
problem voxels, while DEP identifies 42% of all voxels,
when a nominal 5% rate is expected). Thus, while the CORR
diagnostic finds no problem with the AR1 model, the DEP
diagnostic actually finds the AR1 model to be worse than the
independence model. This matches the findings from the
average periodogram in Figure 1.

Before reviewing other Model Summary images, we use
the Model Detail view to examine the autocorrelation fit at
specific voxels. Figure 4 shows three voxels explored to
demonstrate the autocorrelation fit. In the top is shown a
voxel with good autocorrelation fit; the lagged residual
plot shows autocorrelation in the original data, and after
whitening, a nearly spherical distribution of points. The
next two rows show examples of autocorrelation overfit,
where originally white data now exhibit negative auto-

Figure 3.
Scan summaries for assessing noise correlation. (A) The CORR
(top) and the DEP (bottom) diagnostics for a model assuming
independent noise; both have many voxels with values exceeding
2 (i.e., P values 10�2), indicating the presence of autocorrelation.

(B) The CORR (top) and DEP (bottom) diagnostics for the AR1
model; with AR1 autocorrelation modeling the CORR diagnostic
has improved, but now the DEP diagnostic is much worse. See
Figure 2 for an explanation of this effect.
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correlation due to the global whitening, and autocorrela-
tion underfit, where autocorrelation remains after whit-
ening. In total, considering the ACF plots, the average
periodograms, the correlation diagnostics and these
lagged residual plots, it is apparent that the dependence
structure of the data is not well fit by the approximate
AR1 model. Specifically, we find that the global model
cannot adapt to the local variation in autocorrelation, and
that the whitening has overall induced excess high-fre-
quency variation in the residual data.

Having diagnosed the dependence structure of the noise, we
turn to traditional assumptions of good model fit (i.e., mean
zero errors), homogeneous variance, and normality. Using
Model Summary images, we find the typical problems with
normality and independence in the brain stem, and medial
inferior regions as well as near ventricles and major blood
vessels; notably, the standard deviation in these regions is 3 to
10 times higher than typically found in cortex. Such findings
are explained by respiratory and cardiac effects and are not
much of a concern unless the investigator is interested in tissue
in or near these regions, in which event physiological effects
should be modeled and removed from the data.

The residual standard deviation image identifies an un-
usual pair of vertical “columns.” Figure 5 shows two col-
umns of voxels exhibiting large residual standard deviation,
found in both of the sessions. A highly variable voxel in the
center of the reconstructed slice is not uncommon, and re-
flects poor normalization of k-space data. Unusual, however,

Figure 4.
Exploration of autocorrelation model fit, three ex-
amples from different regions. (A) Voxel demon-
strating good autocorrelation fit. (B) Voxel with no
autocorrelation initially (note that it appears to be in
a white matter area), which exhibits negative auto-
correlation after whitening with the approximate
AR1 model. (C) Voxel with strong autocorrelation
that is only partially whitened by the autocorrelation
model, and hence still shows positive autocorrelation
in the AR1 model.

Figure 5.
A comparison of standard deviation image and CORR diagnostic
image. The standard deviation image shows two vertical bars,
indicating regions of increased variability. The posterior bar re-
sembles an artifact due to poor normalization of the k-space data
before reconstruction; note that there no evidence of autocorre-
lation for that bar. The anterior bar is unusual in that, in addition
to high variance, it also contains significant evidence of autocor-
relation. Inspection of voxel time series finds a consistent 43-
second cycle variation (0.023 Hz) that is unique to voxels in that
column of voxels. (Note: this display was not oriented into ap-
proximate Talairach space, so as to clearly show the artifact.)
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is the second, anterior column that exhibited colored noise,
as noted in the CORR image; examination of Model Detail
for voxels in the anterior column revealed a prominent
43-second (0.023 Hz) pattern of unknown origin.

Successful activation is noted in the datasets, although
active voxels tend to have slightly greater-than-usual resid-
ual standard deviation and autocorrelation diagnostics. Fig-
ure 6 shows a voxel in the auditory cortex (top) showing the
main effect of the stimuli presentation, and in the lateral
prefrontal cortex (bottom) exhibiting the DSt-DSp vs. SSt-
SSp modulation. The increased standard deviation and
CORR diagnostics are due to systematic lack-of-fit in the
model, with the unmodeled variation inducing autocorrela-
tion into the residuals. Specifically, it appears that the data

rise and fall more quickly than the model, indicating that the
canonical HRF used by SPM has greater delay than found in
this subject. While including a temporal derivative in this
model could have improved model fit, it could not account
for the underestimation of the response magnitude, which is
clearly seen by the under- and overshoot of the data relative
to the model.

Finally, returning to the outlier spikes noted above in Scan
Summary, we use Scan Detail to determine the source of in-
creased outliers around scan 56. Figure 2, bottom, shows stan-
dardized residuals for scans 54–58, and an oribitofrontal arti-
fact is clearly observed in scan 56. Scan 56 exhibits a
hyperintensity, while subsequent scans appear relatively dark
in that region. The cause of this is possibly movement-related,

Figure 6.
Voxels showing main (sentence) and differential (DSpDSt-SSpSSt)
effects of interest. Top: Voxel in primary auditory cortex, exhib-
iting the main effect of the sentence presentation (note: the T and
Contrast images are for the differential effect, and so are not
exceptional). Bottom: Voxel in prefrontal cortex showing the

“same” vs. “different” effect. Note that in both voxels the residual
standard deviation is relatively high, attributable to lack of fit seen
in the time series; specifically, the data seems to rise and fall earlier
than the model.
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although no dramatic movements correspond to these spikes.
While the affected scans could be removed from the analysis, a
more pragmatic approach is simply to note the region and be
skeptical of activations that might appear there.

In summary, we have identified several problems with the
data and model, most notably with the autocorrelation model.
Since the autocorrelation model is principally concerned with
obtaining accurate P values (and secondarily, with optimally
precise estimates) the implications for this problem are most
severe when inference is made on an individual subject. If the
interest is in the group analysis, then the quality of the auto-
correlation model is less of a concern.

Group Data Analysis

The group data analysis is based on 15 subjects’ contrast
images, for the “different vs. same” contrast. There are 45,494
voxels in the mask, a 1.23-L search volume. We check the
extent of susceptibility artifacts using the contrast images (ide-
ally, mean functional data for each subject, in atlas space,
would be used), noting the location of the edge of the analysis
mask. Figure 7 shows the extensive susceptibility voids in the
orbitofrontal cortex, common with echo-planar imaging (EPI) ac-
quisitions. Since the hypothesized regions of response lie outside
of this region, we are not very concerned with this finding.

Figure 7.
Visualization of susceptibility voids through compar-
ison of a typical functional (contrast) image with the
averaged T1 anatomical image. Large extents of the
orbital frontal and nearby cortices are missing.

Figure 8.
Use of orthogonal viewers to view the group dataset simulta-
neously (due to space limitations, only six of the subjects are
shown). Most subjects appeared “gray,” meaning their contrast
data lies near zero (see top row, FIAC Subjects 3, 10, and 15).

In distinction, Subject fiac9 (bottom row, right) shows
extensive decreases in visual cortex, anterior cingulate, and
insular cortices; Subjects fiac2 and fiac4 also show similar
patterns.
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Before examining Scan Summaries, we visually explore
the entire 15-subject dataset. Using a 5 � 3 array of orthog-
onal viewers (SPM’s CheckReg facility) this is practical, if
perhaps requiring a large display. We first explore the ana-
tomical images in the standard space, to ensure that the
intersubject registration to the atlas is successful. Results of
the alignment check are shown in the Appendix; in general,
the alignment is very good, with the only notable lack of
alignment being variation in corpus callosum shape and
location of the ventral-most extent of the temporal pole. The
direct inspection of the functional data is striking (Fig. 8).
While most subjects’ contrast images are homogeneous and
exhibit no particular pattern (i.e., appear mostly gray), Sub-

jects fiac1 and fiac9 exhibit dramatic decreases in the visual
and superior midline regions (i.e., are very black); fiac4 also
exhibits some degree of decreases along the midline. (Note
that in this view it is crucial to use the same grayscale
intensity window for all subjects.)

The only scan summary of use for group analysis is the
outlier rate (Fig. 9), and we notice that fiac9 has 699% of the
number of outliers expected by chance (� � 0.05) and Sub-
jects 4 and fiac4 and fiac8 have over twice the expected rate
(212% and 219%, respectively). Other subjects have outlier
rates far below the nominal 100%, where low outlier rates
suggest an inflated residual standard deviation, attributable
to one or more outlier subjects—we revisit this below.

The normality diagnostic and the residual standard devi-
ation in Model Summaries are the most useful in the group
analysis (Fig. 9). The normality test is large near the visual
cortex and in a superior mid-line region. Model Detail for
voxels in these regions reveal that the nonnormality is at-
tributable to 1 or 2 outlier subjects, mostly fiac9, sometimes
in conjunction with fiac8 or fiac4.

The t statistic image is one type of Model Summary, and
Figure 10 shows a potentially significant region. With a t of
5.446, uncorrected P value of 0.000043, it could be an impor-
tant activation. However, when inspecting the contrast im-
age, the region is not exceptional (other regions in the con-

Figure 9.
Useful scan summaries for the group data, residual standard de-
viation, and the Shapiro-Wilk normality diagnostic. (A) The stan-
dard deviation image shows considerable structure; the primary
visual cortex is particularly well-defined in the axial view, indicating
visual activity was quite heterogeneous over subjects; the insular
and superior midline regions (possibly SMA) were also quite
variable. (B) The normality diagnostic was mostly small (dark)
throughout most of the brain, except in a handful of regions; these
three orthogonal views show evidence of nonnormality in extra-
striate regions, a left superior temporal region, and superior
midline region.

Figure 10.
Probable false-positive region found with Model Summaries.
Exploration of Model Summaries identified a prominent region
in the T statistic image (top left), with a peak t of 5.446,
uncorrected P value of 0.000043. The region is found to be
unexceptional in the mean effect or contrast image (top right),
but is found to be a region with exceptionally low variance
(bottom left). The region is most surely a false-positive region,
as inspection of the mean anatomical shows the voxel to be
squarely within white matter (bottom right), underscoring the
need for corrected significances.
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trast image with similar magnitude do not appear bright in
the t image), and only when the standard deviation image is
viewed can it be understood that this “activation” speaks
more to a local decrease in variability than a prominent
increase response magnitude; moreover, the corresponding
anatomical image shows the region is squarely in white
matter. Interestingly, that voxel is not significant when cor-
recting for multiple comparisons (corrected P value of 0.9878
and 0.1122 for FWE and FDR, respectively), suggesting the
data there are consistent with the null hypothesis.

Lastly, the Scan Detail (standardized residual images)
shows that Subject fiac9 is generally very “dark,” with al-
most all of its residuals negative (it was found that 81.5% of
that fiac9’s voxels are less than zero, far from the nominal
50%). Subjects’ fiac1 and fiac4 appear dim and also have a
large proportion of negative residuals.

In short, we find that the FIAC group data demonstrates
substantial intersubject heterogeneity, with at least one and
likely three subjects (fiac9, fiac2, fiac4) behaving in a funda-
mentally different manner from the other subjects. Notably,
none of these subjects were reported as having slept or
having trouble with the task. A comprehensive analysis
would consider excluding these subjects, or, perhaps better,
using robust methods [Wager et al., 2005] that can implicitly
down-weight unusual subjects.

DISCUSSION AND CONCLUSION

We have presented two new aspects of diagnosis of
linear models for fMRI, the evaluation of correlation mod-
els for single-subject fMRI, and of group models for mul-
tisubject data. We have found several anomalies in the
single-subject data, but none particularly catastrophic. In
contrast, for the group analysis there are a number of
measures that suggest that Subject fiac9 is completing the
task in a fundamentally different manner than other sub-
jects; Subjects fiac1, fiac4, and fiac8 also appear to diverge
from the group in different aspects. All of the diagnosis
methods presented here are implemented in SPMd, a
toolbox for SPM. SPMd provides dynamic graphical tools
that make it possible to explore the large datasets com-
mon in fMRI. For the group analysis, however, most of the

diagnosis consist simply of direct exploration of all sub-
jects’ contrast images simultaneously with SPM’s Check-
Reg facility; hence, with small group analyses, exploration
is straightforward and possible with any software sup-
porting multiple orthogonal viewers.

To conclude, especially in light of recent challenges to the
validity of fMRI analyses [Dobbs, 2005], we stress the im-
portance of thoroughly exploring one’s data, and carefully
assessing the validity of a model’s assumptions. The end
result will be inferences that are trustworthy and a greater
understanding of the limitations of one’s data.
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APPENDIX

Below is the assessment of the intersubject registration,
as noted at the landmarks described in Table III. For each
landmark, first the degree of agreement within the group
is given (“within”), followed by the agreement of the
group mean T1 with the avg152.mnc MNI atlas (“atlas”).
If a landmark or within/atlas designation is omitted, the
relevant alignment is satisfactory. The following short-
hand notations are used: A/P � Anterior-Posterior; S/I
� Superior/Inferior, CC � Corpus Callosum and Ss
� subjects.

Location/view Description

Cortical surface, using all
orthogonal views

Rostral-most frontal cortex. Within: fiac2 relatively posterior.
Anterior surface of occipital pole. Within: Some Ss have asymmetric pole.
Ventral-most extent of temporal pole. Within: Substantial S/I variability and image quality poor.
Lateral-most left and right cortical surface. Within: fiac0 more medial on right side, and fiac3 and fiac8

are more medial on the left side. Atlas: Mean T1 is more lateral than the atlas on left side.
Mid-sagittal plane Anterior-, superior- and posterior-most extent of corpus callosum. Within: Superior point of CC is most

variable of CC landmarks; substantial variability in CC shape. Atlas: Mean T1 anterior CC displaced
4 mm anteriorly and superiorly relative to atlas; mean T1 superior CC posterior (7.5 mm).

Mid-sagittal plane and
coronal sections

Inferior surface of medial orbitofrontal cortex. Within group: Substantial S/I variation, up to 10 mm
difference between Ss.

Axial slices Ventricle surfaces, check for gross size differences. Within group: Overall good consistency, exceptions
include fiac10, with relatively large anterior horn of lateral ventricle, and fiac15, with relatively large
posterior horn of lateral ventricle. Atlas: Overall good alignment, except on the mean T1 the posterior
horns of lateral ventricle were more lateral than the atlas’s ventricles, more so on left than right.
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