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Summary The aim of these analyses was to develop and describe easily
implementable, yet information rich, approaches for analysis of the temporal profile
of cortisol in human populations. A typical waking profile of cortisol in a sample of
women aged 15–44 was parameterized by a piecewise linear regression model,
implemented as a mixed model to accommodate repeated observations among
individuals. The model was extended to distinguish characteristic cortisol profiles of
obese women from those of non-obese women. Sharp inflection points for the diurnal
profile of cortisol were noted at 30 and 75 min past awakening. Obese women showed
a slight tendency to have a less sharply rising and declining response to awakening
than non-obese women.
Q 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The hypothalamic pituitary adrenal axis (HPA) with
its end product of cortisol, is one of several
neuroendocrine systems that display profound
circadian changes. In the case of the HPA axis, the
rhythm is entrained to the wake–sleep cycle so that
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the highest levels occur shortly after awakening and
the lowest levels are found during the early sleep
period. Recent innovations in saliva assays have
found that saliva cortisol is a useful tool for
examining cortisol measures in real life situations
(Kirschbaum and Hellhammer, 1994), with some
evidence that the magnitude of the morning rise is
associated with the level of life stressors (Pruessner
et al., 1999). Consequently, assessment of this
morning rise may provide a particularly useful tool
for examining the biological effects of social and
economic stressors on overall health in survey
populations, as well as the impact of a number
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of disease and pre-clinical states on the cortisol
rhythm.

Epidemiological, population-based studies are
beginning to utilize repeated sampling of salivary
cortisol with many advantages over the laboratory
based assessments of cortisol. As more and more
such studies appear, the challenges of modeling
cortisol rhythms have become increasingly appar-
ent (Pruessner et al., 2003). Cortisol shows a
marked circadian rhythm, increasing about 50–75%
within the first 30 min after awakening in both
sexes, across a wide span of ages (Hucklebridge
et al., 2000). Following the morning awakening rise,
cortisol levels drop sharply, and then more gradu-
ally over the rest of the day, as secretory activity in
the HPA-axis declines. In addition, cortisol
secretion is pulsatile, and these pulses are super-
imposed upon the underlying circadian rhythm
(Young et al., 2001) contributing additional varia-
bility to infrequent sampling of cortisol as utilized
in saliva studies.

A variety of approaches have been used to
characterize and evaluate the circadian profile of
salivary cortisol. These include measures that
utilize information on the slope of the decline
from the peak to trough levels (Sephton et al.,
2000) or alternatively, present separate assess-
ments of morning and/or evening cortisol levels
(King et al., 2000; Steptoe et al., 2000). Other
studies evaluate total cortisol concentration over
the day, using a measure such as area-under-the-
curve (e.g. Reynolds et al., 2003). Several studies
focus on the rhythm profile of cortisol, as the
morning cortisol response to awakening, as well as
the extent of decline to the evening nadir can
provide important information on the activity of the
HPA axis (e.g. Schmidt-Reinwald et al., 1999). At
the other end of the spectrum are approaches that
seek to describe the cortisol rhythm in all its
complexity, and use non-parametric approaches to
fit smoothing splines (Erosheva et al., 2002; Wang
and Brown, 1996).

Both the modeling approaches and data require-
ments of these approaches clearly vary. Harmonic
analyses such as cosinor analyses enforce a fixed 12-
hour period and assume relatively uniform changes
on the ascending and descending limbs, which may
not be the best fit to the data. Furthermore, these
approaches require 24 h of sampling, which leaves
analyses of data from shorter time periods not well
addressed. Many analyses rely on ordinary linear
regression modeling to model the profile of cortisol
data. Such approaches work best with samples
evenly distributed over the course of the day, but
they do not capture critical aspects of the circadian
rhythm of cortisol, including the early morning rise
and subsequent decline. Better fit is obtained by
using smoothing splines, but these methods, while
useful for exploration, do not yield quantitative
parameters to allow for group comparison. Also,
smoothing splines methods require intensive
sampling over the day, and are not practical for
use in population-based studies.

Modeling efforts are further hampered by the
poor compliance of subjects in sampling at the
instructed times. Studies have demonstrated
through electronic monitoring of actual times that
compliance is over-estimated by reported compli-
ance (Kudielka et al., 2003). In a recent report by
Yehuda et al. (2003), involving six samples in a
single day, only 49% of subjects completed all six
samples within 30 min of the specified time. Novel
analytic approaches to accommodate such vari-
ation in sampling time would therefore be useful.

In this study, we describe simple regression-based
approaches for characterizing the waking profiles of
cortisol, under conditions when data show a high
degree of temporal variability and the number of
measures varies across respondents. To illustrate
the value of these approaches, the current study
analyses repeated measures of salivary cortisol
obtained from a sample of poor women aged 20–
54. A combination of non-parametric and para-
metric methods is used to arrive at a suitable
specification of a piecewise linear regression
model with random effects. The specification of
the model combines prior theoretical knowledge
about diurnal variation in cortisol with the infor-
mation from the non-parametric descriptive ana-
lyses. An illustration of how the analyses can be
extended to subject-specific determinants of corti-
sol rhythms is also presented. Finally, we discuss the
implications of our modeling strategy for further
data collection and modeling efforts in this area.
2. Methods

The participants in this study are drawn from the
Women’s Employment Study (WES), a random
sample of single mothers with children receiving
cash benefits as of February 1997, in an urban
county in Michigan in February 1997 (Danziger and
Seefeldt, 2002). The sample was between the ages
of 18 and 54, and either African-American or White.
To date, four waves of data have been collected
from this sample. In June 2000, following com-
pletion of the third wave, a special health sup-
plement (WES-HS) was administered to a
representative sub-sample (nZ298) of the WES
survey respondents. Health measures included up
to four salivary cortisol samples, three of which
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were self-administered by the respondents on a
single day. Of the four salivary cortisol measures,
the first measure was obtained during a clinic or
home visit, where the respondent was provided
with three labeled Salivetteswe and instructed on
obtaining salivary samples at home. Respondents
were instructed to collect all three samples on 1
day, with the first sample collected upon awaken-
ing, the second after 30 min, and the third at
bedtime. They were instructed to record the time
of sample collection for each sample and to delay
breakfast until after the second sample. The
collection protocol was designed to capture, with
as few measures as possible, critical aspects of the
diurnal variation in cortisol, including the morning
awakening increase and sharp decline, as well as
the more gradual decline to the evening nadir.

Samples were returned by mail to the data
tracking center and frozen at K20 8C until assay.
Samples were thawed and spun in the laboratory
immediately prior to assay. They were assayed
using DPC Coat-a-Count tubes using 200 ml of saliva
per tube following manufacturer’s directions.
Inter-assay variability was 10%.
2.1. Analyses

Analyses presented in this paper are restricted to
the 188 respondents for whom at least one valid
cortisol measure was obtained, where a valid
measure is defined as one that includes both a
value for cortisol as well as the time of collection.
The correlations between cortisol measures within
individuals over time were investigated by estimat-
ing Pearson’s correlation coefficients between
successive cortisol measures. Intra-cluster corre-
lation coefficients were based on an unconditional
means model of cortisol level within each woman,
implemented using a hierarchical linear model.
Non-parametric methods were used to generate a
mean profile of diurnal variation in cortisol, and to
suggest the functional form and parameters for a
fully parametric model. Piecewise linear
regressions were tested to help locate knot pos-
itions, supplemented by the information available
from visual inspection of the individual and mean
cortisol trajectories (not shown). To account for
the correlation of observations within women, a
regression spline model with fixed knots, embedded
within a mixed model was used to generate subject
specific cortisol profiles. Finally, the model was
extended to identify determinants of inter-individ-
ual heterogeneity in terms of key parameters of the
individual change trajectory (20). All analyses were
conducted using SAS (v 8.02).
3. Results

At least one valid cortisol measure (defined as a
measure that includes both cortisol value and time
of collection) was obtained from 188 women, i.e.
63% of the sample. Non-respondents were similar to
respondents on a variety of measures, including age
and race composition, and physical health barriers.
Among the respondents, compliance with regard to
the number of measures obtained was high, so that
70% of the women provided four measures, and only
7% of the sample provided no more than one
measure. The number of obtained cortisol
measures did not appear to vary systematically by
a number of respondent characteristics that we
examined, including demographic measures, stress
measures, and physical health measures. There is
little reason to believe that the respondent sample
was a selected sub-sample, or that cortisol
measures among respondents were not missing at
random (MAR). Confirming that the data are missing
at random is an important pre-requisite to obtaining
unbiased estimates from mixed models of the type
that are estimated here.

Nearly 77% (nZ144) of the 188 respondents
collected the three home samples; 132, or 71% of
these also obtained an additional clinical sample.
An additional 17 women, or 9% of the sample, had
two measures available for analysis. At the other
extreme, 13 of the women, or about 7% of the
sample, had only one usable measure including the
clinic measure. In all 651 usable measures of
cortisol, nested within these 188 women, were
available for analysis. Valid cortisol measures were
obtained for 160 clinical samples, 164 awakening
samples, 167 second-morning samples, and 160
bedtime samples. While the clinical sample
measures were not obtained on the same day as
the remaining samples, results from all models
presented below were robust to the inclusion of
these clinical measures. They were thus retained in
all final analyses.

While respondents were able to collect the
salivary samples, compliance with the time require-
ments of sample collection was highly variable.
Thus, while respondents were required to collect
the first sample immediately upon awakening, the
actual mean time of sample collection was about
14 min after awakening. The second sample, which
was required to be collected 30 min after awaken-
ing, was collected, on average, about one-and-a-
half hours after awakening. However, the median
time gap between the first and second collection is
32 min, suggesting reasonable compliance with this
aspect of the protocol. The median gap between



Figure 1 Sampling frequency of cortisol measures.

N. Ranjit et al.618
sample collection times for the second sample and
the bedtime sample was about 13 h, with a range
from 6 to 19 h. There is consequently a high degree
of unplanned variability in sample collection times.
The resulting sampling frequency of cortisol values
over the day is described in Fig. 1. While sample
points are clustered in the first 1.5 h after awaken-
ing, and in the period between 14 and 16 h, as per
protocol, it is apparent that a fair proportion of
samples were obtained at other times of the day. As
it turns out, such temporal variability can be
exploited in modeling diurnal rhythms of salivary
cortisol.
3.1. Identifying the mean profile for the
population

A non-parametric loess-based smoother was
applied to the obtained cortisol values as a function
of time of collection, measured in minutes past
awakening. The profile shows a steep rise and an
equally rapid decline in the first hour or so after
awakening, and then a slower decline to a value
that then appears to remain more or less constant
for the rest of the measurement period (see Fig. 2
for an example of this pattern). It is evident that a
diurnal profile of this form cannot be modeled by a
linear or low order polynomial function of time. It
can however be readily modeled using some form of
spline function. We employed piecewise linear
regression models, which are essentially zero-
degree spline-based parametric models.
Based on visual examination of the plot in Fig. 2
and theoretical considerations, knots (inflection
points) were fixed at 30 min (0.5 h) past awakening
and 75 min (1.25 h) past awakening; in addition, the
density of data between 14–16 h allowed us to test
if there was a true inflection at 15 h. When knot
locations are chosen primarily on the basis of visual
examination of the data, as is done here, confi-
dence intervals obtained from subsequent models
have to be adjusted to accommodate this fact.
However, for the more limited purpose of descrip-
tion, it is appropriate to present unadjusted
confidence intervals. To confirm that these knot
locations were appropriate, we tested a simple age-
adjusted regression model of cortisol values against
a piecewise linear function of time with the ‘pieces’
defined by these three knot locations (not shown).

The regression confirmed that there was a true
change in slope at 0.5 and 1.25 h past awakening,
but not at 15 h. The adjusted R-squared of this
model was 0.25, with significant values (p!0.001)
on the slope parameters of all three segments. The
regression model results were consistent with the
graphical profile, suggesting that there are indeed
significant sharp non-linearities in cortisol values in
the early part of the day, and a relatively linear
pattern of decline over the latter part of the day.
Fit statistics of the model were robust to small
alterations (up to 10 min upward or downward) in
the locations of these knots; hence, we retained the
knot locations at 30 and 75 min past awakening, as
these were the most consistent with the graphical
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pattern. This basic model was extended by adding
other variables known or suspected to influence
cortisol variation. These included pregnancy status,
and smoking or eating prior to each measure. None
of the added measures had any important effect on
mean cortisol level. In the interests of parsimony
and power, the final selected model for the mean
included only age (centered at the mean age of the
sample, 33.5 years), and a non-linear spline-based
function of time (anchored to awakening time) with
knots at 0.5 and 1.25 h. Our final model for the
mean profile, accordingly, was a zero-degree linear
spline with two interior knots, as represented by
the following general equation

ZfðxnK1ÞC
fðxnÞKfðxnK1Þ

xn KxnK1
ðxKxnK1Þ; xnK1%x%xn

where the terms fðxiÞKfðxiK1Þ=xiKxiK1 represent
the slopes between xiK1 and xi, and f(x0) is the
intercept or awakening value. Three such equations
are estimated here, one each for the regions
between 0!x%0.5, 0.5!x%1.25, and xO1.25,
respectively.
3.2. Modeling subject-specific profiles of
cortisol

Cortisol measures within women are highly corre-
lated, with Pearson correlation coefficients ranging
from rZ0.35–0.62. It is clear that the cortisol
measures cannot be modeled as if they are
independently drawn from a population of cortisol
values; instead, our models have to account for
dependence within subjects. Simple regression
models can provide correct estimates of a popu-
lation mean profile, but to the extent that there is
within subject correlation, the standard errors of
such a model are biased downwards. We describe a
series of growth curve models based on modeling
subject-specific random effects. The fixed effects
model (Level-1) modeled the relationship between
individual data points and time since awakening,
Table 1 Random effects model estimates of population m

Variable Parameter
mate and S

Intercept (awakening value) 0.384 (0
Age (centered at 33.5 years) K0.049 (0
Phase 1 (slope of rise over 1st 30 min) 0.469 (0
Phase 2 (slope of decline from 30 to 75 min) K0.786 (0
Phase 3 (slope of decline from 75 to 14 h) 0.302 (0
and is the same as the model for the mean profile
as described in the system of equations above. The
random specification of the model (Level-2) mod-
eled individual values, and allowed random vari-
ation around the population intercept, as well as
around each of the three-spline parameters. In the
absence of any a priori knowledge regarding the
nature of the within-subject correlations, a fully
‘unstructured’ variance-covariance matrix was pre-
sumed. Despite the large number of parameters to
be estimated, convergence of the estimation
algorithm was obtained within three iterations.
The results presented in Table 1 are based on REML
estimates, a variant of full maximum-likelihood
estimators (MLE).

Based on the results from the random-effects
model specification, the mean baseline cortisol
level (at start of day) for a woman of average age
is 0.38 mg/dl. The parameter on the first segment
or Phase 1 (corresponding to the morning rise),
represents the slope (in units of mg/dl per hour) of
cortisol change from the segment 0–0.5 h after
awakening. Cortisol level rises rapidly during this
period at the rate of 0.47 mg/dl per hour. The
subsequent parameters model the slope increment
in subsequent intervals during the day. Thus,
K0.79 mg/dl per hour, the parameter on Phase 2
(the steep decline following the morning rise,
starting at 0.5 h and continuing up to 1.25 h) is
the slope increment over the Phase 1 value. Thus,
the net slope in this segment is K0.317 mg/dl per
hour (0.469C(K0.786)ZK0.317); i.e. cortisol
level decreases at the rate of 0.32 mg/dl per
hour in the 45 min after the morning peak. Phase
3, the interval of slow decline from 1.25 h to end
of day, has a parameter value of 0.302, or a net
slope of K0.02 mg/dl per hour (K0.317C
0.302ZK0.015). This implies a slight decline, on
average, in cortisol levels over most of the day,
after the initial fall from the morning peak has
been completed. The age parameter implies a
decrease in cortisol level by K0.049 mg/dl, for
each yearly increment in age beyond the mean
ean cortisol profile.

esti-
E

Implied slopes and
SE at knot changes

95% CI of implied
parameter

.026) (0.333–0.435)

.014) (K0.076 to K0.021)

.068) 0.469 (0.068) (0.336–0.602)

.100) K0.317 (0.040) (K0.395 to K0.239)

.041) K0.015 (0.002) (K0.019 to K0.011)
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age of the sample. The observed parameter values
confirm the pattern suggested by the graphical
examination. The size of the parameters (as
opposed to the small size of the standard errors)
suggests that the modeled pattern is not merely
due to a greater density of data availability during
the early part of the day. The random effects
portion of the model results (not shown), confirm
significant inter-individual heterogeneity in corti-
sol profiles, with non-zero variances obtained
around the intercept and each of the three slope
parameters. The residual of 0.071 obtained from a
fixed-effects-only model decreases to 0.027 after
inclusion of these women-specific parameters in
the model. The difference is accounted for by
between-subject variance, which is modeled by
the random effects. Approximately, twice the
variance in the data is between women, rather
than within women. From an unconditional means
model of cortisol level, we estimated the intra-
class correlation coefficient (ratio of between-
subjects variance to total variance) as 0.62, which
is sizeable. To allow comparison with a fixed-
effects-only model, the same model was run with
MLE estimates. A decline in the AIC value from
134.7 to K63.9 for this comparison confirms that
a model with random effects is markedly better
than the model with no random effects specified.
Fig. 2 plots predicted values from this model
superimposed on the original data values. Overall,
the fit is excellent.
Figure 2 Actual cortisol mean profile versus predicted cort
3.3. Associations of cortisol profiles with
obesity

In our next set of analyses, we extended these
random-effects models to explore differences in
cortisol profile by a subject-specific characteristic.
Additions to the basic repeated-measures mixed
model at this point involved only changing the
specification for the fixed-effects part of the
model, not the random effects, since our sample
size (number of observations per woman) limited
the number of additional estimable random effects.
In order to estimate the impact of obesity, we
added to the above model, an indicator of obesity
status (defined as BMIR30). Over half of the sample
is obese, with 106 women (57%) classified as obese,
compared to 78 classified as non-obese. 260 cortisol
observations were contributed by the non-obese
women, and 381 by obese women. Thus, there is
sufficient power to identify exposure effects along
the entire profile.

Exploratory loess-based graphical analyses
(Fig. 3) suggest that women’s cortisol profiles vary
by obesity status. The entire diurnal profile of obese
women differs from that of non-obese women, with
differences in both the intercept and the various
slope parameters as a function of obesity status.
The locations of the inflection points, however, are
similar for both obese and non-obese women. To
examine if these differences by obesity were
isol mean profile from random effects model with splines.



Figure 3 Loess-based diurnal profiles of cortisol in obese and non-obese women.
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statistically significant, we fitted a random-effects
model that allowed each of the spline slope
parameters and the intercept to vary as a function
of obesity status. This was achieved by adding a
main effect of obesity status, and allowing inter-
action of the obesity variable with each of the
spline parameters.

The estimated parameters by obesity status are
presented in Table 2. There is little difference
between obese and non-obese women in awakening
cortisol level (0.368 vs. 0.395), modeled by the
intercept in this model. Obese women, relative to
non-obese women, have both a shallower slope
(0.364 vs. 0.638, pZ0.0545) for the morning rise,
and a slower rate of decline following the morning
peak (K0.268 vs. K0.382), although this difference
is not statistically significant. Over the rest of the
day, there are no significant slope differences
between obese and non-obese women (K0.014 vs.
K0.016). However, because of the slower rise and
decline in cortisol levels during the awakening
surge, the level of cortisol for obese women remain
relatively lower than the level for non-obese
women, during this time of the day. Thus, the
data suggest that obesity may be associated with
lowered cortisol levels both during the morning
Table 2 Implied parameter estimates from random effec
slopes of each segment of the diurnal profile.

Parameter Obesity status

Obese women Non-obese w

Intercept 0.368 (0.032) 0.395 (0.042
Slope of Phase 1 0.364 (0.087) 0.638 (0.111
Slope of Phase 2 K0.268 (0.053) K0.382 (0.0
Slope of Phase 3 K0.014 (0.003) K0.016 (0.0
Centered age K0.050 (0.014) K0.050 (0.0
surge, and over the rest of the day. Random effect
parameters in this model (not shown) remain
largely unchanged from the two previous specifica-
tions. Other models we tested, but do not present,
do not point to any single characteristic or set of
characteristics of obese women that differentiate
their parameter variance or parameter mean from
those of non-obese women.
4. Discussion

This exercise in modeling cortisol data collected
over time demonstrates how data collection proto-
cols and modeling techniques can be matched to
meet the objectives of an analysis. A key objective
for this set of analyses was to demonstrate that
such an approach is feasible even under ‘real-life’
sampling conditions, characterized by poor com-
pliance with both timing protocols and the required
number of observations. The inflection points and
parameters described here are specific to this
sample of poor women aged 19–54, and may not
generalize to other population samples with other
characteristics. Given the range of time values
spanned by our data, the profiles modeled here
ts model adjusting for obesity effects on intercept and

Difference in
estimate

p-Value for
differenceomen

) K0.027 (0.053) 0.6153
) K0.275 (0.141) 0.0545
64) 0.115 (0.083) 0.1679
03) 0.002 (0.003) 0.6488
14)
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describe only the waking rhythm of cortisol. The
value of these approaches arises from the fact that
they can be extended to very different populations
and sampling schedules. Depending on data density
at different points of the day, the analyses could be
extended to incorporate measures such as the mean
cortisol value obtained 12 h after awakening, the
slope of decline between various inflection points,
area-under-the-curve, or other measure.

Our data collection protocol reflected our
modeling objectives. Because non-linear change
was expected in the period immediately following
awakening, the protocol required two of the four
data points to be collected in that period. More
spacing was allowed for measurements during the
latter part of the day, as less change was expected
during that period. The positioning of one or two
data point close to bedtime was intended to
capture the decline to the evening nadir; as it so
happens, this temporal separation of the evening
data point from the two morning measurements
also has the effect of increasing the precision of the
estimates. While a greater number of data points
per participant, and a greater stress on compliance,
would have yielded greater latitude in modeling,
the additional data collection burden on this set of
participants would possibly have been too onerous.
Other research plans might focus on modeling the
slope of the decline between the morning and
evening cortisol values; yet, others might aim to
obtain reliable estimates of area under the curve.
Obviously, data collection protocols would vary
accordingly. For instance, researchers interested in
studying evening cortisol levels would need more
evening samples to be collected. If the morning
peak is of interest, as in this case, instructions to
participants could possibly stress more compliance
during periods of high physiological variation, and
be less detailed for periods believed to be more
stable. A common practice is to require subjects to
collect cortisol data at fixed time points or at fixed
intervals from some index time, such as time of
awakening or bedtime. Our experience strongly
suggests that a more relaxed time schedule is
advantageous in terms of modeling, since precision
is improved with greater variability of the time-
predictor. As cortisol studies over large populations
become more common, it is important to arrive at a
set of feasible data collection practices.

Our data confirm the presence of a morning rise in
cortisol followed by a sharp decline, and a sub-
sequent slower pace of decline to an approximately
constant value for the evening hours. The non-
linearities in the data suggest that spline-based
regression techniques may be the preferred model-
ing approach if the intent is to capture variation in
the morning changes. Two approaches to modeling
spline functions are common in the literature. Non-
parametric smooth spline functions offer the highest
degree of flexibility, but require large numbers of
data points per person. The approach was ruled out
in this case, with a maximum of 4 data points per
subject. Moreover, it is difficult and impractical to
make inferences using models based on non-para-
metric splines. A second approach, equally data
intensive, is to use several ‘knots’ across the entire
profile and to model these parametrically, so as to
maximize the chances of capturing non-linearities.
We believe that our approach, with its combination
of graphical approaches to determine knot location
and parametric regression with a limited number of
knots, provides much of the modeling flexibility of
the above methods, while requiring fewer data
points per subject. In the interests of parsimony,
another decision we made was to restrict the
regression parameters to first-order terms. Poly-
nomial spline models, which use successive powers
of the linear spline terms (typically cubic splines)
allow for greater smoothness of the curve at the
inflections. It did not appear from the graphical
analysis that such smoothness was important to
model in the case of cortisol profiles.

Whatever the data collection protocol and form
of regression specification for the mean profile,
random-effects methods for repeated data offer a
number of advantages for modeling such data. They
allow for differing numbers and spacing of obser-
vations across women, while taking into account the
correlation of observations within subjects. As long
as data points are missing at random, these methods
provide unbiased parameters. The fact that the
mixed model allows us to use time on a continuous
scale, rather than in terms of a sequence of trials,
takes advantage of variability in actual measure-
ment time, even when such measurement times
depart from instructions. Unlike OLS based models,
random-effects models allow relaxation of the
assumptions of no-autocorrelation and homosce-
dasticity. Finally, mixed models allow explicit
modeling and analysis of between- and within-
individual variation. Depending on the research
focus, the between- and within-variance com-
ponents of the model may themselves be of interest,
or they may be viewed as nuisance parameters.

From our obtained modeling results, it is clear
that between-subject variability in cortisol variation
is very large, accounting for 62% ((0.071K
0.027)/0.071) of the total variance, compared to
within-subject variance, which accounts for 38%
(0.027/0.071) of the total variance. This large
variance in cortisol values between subjects, even
in a relatively selected sample of women, may have



Modeling cortisol rhythms in a population-based study 623
possible clinical relevance as well as implications for
future modeling efforts. The results suggest that
more information can be obtained with fewer data
points per subject and larger numbers of subjects.
The apparent drift away from the mean over the
course of the day, with greater residual variance of
evening cortisol values is likely due to the data
collection protocol, which resulted in greater
sparseness in data for the evening values. This
lower density of data for the evening is also reflected
in the larger standard error on the interaction
parameter for the slope of fourth segment.

Turning to the results of the obesity model, it is
apparent that there are small differences in the
cortisol profile by obesity status, particularly in the
awakening response. The results suggest that both
the morning peak and the immediate decline are
less marked for obese women. On the other hand,
no significant differences between obese and non-
obese women were seen in either the awakening
value of cortisol, or in the evening level of cortisol,
suggesting that area-under-the-curve analyses
would have had little utility in distinguishing
between obese and non-obese women. Our finding
of normal or slightly lower cortisol levels among
obese subjects is consistent with recent literature
on this subject (e.g. Bjorntorp and Rosmond, 2000;
Jessop et al., 2001), but our analysis helps direct
attention to the region where this lowering is most
marked. Additionally, the inclusion of obesity as an
independent subject-specific predictor of cortisol
profiles did nothing to explain the variance of
cortisol profiles, although there was a substantial
effect on the mean parameter values. It is possible
that there are other factors that we did not
investigate, which account for changes in variance
over the course of the day, or that help to
discriminate between women with different corti-
sol levels and profiles.

Despite the interesting findings in this study with
respect to obesity and cortisol pattern, we are
primarily offering it as an example of some new and
relatively simple approaches to analysing a limited
number of salivary cortisol measures collected over
the day, and caution against generalizing the
substantive results. The sample of women is highly
selected, and it is possible that the mean profile of
this group of women differs from other samples.
This group of welfare recipients making the
transition to work has been documented elsewhere
to suffer high levels of stress and sleep disruption
(Presser and Cox, 1997; Zedlewski, 1999), all of
which are likely to influence cortisol rhythms. Both
experimental and observational studies have found
a marked fragmentation of the cortisol quiescent
period in response to alteration of sleep cycles
(Caufriez et al., 2002). Further studies are also
required to confirm if the inflection points we
observed at 30 and 75 min are common across
various exposures, or whether the location of these
knots also shifts dramatically with exposure. The
models we have used are robust to small shifts in
the location of these knots.

The modeling and data collection exercise
detailed above may be of value to other researchers
in this relatively new field, where there is consider-
able need for exploring and developing analytic
methods, especially at a time when cortisol studies
are evolving from small resource-intensive, clinical
studies to large-scale population studies.
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Appendix. Abbreviations
HPA
 hypothalamic pituitary adrenal

WES
 Women’s Employment Study

WES-HS
 Women’s Employment Study-Health

Supplement

OLS
 ordinary least squares

REML
 restricted maximum likelihood

MLE
 maximum likelihood estimators

BMI
 body mass index

AIC
 Akaike information criterion
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