## A Report

on
THE BIOLOGY OF HEITSOLA TRIVOLVIS
by

Emile T. Abdel-lialek<br>Department of Zoology<br>University of lifichigen

# Biological Station 

Sumer Session 1948.
For moe on this sulgeid go to 1949 file

## CONTLNTS

1. Waterial and Equipment
2. General Survey of Cheboygan and Famet Counties.
a. Fontinalis Run
b. Bessey Creek
c. Goose Pond
d. Indien River
e. Douglas Lake
f. Niger Creek
3. Enumeration of other locelities in the same counties.
4. Shell Liorphology.
5. Life History
6. Oroposition
b. Developmentol Stages
c. Hatching
d. Conclusions and Suggestions
e. Nutrition of the young snails.
7. Acknomledgements.
8. Material and Equipment

Living snails collected from their locslities were brought in Eureka wide-mouth jars and put in the aquarium. The aquarium is in the form of three sinks the opening of each is pluged with a cork stopper through which passes a 30 or 35 cm . glass tube. The other side of the cork stopper fits into the opening of a cylindrical wire tube. Running water is supplied from a continuously opened tap for lake water. Water in the sink will be always at the same level as the water in the glass tube. The wire tube keeps the sneils far from the opening of the glass tube.

Snails were fed on lettus leaves which were changed daily or every two deys.

Shells collected from different localities were brought to the lab carefully cleaned and dried.

Ecological features were recorded in the field. Associate snails were identified elso in the field or brought to the lab if necessary. Associate vegetation was brought to the lab, carefully cleaned and pressed and then $c$. checked against text books of Aquatic flowering plants and the collections of the Aquatic Flowering Plants class.

For the life history, the egg messes were separated in finger-boril dishes with lake water which wes chenged deily or twice a dey.

## Genergl Survey of Cheborgen end Immet Counties

a. FOHITIMALIS RUN

6-28-1948.
T 37 NR 27 S 11.
The sneils are found on both sides, mainly in the part behind the bridge; fev of them were found in the part between the bridge and the mouth of the run into the lake. The water is more or less stagnont; shore line is indefinite specially in the part behind the bridge. In the latter part the banks are low, while in the part between the bridge and the mouth they are of medium height. They are intermixtures of sand and clay and they are open (not shaded). Water is colorless, slightly turbid in most perts, hichly turbid in the others. Bottom formed meinly of send mixxed with $\varepsilon$ smell smount of silt.
lieny logs are found on both sides of the Run and some are submerged. The logs are usuelly found crossing each other; the sneils are found in the water placed in the meshes.

The snails usually cravil on these logs at $\varepsilon$ distance of $=0-90 \mathrm{~cm}$. from the shore. Depth of place veries from 20 cm . to 1 meter. In all instences they craml on the logs innedistely under the surface of the rater, in such a way that they can be easily seen. Therefore all the meesurements heve to be teken at a depth in ediately under the surfece. When the snails are put in the aquarium, they behave the same i.e. craml inmediately under the surface of the water although few sink to the bottom at some intervals.

Cramling on the logs is in most cases at right angle rith the surface of adhesion, however, in ferr instances they are found adhering obliquely.

The snails are of the large size; the shell is dark brown in color, although covered by a dirty gelatenous layer more or less similar in color to a similar layer covering most of the logs and found at the banks. It is most probable to be periphyton.

## Associate Sneils:

1. Lymaea megasoma
2. Planorbula armigera.
3. Gyraulus pervus.

## Vegetation:

I. Anacheris canadensis (Zlodea)
2. Hypericum tubulosum.
3. Eupatorium perfoliatum.
4. Nymphaea odorata.
5. Pleocheris tenuis.
6. Utricularis vulgeris.
7. Lyrica Gale.
b. DOURE OF BMSG CRDE

On north mest corner of Douglas Leke
6-26-1948.

## T 38 N - R 3 N - S 18 .

The snails were found on both sides cravling on Iris virginica just below the surface of $\begin{aligned} & \\ & \text { ater, } \text { and at a right angle with it and with the plant. Depth of }\end{aligned}$ of place varies from 25 cm . to $70 \mathrm{~cm} .$, at $a$ distence of about 20 to 50 cm .
from the shore and this is the region in mhich Iris is found.
Shore line not quite distinct due to the presence of dense vegetation.

Some logs are found on the sides specially near the bridge which is not so far from the mouth of the creek. Banks are of medium height formed of sand mixed with top soil. Bottom is formed of a sendy layer together with a mucky substance formed of decaying vegetation; sand is also mixed with silt. Turbidity in most' parts is low becoming high at the least disturbance. Color of water is coffee or dilute tea.

A large number of shells was found on the beach of the lake near mouth of the creek; similar shells are also found at the bottam of the creek. On the whole the snails are not now so abundant in this locality; this is most probab bly due to the fact that they were collected during the last few years By biologists from the station.

## Associate habitat:

Sneils:

1. Succinea retusa (land snail) found crawling also on the same vegetation but above the surface of the water.
2. Lymnaea stagnelis apressa; large number usually nearer to the bank then Hel.
3. Stagnicola'palustris

Vegetation:
The creek is characterised by the heavy vegetation on both sides.

1. Typha latifolia
2. Heliacrus smallii

3; Chalamagrostis canadensis
4. Vellisneria emericana
5. Potamogeton Richardsonii
6. " angustifolius
7. n natans
8. Anacharis canadensis

## 9. Anacharis occidentalis

10. Polygonum coccineum
11. Spyrogyra sp.
12. Equisetum fluviatile

## GOOSE POND

In Wilderness Park, at a distance of about 60 meters from the beach of lichigan Lake. 7-1 - 1948. and 7-3-1948. T $39 \mathrm{~N}-\mathrm{R} 5 \mathrm{~N}-\mathrm{S} 28$. Brmet County

Helisoma trivolvis was found also crawling near the surface at a distance of about 40 cm . from the bottom, however, same were found adhering to Utricule aria vulgaris at a distance of about 25 cm . from the surface.

The distance from the shore varies between 10 and 50 cm . Shore line id clear smoothe with only fer curvings. As it is mentioned above the snails are found not far from the shore, a region where the water have no considerable movements. The surface water is moving due to seiches. In one part of the pond there is a bridge above a "fall" so to speak, leading to en extension from the pond. At some distance near this fall no Helisoma tr. was found. At this side of the pond the bank is viry low formed meinly of send. At the other side, however, the bank is high abrupt in same parts and of medium height in others and is formed mainly of clay and small amount of sand. In general the benks are open.

The bottom is formed of scnd and a small amount of silt. Water is clear, slightly turbid.

The messurements have to be taken at more than one depth
The snails are of tro types; those which are big in size and those which
are intermediate in size. It is noticed that the big ones are abundant on one side of the pond, while the small ones are abundant on the other side (that in which the bridge is found); movements of water are more or less pronounced than the other side.

The smaller snails have a pronounced height as compared with the diameter, and also the whorls are carinate above. If the splitting of Baker is accepted here, the smaller ones should be called Helisoma trivolvis pilspri and the others are the typical Helisama trivolvis. It can be concluded therefore that Helisoma trivolvis pilspri lives in water containing more movements than that in which the typicel type lives.

## Associate habitat:

Snails:
1.Helisoma antrosum; in large numbers
2. Amnicola limosa
3. Gyraulue pervis
4. Physe gyrina.

The last three sneils are found nearer to the shore then Helisoma trivolvis in shellower region and also differ in inh biting the bottom.

Vegetation:

1. Polygonum amphibium
2. Potemogeton Friesii
3. $"$ Berchtoldii
4. Zannichellia palustris
5. Hypenicum Kalmenewa

6; Cicuta bulbifera.
7. Utriculeria vulgaris.
3. Chera fragilis.
4. Potamogeton Richardsonii
5. Lijriophylum sp.
6. Liegalodonta Beckii
7. Vallısnerie emericana
8. Potamogeton Friesii.

DOUGLAS LAKE
6-18-1948. to 8-10-1948.

1. Dead shells on the beach near the mouth of Bessey Creek.
2. One shell near the mouth of iisple river.
3. In South Fishtcil Bey efter two windy days, one living snail wes found drifted on the beach in the region of the camp, together with a shell. It is cuite probable thet they are brought to the lake from one of the infloring streams.

Conclusion: Douglas lake is not e. suitable place for Helisome trivolvis.

NIGR CRGIT
7-17-1948.
T 37 F - R 2 V - S 8.
Bottom of the creek is deep in some parts but floating logs, leaves together with bleck muck makes it seem to be shellow in these perts.

The snails either crawl on the vegetation near the surface or at a depth of c.bout 20 cm . belor the surface. Distance from shore varies from 25 to 40 cm . Slight movement of the water is noticed.

Bents are low in some perts high end sloping in others, slightly swempy,
formed of sand, silt and clay. A very small part is slightly shaded, the rest id open.

Turbidity higher in the part behind the bridge than in front of it.

## Associate Habitats

Snails:

1. Physa gyrina
2. Gyraulus deflectus

Vegetation:

1. Potemogeton crispus
2. Nymphaea odorata
3. Equisetum fluviatile
a. Chera fragilis
4. Neobeckia acuatice.
5. Typh Iatifoliz.

## OTHER LOCAIITIES

Informations will be mentioned here indicatine other locelities in which the sneil is found and others mith negative results.

1. Sneils are found in Carp River, mainly in the source of the river from carp
leke. $\quad$ T $39 \mathrm{~N}-\mathrm{R} 4 \mathrm{~m}-\mathrm{S}$ 15.
2. Shells are collected on the beach of Garp Lake near the source of Carp River.
3. Snails were collected from Sedge Pool. T $37 \mathrm{~N}-\mathrm{R} 3 \mathrm{~W}-\mathrm{S} 21$.
4. Iunro Lake

T $38 \mathrm{~N}-\mathrm{R}^{2} \mathrm{~T}$ - $\mathrm{S} 4,9,16$.

6. Crooked Lake T $35 N-R 4 \%-S 15 T 22$.
7. Luilet Lake T $37 N-R 1$ in- S 8.

In ell these lakes the sneils are found in protected locelities where water movements are very mích reduced.

No Helisoma trivolvis was found in Laple River (Bmet County); running water. T 37.N-R 3 W-S 25.

No Helisoma trivolvis or any associate snail were found in the folloring Bog Lakes:

1. Bryant's Bog
2. Whd Lake $\quad$ T $38 \mathrm{~N}-\mathrm{R} 3 \mathrm{H}-\mathrm{S} 21,28$.

## 4. SHELL LORPHOLOGY

Discoidsl, flat and showing all the whorls above and some of them below. Whorls are 4 in the mature shell, they are rounded on the periphery, more or less angled (carinate) above, but not so on the base. The spire is sunk belor the level of the last whorl. Whorls are covered with fine reguierly arranged growth lines. The disc is low as compared with the diemeter of the shell in the adult. In case of young shells this is the reverse i.e. the disc is high as compared with the dismeter.

Umbilicus very nerrow showing some of the volutions. Aperture lerge, slightly extended below. Outer lip slightly reflected and lined inside with a bromish or sometimes greyish bend. Parietel well is covered with a thin ceillus of bluishwhite or greyish color.

Color of the epidermis varying from light yellow to derk brown. In case of. shells found in the drifts, the epidermis is sometimes removed and the shells seem to be chaiky white.

A subspecies of Helisama trivolvis $\ddagger$ colled Felisoma trivolvis pilspri by F. C. Baker have some variations conserning the shell Height of the shell is pronounced when compared with the diemeter. Body whorl more carinate above then
the typical Helisoma trivolvis. The whorls are also more compact and tight then Helisoma trivolvis.

## 5. ITFE HISTORY

## a. Ovoposition

Oroposition takes place on the walls of the aquarium to which each mass adheres more or less firmly. Eech mess is at a distance of fer centimeters fram the surface of water, however, some are layed at furthermore depths.

Specific gravity of the whole mass is more than that of water; it sinks when getting loose. Ovoposition does not take place on lettus leaves.

The sneils from Fontinelis Run were the only ones which layed eges, those from other locelities did not do so. b. Developmentel Stages

Developmental stages were also studied but they still nead some details.

1. Nerily leyed ese mess:

Layed July 21 , 1948; investigeted on the same day. The mass contains 14 eges. Each egg is circular, polygonel or more or less triensular, yellow in color with a shining spot either in the center or at one of the poles. The eggs are found very close to one another or with minute spaces in between. They do not adhere to to the surface of the mass but $\varepsilon$ certain distence is left in betrieen.

Another mass July 19, 1948, contains 20 eggs; 7 of which are in a good condition, the others are colorless, probably rith no developing embryos inside. Dr. Zggleton suggests that they are unfertilised.
2. Stege II, 2 to 3 days efter leying:

Egg mass (July 18, 1948) investigated July 20,1548 is founc to contein 17 eggs. The shining spot in the center or at one pole of the egg is nor: becoming
darker and more pronounced. Two od the eggs are unfertilized.
3. Stege III 4 to 5 days after laying

The egg mass (July 16, 1948) contains 14 eggs; investigated on July 20, 1948; young embryos with shells were seen inside the eggs. Color of shell, light brown, slightly orange in some parts. Color of the remeining pert of the egg becoming very faint yellow. Two of the eggs were unfertilized.

Another mass of the same stage is not flat but more or less cylindrical and conteins elso 14 eggs.

## c. Hatching

4. Stage IV.

The egg mass layed on July 16, 1948, investigated for stage III on July 20 is reinvestigated on July 24, 1948. At about the middle of the day the young snails began to leave the egg mass and move freely in water. At the end of the day 7 have elready left it end the other 7 are still inside it.

Description of the snail at this ste.ge:
Shell: Light brorn transperent, very fragile. Aperture vide (l miz.); one thorl, round on the periphery, more or less.engled above. The shell is high (. 75 mm .) as compared mith its diameter, Diemeter of the umbilicel side, . 6 mm . ; diameter of the upper side, . 75 m .

Animal : Protrudes mostly from one side only of the $\not \equiv h \& \nmid \gamma$ wide aperture. Tentacles are very clear, eyes and the foot are quite distinct. Tentacles and body are slightly pigmented. Eyes are clearly black.
5. 14-day sneil

1. lovement of the animel is increased.
2. Whorl slightly extended.
3. The following measurements were taken.

Aperture 1.6 mm .
Dismeter of upper side 1 mm .

Diameter of umbilical side . 9 mi .
Height 1.1 mi.
All the above measurements are considered to be average.

## Other egg masses:

July 24, 19483 masses( 25 and an unfertilized egg, 21 eggs and 13 eggs).

July 26, 19482 masses each 24 eggs.
July 28, 1948. I egg mass containing 13 eggs.
It was found that variation takes place in the elapse of time between laying and hatching of the eggs as shown from the following tables

| No. | $\begin{gathered} \text { Date } \\ \text { of } \\ \text { laying } \end{gathered}$ | $\begin{gathered} \text { Date } \\ \text { of } \\ \text { hetching } \end{gathered}$ | Period between laying and hatching |
| :---: | :---: | :---: | :---: |
| 1 | July 16 | July 24 | 7 days |
| 2 | July 19 | July 27 | 8 " |
| 3 | July 22 | July 30 | 9 " |
| 4 | July 24 | Aug. 3 | 10 " |
| 5 | July 26 | Aug. 4 | 9 " |
| 6 | July 28 | Aug. 7 | 10 " |
| 7 | July 29 | Aug. 8 | 10 " |
| 8 | July 31 | Aug. 10 | 10 " |
| 9 | Aug. 3 | Aug. 14 | 11 " |

This variation may be quite normel. Some factors may also have taken part e.g. variation in temperature or in dissolved Oxygen or some other factors. It may also be due to the combined effect of all of them.

## d. Some observations and conclusions

1. The gelatenous mass surrounding the eggs is most probably for protection. It is not for nutrition because it remains as it is after the embryos leave it. Protection may be against some bacteria, bther fungi or against some predators.
2. The fact that the egg masses differ in the number of eggs they contain (some 25, others 14 and few 2) may suggest that a snail has to lay a more or less limited number of eggs in successive times.This means that it lays 24 eggs in the first time, 14 in the second and so on .
3. The comparatively wide aperture may be closed partly i.e. reduced in size as the animal groms by a secretion from the mantle.
4. Further study has to be made of the spot which appears in the center or at one pole of the egg. It is not the nucleus, it may be the embryonic mass.
5. In connection with no. 2 it is suggested that the snoils have to be isolated and watched carefully for the number of egg masses and the number of the contained egss layed by the snail per season or per year as the case mey be.
e. Nutrition

Young snails mere left for about 6 days after leaving the ege mass with nothing except chenging the leke water once or twice every dey. Then on puiting smell portions of lettus leaves they started feeding on them. Jxcrete was quite noticed. But as it was expected the embryos hatching fron the egs mase of July 26 were fed directly on lettus leeves; increase in rate of grorth wes quite notived.

Further investigation has to made to find out the substances necesserry for feedinf the sneils; whether plankton (and this is doubtful), whether dissolvec orgenic me.tter or thether vegetation is necessary for this purpose.

## ACKNOTLEDGISENSS

I wish to acknorledge with grateful thanks the kind help and veluable informations of Frof. Dr. F. E. Eggleton.

To Prof. Dr. H. VanDer Schelie, I wish also to express my gratitude for sucgesting the problem.

