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We consider the integrated optimization problem of procurement, processing and trade of commodities over

a network in a multiperiod setting. Motivated by the operations of a prominent commodity processing firm,

we model a firm that operates a star network with multiple locations at which it can procure an input

commodity and has processing capacity at a central location to convert the input into a processed commodity.

The processed commodity is sold using forward contracts, while the input itself can be traded at the end

of the horizon. We show that the single-node version of this problem can be solved optimally when the

procurement cost for the input is piecewise linear and convex, and derive closed form expressions for the

marginal value of input and output inventory. However, these marginal values are hard to compute because of

high dimensionality of the state space and we develop an efficient heuristic to compute approximate marginal

values. We also show that the star network problem can be approximated as an equivalent single node

problem and propose heuristics for solving the network problem. We conduct numerical studies to evaluate

the performance of both the single node and network heuristics. We find that the single node heuristics

are near-optimal, capturing close to 90% of the value of an upper bound on the optimal expected profits.

Approximating the star network by a single node is effective, with the gap between the heuristic and upper

bound ranging from 7% to 14% for longer planning horizons.
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1. Introduction

The motivation for our work comes from the innovative practices of one of India’s largest pri-

vate sector companies, The ITC Group (www.itcportal.com). The International Business Division

(IBD) of ITC, started in 1990, exports agricultural commodities such as soybean meal, rice, wheat

and wheat products, lentils, shrimp, fruit pulps, and coffee. Increased competition, along with an
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inefficient farm-to-market supply chain made it imperative for ITC-IBD to re-engineer the pro-

curement process for commodities in rural India. Specifically, in the year 2000 ITC-IBD (hereafter

referred to as ITC) embarked on the e-Choupal initiative to deploy information and communication

technology (ICT) to reengineer the procurement of commodities from rural India. By purchasing

directly from the farmers, and not just the local spot markets, ITC significantly improved the

efficiency of the channel and created value for both the farmer and itself. The initiative has been

hailed as an outstanding example of the use of ICT by a private enterprise to streamline supply

chains, alleviate poverty and bring about social transformation. The e-Choupal platform has been

extremely successful for ITC and has been well documented by Prahalad (2005) and Anupindi and

Sivakumar (2006).

The e-Choupal platform for commodity procurement consists of a hub-and-spoke network where

spokes correspond to village level ICT kiosks (called e-Choupals) consisting of a personal com-

puter with internet access and the hubs are procurement centers or processing plants where direct

deliveries occur (called the direct-channel). ITC creates a one-day forward market for procurement

of commodities by announcing an offered price at each of its hubs. Typically, the forward price

offered for the next period is the realized spot price in the current period. Farmers can access the

e-Choupal kiosks for various information including ITC’s prices, but have the option to sell their

produce in the local spot market or directly to ITC at their hub location. One of the benefits to

the farmers of selling directly to ITC is that the farmers are guaranteed same day service, which

is not usually the case when they sell in the spot market. In order to satisfy the same day service

guarantee, ITC places an upper limit on the total quantity that it will purchase through the direct

channel in any period. In addition to the direct channel, ITC can also procure in the local spot

market, if necessary. By 2007, there were close to 6000 e-Choupals and 140 procurement hubs in the

network, with soybean being one of the largest commodities procured by ITC using the e-Choupal

network. A schematic of the eChoupal network for soybean is shown in Figure 1.

Close to seventy percent of the soybean procured is processed at several processing plants; the

rest is traded. Beans are processed to produce soybean oil and soybean meal, both of which are
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Figure 1 ITC e-Choupal Network.

traded through various channels. Managing this network requires decisions regarding procurement

and trading of different commodities to maximize profits. Procurement decisions, which include

price and quantity decisions for each hub, need to be integrated with the sales decision in terms

of the form of output commodity and channels to trade in; that is, for the soybean procured,

ITC needs to make decisions regarding whether to trade the bean or process it and trade the oil

and meal. Trade options for the various commodities include trading in open markets and with

other processors. We wish to determine the optimal policy for managing a commodity storage and

processing network such as the e-Choupal network. Specifically, we are interested in the relationship

between procurement, processing and trade decisions for the various commodities and the impact

of operational constraints such as procurement and processing capacities on these decisions. While

ITC’s operations provide the basic context for our research, the problem considered in this paper is

applicable in a more general context to firms in the commodities processing business. Profits for such

firms is affected by both input and output commodity prices in globally traded exchanges and local

spot markets. The procurement, processing and trade decisions for such firms are interdependent

because of operational constraints and ignoring these dependencies can result in significant loss of

value.

We consider a multiperiod optimization problem, in which a firm procures an input commodity

across multiple locations, with the marginal cost of procurement dependent on prices realized in

spot markets for the commodity. The firm earns revenues by processing the input commodity at
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a central processing location and committing to sell the processed output using forward contracts

in every period. In addition, the firm can also trade the input inventory with other processors

at the end of the horizon. In the single node version of this problem, we show that there exist

two inventory and price dependent thresholds such that it is optimal to process up to capacity

if the expected revenue from trading the output commodity is greater than the higher threshold.

Similarly, it is optimal to procure the input commodity up to capacity if the spot price is less than

the lower threshold. For values in between the two thresholds, the procurement and processing

quantities are interdependent, but can be quantified. We derive recursive expressions to determine

these thresholds in closed form when the procurement cost is linear or piecewise linear and con-

vex. These expressions can be computed efficiently when a single forward contract is available to

trade the output commodity over the entire planning horizon. However, when multiple forwards

with different maturities are available to sell the output, these expressions are computationally

intractable because of the high dimensionality of the state space required to model the dynamics of

the various price processes. We develop efficient heuristics to compute approximate values of these

thresholds and near-optimal policies. We analyze the network problem when the firm operates a

star network; i.e., a network with a central processing and trade location connected to multiple

procurement locations. We show that the star network problem is equivalent to the single node

problem with convex cost of procurement when the transshipment costs between the nodes is negli-

gible compared to the commodity prices and develop a heuristic to solve the network problem. Our

numerical studies show that the heuristics for the single node and network problem perform quite

well, capturing more than 90% of the value of an upper bound on the optimal expected profits in

many cases.

The problem considered in this paper is related to the warehouse management problem studied

by Bellman (1956) and Dreyfus (1957), and later extended by Charnes et al. (1966). The warehouse

problem is one of determining the optimal trading policy for a commodity with constraints on

the total inventory of the commodity that can be stored. Charnes et al. (1966) show that the

value function is linear in the starting inventory level and derive expressions for the marginal



Devalkar, Anupindi, and Sinha: Integrated Optimization of Commodities
Working Paper, Ross School of Business 5

value of inventory. These papers, however, do not consider constraints on the procurement and

sales; i.e., it is assumed that any desired quantity of the commodity can be procured or sold in a

period. More recently, Secomandi (2009b) considers a similar problem in the context of managing

a natural gas storage asset. In addition to storage constraints, the paper also incorporates injection

and withdrawal constraints and establishes the optimality of a price dependent double base-stock

policy. While there are similarities, the problem addressed in the current paper has some significant

differences, namely: a) we consider multiple commodities, in contrast to the single commodity

trading decisions addressed in the warehouse management problem, b) in addition to procurement

and trade of commodities, we also consider the additional decision of irreversibly transforming

some of the commodities and c) our analysis includes operations over a network.

The single node problem considered here has similarities to the firm level production and inven-

tory control problem studied in Wu and Chen (2009) for a storable input-output commodity pair.

While Wu and Chen (2009) consider the optimal procurement and sales policy for the individ-

ual firm, their main focus is on analyzing the propagation of demand and supply shocks across

production stages and the price-inventory relationship across input-output commodities using a

rational expectations equilibrium model. Routledge et al. (2001) also consider a multi-commodity

processing and storage network, but focus on deriving a rational expectations equilibrium model

that can be used to extend the theory of storage to non-storable commodities like electricity and

explain some of the empirically observed features of electricity prices. In contrast, we are interested

in characterizing the optimal policy and deriving managerial insights for a firm operating a com-

modity processing business. As such, we do not adopt an equilibrium approach and instead model

the evolution of the various commodity prices as exogenously given.

The procurement, processing and trade decisions considered in this paper are related to the

valuation of real options. In the current problem, a unit of output inventory can be committed

for sale against any of the forward contracts that are yet to expire. Thus, the marginal value of a

unit of output in any period is similar to valuing a compound exchange option (cf. Carr (1988))
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with the underlying assets being the various forward prices. While not the focus, the heuristics we

develop in this paper can be used to approximate the value of such compound exchange options.

The concept of spread options is also closely related to the problem considered here, especially

the processing decision. Spread options are call or put options on the spread between the prices

of two commodities and arise naturally in the context of commodity industries. The valuation of

spread options has typically been considered in single period setting; i.e., the valuation of a spread

option with specific maturity date or situations where the exercise of the spread option maturing on

one date does not affect the value or optimal exercise policy of a spread option maturing at a later

date. Geman (2005) provides a discussion of different spread options in the commodity industries;

e.g., crush spreads for agricultural commodities (soybean, for instance), crack spread (crude oil and

refined petroleum products), location spreads (natural gas prices at different locations), calendar

spreads (difference in natural gas forward prices for different maturities). Secomandi (2009a) con-

siders the valuation of pipeline capacity used to transport natural gas across two locations using

spread option valuation models on the spread between the natural gas prices at the two locations.

Similarly, Deng et al. (2001) use spark spread options on the spread between electricity and gen-

erating fuel prices and location spread options on the spread between electricity prices at different

locations to value generation and transmission assets. In a closely related context, Plato (2001)

examines the decision of US soybean processors to commit processing capacity to crush soybeans

and produce soybean meal and oil. This decision is similar to the exercise of a spread option on the

gross processing margin at a future date, i.e., the spread between the futures price of soybean meal

and oil and soybean, with the exercise price being equal to the variable cost of processing. In this

paper, the decision to process a unit of input is akin to exercising a spread option on the difference

between the values of a unit of output and input, with the processing cost as the exercise price.

Processing (and procurement) decisions across periods are, however, linked through the storage of

input inventory and operational capacity constraints. This crucial difference makes the processing

decision considered here different from the exercise of a simple spread option considered in the

extant literature.
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The star network analyzed in this paper is based on the features of the e-Choupal network

with different procurement hubs serving a single processing plant that also has an associated

procurement facility. While more complex commodity production and distribution networks have

been considered in literature, (cf., Markland (1975), Markland and Newett (1976)), these papers

assume deterministic commodity prices and have no capacity constraints. In contrast, we consider

stochastic commodity prices and capacity constraints on procurement and processing which make

the problem non-trivial.

The rest of the paper is organized as follows. In Section 2, we solve the integrated procurement,

processing and trade decisions for a risk-neutral firm operating a single node. We solve the single

node problem completely and obtain expressions for the marginal value of inventory. Section 2.1

presents the analysis for the linear procurement cost case, while Section 2.2 describes the convex,

piecewise linear procurement cost situation. We describe computation of the optimal policy when

a single forward contract is available to make output sale commitments and develop computation-

ally tractable heuristics for the more general case with multiple forward contracts with different

maturities in Section 2.3.1. We provide numerical examples of the computations in Section 2.4. We

analyze the network problem in Section 3 and develop heuristics to solve the star network problem

in Section 3.1. Section 4 concludes the paper with directions for future research.

2. The Single Node Problem

2.1. Linear Procurement Cost

We consider a finite horizon problem with the time periods indexed by n = 1,2, . . . ,N −1,N where

n = 1 is the first decision period. In any period n, let Sn denote the price for the input in the

spot market. The procurement season for the input commodity may span multiple output forward

maturities. For instance, the soybean meal and oil forward contracts traded on the Chicago Mer-

cantile Exchange (CME) have maturity months of January, March, May, July, August, September,

October and December - implying multiple forward contracts expiring during the procurement

season (September–March/April). We consider L forward contracts available for selling the output
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during the planning horizon. The forward contracts are indexed by `, with ` ∈ {1,2, . . . ,L} and

maturity N`. We assume N` − 1 is the last possible period in which the firm can sell the output

using forward contract `. Without loss of generality, we assume N` < N`+1 for all ` < L. Let F `
n

denote the period n forward price on contract `, for n < N` ≤N . The firm sells all the output using

forward contracts. In addition, the firm can also trade the input itself with other processors over

the horizon. For ease of exposition, we assume that all, if any, input sales happen at the end of the

horizon with a per-unit trade (or salvage) value of SN . Agricultural commodities exhibit season-

ality with increased supply soon after harvest periods. With enough supply available, bulk of the

processors’ procurement from spot markets happen during this period, termed the ‘procurement

season’. Trade between processors is typically low during these periods. In our context, the plan-

ning horizon can be considered as the procurement season, when bulk of the procurement happens.

End of the horizon can be thought of representing the off-season, when most of the trading of the

input (soybean) between processing firms happens.

Due to physical or other operational limitations, the firm has a per-period procurement capacity

restriction of K units and a processing capacity of C units per period to convert the input into a

processed product (also referred to as ‘output’). The unit cost of processing one unit of the input

commodity into the output commodity is p. The firm incurs a per period holding cost of hI and

hO per unit of input and output inventory respectively. We assume hO ≥ hI . Initially, we consider

a linear cost of procurement, i.e., the cost of procuring x units of input is equal to Sn × x when

the input spot price is equal to Sn. Later, in Section 2.2, we extend the analysis to include convex,

piecewise linear cost of procurement.

The relevant information available to the firm at the beginning of period n regarding the spot

market prices, output forward prices and trade prices for the input is given by In and all expec-

tations are taken under the risk-neutral measure. We assume interest rates are constant and there

is no counter-party risk associated with the forward contracts. As a result, the discount factor per

period, β, is the risk-free discount factor. It is a well known result that under these conditions,
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the forward prices for the output are a martingale process (see Hull (1997), Section 3.9 or Bjork

(2004), Section 7.6 for details). We thus have

EIn [F `
n+1] = F `

n for n < N`, ∀ ` (1)

where EIn [·] denotes expectation, conditional on In.

The variable In can include the realized spot market price, forward prices and other state vari-

ables which impact the commodity prices; e.g., aggregate inventory levels of the commodities. Our

formulation of the integrated procurement, processing and trade problem does not depend on the

specific model used to represent the dynamics of the various input and output prices.

In each time period n≤N−1, the firm makes the following sequence of decisions: a) the quantity

of the input commodity to be procured: xn, b) the quantity of the output commodity to be

committed for sale against forward contract ` in period n: q`
n for all ` such that N` > n and c)

the quantity of input to be processed into output in period n: mn. In the last period, N , the

firm trades any remaining input inventory. Optimal values of these decisions will be denoted by

a ‘*’ superscript. Let Qn (respectively, en) denote the total output (respectively, input) inventory

available at the beginning of period n.

It is easy to see that in any given period it is optimal to commit against at most one forward

contract. Thus, let ˆ̀ be the forward contract that the firm commits against in period n, if a

commitment is made. Notice that the firm can potentially commit to sell more output than is

currently available; i.e., ‘over-commit’ such that q
ˆ̀
n > Qn +mn. This is possible because the output

needs to be delivered only in period Nˆ̀ and the firm can process in some future period(s) t between

n and Nˆ̀ to meet the shortfall q
ˆ̀
n − (Qn + mn), which would require that we keep track of the

shortfall against each forward contract. However, in light of the martingale property (equation (1)),

we can see that such a ‘anticipatory commitment’ strategy would never be optimal and thus the

firm will never over-commit. Therefore, we do not need to keep track of the shortfall against each

forward contract and (en,Qn,In) is sufficient to describe the state of the system at the beginning

of period n. Further, because commitments once made cannot be reversed, we can recognize the
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revenues associated with output sales at the time of making the commitment rather than at the

time of delivery without loss of generality. Thus, if a commitment is made in period n, it would

be against forward contract ˆ̀ where ˆ̀= argmax
`

{
βN`−nF `

n−hO

N`−n−1∑
t=0

βt

}
where the term inside

the parenthesis is the discounted forward price minus the total discounted holding costs incurred

from the current period till delivery at the maturity of the foward contract. We can formulate the

firm’s problem as a stochastic dynamic program (SDP) in the following manner.

Vn(en,Qn,In) = max
0≤xn≤K,

0≤mn≤min{C,en+xn},
0≤q

ˆ̀
n≤Qn+mn






βNˆ̀−nF

ˆ̀

n−hO

Nˆ̀−n−1∑
t=0

βt


 q

ˆ̀

n

−Snxn− pmn−hI [en +xn−mn]

−hO[Qn +mn− q
ˆ̀

n] +βEIn [Vn+1(en+1,Qn+1,In+1)]



(2)

for n < N and

VN(eN ,QN ,IN) =
{

SNeN eN ≥ 0
−∞ otherwise (3)

where the state transition equations are given by

en+1 = en +xn−mn (4)

Qn+1 = Qn +mn− q
ˆ̀

n (5)

The constraints on xn and mn in equation (2) are capacity and input availability constraints. The

constraint on the commitment quantity is the no ‘over-commitment’ condition, which is without

loss of optimality and ensures (en,Qn,In) is sufficient to describe the state of the system.

Consider the commitment decision q
ˆ̀
n. The firm earns a revenue of βNˆ̀−nF

ˆ̀

n − hO

Nˆ̀−n−1∑
t=0

βt on

each unit committed for sale. The firm can earn the same expected revenue (discounted to period

n dollars) by postponing the commitment to period Nˆ̀−1, the last opportunity to commit against

contract ˆ̀. By postponing the decision to period Nˆ̀−1, the firm retains the option to not commit

the unit of output to contract ˆ̀ if some other contract `′ provides a higher revenue. Extending this

argument, we have the following result.
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Lemma 1. It is optimal to commit to sell output using contract `, for ` = 1,2, . . . ,L, only in period

N` − 1 and only if F `
N`−1 is at least as much as the expected benefit from committing against the

remaining L− l contracts. Let Φ(`)
N`−1 denote the marginal value of output inventory in period N`−1,

when L− l +1 forward contracts are still available. Then, Φ(`)
N`−1 is given by

Φ(`)
N`−1 =





βF L
NL−1−hO if ` = L

max
{
βF `

N`−1−hO, βN`+1−N`EN`−1

[
Φ(`+1)

N`+1−1

]
−hO

∑N`+1−N`−1

t=0 βt
}

if ` < L
(6)

and the optimal commitment quantity against contract ` is given by

q`∗
N`−1 =

{
0 if βF `

N`−1−hO < Φ(`)
N`−1

Qn +mn otherwise

To gain further intuition about Φ(`)
N`−1, consider the case when there are only two forward con-

tracts available for selling the output, with maturities N1 and N2 respectively. In period N1 − 1,

the firm will commit the available output inventory for sale against contract 1, if doing so provides

higher revenue and not otherwise. Thus, the value of a unit of output inventory in period N1−1 is

equal to max

{
βF 1

N1−1−hO, βN2−N1+1F 2
N1−1−hO

N2−N1∑
t=0

βt

}
. This value is simply the payoff from

an exchange option on the two discounted forward prices, after adjusting for holding costs. Equa-

tion (6) generalizes this to the case when there are L contracts available to commit the output

against. At the maturity of contract `, the value of a unit of output is equal to the maximum of

the revenue from contract ` and the maximum expected benefit from committing against one of

the remaining L− ` contracts at a later date.

Notice that the optimal commitment policy is an ‘all or nothing’ policy; i.e., if it is optimal to

commit against contract ` in period N`− 1, then it is optimal to commit all the available output

inventory, QN`−1 +mN`−1. Using an induction argument and the result in Lemma 1, we can prove

the following result.

Lemma 2. The value function Vn(en,Qn,In) is separable in en and Qn, and is linear in Qn. The

marginal value of a unit of output inventory in period n is given by ∆n, where

∆n =

{[
β(N`−1)−nEIn

[
Φ(`)

N`−1

]
−hO

∑(N`−1)−n−1

t=0 βt
]

if N`−1 ≤ n < N` for ` = 1,2, . . . ,L

0 if n≥NL

(7)
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The fact that there are no capacity constraints on the output sale commitments ensures the

value function is linear in Qn. We can write

Vn(en,Qn,In) = ∆nQn +Un(en,In) for n < N and (8)

VN(eN ,QN ,IN) = UN(eN ,IN) (9)

where Un(en,In) is given by

Un(en,In) = max
0≤xn≤K,

0≤mn≤en+xn,
0≤mn≤C

{
[∆n− p]mn−Snxn−hI [en +xn−mn]

+βEIn [Un+1(en+1,In+1)]
}

for n < N (10)

and

UN(eN ,IN) = SNeN (11)

Notice that in any period n < N`− 1, the marginal value of a unit of output inventory is equal

to the expected discounted payoff from the optimal commitment decision in period N` − 1, after

adjusting for holding costs. The payoff from optimal commitment in period N`− 1 is nothing but

the payoff of a compound exchange option on the remaining L− ` + 1 forward contracts; i.e., an

option to exchange revenue from the immediately maturing forward contract ` for a compound

exchange option on the remaining L− ` forward contracts, after adjusting for holding costs. Thus,

each unit of output inventory can be considered a compound exchange option, with the remaining

forward contracts as the underlying assets (cf., Carr (1988)).

We next turn to determining the marginal value of input inventory. If the firm had infinite

processing capacity, we can use very similar arguments and show that it would be optimal for the

firm to process, if at all, only in periods N`−1. Further, the processing and commitment quantities

would be equal to each other and equal eN`−1 +xN`−1, the total available input inventory. In such a

situation, the marginal value of input inventory would be equal to the value of a compound exchange

option, where the underlying assets of the option include remaining forward contracts net of the

processing cost p and the input trade price at the end of horizon, after adjusting for holding costs.
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However, the firm does not have infinite processing capacity and cannot afford to limit processing

only to periods N`−1. Thus, the true marginal value of input inventory would be less than the value

of such a compound exchange option. Further, the value of a unit of input inventory would depend

on the total input inventory available. For instance, when the input inventory at the beginning of

period n is more than the remaining processing capacity till maturity of the last forward contract

L, i.e., en > [Nl − n]C, the marginal value of input is equal to βN−nEIn [SN ]− hI

∑N−n−1

t=0 βt, the

discounted expected salvage value net of total discounted holding costs, irrespective of the value

from processing ∆n− p. We now derive expressions for the marginal value of input inventory that

facilitates evaluation of the decision to process in period n.

To this end, let D be the largest value such that the processing capacity C = aD and the

procurement capacity K = bD, where a and b are positive integers; i.e., D is the greatest common

divisor of C and K.1 Theorem 1 below states that Un(en,In) is piecewise linear, with breaks at

integral multiples of D and provides an expression for Θk
n, the marginal value of input inventory

at the beginning of period n, when en ∈ [(k− 1)D,kD), where k is a positive integer. (While Θk
n

clearly depends on the realization of In for all n and k, for notational convenience, we do not show

this dependence explicitly.)

Theorem 1. The value function Un(en,In) is continuous, concave and piecewise linear in en with

changes in slope at integral multiples of D, for each realization of In. Let Θk
n denote the marginal

value of input inventory (i.e., slope of Un) at the beginning of period n, when en ∈ [(k− 1)D,kD)

where k is an integer.

For all n, let Θk
n ,∞ for k≤ 0. In the last period, Θk

N = SN for all k≥ 1. For any period n < N

and positive integer k, the marginal value of inventory Θk
n is given by

Θk
n = max

{
Ω(k+b)

n ,min
{
Sn,Ω(k)

n

}}
(12)

where Ω(j)
n is the marginal value of en + xn, the input inventory after procurement in period n,

when en +xn ∈ [(j− 1)D,jD) and is given by

Ω(j)
n = max

{
βEIn [Θj

n+1]−hI ,min
{
∆n− p,βEIn [Θj−a

n+1]−hI

}}
(13)
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Proof: Clearly, UN = SNeN is concave and piecewise linear in eN for all eN ≥ 0. Further,

Θk
N = SN for all positive integers k. Consider the period N − 1 problem. We have

UN−1(eN−1,IN−1) = max
0≤xN−1≤K,

0≤mN−1≤min{C,eN−1+xN−1}

{
[∆N−1− p]mN−1−hI [eN−1 +xN−1−mN−1]

+βEIN−1
[SN ]× (eN−1 +xN−1−mN−1)

}

UN−1 is the solution of a linear program and eN−1 appears in the right hand side of the constraints.

Thus, UN−1 is piecewise linear and concave in eN−1. Further, the change in slope of UN−1 occurs

at integral multiples of D, since the processing and procurement capacities are integral multiples

of D.

Suppose Ut is piecewise linear and concave, with change in slope at integral multiples of D for

all t = n+1, n +2, . . . ,N . That is, for each t≥ n+1, we have

Ut(et,It) = Θk
t et +λk

t for et ∈ [(k− 1)D,kD)

where λk
t is a constant independent of et, Ut is continuous in et and Θk

t ≥ Θk+1
t for all integers

k≥ 1.

Now, consider the SDP equation (10)

Un(en,In) = max
0≤xn≤K,

0≤mn≤min{C,en+xn}

{
[∆n− p]mn−Snxn−hI [en +xn−mn] +βEIn [Un+1(en+1,In+1)]

}

By the induction assumption on Un+1, Un(en,In) is the solution of a linear program with en in the

right hand side of the constraint. Thus, Un(en,In) is concave and piecewise linear in en.

We can re-write the above maximization problem as

Un(en,In) = max
0≤xn≤K

{
max

0≤mn≤min{C,en+xn}

{
[∆n− p]mn−hI [en +xn−mn]

+βEIn [Un+1(en +xn−mn,In+1)]
}
−Snxn

}

= max
0≤xn≤K

{Ln(en +xn,In)−Snxn} for n < N

where

Ln(yn,In) = max
0≤mn≤min{C,yn}

{
[∆n− p]mn−hI [yn−mn] +βEIn [Un+1(yn−mn,In+1)]

}



Devalkar, Anupindi, and Sinha: Integrated Optimization of Commodities
Working Paper, Ross School of Business 15

By the induction assumption, Un+1(en+1,In+1) is concave and piecewise linear in en+1. Thus,

Ln is the solution of a linear programming problem and hence piecewise linear and concave in yn,

where yn is the input inventory after procurement, but before processing. For yn and mn such that

yn −mn ∈ [(j − 1)D,jD) for some positive integer j, we can write the objective function in the

maximization above as

[∆n− p]mn +
[
βEIn [Θj

n+1]−hI

]
[yn−mn] +βEIn [λj

n+1]

=
[
[∆n− p]− [βEIn [Θj

n+1]−hI ]
]
mn +

[
βEIn [Θj

n+1]−hI

]
yn +βEIn [λj

n+1] (14)

where λj
n+1 is a constant independent of yn and mn.

For a given yn, as mn increases, j such that yn−mn ∈ [(j−1)D,jD) decreases. Therefore, as mn

increases, the coefficient of mn, given by [∆n−p− [βEIn [Θj
n+1]−hI ]], decreases since Θj

n+1 ≥Θ(j+1)
n+1 .

Thus, the optimal value of mn is the maximum possible value for which the coefficient remains

non-negative or zero, which ever is higher. For yn ∈ [(s−1)D,sD) where s is a positive integer and

recalling that the processing capacity C = aD, we can determine the optimal value of mn as

m∗
n =





C if βEIn [Θs−a
n+1]−hI ≤∆n− p

yn− r̂D if βEIn [Θs
n+1]−hI ≤∆n− p < βEIn [Θs−a

n+1]−hI

0 if ∆n− p < βEIn [Θs
n+1]−hI

(15)

where r̂D = argmax
r

{
βEIn [Θr

n+1]−hI > ∆n− p
}
. Upon substituting m∗

n corresponding to each of

the three cases in the objective function (14), we have for yn ∈ [(s− 1)D,sD)

Ln(yn,In) =





(βEIn [Θs−a
n+1]−hI)yn +(∆n− p−β[EIn [Θs−a

n+1]−hI ])C +βEIn [λs−a
n+1]

(∆n− p)yn− (∆n− p− [β[EIn [Θr̂
n+1]−hI ])r̂D +EIn [λr̂

n+1]

(βEIn [Θs
n+1]−hI)yn +EIn [λs

n+1]

Thereby,

Ln(yn,In) = max
{
βEIn [Θs

n+1]−hI ,min{∆n− p,βEIn [Θs−a
n+1]−hI}

}
yn +Υs

n (16)

where Υs
n denotes constant terms not dependent on yn.

Notice that the slope of Ln(·, ·) with respect to yn when yn ∈ [(s−1)D,sD) is equal to Ω(s)
n , where
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Ω(s)
n is given by equation (13). Thus, Ω(s)

n denotes the marginal value of a unit of input inventory

after procurement but before processing. We now have

Un(en,In) = max
en≤yn≤en+K

{Ln(yn,In)−Sn(yn− en)}

For yn ∈ [(s−1)D,sD), substituting Ln(yn,In) from equation (16), the objective function in the

maximization above can be written as
[
Ω(s)

n −Sn

]
yn +Υs

n +Snen.

By the induction assumption, we have Θj
n+1 ≥Θ(j+1)

n+1 for all j and as a result Ω(s)
n is non-increasing

in s. Thus, the slope of yn decreases as yn increases. For en ∈ [(k− 1)D,kD) where k is a positive

integer and recalling that the procurement capacity K = bD, we can determine the optimal value

of yn as

y∗n =





en +K if Ω(k+b)
n ≥ Sn

ŝD if Ω(k)
n ≥ Sn > Ω(k+b)

n

en if Sn > Ω(k)
n

(17)

where ŝ = argmax
s

{
Ω(s)

n > Sn

}
. Substituting y∗n, we get

Un(en,In) = max
{
Ω(k+b)

n , min
{
Sn,Ω(k)

n

}}
en +Ψk

n

where Ψk
n is a constant independent of en.

Thus, Un(en,In) is piecewise linear in en with breaks at integral multiples of D. Further, because

Ω(k+1)
n ≤Ω(k)

n , we have Θk+1
n ≤Θk

n for all non-negative integers k. ¤

The optimal processing quantity m∗
n given by equation (15) is based on comparing the value of

∆n − p relative to the marginal value-to-go, βEIn [Θs
n+1]− hI , of the input inventory evaluated at

yn, the input inventory level after procurement. It is useful to state the optimal policy in terms

of parameters that can be evaluated based on the state variables at the beginning of the period,

instead. Substituting the optimal procure up to level for the input given by equation (17), we

can re-state the optimal procurement and processing quantities for a given realization of In and a

starting input inventory level en as follows.

Proposition 1. For all n < N , let Ω(k)
n be as defined in equation (13). For a starting input inven-

tory level en such that en ∈ [(k− 1)D,kD) where k is a positive integer,
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1. The optimal procurement quantity is given by

x∗n =





K if Ω(k+b)
n > Sn

ŝD− en if Ω(k)
n ≥ Sn ≥Ω(k+b)

n

0 if Ω(k)
n < Sn

(18)

where ŝ = argmax
s∈Z

{Ω(s)
n > Sn}.

2. The optimal quantity to process is given by

m∗
n =





C if Ω(k)
n < ∆n− p

min{(en +x∗n− r̂D)+,C} if Ω(k)
n ≥∆n− p≥Ω(k+b)

n

0 if Ω(k+b)
n > ∆n− p

(19)

where r̂ = argmax
r∈Z

{Ω(r)
n > ∆n− p}.

The above result implies that in each period there exist two inventory and state dependent

thresholds Ω(k)
n and Ω(k+b)

n with Ω(k)
n ≥ Ω(k+b)

n such that it is optimal to procure up to capac-

ity (respectively, procure nothing) if the marginal cost of procurement Sn is less than the lower

threshold (respectively, greater than the higher threshold). Similarly, it is optimal to process up

to capacity (respectively, process nothing) if the benefit from processing ∆n − p is greater than

the higher threshold (respectively, less than the lower threshold). For values of Sn and ∆n − p in

between the two thresholds, the procurement and processing quantities are interdependent.

To illustrate the results in Proposition 1, consider the example where C = K; i.e., a = b = 1 and

D = C = K. Figure 2 shows the value of Ω(k)
n as a function of en (i.e., for different k), for a given

realization of In where Sn < ∆n− p. By the definition of ŝ and r̂ given in Proposition 1, we have

ŝ = 7 and r̂ = 3.

Region A, k = {1,2}, en < 2D: At these levels of starting input inventory, the expected marginal

value of unprocessed input inventory even after procurement up to capacity is greater than ∆n−p.

Thus, it would not be optimal for the firm to process any input in this region. Further, the expected

value of input inventory is greater than Sn, thus making procurement up to capacity optimal.

Notice that in this region we have Ω(k+b)
n = Ω(k+1)

n > ∆n− p. This situation corresponds to the first

and last cases respectively in the procurement and processing policy given by equations (18) and

(19).
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Figure 2 Illustration of optimal policy when Sn ≤∆n− p, for C = K

Region B, k = {3}, en ∈ [2D,3D): In this region, procuring up to capacity will result in en+xn =

en + D ≥ r̂D. Thus, the value from processing ∆n − p can be greater than the expected marginal

value from keeping the input unprocessed at that inventory level. Thus, the optimal quantity to

process is such that en + xn −mn = r̂D. Because ∆n − p > Sn, there is an instantaneous margin

from procurement and processing, and it is optimal for the firm to procure up to capacity and

process en +D− r̂D. Thus, in region B, even though en < r̂D, we find that it is optimal to process

a positive quantity, after procuring up to capacity. As in region A, we have Ω(k+b)
n = Ω(k+1)

n > Sn

in this region also, corresponding to the first case in the optimal procurement policy given by

equation (18). We also have Ω(k+b)
n = Ω(4)

n = ∆n− p < Ω(3)
n = Ω(k)

n , corresponding to the second case

in the optimal processing policy given by equation (19).

Region C, k = {4,5,6}, en ∈ [3D,6D): The value from processing, ∆n− p, is greater than the

value from keeping the input unprocessed. Thus, it is optimal for the firm to process as long as the

final input inventory level is at least r̂D, below which the expected marginal value from unprocessed

input is greater than ∆n − p. Also, since ∆n − p > Sn, it is always optimal to procure additional

input to ensure the processing capacity is utilized fully. Thus, in this region it is optimal to process
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up to capacity. Further, the expected marginal value of input inventory after procurement up to

capacity and processing is greater than Sn. Thus, it is also optimal to procure up to capacity in

this region. Notice that in this region we have ∆n − p≥ Ω(k)
n > Ω(k+1)

n > Sn, corresponding to the

first case in equations (18) and (19) respectively.

Region D, k = {7}, en ∈ [6D,7D): It is optimal to process up to capacity because ∆n − p

is greater than the expected marginal value of unprocessed input at en − D ∈ [5D,6D). Thus,

the optimal processing quantity is limited only by the processing capacity in this region and any

additional inventory procured in the current period will remain unprocessed. Further, it is optimal

to procure additional input as long as the expected marginal value of the unprocessed input is

greater than Sn; i.e., xn is such that en +xn−C = 6D or xn = 7D− en = ŝD− en ≤K. Notice that

in this region we have ∆n− p > Ω(k)
n = Ω(7)

n > Sn > Ω(8)
n = Ω(k+1)

n , corresponding to the second and

first cases respectively in equations (18) and (19).

Region E, k≥ 8, en ≥ 7D: Similar to the earlier case, we can see that processing up to capacity

is optimal. Thus any additional input procured at these inventory levels will remain unprocessed.

We have en−mn = en−D≥ 6D. Since the expected marginal value of unprocessed input inventory

at these levels is less than Sn, it is optimal not to procure any additional input. In this region, we

have ∆n − p > Sn > Ω(k)
n , corresponding to the last and first cases respectively in equations (18)

and (19).

When Sn > ∆n− p, as shown in Figure 3, we can similarly divide the state space corresponding

to the beginning input inventory into: 1) regions A and B, where it is optimal to only procure

(and procure up to capacity in region A), 2) region C, where it is optimal to do nothing and 3)

regions D and E, where it is optimal to only process (and process up to capacity in region E).

In both the figures, we can see that the regions of positive procurement and processing quantities

correspond to regions where Sn ≤ Ω(k)
n and ∆n − p ≥ Ω(k+b)

n . Further, notice that ŝD and r̂D

represent target ‘procure up to’ and ‘process down to’ inventory levels. This is similar to the

target base stock levels in the single commodity, capacitated warehouse management problem (cf.

Secomandi (2009b)). However, unlike the single commodity case, we can have instances where ŝD >
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Figure 3 Illustration of optimal policy when Sn > ∆n− p, for C = K

r̂D; i.e., there can be inventory levels at which both procurement and processing are optimal. This

happens whenever there is an immediate margin from procurement and processing; i.e., ∆n− p >

Sn, which is never possible in the single commodity procurement and trade problem.

In the next section, we extend the analysis to consider the more general situation of convex

procurement costs encountered in the e-Choupal and other commodity processing contexts.

2.2. Convex Cost of Procurement

The analysis thus far assumed that the procurement cost is linear in the quantity procured and

the firm pays the spot price per unit. This is generally true when the firm is small and the firm’s

actions do not affect the market prices. However, even for such firms the cost of procurement may

not necessarily be linear. Consider ITC’s e-Choupal network where at each hub procurement is

through the direct channel as well as the spot market. Under such circumstances, the total cost of

procurement over both sources would ideally be a piecewise linear convex function because of the

‘merit order’ of procurement (cf., Bannister and Kaye (1991)); i.e., the firm will procure from the

cheaper source first before using the more costly channel.2 Other instances where a convex cost of
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procurement may arise is when the firm procures over multiple locations to serve a single processing

and trade location. As we discuss later in Section 3, the results developed for the single node convex

procurement cost case will be useful when analyzing the integrated problem over a network. With

this motivation, we consider the situation when the firm has a convex cost of procurement.

We assume all aspects of the operations remain the same as in Section 2, except for the procure-

ment cost. Let the total cost of procuring xn units of input when the spot price is Sn be denoted

by C (Sn, xn). We model C (Sn, xn) as a piecewise linear, convex function such that

C (Sn, xn) =
{

γjSn× [xn−Kj−1] +αj if Kj−1 < xn ≤Kj

γ1Sn×xn if 0≤ xn ≤K1 (20)

where γj > γj−1 and Kj > Kj−1 for all j = 1,2, . . . , J and αj are such that C (Sn, xn) is continuous

in xn. Let γ0 = 0 and K0 = 0. Notice that the linear cost of procurement is a special case of this

function with J = 1 and the values bJ = b and γJ = 1. Further, a general convex cost of procurement

can be approximated by a piecewise linear function such as this by varying the number of segments

in the cost function.

Notice that the optimal commitment policy for selling the output and the marginal value of a

unit of output inventory is not affected by the procurement cost. Thus, Lemma 1 holds for this case

and the marginal value of output is given by equation (7). Further, the value function Vn(en,Qn,In)

is separable in en and Qn as shown.

Vn(en,Qn,In) = ∆nQn +Un(en,In) and

Un(en,In) = max
0≤xn≤KJ ,

0≤mn≤min{C,en+xn}

{
[∆n− p]mn−C (Sn, xn)

−hI [en +xn−mn] +βEIn [Un+1(en+1,In+1)]
}

We now focus on computing the marginal value of input inventory when the procurement cost

is given by equation (20). To this end, let D be the greatest common divisor (GCD) of (C,K1−

K0,K2−K1, . . . ,KJ−KJ−1). Let (a, b1, b2, . . . , bJ) be positive integers such that C = aD and Kj =

bjD for all j = 1,2, . . . , J and b0 = 0. Using arguments similar to those in the proof of Theorem 1,

we can prove the next result.
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Theorem 2. The value function Un(en,In) is continuous, concave and piecewise linear in en with

changes in slope at integral multiples of D, for each realization of In when the procurement cost is

given by C (Sn, xn), as defined in equation (20). Let Θk
n denote the marginal value of input inventory

(i.e., slope of Un) when en ∈ [(k− 1)D,kD) where k is an integer.

For all n, let Θk
n ,∞ for k≤ 0. In the last period, Θk

N = SN for all k≥ 1. For any period n < N

and k≥ 1, the marginal value of input inventory Θk
n , Θ(k,J)

n where

Θ(k,j)
n =

{
Ω(k)

n j = 0
max

{
Ω(k+bj)

n ,min
{
γjSn,Θ(k+bj−1)

n

}}
for j = 1,2, . . . , J (21)

and Ω(k)
n is given by equation (13).

Similar to the linear procurement cost case, we can define thresholds based on Ω(k)
n to characterize

the optimal procurement and processing policy when the procurement cost is convex and piecewise

linear. However, the procurement policy is more involved and characterized by J + 1 thresholds.

More specifically,

Proposition 2. For all n < N , let Ω(k)
n be as defined in equation (13). Then, in period n

1. The optimal procurement quantity is given by

x∗n =





Kj−1 if γj−1Sn ≤Ω(k+bj−1)
n < γjSn

ŝjD− en if Ω(k+bj−1)
n ≥ γjSn ≥Ω(k+bj)

n

Kj if γj+1Sn > Ω(k+bj)
n > γjSn

where ŝj = argmax
s∈Z

{
Ω(s)

n > γjSn

}
.

2. The optimal quantity to process is given by

m∗
n =





C if Ω(k)
n < ∆n− p

min{(en +x∗n− r̂D)+,C} if Ω(k)
n ≥∆n− p≥Ω(k+bJ )

n

0 if Ω(k+bJ )
n > ∆n− p

where r̂ = argmax
r∈Z

{Ω(r)
n > ∆n− p}.

The results in Theorem 2 have been derived assuming the γj are stationary. However, equation

(21) can easily incorporate non-stationary values of γj, thus allowing us to model time varying

procurement cost functions. More significantly, the γj values can also be stochastic, with the

realized values of γj being used in equation (21). In such a case, the variable In would include
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(γ1
n, γ2

n, . . .) as part of the state variable. Similarly, equation (21) can be modified to easily incor-

porate non-stationary and stochastic values of bj; i.e., the procurement capacities in each segment

of the piecewise linear cost function need not be the same across periods. Stochastic γj and bj are

useful to model multiple sources of procurement, with stochastic marginal cost of procurement at

each source. In Section 3, we present a specific instance where these generalizations are useful in

developing heuristics for the integrated problem over a star network.

We now discuss computational issues associated with calculating the optimal policy.

2.3. Computation of Optimal Policy

The analytical results derived in Sections 2.1 and 2.2 did not depend on the specific dynamics of the

various commodity prices. However, computing the conditional expectations in the marginal value

of output and input inventory expressions (equations (6)–(7), (12) and (21)) depends on the specific

model used to describe the evolution of In. For the purposes of developing the computational

procedures, we assume the dynamics of the various commodity prices follow a Markov process; i.e.,

In = (Sn,F 1
n ,F 2

n , . . . ,F `
n, . . . , F L

n ). For instance, single factor mean-reverting processes and multi-

dimensional, driftless geometric Brownian motion processes which are typically used to model

commodity spot price and forward curve dynamics would fall under this category.

A standard approach developed in the financial literature for pricing derivatives, especially Amer-

ican style options which require evaluation of conditional expectations, involves discretizing the

price processes using binomial or trinomial lattices to generate possible states of price realizations

with corresponding probabilities of transition in discrete time steps. The objective is to approx-

imate the joint evolution of the continuous time processes over the time period of interest. The

option can then be valued on the generated price lattice by using backward stochastic dynamic pro-

gramming recursion, using the terminal value of the option on the final set of approximated prices

(cf., Ho et al. (1995), Nelson and Ramaswamy (1990), Hahn and Dyer (2008) for some examples

of discrete-time lattices).
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We can use a similar approach to generate a discrete-time lattice for the various prices and

calculate the marginal values (and hence the optimal policy) at each node in the tree. Notice

that we do not need to discretize the state variable corresponding to the input inventory because

of the piecewise linear nature of the value function. These discretization procedures are fairly

efficient when modeling bivariate processes. We can readily use these different price discretization

procedures when there is a single output forward contract or all output forward price changes are

perfectly correlated. In these cases, we can compute the optimal marginal values at all nodes in

the price lattice and thus compute the optimal policy efficiently.

While the discretization procedures are theoretically valid for modeling multivariate processes,

they become computationally inefficient as the number of processes increases. Thus, in the more

general case with multiple forward contracts and imperfectly correlated price changes, we need to

resort to tractable approximations to compute the marginal values efficiently. We describe one such

computationally tractable approximation next.

2.3.1. Heuristic for computing marginal values. As mentioned, the primary difficulty in

using the binomial trees is the fact that modeling more than two processes jointly becomes com-

putationally inefficient. To overcome this, we consider an approximation where only the dynamics

of the input spot price and the nearest maturing forward contract are modeled in any period n.

More precisely, define

În = (Sn,F `
n,F `+1

1 ,F `+2
1 , . . . ,F L

1 ) for n such that N`−1 ≤ n < N` (22)

The variable În approximates the information available in period n by only considering Sn and

F `
n, while assuming no information other than the initial prices of the remaining contracts is known.

Thus, in the interval, N`−1 ≤ n < N`, we only consider the joint evolution of (Sn,F `
n) and take all

expectations conditional on În. This approach is similar to the information approximation used in

the approximate dynamic programming model of Lai et al. (2009a).

Next, we approximate the marginal value of output inventory given in equations (6) and (7) by

conditioning the expectations on În instead of In as follows.
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Φ̂(`)
N`−1 =





βF L
NL−1−hO if ` = L

max
{
βF `

N`−1−hO, βN`+1−N`EÎN`−1

[
Φ̂(`+1)

N`+1−1

]
−hO

∑N`+1−N`−1

t=0 βt
}

if ` < L
(23)

and

∆̂n =

{[
β(N`−1)−nEÎn

[
Φ̂(`)

N`−1

]
−hO

∑(N`−1)−n−1

t=0 βt
]

if N`−1 ≤ n < N` for ` = 1,2, . . . ,L

0 if n≥NL

(24)

We approximate marginal value of input inventory in a similar manner. That is,

Θ̂k
n = max{Ω̂(k+b)

n ,min{Sn, Ω̂(k)
n }} (25)

where

Ω̂(k)
n = max

{
βEÎn

[Θ̂k
n+1]−hI ,min

{
∆̂n− p,βEÎn

[Θ̂k−a
n+1]−hI

}}
(26)

for n < N and all positive integers k and Θ̂k
N = SN for all positive integers k. For all n < N , we set

Θ̂k
n ,∞ for k≤ 0.

The heuristic procurement, processing and commitment quantities (x̂n, m̂n, q̂n) are then given

by the results in Proposition 1 and Lemma 1 with the approximate marginal values replacing the

true marginal values. We can also define the approximate marginal value of input inventory when

the procurement cost is convex and piecewise linear in an analogous manner, using equation (21).

Notice that this heuristic requires only modeling the joint evolution of two price processes in any

given period. Further, the heuristic is exact in the case where a single forward contract is available

for selling the output commodity. Thus, the binomial discretization approaches mentioned earlier

can be used to compute the approximate marginal values efficiently. We discuss the mechanics of

implementing this heuristic in Section 2.4.1. We now develop a computationally tractable upper

bound on the optimal expected profits, which will be used as a benchmark to evaluate the per-

formance of the heuristic. We quantify the performance of the heuristic using numerical studies in

Section 2.4.

2.3.2. Upper Bound on optimal expected profits. We construct an upper bound for the

optimal expected profits using the approach of information relaxation and dual penalties described
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in Brown et al. (2008). The key idea is that when information constraints are relaxed, i.e., more

information is available at the time of decision than in the original problem, the solution to the

relaxed problem will be an upper bound on the solution to the original problem. An optimal

policy with the information relaxation can potentially take advantage of the additional information

available to improve the solution, leading to temporally infeasible policies for the original problem.

This is similar to relaxing the constraints in a linear program. Analogous to the dual variables

corresponding to the constraints in a linear program which penalize violations of the constraints

in the original problem, Brown et al. (2008) define dual penalties for information relaxations. Akin

to the strong duality result for linear programs, the solution to the relaxed problem is equal to

the optimal solution of the original problem when an ideal dual penalty is used. Furthermore, for

any appropriately defined feasible dual penalties, the solution to the relaxed problem provides an

upper bound to the optimal solution of the original problem. We use this technique to compute an

upper bound on the optimal expected profits of the original problem.

We consider the perfect information relaxation for developing the upper bound to the single

node problem; that is, we consider a information structure where the input spot prices and output

forward prices for all periods are known at the beginning of the horizon. Let ΓN = (In)N

n=1 be a

particular sample path of prices over the entire horizon. In period n, let zn(en, qn, xn,mn,ΓN) be a

feasible dual penalty. For a specific ΓN , let HUB
n (en,Qn; ΓN) be defined as

HUB
N (eN ,QN ; ΓN) = SNeN (27)

HUB
n (en,Qn; ΓN) = max

qn,xn,mn∈Bn

{[
βN`−nF `

n−hO

n`−n−1∑
t=0

βt

]
qn− pmn−Sn×xn−hIen+1

− zn(en, qn, xn,mn,ΓN)+βHUB
n+1(en+1,Qn+1; ΓN)

}

for n = 1,2, . . . ,N − 1 (28)

where en+1 and Qn+1 are given by the state transition equations (4)–(5) and Bn is the constraint

set on the decisions in period n. Specifically,

Bn =





(qn, xn,mn) :

0≤ xn ≤K
0≤mn ≤min{en +xn,C}
qn = 0 if n 6= N`− 1 for `∈ {1,2, . . . ,L}
0≤ qn ≤Qn +mn if n = N`− 1 for `∈ {1,2, . . . ,L}




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Notice that HUB
n is the same as Vn given by equations (2)–(3), except for the penalty term zn

and the fact that decisions involved in evaluating HUB
n are made under perfect information. Define

V UB
1 (e1,Q1,I1) as

V UB
1 (e1,Q1,I1) = EI1 [H

UB
1 (e1,Q1; ΓN)] (29)

where the expectation is taken over all ΓN .

Using different dual feasible penalties gives different values of V UB
1 . For instance, by setting the

dual penalty zn = 0 identically for all n, we get the perfect information upper bound equal to the

optimal profit when the decision maker has perfect foresight. Consider an ideal dual penalty in

period n defined as

zideal
n (en, qn, xn,mn,ΓN) = β

[
Vn+1(en+1,Qn+1,In+1)−EIn

[
Vn+1(en+1,Qn+1,In+1)

]]

Substituting this ideal penalty in the optimization in equation (28) will lead to V UB
1 = V1, a

tight bound. However, using the ideal penalty described above is not practical as it would require

computing the exact value function. Using a feasible dual penalty that is easy to compute and

approximates the ideal penalty closely can be expected to provide a close upper bound on the

optimal expected profits. Consequently, we consider dual penalties derived from the approximate

value-to-go function

V̂n+1(en+1,Qn+1, În+1) = ∆̂n+1Qn+1 +Θ̂k
n+1en+1 + λ̂k

n for en+1 ∈ [(k− 1)D,kD)

where the marginal values, ∆̂n+1 and Θ̂k
n+1, are given by equations (24) and (25) and λ̂k

n+1 are

constants such that V̂n+1 is continuous in en+1 and λ̂1
n = 0 for all n.

We then have

Proposition 3. V UB
1 (e1,Q1,I1) as defined in equation (29), with dual penalties given by

zn(en, qn, xn,mn,ΓN) = β
[
V̂n+1(en+1,Qn+1, În+1)−EÎn

[
V̂n+1(en+1,Qn+1, În+1)

]]
(30)

is an upper bound on the optimal value function V1(e1,Q1,I1).
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Proof: The dual penalty in equation (30) is a feasible penalty and hence, by Proposition 3.1

in Brown et al. (2008), V UB
1 (e1,Q1,I1)≥ V1(e1,Q1,I1). ¤

Notice that the DP given by (28) is a deterministic DP for each ΓN . Thus the upper bound V UB
1

can be computed using Monte Carlo simulation by solving a deterministic optimization problem for

each sample path, and averaging over sample paths. The computation of the upper bound problem

along each sample path is described in Appendix A.

2.4. Numerical Study

In this section, we describe several numerical studies to support our analysis. We discretize the

various price processes and compute the optimal and approximate marginal values, as the case

may be, on the resulting discrete time price lattice.

We first demonstrate the computational efficiency of the procedure by computing the optimal

policy when a single forward is available for output sales. We compare the expected profits gen-

erated by using the optimal policy for different levels of discretization and evaluate the tradeoff

between the improvement in expected profits versus additional computational time as the number

of discretization steps increases. These results are presented in Section 2.4.2.

We also perform numerical studies for the general case with multiple forward contracts. For

the general case, we use the heuristic described in described in Section 2.3.1. We measure the

performance of the heuristic by comparing the expected profits using the heuristic with the upper

bound on optimal expected profits. We study how the gap between the expected profit and the

upper bound changes with various parameters. The performance of the heuristic is quantified in

Section 2.4.3. We now describe the implementation of the heuristic.

2.4.1. Implementation The input spot and output forward prices are continuous and evolve

continuously in time. In the commodity pricing literature, one factor mean-reverting processes have

often been used to model the spot price process for various commodities, including agricultural

commodities (cf. Geman (2005), Chapter 3). While multi-factor models have also been used (see

for instance Gibson and Schwartz (1990), Schwartz and Smith (2000), Geman and Nguyen (2005)),
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the single factor mean-reverting dynamics capture many of the essential features of commodity

spot prices and are also analytically tractable. We use a single factor mean reverting model as

in Schwartz (1997) to describe the evolution of the input spot price over the time interval [0, T ].

More specifically, the dynamics of the input spot price St are modeled as lnS(t) = χ(t) + µ(t)

where χ(t) represents the short-term deviation in prices and µ(t) the equilibrium price level. The

short-term deviation χ(t) follows a mean-reverting process given by dχ(t) =−κχ(t)dt+ σsdWs(t),

where dWs(t) is the increment of a standard Brownian motion, κ is the mean-reversion coefficient

and σs the volatility.

Multi-dimensional driftless geometric Brownian motion processes have been used commonly to

model the dynamics of commodity forward curves (cf., Geman (2005), Lai et al. (2009a)). We

model the risk-neutral dynamics of the output forward price with maturity at time T` by a driftless

geometric Brownian motion, with constant volatility σ` > 0 as dF (t,T`)

F (t,T`)
= σ`dW`(t) where dW`(t) is

the increment of a standard Brownian motion. The Brownian motion increments corresponding to

forward prices with maturities T` and Tk have a constant correlation coefficient ρ`k ∈ [−1,1]. Also,

the Brownian motion increment corresponding to forward price with maturity T` has a constant

correlation coefficient ρ`s ∈ [−1,1] with the Brownian motion increment corresponding to the input

spot price. The parameters for the input spot and output forward price processes used in the

numerical studies are given in Appendix B.

For computing the heuristic policy, we use a discretization of the dynamics of the input and

output spot prices, with n = 1 corresponding to time t = 0 and n = N` to t = T`, for each `. For

each ` ∈ {1,2, . . . ,L}, we construct a 3-dimensional binomial tree as described in Hahn and Dyer

(2008) with δ discretization steps between each period n and n+1 to represent the joint evolution

of (S(t),F (t, T`)), conditional on F k
0 for k > `. From each of these trees, we obtain a probability

mass function G`
n(Sn+1,F

`
n+1|Sn,F `

n) for each n≤N`− 1, for each node in the tree at time n. The

probability mass function G`
n(·) is used to compute expectations, conditional on În.

We also generate a 3-dimensional binomial tree to represent the evolution of (F (t, T`),F (t, T`+1))

for each ` ∈ {1,2, . . . ,L − 1}. From each tree, we obtain a probability mass function
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Ĥ`
N`−1(F

`+1
N`−1|F `

N`−1) which denotes the probability that the next immediately maturing forward

price is equal to F `+1, conditional on the immediately maturing forward price being equal to F `.

The probability mass function Ĥ`
n(·), along with G`(·) is used to compute expectations, conditional

on În, at the expiration of forward contract `. Specifically,

Ĝ`
N`−1

(
Sn+1,F

`+1
n+1|SN`−1,F

`
N`−1

)
= G`+1

N`−1

(
Sn+1,F

`+1
n+1|SN`−1,F

`+1
N`−1

)× Ĥ`
N`−1

(
F `+1

N`−1|F `
N`−1

)

to approximate the transition probabilities at the expiration of forward contract ` for ` < L.

We compute the heuristic marginal values ∆̂n and Θ̂k
n for each period n at each node in the

binomial tree by using the input spot price value Sn at the node, forward price F `
n for n such

that N`−1 ≤ n < N`, and the probability mass functions G`
n for N`−1 ≤ n < N` − 1 and Ĝ`

N`−1 for

n = N`− 1.

We evaluate the policy using Monte Carlo simulation. We generate sample paths of prices for

periods n = 1,2, . . . ,N by sampling from the true continuous time and space price processes. At

period n such that N`−1 ≤ n < N`, we round the realized prices of Sn and F `
n to the closest

discretized values in the 3-dimensional binomial tree. The heuristic policy parameters (x̂n, m̂n, q̂n)

are computed using the values of ∆̂n+1 and Θ̂k
n+1 stored at each node and the probability mass

functions. Expected profits from using the heuristic policy are calculated as the average profit over

1000 sample paths.

For each sample path, we determine the dual penalty for each period n by using the approximate

marginal values at the node in the 3-dimensional binomial tree which is closest to the realized

prices Sn and F `
n. The optimization problem given by equation (28) is then solved for each sample

path as a mixed-integer linear program. Given the nature of the problem, it is not guaranteed that

an optimal solution to the upper bound problem can be found in reasonable time for each sample

path. To ensure the upper bound computations terminate, we impose a limit on the computation

times for the upper bound calculation along each sample path. For sample paths in which an

optimal solution to the mixed-integer linear program is not found within this time limit, we use

the optimal value of the linear programming relaxation of the mixed-integer problem as the upper
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bound value. The average over all sample paths is computed to obtain the upper bound on the

optimal expected profits. Notice that the upper bound value thus computed overstates the true

upper bound value obtained from information relaxation. The gap between the upper bound, UB,

and the expected profits from the heuristic policy is computed and expressed as a percentage of

UB.

For all the numerical studies presented here, the marginal processing cost was set to p = 5.

Observe that a processing cost of p = 5 corresponds to an expected processing margin of 0 that

allows us to model situations when the actual realized processing margin may be positive or neg-

ative. Also, we assume no discounting, i.e., β = 1, and the holding costs to be negligible. The

procurement capacity was set to K = 5 and the processing capacity to C = 3. Thus, the processing

capacity is 60% of the procurement capacity, reflective of the ITC case. Finally, the procurement

cost is linear for all the numerical studies presented here.

2.4.2. Computing the Optimal Policy – Single Forward. Recall that the heuristic pro-

posed in Section 2.3.1 is optimal for the case when only a single forward contract is available for

output sales. We investigate the impact of discretization on the optimal expected profits by cal-

culating the expected profits for δ ∈ {5,10,15}. Table 1 gives the simulation results when a single

forward contract is available for output sales and the number of periods in the horizon is varied

from N = 5 to N = 20, for different values of δ. The values in parentheses are the average CPU

time in seconds required to compute the optimal policy and the corresponding increase in the

CPU time required as δ increases. We do not have results for δ = 15 and N = 20 as the maximum

memory available to the program was not enough to solve the problem (we used MATLAB R©). The

standard errors for the expected profits above range from 1.2% to 2.4% of the expected profits.

As expected, the optimal expected profits increase with the number of discretization steps for

each horizon length (The value of −0.19% in the table is statistically insignificant). However, the

percentage increase is only marginal, especially when compared to the increase in computational

burden as evidenced by the CPU times required to compute the policy. Using a small number of
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Table 1 Optimal expected profits and CPU Time (Single forward)

N
Optimal Value % increase in Value

(Avg. CPU Time in sec.) (% increase in CPU Time)

δ = 5 δ = 10 δ = 15 δ : 5→ 10 δ : 10→ 15

5 9.92 10.28 10.26 3.06% -0.19%
(0.55) (2.12) (7.18) (287.33%) (237.70%)

10 47.95 48.78 49.17 1.72% 0.80%
(18.04) (52.77) (175.77) (192.60%) (233.07%)

15 114.43 114.56 114.72 0.11% 0.14%
(36.32) (294.26) (1024.77) (710.11%) (248.25%)

20 151.54 152.89 - 0.89% -
(140.56) (980.68) - (597.67%) -

Table 2 Expected profits using heuristic policy (Multiple forwards)

# of Forwards L Horizon Length N Heuristic UB Gap Avg. CPU
(Maturity Dates {N`}) Value Value (Std. Error) Time (sec.)

2 10 45.46 49.78 8.68% 57.54
{5,10} (4.22%)

3 15 94.73 104.54 9.38% 388.16
{5,10,15} (3.30%)

4 20 141.59 165.55 14.48% 1608.33
{5,10,15,20} (3.01%)

discretization steps, especially for longer horizon problems, is therefore computationally efficient

with practically no loss in optimality. We fix the number of discretization steps δ to 10 for all the

remaining studies.

2.4.3. Performance of Heuristic Policy – Multiple Forwards. In this section, we quan-

tify the performance of the heuristic when multiple forward contracts are available for the output.

When more than one forward contract is available for selling the output, the heuristic is no longer

optimal. We investigate the performance of the heuristic as the number of forward contracts avail-

able for the output commodity varies from L = 2 to L = 4. The results of the simulation are given in

Table 2, with the gap and standard error being expressed as a % of the upper bound value. As seen

from the results, the heuristics perform quite well, even when there are multiple forward contracts.

Also, recall that the upper bound value reported here is overstated and the true gap between the
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upper bound and expected profits is potentially less than the gaps reported here. Finally, the time

taken to compute the heuristics are not significantly different from the single forward case, as seen

by the CPU times.

A key parameter affecting the accuracy of the heuristic is the correlation between the Brownian

motion increments of the different forward price processes. For instance, if the Brownian motion

increments were all perfectly correlated, the heuristic would actually be optimal. While we do not

report the results here, we performed numerical experiments varying the correlation coefficient

between the various price processes and found that the results did not vary significantly.

3. The Star Network Problem

In reality, in the e-Choupal and other commodity business contexts, especially agricultural com-

modities, procurement is usually done over multiple locations. We now extend our analysis to

consider the integrated problem of procurement, processing and trade over a star network with

multiple locations. In addition to providing analytical tractability, a star network configuration

also approximates real world commodity processing networks fairly well. In a star network, a pro-

curement source for the input commodity usually serves at most one processing location, while a

processing plant may have the input transshipped from multiple locations. This is definitely the

case with the e-Choupal network, where a set of procurement hubs are associated with a processing

plant. Due to the geographic proximity and availability of information, differences in prices across

the various procurement hubs are usually not significant enough to justify transshipment of the

input between the non-processing locations. While the network problem is more complex than the

single node problem, some of the insights from the single node problem extend to the network case.

The results for the single node problem with convex cost of procurement are especially useful and

instrumental in developing a tractable heuristic to solve the network problem.

We consider a multi-node network of M procurement nodes each with procurement capacity of

Ki units per period at location i ∈ i = 1,2, . . . ,M . Let Si
n denote the price for the input in the

spot market at location i. We consider a star network configuration, with location 1 being the
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central node with a processing capacity of C units, while all other nodes only have a procurement

capacity. The transshipment cost is t(j) per unit between locations 1 and j for j = 2,3, . . . ,M .

Since the only source of (direct) revenue at the non-processing locations is through trade of the

input commodity, the firm has an incentive to transship input from one non-processing location to

another only when there is an arbitrage opportunity on the input commodity between the locations;

i.e., if the difference in expected trade prices is more than the transshipment cost between the

locations. These arbitrage opportunities are not relevant to the core operations considered in our

model and therefore to eliminate such opportunities, we do not allow direct transshipment between

the non-processing locations3; i.e., t(ij) =∞ for (i, j)∈ {2,3, . . . ,M}×{2,3, . . . ,M}.

Let en = (e1, e2, . . . , eM) be the vector of input inventories at the M locations. Since there is only

a single processing location, the output inventory is still a scalar value Qn. The firm’s decisions

include a) the quantity of input to procure at each location: xn = (x1
n, x2

n, . . . , xM
n ), b) the quantity of

the input commodity to be transshipped between the processing and other procurement locations:

yn = (y(ij)
n : i 6= j, i = 1 or j = 1) where y(ij)

n is the quantity transshipped from location i to location

j, c) the quantity of the output commodity to be committed for sale: qn, and d) the quantity of

input to be processed into output in period n: mn.

Notice that the network structure does not affect the optimal commitment policy for selling the

output and the marginal value of a unit of output inventory. Thus, Lemma 1 holds for this case and

the marginal value of output is given by equation (7). Further, the value function Vn(en,Qn,In) is

separable in en and Qn as given by equation (8) and we have

Un(en,In) = max
(xn,yn,mn)∈Bn

{
[∆n− p]mn−

M∑
i=1

Si
nxi

n−
M∑
i=2

t(i)[y(1i)
n + y(i1)

n ]

−hI

[
M∑
i=1

(ei
n +xi

n)−mn

]
+βEIn [Un+1(en+1,In+1)]

}
for n < N(31)

UN(eN,IN) =
M∑
i=1

Si
Nei

N (32)

where the set of feasible actions in period n, Bn is given by
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Bn =





0≤ xi
n ≤Ki for i = 1,2, . . . ,M

0≤mn ≤C

mn +
∑M

i=2 y(1i) ≤ e1
n +x1

n +
∑M

j=2 y(j1)
n

y(i1) ≤ ei
n +xi

n for i = 2,3, . . . ,M
xn ≥ 0,yn ≥ 0,mn ≥ 0





(33)

and the state transition equations are given by

ei
n+1 =





ei
n +xi

n +
M∑

j=2

y(j1)
n −

M∑
j=2

y(1j)
n −mn for i = 1

ei
n +xi

n + y(1i)
n − y(i1)

n for i = 2, . . . ,M

(34)

Notice that (32) is linear in eN and thereby, also piecewise linear. Similar to the single node

problem, we can use induction arguments to show that Un(en,In) is piecewise linear and concave

in en. While it is theoretically possible, it is hard to derive expressions for the marginal value of

inventory at location i as it depends not just on ei
n, but the entire inventory vector en. As such, it

is hard to obtain further insights into the network problem without additional simplifications. In

the next section, we consider one such simplified network and use the insights to develop a heuristic

for the network problem.

3.1. Heuristic for the Star Network

The heuristic described in Section 2.3.1 overcame the high dimensionality introduced by the output

price processes by only considering the joint evolution of the input spot and nearest maturing out-

put forward price. In case of the network problem, we have to consider multiple input spot prices,

since the input price changes across locations are usually imperfectly correlated. We could poten-

tially use the same information approximation techniques developed for the single node problem

to account for these additional price processes. However, solving the network problem optimally

is further complicated by the fact that the marginal value of input inventory is generally different

across the various locations and dependent on the inventory levels at the different locations and

not just the aggregate input inventory.

Under some simplifying assumptions, the network problem is tractable and is equivalent to the

single node problem with piecewise linear, convex cost of procurement. To see this, consider a

situation where all the procurement nodes are close to the central processing location such that the
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transshipment costs between the nodes are a very small fraction of the commodity prices. However,

the input commodity prices realized in the spot markets can still be different across locations.

Further, consider the case when the trade price at the end of the horizon for the input is the same,

irrespective of which node the input is physically stored at. Thus we have, t(i) ' 0 and Si
N ' SN

for all i. Thus, we can write the SDP equations (31)–(32) as

Un(en,In) = max
(xn,yn,mn)∈Bn

{
[∆n− p]mn−

M∑
i=1

Si
nxi

n

−hI

[
M∑
i=1

(ei
n +xi

n)−mn

]
+βEIn [Un+1(en+1,In+1)]

}

UN(eN,IN) = SN

M∑
i=1

ei
N

with the same state transition equations as before.

Notice that the input inventory across different locations are indistinguishable in their marginal

values in this case. Thus, we can replace en by ên =
∑

i e
i
n and drop the transshipment decisions

from the optimization problem to write

Un(ên,In) = max
(xn,mn)∈B̂n

{
[∆n− p]mn−

M∑
i=1

Si
nxi

n

−hI

[
(ên +

M∑
i=1

xi
n)−mn

]
+βEIn [Un+1(ên+1,In+1)]

}
for n < N

UN(êN ,IN) = SN êN

where B̂n is the set of constraints on the procurement and processing quantities given by

B̂n =





0≤ xi
n ≤Ki for i = 1,2, . . . ,M

0≤mn ≤C

mn ≤ ên +
∑M

i=1 xi
n





Notice that even though the input inventory across various locations are indistinguishable, the

marginal cost of procurement, Si
n, is still different across locations and is retained in the above

optimization. The SDP equations above are the same as those for the single node, convex procure-

ment cost case, albeit with stochastic γj because the Si
n are stochastic. We can therefore use the

results from Section 2.2 to solve this simplified network problem. The heuristic for the general star
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network is based on the equivalence between the simplified network and the single node problem

and has two stages. The first stage approximates the star network as a single node with a piecewise

linear convex cost of procurement. In the second stage, we use the approximations developed for

the single node problem to model the joint evolution of the various price processes.

Let S(j)
n be the jth order statistic of Sn = (S1

n, S2
n, . . . , SM

n ). Let ij be the index of the location

corresponding to the jth order statistic of Sn. Define

γj
n = EI1

[
S(j)

n

S1
n

∣∣∣∣S1
1

]
(35)

K̄j
n = EI1

[
j∑

k=1

Kik

∣∣∣∣∣S
1
1

]
(36)

for j = 1,2, . . . ,M , for all n.

Let D be the greatest common divisor of (C, K̄1, K̄2 − K̄1, . . . , K̄M − K̄M−1) where K̄j is the

average K̄j
n over all n. Define (a, b1, . . . , bM) to be positive integers such that C = aD and K̄j = bjD.

We approximate the star network by an equivalent single node with a procurement cost function

given by equation (20), where Sn = S1
n and the γj

n and Kj are given as above. For this single node

network, we can calculate the approximate marginal value of input inventory Θ̂k
n, according to

equation (21) and using the approximation scheme described in Section 2.3.1.

To compute the heuristic procurement, transshipment and processing quantities for the general

network problem, we define the approximate value function as

Ûn(en, În) = Θ̂k
n

∑
i

ei
n + λ̂k

n if (k− 1)D≤∑
i en < kD (37)

where the λ̂k
n are constants such that Ûn is continuous in

∑
i e

i
n and λ̂1

n = 0 for all n and all In. The

heuristic policy for the general network is then given as the solution to the following optimization

problem

max
xn, yn, mn∈Bn

{
[∆̂n− p]mn−

M∑
i=1

Si
n×xi

n

−
M∑
i=2

t(i)[y(1i)
n + y(i1)

n ]−hI

M∑
i=1

ei
n+1 +βEIn

[
Ûn+1(en+1, În+1)

]}
n < N
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We can use dual penalties based on these heuristics and compute an upper bound on the optimal

expected profits for the network case using the procedure described in Section 2.3.2. This upper

bound can then be used to evaluate the performance of the heuristics for the network case.

3.2. Numerical Study

We investigate the performance of the heuristic for a two-node and a five-node network respectively.

As in the single node case, the output forward prices are modeled as driftless geometric Brownian

motions. The input spot price at each location, Si(t), have the same dynamics as in the single node

case. The correlations between the various prices are given in Appendix B.

For the two-node network, the processing capacity was set to C = 3 and the procurement capac-

ities at the two locations was set to K1 = 3 and K2 = 2 respectively. For the five-node network,

the processing capacity was set to C = 6 and the procurement capacity was set to Ki = 2 for all i.

The transshipment cost in both networks was set to 0.5 per unit.

The performance of the network heuristic is summarized in Table 3. The true cost of procurement

over the network in any period is convex and piecewise linear with stochastic coefficients. As the

input price changes across locations become more correlated, the variability in the coefficients of

the convex, piecewise linear cost function decreases. Further, the salvage value across all locations

will also become closer as the correlation increases. Recall that the heuristic described in Section 3.1

approximates the multi-node network as an equivalent single node network with convex and piece-

wise linear costs, where the coefficients γj
n are deterministic and given by equation (35). Thus, as

the correlation of input price changes across locations increases, the heuristic approximates the

network better and the performance of the network heuristic will be close to the performance of

the single node heuristic. In the limit with perfect correlation and zero transshipment cost, the

heuristic will be optimal when there is a single forward available for output sale commitments.

In fact, when the input price change correlations across all locations is varied from 0.95 to 0.98,

we found that the gap decreases to 9.02% (from 21.31%) for the five-node, 5 period problem. The

results in Table 4, for a two node network with three forward contracts and horizon length of 15
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Table 3 Performance of heuristic for network problem

# of Forwards L Horizon Two-Node Network Five-Node Network

(Maturity Dates {N`}) Length N Heuristic UB Gap Heuristic UB Gap
Value Value (Std. Error) Value Value (Std. Error)

1 5 10.53 11.30 6.76% 17.37 23.22 25.19%
{5} (7.89%) (7.74%)
2 10 42.67 47.83 10.80% 83.22 95.46 12.82%

{5,10} (4.20%) (4.31%)
3 15 85.67 96.30 11.04% 163.53 191.61 14.65%

{5,10,15} (3.54%) (3.58%)
4 20 148.49 167.77 11.49% 271.75 317.32 14.36%

{5,10,15,20} (2.95%) (3.18%)

Table 4 Sensitivity of heuristic to transshipment costs

Transshipment Heuristic UB Gap
Cost Value Value (Std. Error)

0 91.90 105.99 13.29%
(3.74%)

0.5 91.35 100.18 8.82%
(3.95%)

1 86.53 98.45 12.11%
(3.90%)

2 91.76 98.66 7.00 %
(3.99%)

3 89.54 100.31 10.73 %
(3.80%)

periods, also indicate that the network heuristic is fairly robust to changes in transshipment costs

and performs quite well even for high transshipment costs. Thus, the approximation of the convex

procurement cost function appears to have a much bigger impact on the performance than the

transshipment costs. Future improvements to the network heuristic could look at better ways to

approximate the input procurement cost and end of horizon salvage functions.

The policy computation times for the network heuristic are comparable to the those in the single

node case. Evaluating the upper bound in the network case however takes significantly longer. This

is not a concern for implementing the heuristic itself, because we need to compute the upper bound

only for a benchmark and not implementing the policy itself.
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4. Conclusion

In this paper we have considered the integrated procurement, processing and trade decisions for

a firm dealing in commodities and subject to procurement and processing capacity constraints.

We solved the problem optimally and showed that the procurement and processing decisions in

any period are governed by inventory dependent thresholds and develop recursive expressions to

compute these thresholds. We also extended our results to incorporate convex, piecewise linear

costs of procurement and star networks; i.e., networks with a central processing node and multiple

procurement nodes connected to the processing node. We developed an efficient heuristic to solve

the single node problem when multiple forward contracts with different maturities are available to

sell the output. Additionally, for the network, we developed a heuristic based on approximating the

network as a single node, with piecewise linear convex cost of procurement. The numerical studies

indicate that the heuristic policies are near optimal, with the gap between the expected profits and

an upper bound on the optimal profits between 6%− 14% for most cases.

Our work lays the foundation for further research in commodity trading networks. The focus

of this paper has been on a single input that can be processed into a single output. In reality,

multiple output commodities may be produced upon processing the input; e.g., soybean is crushed

to produce soybean meal and oil, both of which are commodities that can be traded. The results

developed here extend to the case when multiple output commodities are produced upon processing.

We illustrate the case for the single node problem when two products are produced upon processing

the input, but the extension to more products and the network case is straightforward.

Multiple output products. Let one unit of input when processed yield αM units of product

M and (1−αM) units of product O, with 0 < αM < 1 (one could think of M and O to denote meal

and oil in ITC’s soybean commodity network). Let `m and `o index the forward contracts available

for output M and O respectively with maturity at N`m and N`o . Let M `m
n and O`O

n be the forward

prices on these contracts. Further, let hM and hO be the unit holding cost per period for M and

O.
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After processing, the decision to commit commodity M or O for sale against a forward contract

can be made independent of the decision for the other commodity. Thus, similar to the single output

case, each unit of M and O is a compound exchange option on the remaining forward contracts

for that commodity and Lemma 1 holds for each commodity. Also, we can calculate the marginal

value of inventory for each output in a manner similar to the single output case. Define Φ(`m)
N`m−1 and

∆(m)
n , the marginal value of inventory for commodity M using the forward contracts and holding

cost for M . Define Φ(`o)
N`o−1 and ∆(o)

n similarly for O. The benefit from processing in period n is equal

to ∆n− p where ∆n = αM∆(m)
n +(1−αM)∆(o)

n in this case. The marginal value of input inventory

and the optimal procurement and processing decisions are then given by Theorem 1, with ∆n as

defined.

An obvious extension would be to consider a multi-product setting where the firm can choose

from different input commodities to procure and / or process the input into different output

commodities. The methodology and analysis used in this paper can be useful in analyzing more

general commodity processing and trading networks which include other operational constraints

such as transshipment capacities and stochastic transshipment costs among others. Extending the

research to incorporate these aspects could result in newer insights.

The focus of our paper is to determine integrated optimal policies for a risk-neutral firm. Firms

dealing in commodity markets are usually risk-averse, with limited appetite for taking on risk.

There is a substantial body of literature in the finance and economics streams concerning risk

management in commodity and financial markets, and the use of market instruments for managing

risk. The operations management literature concerning risk-aversion is fairly limited and focused

mostly on single period models; see for example, Eeckhoudt et al. (1995), Agrawal and Seshadri

(2000), Gaur and Seshadri (2005). Chen et al. (2007) is an exception, and considers a multiperiod

inventory problem for a risk-averse decision maker. The problem context for this paper provides

an opportunity to contribute to the literature on risk-aversion in a multiperiod problem. Thus,

an important extension to our present work would be to incorporate a firm’s risk aversion in the
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decision making explicitly and integrate the financial and operational decisions in a multiperiod

network setting.

Appendix A: Upper Bound Calculation

The upper bound computation along a sample path ΓN is given by

HUB
N (eN ,QN ; ΓN) = SNeN

HUB
n (en,Qn; ΓN) = max

qn,xn,mn∈Bn

{[
βN`−nF `

n−hO

n`−n−1∑
t=0

βt

]
qn− pmn−Snxn−hIen+1

− zn(en, qn, xn,mn,ΓN)+βHUB
n+1(en+1,Qn+1; ΓN)

}

for n = 1,2, . . . ,N − 1

where the dual penalty is given by

zn(en, qn, xn,mn,ΓN) = β
[
V̂n+1(en+1,Qn+1, În+1)−EÎn

[
V̂n+1(en+1,Qn+1, În+1)

]]

= β
[
Θk

n+1(În+1)−EÎn
[Θk

n+1(În+1)]
]
en+1 +β[λ̂k

n+1−EÎn
[λk

n+1]]

+β
[
∆̂n+1−EÎn

[∆̂n+1]
]
Qn+1 for en+1 ∈ [(k− 1)D,kD)

Notice that the penalty function above is piecewise linear in en+1, with change in slopes at

integral multiples of D. Since the procurement and processing capacities are integral multiples of

D, we can solve the upper bound computation as a mixed-integer linear program, where the binary

integer variables identify the segment that en+1 lies in, for each n.

Specifically, (N − (n+1))a+1 is the maximum number of segments with different slopes in the

penalty function. Further, en+1 ∈ [0, nbD] always. Therefore, in period n we need min{nb, (N− (n+

1))a+1} binary variables to indicate which segment the ending input inventory lies in, in order to

compute the dual penalty value at the corresponding inventory level. Let

κ(n) = min{nb, (N − (n+1))a+1}

ak
n = kD for k = 0,1, . . . , κ(n)− 1 and aκ(n)

n = nbD
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Following Sherali (2001), let ϕ(k,l)
n and ϕ(k,r)

n be continuous variables and yk
n a binary variable for

each k = 1,2, . . . , κ(n) and n = 1,2, . . . ,N − 1. Also define

zk
n =

[
Θk

n+1(În+1)−EÎn
[Θk

n+1(În+1)]
]
kD + [λ̂k

n+1−EÎn
[λk

n+1]]

for k = 1,2, . . . , κ(n), for n = 1,2, . . . ,N − 1 and

z0
n = 0 for n = 1,2, . . . ,N − 1

We can then write the upper bound maximization problem as follows

max
N−1∑
n=1

([
βN`−nF `

n−hO

n`−n−1∑
t=0

βt

]
qn− pmn−Snxn−hIen+1 −

β
[
∆̂n+1−EÎn

[∆̂n+1]
]
Qn+1−β

κ(n)∑
k=1

[zk−1
n ϕ(k,l)

n + zk
nϕ(k,r)

n ]

)
+SNeN

subject to

xn ≤K n = 1,2, . . . ,N − 1

mn ≤C n = 1,2, . . . ,N − 1

qn = 0 n 6= N`− 1 for `∈ {1,2, . . . ,L}

qn ≤Qn +mn n = N`− 1 for `∈ {1,2, . . . ,L}

Qn+1 = Qn +mn− qn n = 1,2, . . . ,N − 1

en+1 = en +xn−mn for n = 1,2, . . . ,N − 1

en+1 =
κ(n)∑
k=1

[ak−1
n ϕ(k,l)

n + ak
nϕ(k,r)

n ] for n = 1,2, . . . ,N − 1

ϕ(k,l)
n +ϕ(k,r)

n = yk
n for k = 1,2, . . . , κ(n),

n = 1,2, . . . ,N − 1
κ(n)∑

1

yk
n = 1 for n = 1,2, . . . ,N − 1

yk
n ∈ {0,1} k = 0,1, . . . , κ(n),

n = 1,2, . . . ,N − 1

xn,mn, qn, en+1,ϕ
(k,l)
n ,ϕ(k,r)

n ≥ 0 n = 1,2, . . . ,N − 1
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The above problem can then be solved using a standard mixed-integer programming solver (we

used the CPLEX R© solver in our implementation).

Appendix B: Price Process Parameters for Numerical Studies

This section describes the parameters used for generating the results for the numerical studies

described in Sections 2.4 and 3.2. Specifically,

1. Table 5 gives the parameters underlying the dynamics of the input spot and output forward

price processes.

2. Table 6 gives the correlation matrix for the output commodity forward prices. These values

have been adapted from the correlation structure for natural gas forward contracts described in

Lai et al. (2009b).

3. Table 7 gives the correlation matrix for the output commodity forward prices and the input

commodity spot prices at each location.

4. Table 8 gives the correlation matrix for the input spot prices across locations.

Table 5 Input and Output Price Process Parameters

(a) Input Price Process

Parameter Value
κ 0.332
σ 0.490
µ 3.218

(b) Output Price Process

Maturity Volatility
N` σ`

5 0.42
10 0.35
15 0.35
20 0.35

Table 6 Output Forward Price Correlation Matrix

Maturity

Maturity 5 10 15 20

5 1 0.958 0.933 0.91
10 1 0.983 0.959
15 1 0.982
20 1
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Table 7 Output Forward Price and Input Spot Price Correlation Matrix

Location

Maturity 1 2 3 4 5

5 0.91 0.91 0.91 0.91 0.91
10 0.91 0.91 0.91 0.91 0.91
15 0.91 0.91 0.91 0.91 0.91
20 0.91 0.91 0.91 0.91 0.91

Table 8 Input Spot Price Correlation Matrix

Location

Location 1 2 3 4 5

1 1 0.983 0.959 0.935 0.919
2 1 0.982 0.962 0.946
3 1 0.99 0.975
4 1 0.991
5 1

Endnotes

1. Technically, a greatest common divisor may not exist if either C or K is not a rational number.

We assume that both C and K are rational.

2. We should note that while this is true in general for ITC, there are instances when the firm

procures from the direct channel at a higher price, even if the price in the spot market is lower.

Because the firm has better control over the quality of the soybean procured in the direct channel,

however, the true marginal cost after adjusting for quality is still lower in the direct channel. Thus,

the total procurement cost is still convex.

3. This restriction on possible transshipment is also consistent with the actual features of the ITC

network, where a processing plant is supported by a set of procurement hubs, but transshipment

of soybean between the procurement hubs is very rarely observed.
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