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CHAPTER I

Introduction

This chapter sketches the problems and introduces the work contained in the the-

sis. Section 1.1 explains the motivation for writing this thesis, and describes the

vortex sheet model and vortex rings. Section 1.2 gives an outline of the thesis and

lists the contributions made.

1.1 Motivation for Thesis

Fluid dynamics is important in both mathematics and engineering. In mathe-

matics, the Navier-Stokes equation has been a driving force for new theories. In

engineering, manufacturers have been able to make more fuel-efficient aircraft, ow-

ing to a profound understanding of fluid dynamics. Researchers study fluids using

different methods, including experiments, numerical simulations, theoretical treat-

ment and asymptotics. Numerical studies are presented in this thesis, and a vortex

method is used. Recall that if u(x, t) is the velocity, then vorticity is defined as

(1.1) ω(x, t) = ∇× u(x, t).

The vortex method is frequently used to simulate flows in which the vorticity is

highly concentrated in space and viscous effects are small.

1
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1.1.1 Vortex Sheets

For flow in which vorticity is concentrated on a surface, one can use the vortex

sheet model [6]. A vortex sheet is a material surface in the flow across which the

tangential component of the fluid velocity u is discontinuous, and the jump in velocity

reflects how strong the vortex sheet is, in a manner explained below. When using

the vortex sheet model, it is often assumed that the flow is irrotational off the sheet,

and hence the vorticity appears as a delta-function supported on the sheet surface.

Since the flow is irrotational except on the sheet surface, there exist two potential

functions φ1(x, t) and φ2(x, t) on the two sides of the sheet such that u1 = ∇φ1 and

u2 = ∇φ2. See Figure 1.1 for a schematic. The vector-valued vortex sheet strength

is γ = n× [u], where [u] = u1 − u2 is the jump in velocity across the sheet.

!

y
x

z

u1=    "1

#

u2=    "2

#

Figure 1.1: Schematic of a vortex sheet in an otherwise irrotational flow. The tangential component
of the velocity has a jump [u] = u1 − u2 across the sheet surface.

We note that the vortex sheet strength is tangent to the sheet surface, and that

the normal component of the velocity is continuous across the sheet. The integral

curves of the vortex sheet strength γ are called vortex filaments, so we can think

of a vortex sheet as being formed by vortex filaments. Several vortex filaments are
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depicted in Figure 1.1.

1.1.2 Vortex Rings

In this subsection we discuss examples of vortex ring formation and qualitatively

explain their dynamics. Vortex rings are studied in Saffman [43] and are reviewed by

Shariff and Leonard [45] and Lim and Nickels [32]. A vortex ring is a distribution of

vorticity in which the vortex lines are closed curves and are concentrated in a closed

tube. Figure 1.2 is the schematic of a vortex ring. This distribution of vorticity

induces a velocity that causes the fluid to rotate around the core and propagates

perpendicular to the plane determined by the core axis.

vorticity

propagation axis

rotation

y

x

z

core axis

R

core radius r

Figure 1.2: A propagating vortex ring. The vorticity is concentrated in the core and the vortex
filaments are closed. Fluid particles rotate around the vortex core, while propagating
perpendicular to the core at the same time, if viewed in a fixed reference frame.

Vortex rings often occur in high Reynolds number flow, and they can be simulated

using vortex sheet model. We are interested in understanding the dynamics of vortex

rings, including the stability properties, interaction between vortex rings, etc.

Vortex rings can be generated by forcing fluid out of a circular pipe as illustrated
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t = t 1

piston

t 2 t 3

Figure 1.3: A vortex ring forms as fluid is forced out of a circular pipe by a moving piston. A time
sequence is shown. As fluid is forced out, a shear layer separates at the edge of the pipe
and rolls up into a vortex ring.

in Figure 1.3. This is a schematic of the experiments performed by Didden [14]. As

the piston forces out fluid, a shear layer separates at the pipe opening and rolls up

into a vortex ring. Nitsche and Krasny [37] reports numerical computations of this

experiment, and their results agreed well the experiments.

While the piston/pipe apparatus is widely used to generate vortex rings, we can

also look at vortex ring formation in a different way as contained in Taylor [47].

Consider a rigid circular disk in a uniform flow. The fluid approaches the flat disk

on one side and it departs on the other side, as illustrated in Figure 1.4. A velocity

jump exists across the disk and this is an example of a bound vortex sheet. Now

imagine that the disk is dissolved, then the bound vortex sheet will roll up into a

vortex ring. This is slightly different than the last approach in that the vorticity

is generated instantly. The vortex sheet strength for this case will be explained in

Chapter III when simulations are presented.

Another way to generate a vortex ring was put forward by Thomson and Newall

[48]. They performed an experiment in which a drop of heavy fluid was released into

water, and the drop was dyed to assist in visualization. As the drop settled in the
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y
x

z

streamlines

t = t 1 t 2

Figure 1.4: A velocity jump is generated across a circular disk as it is given an impulse. Imagine
that the disk dissolves, then the bound vortex sheet on it rolls up into a vortex ring.

water, it rolled up and formed a descending vortex ring as depicted in Fgiure 1.5.

We note that this is still in an early stage of the whole process.

water surface

     t 1

t = t 0

     t 2

Figure 1.5: Schematic of vortex ring formation as a drop of heavy fluid falls in a background of
lighter fluid. Pictured is a time sequence of the experiment performed by Thomson and
Newall [48].

Since there is a density jump across the interface, vorticity is generated baro-

clinically on the interface. An equation governing the generation will be derived in

Chapter II. The vortex sheet generated in this experiment is topologically a sphere,

and it remains so if we assume that there is a well-defined interface between the two
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fluids.

1.2 Outline of Thesis

This thesis addresses computational aspects of vortex sheet dynamics. The com-

putations are motivated by experiments in the literature. A successful computational

method must be accurate and efficient. One challenge faced by computational meth-

ods is that they are often used to simulate physically unstable problems, when extra

caution is needed to make them effective.

Three main contributions are made in this thesis. First, a hierarchical triangular

panel-particle representation was developed for vortex sheets. In general, the vortex

sheet will stretch and distort as it evolves, so mesh refinement is needed to maintain

resolution. The hierarchical panel structure makes the mesh refinement easier to im-

plement, and also makes the code simpler, but still accurate. Second, a local intrinsic

quadrature was successfully implemented. Previously, most methods for computing

vortex sheets used a global parametric description of the sheet. In contrast to previ-

ous schemes that explicitly compute derivatives of the flow map with respect to the

global parameters, the scheme developed here avoids the use of a global parameter

space in both the quadrature and panel-particle refinement. The algorithm is thus

simplified and also has the potential to resolve the sheet surface when the geome-

try becomes complicated at later times. Third, we made a comparison between the

Boussinesq approximation and the full density jump. For density-stratified flow in

2D and axisymmetric case, we showed numerically that the formulation with a full

density jump converged to the case when the Boussinesq approximation was made.

The thesis is organized as follows. Chapter I is a concise introduction to vortex
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sheets and the work contained in this thesis. Chapter II contains the mathemati-

cal formulation of ideal fluids in general, and the mathematical ingredients in the

concept of vortex sheets. This chapter also gives a brief review of the literature in

computational fluid dynamics devoted to vortex sheets. Chapter III describes the

numerical methods and presents results for two dimensional and axisymmetric vortex

sheets. Though the focus of the thesis is on three dimensional vortex sheets, a good

understanding of the simpler 2D and axisymmetric cases will help us gain insight

into fully 3D flow. Chapter IV addresses the discretization of a 3D vortex sheet and

the numerical methods to be used in later chapters. The tree-code for evaluating

vortex sheet motion is briefly explained. We point out that there are two types of

trees in the computational method, one deals with the hierarchical particle-panel

formulation, and the other is used in the tree-code. Chapter V presents computa-

tional results of vortex rings, including cases in which a single vortex ring undergoes

instability, and a case in which two vortex rings collide obliquely. We note that in

both cases the vorticity is conserved. Chapter VI presents computational results for

density-stratified flow, in which vorticity is generated baroclinically. Chapter VII

contains the summary and proposes directions for future research.



CHAPTER II

Mathematical Description and Previous Work

In this chapter, the mathematical equations pertaining to this thesis will be ex-

plained in depth, and a brief review of previous work on vortex sheets in both 2D

and 3D will be given. This chapter primarily describes equations in three dimen-

sional space, but equations in two dimensional space are also discussed as necessary.

This chapter starts in section 2.1 with an introduction to the incompressible Euler

equations. This is followed by a review of the vortex methods in section 2.2. The

vortex sheet model introduced in Chapter I is expanded upon in section 2.3. Section

2.4 derives equations governing the vorticity generation in density-stratified flow. Fi-

nally, a review of previous computational work on vortex sheets is given in section 2.5.

2.1 Euler Equations

In this section, we discuss the Euler equations of incompressible fluids. In three

space dimensions, the Euler equations of an incompressible variable density flow are

∂ρ

∂t
+ u · ∇ρ = 0,(2.1)

∂u

∂t
+ u · ∇u = −∇p+ ρF ,(2.2)

∇ · u = 0,(2.3)

8
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where t, ρ,u, p,F are the time, density, velocity, pressure, and the external force,

respectively [11]. They are derived by assuming the conservation of mass, conserva-

tion of momentum, incompressibility, and that the flow is inviscid. The equations

have to satisfy appropriate initial and boundary conditions, in particular, they have

to satisfy the zero normal velocity boundary condition when solved in a bounded

domain. The pressure appears explicitly, but it is often cumbersome to track the

pressure, and now we show that this can be avoided by using the Euler equations in

vorticity form.

There are many flows in which the vorticity is highly concentrated, for example,

in the wake of an aircraft on takeoff. For such flows, it is beneficial to derive a system

with vorticity as a primary variable. With ω = ∇ × u denoting the vorticity and

taking the curl of (2.2), we arrive at the Euler equations in vorticity form,

∂ρ

∂t
+ u · ∇ρ = 0,(2.4)

∂ω

∂t
+ (u · ∇) ω = (ω · ∇) u−∇× (ρF )(2.5)

∇2u = −∇× ω.(2.6)

Now the pressure term is not present, and the vorticity ω becomes a primary variable.

The velocity field u can be obtained from vorticity ω by solving the Poisson equation

(2.6) using the Biot-Savart law:

(2.7) u(x) =

∫
V

K(x− x̃)× ω(x̃) dx̃, K(x) = − x

4π|x|3
,

where V is the vorticity containing region and K(x) is the Biot-Savart kernel [6].

We note that K(x) is the gradient of the Newtonian potential

(2.8) G(x) = − 1

4π|x|
, and so K(x) = ∇G(x).
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2.2 Vortex Methods in General

As noted in the previous section, in an incompressible flow, the fluid velocity is re-

lated to the vorticity distribution through the Biot-Savart law (2.7). The last several

decades have seen rapid growth of research in vortex dynamics and computational

vortex methods. Saffman [43] is primarily concerned with theoretical vortex dynam-

ics. Leonard [28, 29] are review papers devoted to computational vortex methods.

The book of Cottet and Koumoutsakos [12] addresses both vortex dynamics in gen-

eral and computational methods. In this section, we briefly review those aspects of

voxtex methods that are relevant to our work.

2.2.1 Lagrangian Methods

Rosenhead [42] was a pioneering contribution in vortex methods. He used point

vortices and studied vortex generation from a surface of discontinuity. Since vortex

methods are based on the Lagrangian description of the fluid equations, one of the

difficulties faced by vortex methods is to incorporate viscous effects accurately and

efficiently in a grid-free setting. One solution was put forward by Chorin [9] in which

he simulated the viscous effect by letting each vortex undergo a random walk. The

step size of the random walk depends on the kinetic viscosity coefficient.

2.2.2 Vortex-in-Cell Method

The vortex-in-cell method (VIC) is a hybrid approach which combines both Eu-

lerian methods and Lagrangian methods. The VIC method is one of the major

approaches currently used in vortex simulations. In a VIC method, both a regular

Eulerian grid and a grid-free Lagrangian particle distribution are used. The grid is
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used to compute the velocity using a fast Poisson solver, and the particle distribu-

tion is used to account for the convection of vorticity. In a VIC implementation,

quantities are interpolated back and forth between the grid and the Lagrangian par-

ticles. This process in general introduces dissipation effects faced by many Eulerian

methods and the extent of this problem depends on the interpolation schemes used.

2.3 Vortex Sheets

This section contains a detailed description of the vortex sheet model and relevant

formulae. For cases where the vorticity is concentrated in a thin layer, we can idealize

the flow by letting the layer thickness ε go to zero and vorticity ω go to infinity in

a manner that keeps εω constant. This process yields the vortex sheet model and

γ = εω is the vortex sheet strength [6]. This singular distribution of vorticity is

a delta-function supported on the sheet. The vorticity lies tangent to the surface

and is given by γδ(n), where n is the normal distance to the surface and δ is the

delta-function. As noted in Chapter I, the vortex sheet strength is also given by

γ = n × [u], where n is the unit normal vector and [u] = u+ − u− is the velocity

jump across the sheet [6].

With the vortex sheet model, the Biot-Savart law (2.7) reduces to a surface inte-

gral,

(2.9)
∂x

∂t
=

∫
S

K(x− x̃)× γ dS, K(x) = − x

4π|x|3
,

where dS is an area element on the sheet S. Because of stability considerations, the

following regularized kernel Kδ(x) is used in the numerical computations,

(2.10) Kδ(x) = − x

4π(|x|2 + δ2)
3
2

,
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where δ controls how much the vorticity is smeared out [10].

Using Lagrangian variable α to parametrize the vortex sheet, we have the flow

map x = x(α, t) and the vortex sheet strength γ = γ(α, t). Related to the vectorial

sheet strength γ, another important variable is the scalar circulation Γ(α, t). Here we

follow the treatment by Brady, Leonard, and Pullin [7] to explain Γ. The circulation

ΓC
AB around a closed path C = C1∪C2 piercing the sheet through A and B, as shown

in Figure 2.1, can be computed as follows,

A B

u1=    !1

"

y
x

z

#

C1

C2

u2=    !2
"

Figure 2.1: A three dimensional vortex sheet, the circulation between A to B can be expressed in
term of the jump in potential functions.

ΓC
AB =

∫
C

u · ds =

∫
C1

u · ds +

∫
C2

u · ds(2.11)

= φ1(A)− φ1(B) + φ2(B)− φ2(A) = [φ](A)− [φ](B),

where ds is an arc element on the curve C. Equation (2.11) will be referred to later in

the thesis. ΓC
AB is independent of the path C chosen because the flow is irrotational

off the sheet, and hence we will just denote it by ΓAB. With A as a base point, we

define Γ(α, t) = ΓαA = [φ](α)− [φ](A). Since φ1 and φ2 are potential functions and

hence can be modified by a constant, we can assume [φ](A) = 0 and so we have

(2.12) Γ(α, t) = [φ](α, t).
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In other words, circulation equals the jump in potential function across the sheet.

Recall that vortex filaments on the sheet surface are integral curve of the vortex

sheet strength γ as described in Chapter I. We note that points on a vortex filament

have the same Γ value. In computations of 3D flow it is sometimes convenient to

discretize a vortex sheet using vortex filaments.

When flow quantities only depend on two of the three spatial dimensions, we have

a 2D flow. Vorticity in a 2D flow only has one non-zero component, hence a vortex

sheet in a 2D flow has straight vortex filaments extending to infinity. To illustrate,

in Figure 2.2 we draw a schematic of a 2D vortex sheet and its discretization using

point vortices. Figure 2.2(a) is a continuous sheet of those filaments, while each dot

in Figure 2.2(b) represents a filament.

(a) (b)

Figure 2.2: Schematic of a 2D vortex sheet (a) and its discretization using point vortices (b).

2.4 Baroclinic Generation of Vorticity

We point out that circulation and vorticity are used interchangeably in this thesis.

In homogeneous flow, vorticity is conserved at material points. Referring to equation

(2.12), this means that the circulation Γ(α, t) does not depend on t. One example we

will simulate is a flow with density stratification, in which Γ(α, t) is not conserved.

Vorticity is generated baroclinically on the interface between the two fluids, and the

interface is simulated using the vortex sheet model. Now we derive the equations

governing the generation of vorticity on the interface. First, we make the Boussinesq

approximation and derive an equation in subsection 2.4.1. We follow Anderson [1]
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for this case. The equation for the case of a full density jump is derived in subsection

2.4.2. We follow Baker, Meiron and Orszag [3] for this case.

2.4.1 Boussinesq Approximation

Assume that the densities ρ1 and ρ2 are uniform on each side of the interface, and

assume that the density jump is small in the sense that the non-dimensional Atwood

ratio

(2.13) A =
ρ1 − ρ2

ρ1 + ρ2

is small. The Boussinesq approximation can be made in this case, and this simplifies

the problem as explained below.

Because the flow is irrotational off the interface, there exist potential functions φ1

and φ2 on each side such that u1 = ∇φ1 and u2 = ∇φ2. Bernoulli’s theorem can be

applied to yield

ρ1
∂φ1

∂t
+ ρ1

|u1|2

2
= −p+ ρ1gz,(2.14)

ρ2
∂φ2

∂t
+ ρ2

|u2|2

2
= −p+ ρ2gz(2.15)

on each side of the interface, where g is gravity and z is the vertical component in

the spatial variable x = (x, y, z). Choosing ρ = (ρ1 + ρ2)/2 as the scale for density,

we divide both equations (2.14) and (2.15) by ρ to non-dimensionalize the density,

ρ1

ρ

∂φ1

∂t
+
ρ1

ρ

|u1|2

2
= −p

ρ
+
ρ1

ρ
gz,(2.16)

ρ2

ρ

∂φ2

∂t
+
ρ2

ρ

|u2|2

2
= −p

ρ
+
ρ2

ρ
gz.(2.17)

Since the density jump is small, ρ1 and ρ2 are close to ρ. The Boussinesq approx-

imation is made by setting the non-dimensional density on the left side equal to
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unity,

∂φ1

∂t
+
|u1|2

2
= −p

ρ
+
ρ1

ρ
gz,(2.18)

∂φ2

∂t
+
|u2|2

2
= −p

ρ
+
ρ2

ρ
gz.(2.19)

Let the density interface be x = x(α, t), and recall from section 2.3 that circulation

Γ(α, t) = φ1(x(α, t), t) − φ2(x(α, t), t) is simply the jump in potential across the

interface. Let u = u(x(α, t), t) be the velocity of the interface, then the time

derivative of Γ is,

∂Γ

∂t
= (u · ∇φ1 +

∂φ1

∂t
)− (u · ∇φ2 +

∂φ2

∂t
)(2.20)

= (u · ∇φ1 − u · ∇φ2) + (
∂φ1

∂t
− ∂φ2

∂t
),

Since u1 and u2 are the limiting velocities on each side of the interface, it is reasonable

to assume that the interface moves at the average velocity u = (u1 + u2)/2. With

this assumption, equation (2.20) becomes

∂Γ

∂t
=

(u1 + u2) · (u1 − u2)

2
+ (

∂φ1

∂t
− ∂φ2

∂t
)(2.21)

=
|u1|2

2
− |u2|2

2
+ (

∂φ1

∂t
− ∂φ2

∂t
)

=
[∂φ
∂t

]
+

[ |u|2
2

]
=
ρ1 − ρ2

ρ
gz = 2Agz,

where the last equality comes from taking the difference between equations (2.18)

and (2.19). We note that equation (2.21) can be simplified as

(2.22)
∂Γ

∂t
= −2Agz.
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2.4.2 Full Density Jump

For large density jump, the Boussinesq approximation is not valid, and a different

equation for vorticity generation needs to be derived. The derivation is similar to

the case when the Boussinesq approximation was made. We take (2.14) and (2.15)

and divide them by each density to obtain

∂φ1

∂t
+
|u1|2

2
= − p

ρ1

+ gz,(2.23)

∂φ2

∂t
+
|u2|2

2
= − p

ρ2

+ gz.(2.24)

Taking the difference between (2.23) and (2.24), we obtain

(2.25)
∂Γ

∂t
= −ρ2 − ρ1

ρ1ρ2

p,

Defining the average potential φ = (φ1 + φ2)/2 and taking the sum of (2.23) and

(2.24), we obtain

(2.26) 2
∂φ

∂t
+ |u|2 = −1

4
γ2 − ρ1 + ρ2

ρ1ρ2

p+ 2gz,

where u = (u1 + u2)/2 and the vortex sheet strength γ is the arc length derivative

of circulation Γ,

(2.27) γ =
dΓ

ds
.

Now, we use equations (2.25) and (2.26) to eliminate the pressure term p to obtain

(2.28)
∂Γ

∂t
= −2A(

∂φ

∂t
− 1

2
|u|2 +

1

8
γ2 + gz).

Γ and φ are related as follows. The density interface is a layer of doublets of strength

Γ, hence the average potential φ is given by a surface integral of Γ over the interface,

(2.29) φ =

∫ ∫
Γ
∂G

∂n
dS,
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where ∂G/∂n is the normal derivative of the Newtonian potential

(2.30) G(x− x̃) =
1

4π

1

|x− x̃|
.

(2.28) and (2.29) are combined to give an implicit equation for the baroclinic gener-

ation of circulation Γ on the density interface,

(2.31)
∂Γ

∂t
= −2A(

∂

∂t

∫ ∫
Γ
∂G

∂n
dS − 1

2
u · u +

1

8
γ2 + gz).

This equation will be solved using an iterative method and the numerical methods

will be described in Chapter III.

2.5 Previous Computational Work on Vortex Sheets

The concept of vortex sheets has been in existence for more than a century, yet

there are still many related questions that need answers. The following review of

previous work on vortex sheets focuses on the computational aspects.

2.5.1 Two Dimensional Flow

Much has been done on vortex sheets in two dimensional flow and only the por-

tion pertaining to this thesis is reviewed here. Rosenhead [42] performed the first

numerical computation of vortex sheets in a 2D flow. He used point vortices and

manually did a calculation using several point vortices. Moore [35] showed that a

singularity forms at in finite time, the reason being that the growth rate of modes

becomes unbounded as the wave number goes to infinity for a vortex sheet model.

The nature of the singularity was that the curvature became unbounded in finite

time.
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Intensive computations of vortex sheets became possible with computers. How-

ever, not much was known about the behavior of vortex sheets beyond the critical

time when a singularity forms. Krasny [26] used vortex blobs to smooth the vorticity

field and was able to compute the evolution of a 2D vortex sheet past the critical

time. He also presented numerical evidence showing that without roundoff error, the

evolution of an analytic vortex sheet converges as the smoothing parameter δ goes

to 0, even beyond the critical time. However, Krasny and Nitsche [27] presented nu-

merical evidence showing that chaos may develop at later times as the sheet evolves,

and computations are conducted in both 2D and axisymmetric flows. A computa-

tion using Eulerian method was performed by Tryggvason, Dahm, and Sbeih [49],

showing that the result agrees well with the vortex blob method by Krasny [26].

Making the Boussinesq approximation, Anderson [1] computed a rising plume. A

cylinder of light fluid is immersed in a heavy surrounding fluid, and he computed

the evolution of the cylinder numerically. Baker, Meiron, and Orszag [3] studied the

stability of surface waves in a two-phase density-stratified flow. They derived the

equations governing the vorticity generation on a density interface separating two

fluids, as shown in equation (2.31), without making the Boussinesq approximation.

2.5.2 Axisymmetric Flow

In the cylindrical coordinate system (r, θ, z), a flow is called axisymmetric if the

flow quantities do not depend on θ. Axisymmetric flow has some three dimensional

features but it remains in a simple form and can be more easily studied than fully

3D flow, and it is also less costly to compute. The computation of vortex sheets in

an axisymmetric flow involves line integrals along circles, which can be re-formulated

in terms of elliptic integrals. Since there is a simple recursive algorithm for evalu-
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ating elliptic integrals, the computational cost can be significantly reduced. Nitsche

and Krasny [37] presented both numerical methods and results for vortex sheets in

axisymmetric flow. In one of their computations, they simulated the vortex sheet

formed at the edge of a circular pipe as fluid is forced out as was illustrated in Figure

1.3.

2.5.3 Three Dimensional Flow

There is increasing interest in computing three dimensional vortex sheet flow.

Pozrikidis [41] used a triangular mesh and an advancing-front method. The focus

was on making the advancing-front method stable in generating a new mesh after

each time step. Computational results were presented of a self-pinching vortex sheet.

A triangular mesh was also used by Brady, Leonard, and Pullin [7], in which the main

focus was on remeshing the vortex sheet so each triangle on the sheet surface remains

as close to equilateral as possible after each time step. They used Bezier patches

defined over a global parameter space as interpolants in the remeshing procedure.

Lindsay and Krasny [34] developed a fast tree-code to evaluate the velocities of points

on a 3D vortex sheet, reducing the computational cost from the traditional O(N2)

to O(N logN). In [34], the vortex sheet was discretized using vortex filaments, and a

new filament was added when two adjacent ones separated too far. In contrast to the

work in Lindsay and Krasny [34], Kagnovskiy [22] introduced a quadrilateral panel

method for both the quadrature and the refinement schemes. An entire filament did

not have to be added for refinement. The panel method reduced the computational

cost further, because it adds points only where needed. Extending the work by

Dahm, Scheil, and Tryggvason [13], Stock [46] implemented a vortex-in-cell method

to study a vortex ring hitting a density interface, among other problems. The above
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is only a brief introduction to computations of 3D vortex sheets, in Chapter IV we

will point out the similarities and differences between these prior methods and the

method developed in this thesis.



CHAPTER III

Vortex Sheets in Two Dimensional and Axisymmetric Flow

In this chapter, the computational method for vortex sheets in two dimensional

and axisymmetric flow is described in detail and results are presented. The com-

putational cost of vortex sheets in 2D and axisymmetric flow is much lower than in

fully 3D flow, and an O(N2) direct summation algorithm is often sufficient. Section

3.1 describes the numerical methods and results of vortex sheets in 2D flow, while

section 3.2 treats axisymmetric vortex sheet flow.

3.1 Two Dimensional Flow

In some flows, for example, a thin layer of soap in the plane z = 0, we can assume

that the flow properties depend only on x and y. 2D flow is important in various

applications. For instance, the atmosphere on a global scale is a locally 2D flow since

its thickness is small compared to the radius of the earth. Moreover, studying 2D

flow in detail is a step towards better understanding of 3D flow.

3.1.1 2D Euler Equations and Vortex Sheets in 2D Flow

Consider the following 2D version of the Euler equations (2.1) − (2.3),

21
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∂ρ

∂t
+ u · ∇ρ = 0,(3.1)

∂u

∂t
+ u · ∇u = −∇p+ ρF ,(3.2)

∇ · u = 0,(3.3)

where now u = u(x, y, t) has only two components. In a 2D flow, the vorticity

ω = (0, 0, ω3) only has one non-zero component and will be denoted ω in this chapter

since it is essentially a scalar. The velocity satisfies the no-penetration boundary

condition if solved in a bounded domain. If the vorticity is concentrated in some

region, it is convenient to work with the Euler equations in vorticity form:

∂ρ

∂t
+ u · ∇ρ = 0,(3.4)

∂ω

∂t
+ (u · ∇) ω = −∇× (ρF ),(3.5)

∇2ψ = −ω, u = ψy, v = −ψx,(3.6)

where ∇2 is the Laplace operator and ψ is the stream function.

This system may be solved with an Eulerian method, and in this case, the com-

putational domain is discretized using a fixed and usually uniform grid. The stream

function ψ is obtained by solving the Poisson equation ∇2ψ = −ω in (3.6), and

the stream function is differentiated to obtain the velocity u, which is in turn used

to advect both density ρ in (3.4) and vorticity ω in (3.5). Appropriate boundary

conditions have to be enforced.

If a Lagrangian method is used to solve the system in free space, the stream

function ψ can be obtained using the Green’s function,

(3.7) ψ = −G ∗ ω, G =
1

2π
log

√
x2 + y2,

where ∗ denotes convolution and G is the Green’s function for the 2D Laplace oper-
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ator. Then, (3.6) implies that

(3.8) u = −∂G
∂y

∗ ω, v =
∂G

∂x
∗ ω,

which can be written more compactly,

(3.9) u = (u, v) = K ∗ ω,

where

(3.10) K =
(−y, x)
2πr2

, r2 = x2 + y2.

With this formulation, a Lagrangian method can be implemented in a grid-free set-

ting.

For a 2D flow, the vortex sheet is a curve in the xy plane and the vorticity is a delta

function supported on the curve. The normal component of velocity is continuous

across the vortex sheet but the tangential component is discontinuous.

In applications, one may consider both bounded and unbounded vortex sheets.

In the latter case, a commonly studied example is a spatially periodic vortex sheet.

In 2D, we can use the complex notation z = x + iy for convenience. Assume that

the flow is homogeneous so that vorticity is not generated in time. Then the vortex

sheet satisfies the Birkhoff-Rott equation [43],

(3.11)
∂̄z

∂t
(Γ, t) =

1

2πi
PV

∫ b

a

dΓ̃

z(Γ, t)− z(Γ̃, t)
,

where PV denotes principal value, and the circulation Γ is a Lagrangian parameter.

Note that the integral is taken over all the circulation.

3.1.2 Discretization and Numerical Methods for 2D Vortex Sheet Flow

Rewriting equation (3.11) using cartesian coordinates (x, y), we obtain

(3.12) u(x, t) = PV

∫ b

a

(−(y − ỹ), (x− x̃))

2π((x− x̃)2 + (y − ỹ)2)
dΓ̃, where x = (x, y).
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The circulation Γ can not be used as a Lagrangian parameter if it is not monotonic

along the curve or circulation is generated in time. Instead, we use an alternative

Lagrangian parameter α to parametrize the curve, so that the position and circulation

are

(3.13) x = x(α, t) and Γ = Γ(α, t).

Choose a set of points xi(t), i = 1, . . . , N to represent the sheet. Then we can

write down the following discretized form of equation (3.12),

(3.14)
∂xi

∂t
=

N∑
j=1

K(xi − xj)wj, i = 1, . . . , N,

where K is the kernel in (3.10) and the weight wj is the circulation carried by

each computational point. In computations, the following regularized kernel is used

because of stability considerations,

(3.15) Kδ =
(−y, x)

2π(r2 + δ2)
,

where δ > 0 is the smoothing parameter. There is also an evolution equation for

circulation generation if the flow is not homogeneous, but we defer it to the end of

this subsection and focus on equation (3.14) now.

There are a variety of methods for choosing the weight wj in the discretized

equation (3.14). We have compared the second-order trapezoid rule and the fourth-

order Simpson’s rule. Figure 3.1(a) illustrates the trapezoid rule and Figure 3.1(b)

illustrates Simpson’s rule. For Simpson’s rule, the integral of f on interval [x0, x1] is

approximated by

(3.16)

∫ x1

x0

f(x) dx ≈ f0 + 4f01 + f1

6
h,

where h is the step size x1 − x0. Data is needed at the center of each interval

to implement Simpson’s rule. Since we do not always have analytical data, cubic
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x
x0

(a) trapezoid rule

x

(b) Simpson’s rule

x1 x0 x1x01

Figure 3.1: Comparison between (a) the trapezoid rule and (b) Simpson’s rule. For the trapezoid
rule, the integral of f on interval [x0, x1] is approximated by the area of the trapezoid
as pictured. For Simpson’s rule, the formula is presented in (3.16).

polynomials are used to interpolate the data needed. We used cubic polynomials

because they are fourth-order accurate, and hence sufficient for the fourth-order

Simpson’s rule. In the time domain, a standard fourth-order Runge-Kutta scheme is

used.

As the sheet evolves, roll-up occurs and hence point insertion is needed to main-

tain resolution. We tested two schemes for point insertion, linear interpolation and

cubic interpolation as illustrated in Figure 3.2. Both methods of interpolation are

performed using the parameter α. There are two criteria for point insertion. First,

the distance d1 between two adjacent points is greater than a tolerance ε1,

(3.17) d1 > ε1.

Second, the distance d2 between a tentative linear interpolation and a cubic interpo-

lation is greater than a tolerance ε2,

(3.18) d2 > ε2.

If either of these criteria is satisfied, a new particle is inserted and its α value is the

average α value of the two adjacent particles.
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Figure 3.2: Schematic depicting how point insertion is implemented. A new point is inserted if
either d1 > ε1 or d2 > ε2. The solid points (·) are existing computational points. The
two circled points (◦) are both candidates for a point to be inserted. l is obtained by a
linear interplant, while c is obtained by a cubic interpolant.

In the results presented below we simulate a 2D flow in which a cylinder of heavy

fluid settles in a background of lighter fluid. Circulation is generated baroclinically

on the interface. The equations (2.21) and (2.31) governing the circulation generation

were derived in Chapter II, and they correspond to the Boussinesq approximation

and the full density jump case, respectively. We makes the Boussinesq appoximation

in 2D and combine equation (2.21) with the equation (3.12) that governs the vortex

sheet motion to obtain

∂x

∂t
(α, t) =

∫
K(x(α, t)− x(α̃, t))dΓ(α̃, t)(3.19)

∂Γ

∂t
(α, t) = −2Agy(α, t),(3.20)

where A is the Atwood ratio and g is gravity. In the next section when the numerical

results are presented for axisymmetric flow, we will make a comparison between the

Boussinesq approximation and full density jump. We point out that coordinate z

used in equation 2.21 is changed to y here because we will use y as the vertical

coordinate for a 2D flow.

Equation (3.20) is solved using a fourth-order Runge-Kutta scheme. To summa-

rize, we have schemes that are fourth-order accurate in time, and either second-order
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or fourth-order accurate in space. In space, both quadrature and point insertion can

be either second or fourth order accurate.

3.1.3 Computational Results for 2D Vortex Sheets

A cylinder of heavy fluid is immersed in a lighter background. The cross section

starts as a perfect disk, and then it sinks and rolls up into a vortex pair. The interface

is modeled using a vortex sheet. We make the Boussinesq approximation, so the

system (3.19) − (3.20) is being solved. We remark that the initial conditions are

x(α, 0) = 0.5 (cosα, sinα),Γ(α, 0) = 0, α ∈ [0, 2π). Presented in Figure 3.3 is a time

sequence of the process. The non-dimensional times chosen are t = 0, 1, 2, 3, 4, 5.

The computation is performed using Simpson’s rule for quadrature, and a cubic

interpolant for point insertion, both of which are fourth-order accurate. In the time

domain, the fourth-order Runge-Kutta scheme is used.

We list the numerical parameters used in this computation. The Atwood ratio is

A = 0.1. The initial radius of the cylinder is R = 0.5. The initial number of com-

putational points is N = 40. We point out that numerical experiments have shown

that to ensure numerical stability, the smoothing parameter δ should be larger than

the distance between neighboring computational points. The smoothing parameter

is δ = 0.1. The time step is ∆t = 0.1. The parameter in the first criterion for point

insertion (3.17) is ε1 = 0.1. The parameter in the second criterion (3.18) for point

insertion is ε2 = 0.0025. We have tested the numerical parameters to make sure that

with the current choices, the computations presented are fully resolved to within

plotting error. The running time is negligible, and hence will not be documented in

this case.

We can see that as time progresses, the circular cylinder of heavy fluid is com-
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Figure 3.3: A cylinder of heavy fluid settles in a background of lighter fluid. Presented is a time
sequence of t = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0. Atwood ratio A = 0.1. Initial number of
computational points N = 40. Initial radius R = 0.5. Smoothing parameter δ = 0.1.
Time step ∆t = 0.1. Parameters for point-insertion criteria (3.17) ε1 = 0.1, (3.18)
ε2 = 0.0025. We note that the terminal number of computational points N = 352.
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pressed in the vertical direction and the shape becomes elliptical. As time progresses

further, the cylinder rolls up into two counter-rotating vortices, and the heavy fluid

is drawn into the two vortex cores. We note that the number of computational points

N = 352 at the terminal time T = 5.0 is almost 10 times the initial N = 40 due to

a large amount of stretching between filaments as the sheet evolves.

Next we make a comparison between different quadratures and different schemes

for point insertion. Presented in Figure 3.4 is the final time T = 5.0 of the time

sequence in Figure 3.3, obtained using different point insertion schemes or different

quadratures and different initial number of computational points. We observe that in

Figure 3.4(c), the initial number of computational points is N = 20 and the terminal

number is N = 236. In Figure 3.4(b), the initial number of computational points

is N = 40 and the terminal N = 274. However, the result in Figure 3.4(c) is well

resolved, while the one in Figure 3.4(b) is not. The other drawback of the computa-

tion in Figure 3.4(b) is that both point insertion thresholds ε1 and ε2 used are lower

than those used in the computation in Figure 3.4(c), yet the result in Figure 3.4(b)

is still less accurate than the one in Figure 3.4(c). Based on these observations, we

conclude that using a higher-order point insertion scheme is more effective than using

a higher-order quadrature.

3.2 Axisymmetric Flow

In this section we present numerical results for an initially spherical drop of high

density settling in a background of lighter fluid. The drop is assumed to be axisym-

metric in the whole process. Axisymmetric flow has some 3D effects, but it is simpler

to compute than fully 3D flow. We follow the approach by Nitsche and Krasny [37]
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(c) 4th order insertion, 2nd order integration
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Figure 3.4: Comparison between schemes of different order of accuracy at terminal time T = 5.0 as
shown in Figure 3.3. They use the same numerical parameters R = 0.5, δ = 0.1,∆t = 0.1
as used in the computation presented in Figure 3.3. However, they use different initial
number of computational points N , different point insertion parameters ε1, ε2 as printed
in the plots. They each use different point insertion scheme or different integration
scheme as printed in the sub-captions.

and Nitsche [36] to use elliptic functions in evaluating the velocity of an axisymmetric

vortex sheet.

We will make a comparison between the Boussinesq approximation and full density

jump. The numerical methods for the case when the Boussinesq approximation were
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described in the previous section for 2D flow. Since it is similar for an axisymmetric

flow, they will not be repeated. Now we describe how the equation for vorticity

generation for the full density jump case, which is implicit, is solved. We combine

equation (2.31) with the equation (3.12) that governs the vortex sheet motion to

obtain the system,

∂x

∂t
=

∫
K(x− x̃)dΓ̃(3.21)

∂Γ

∂t
= −2A(

∂

∂t

∫
Γ
∂G

∂n
dS − 1

2
|u|2 +

1

8
γ2 + gy),(3.22)

where ∂G/∂n is the normal derivative of the Newtonian potentail

(3.23) G =
1

4π

1

|x− x̃|
,

dS is an area element on the sheet, u is the velocity of the sheet, and γ = dΓ/ds is

the vortex sheet strength.

Equation (3.22) is solved using a fourth-order Runge-Kutta scheme, and each

stage in the Runge-Kutta method is solved with an iterative method as explained

below. We need ∂Γ/∂t so that Γ can be updated. Let the sheet surface be x =

(x, y, z) = x(α, θ, t), 0 ≤ α ≤ π, 0 ≤ θ ≤ 2π, then the integral on the right hand side

of equation (3.22), which is simply the average potential φ as defined in subsection

2.4.2, can be computed to be

(3.24) φ =
1

4π

∫ π

0

∫ 2π

0

(x− x̃)yθzα + (y − ỹ)xθzα + (z − z̃)(xαyθ − yαxθ)

|x− x̃|3
Γ dθ dα.

In an axiymmetric flow, x and x̃ can be written as

(3.25) x = (x cos θ1, x sin θ2, y) and x̃ = (x̃ cos θ1, x̃ sin θ2, ỹ)

Now, let θ = θ1 − θ2, then |x − x̃| =
√
x2 + x̃2 − 2xx̃cos θ + (y − ỹ)2 and (3.24)

becomes

(3.26) φ =
1

4π

∫ π

0

∫ 2π

0

x̃ỹα(x̃− xcos θ) + x̃x̃α(y − ỹ)

(x2 + x̃2 − 2xx̃cos θ + (y − ỹ)2)3/2
Γ dθ dα.
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Now we introduce the elliptic functions to simplify (3.26). Let k1 =
√

(x− x̃)2 + (y − ỹ)2

and k2 =
√

(x− x̃)2 + (y + ỹ)2. Let k =
√

1− k2
1/k

2
2, then we define the two elliptic

functions

(3.27) F (k) =

∫ π/2

0

1√
1− k2sin2 θ

dθ

and

(3.28) E(k) =

∫ π/2

0

√
1− k2sin2 θdθ.

With these definitions, (3.26) can be simplified to be

(3.29) φ =
1

π

∫ π

0

[ x̃ỹα(x̃− x) + x̃x̃α(y − ỹ)

k2
1k2

E(k) +
ỹα

2k2

F (k)
]
Γ dα.

Letting

(3.30) f1 =
x̃ỹα(x̃− x) + x̃x̃α(y − ỹ)

k2
1k2

and

(3.31) f2 =
ỹα

2k2

,

equation (3.29) becomes

(3.32) φ =
1

π

∫ π

0

(f1E(k) + f2F (k)) Γ dα.

Finally,

∂φ

∂t
=

∂

∂t

∫
Γ
∂G

∂n
dS(3.33)

=
1

π

∫ π

0

[
[
d

dt
(f1E(k)) +

d

dt
(f2(F (k)− F (k)))]Γ

+ [f1E(k) + f2(F (k)− F (k))]
∂Γ

∂t

]
dα.
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This equation is in the right hand side of equation (3.22) to do the iteration. The

algorithm starts with a guess of ∂Γ/∂t, which is 0 for the first time step, and the

value of ∂Γ/∂t from previous step for later time steps. All the derivatives that appear

are computed with a central difference scheme. The iteration is repeated until the

L1 norm of ∂Γ/∂t does not change by more than a threshold ε = 0.001 between

two consecutive iterations. We restate that the converged ∂Γ/∂t will be used as the

initial guess for the next time step.

For the Boussinesq approximation case there is a scaling law, which will be ex-

plained now. This law holds for both 2D flow and 3D flow, but it will only be

explained here for the 3D case as the reasoning is similar for both cases. Take the

system (3.19) − (3.20), let t′ = t/S and Γ′ = SΓ, where S is a scaling constant.

After substituting these two new variables into the system, we obtain

∂x

∂t′
(α, t′) =

∫
K(x− x̃)dΓ̃′(3.34)

∂Γ′

∂t′
(α, t′) = −2S2Agy(α, t′),(3.35)

Removing the primes, we have

∂x

∂t
(α, t) =

∫
K(x− x̃)dΓ̃(3.36)

∂Γ

∂t
(α, t) = −2S2Agy(α, t),(3.37)

This means that in the Boussinesq approximation, changing the Atwood ratio amounts

to changing the time scale. We now illustrate this computationally. In Figure 3.5

we present results for axisymmetric flow. The Boussinesq approximation is made in

the left column, while the full density jump is accounted for in the right column. We

can see that the scaling law as shown in equations (3.36) − (3.37) is verified in the

left column. Every time the Atwood ratio decreases by a factor of 4, we only need

to double the terminal time to obtain the same result.
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The right column in Figure 3.5 shows that at a fixed time, the full density jump

formulation converges to the Boussinesq approximation as the Atwood ratio A tends

to 0.
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Figure 3.5: Comparison between the Boussinesq approximation (left) and full density jump(right).
The Atwood ratio starts with A = 0.25 and reduces by a factor of 4 from each row
to the next as printed in the picture, while the terminal time T doubles. It is evident
that the results for the full density jump case tend to the results for the Boussinesq
approximation case as A tends to 0. This also illustrates the scaling between A and T
as shown in equations (3.36) and (3.37) in the Boussinesq approximation



CHAPTER IV

Vortex Sheets in Three Dimensional Flow

The dynamics of 3D vortex sheets is considerably more complicated than the 2D

or axisymmetric case, and this chapter is devoted to describing the relevant numer-

ical methods. The chapter starts in section 4.1 with a review of previous work on

computations of 3D vortex sheets. This is followed by a description in section 4.2 of

discretization and quadrature schemes developed for the computations. The refine-

ment schemes are described in section 4.3 and barycentric coordinates as used in the

refinement strategy are also explained. Finally, section 4.4 reviews the fast multipole

method and tree-code as applied to vortex sheets.

4.1 Previous Work on Computations of 3D Vortex Sheets

In three dimensions, the discretization of a vortex sheet is a rather difficult issue

due to stretching and twisting. The sheet is represented using a surface and material

points are put on the surface. In the literature, the sheet has been discretized with

either quadrilateral or triangular mesh. We start by describing how a 3D vortex sheet

has been represented previously in the literature, and this is followed by a subsection

on review of previous computational work.

36
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Figure 4.1: Schematic of a parameter space D and the corresponding physical space S. The sheet
surface x(α, β, t) defines a mapping from the parameter space (α, β) to the physical
space (x, y, z). Several vortex filaments are plotted.

4.1.1 Representation of 3D Vortex Sheets

If α and β are used to parametrize the vortex sheet, then we have the position

x = x(α, β, t) and the vortex sheet strength γ(α, β, t). As was shown in equation

(2.9), the velocity is obtained from the vorticity using the Biot-Savart integral,

(4.1) u(x, t) =

∫
S

K(x− x̃)× γ dS, K(x) = − x

4π|x|3
.

Recall that the related scalar circulation Γ(α, β, t) is equal to the potential jump

[φ](α, β, t) across the sheet, and we will see next how Γ enters in equation (4.1).

We follow the treatment of Caflisch [8] and Kaneda [24] to convert the integral in

(4.1), which is an integral over the sheet surface, into an integral over the parameter

space (α, β). As shown in Figure 4.1, we draw a schematic of the map from the

planar parameter space D to the sheet surface. This transformation is important as

it was used in many computations of 3D vortex sheets. In doing this conversion, we

will make use of the relation between γ and Γ(α, β, t) as illustrated below. Recall

that the vortex sheet strength γ is related to the velocity jump [u] across the sheet

as follows [6],

(4.2) γ = n× [u].
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We replace n with xα × xβ/|xα × xβ| and [u] with [∇φ] to obtain

(4.3) γ =
xα × xβ

|xα × xβ|
× [∇φ],

As noted at the beginning of this section, [φ](α, β, t) = Γ(α, β, t). This implies that

(4.3) can be transformed as

γ =
(xα × xβ)× [∇φ]

|xα × xβ|
=

([∇φ] · xα)xβ − ([∇φ] · xβ)xα

|xα × xβ|
=

Γαxβ − Γβxα

|xα × xβ|
.(4.4)

Let J = |xα × xβ| be the Jacobian of the parametrization x = x(α, β, t). Then the

area element dS becomes

(4.5) dS = J dα dβ = |xα × xβ| dα dβ.

Combining (4.4) and (4.5), we obtain

(4.6) γ dS =
Γαxβ − Γβxα

|xα × xβ|
|xα × xβ| dα dβ = (Γαxβ − Γβxα) dα dβ

and (4.1) becomes

(4.7) u(x, t) =

∫
D

K(x− x̃)× (Γ̃αx̃β − Γ̃βx̃α) dα̃ dβ̃,

which is an integral over the parameter space D.

Recall that vortex filaments on a vortex sheet are curves tangential to the vortex

sheet strength γ. Another way to characterize vortex filaments is that the circulation

Γ = Γ(α, β, t) is constant along a vortex filament. Several vortex filaments are drawn

on the sheet surface in Figure 4.1, and in this case they correspond to straight lines

in the parameter space.

We have given a general 3D vortex sheet formulation. Next we give a survey of

previous computations of 3D vortex sheets as related to our work, and we will see how

the formulation described above was used. In particular, attention will be given to

how the (Γαxβ−Γβxα) dα̃ dβ̃ term in equation (4.7) was discretized in previous work.
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4.1.2 Review of Previous Computational Work

Brady, Leonard, and Pullin [7] used a triangular mesh to discretize a vortex sheet

supported on a torus. Their algorithm tried to make each triangle on the sheet as

close to equilateral as possible, which requires a remeshing strategy after each time

step. For this purpose, an advancing-front method was used, and the algorithm in-

terpolated over the parameter space to put points on the sheet surface where needed.

It is ideal to have as small a number of computational points as possible to reduce

the computational cost, yet at the same time accuracy of the algorithm also has to

be considered. With both of these in mind, it is important to have triangles on the

physical sheet surface as close to equilateral as possible. However, as time progresses,

even though the triangles in physical space are close to equilateral, the corresponding

triangles in the parameter space become highly distorted and many slender triangles

appear as shown in Brady et al.[7]. This may cause loss of accuracy when equation

(4.7) is used to evaluate the velocity of the sheet surface because it is an integral

over the parameter space D = (α, β).

parameter space physical space

!

" x2

x1

0 1

2#

Figure 4.2: Discretization of a circular vortex sheet into vortex filaments. Each filament is dis-
cretized using Lagrangian particles [34].
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Lindsay and Krasny [34] developed a tree-code to evaluate the self-induced velocity

of a 3D vortex sheet and performed numerical computations of vortex rings. In their

simulations vortex rings were simulated as vortex sheets which started as circular

disks of radius 1. In Figure 4.2 we draw a schematic of their parametrization. On

the left is the parameter space (α, β) = [0, π/2] × [0, 2π] and on the right is the

physical space. The initial parametrization is x(α, β, 0) = (sinα cos β, sinα sin β, 0)

and the initial circulation is Γ(α, β, 0) = cosα, so a constant α value in the parameter

space corresponds to a circle in the physical space as shown in Figure 4.2, and hence

each of the concentric circles in the phsyical space is a filament.

They discretized the vortex sheet into filaments and each filament was discretized

into particles. Since each vortex filament has a constant Γ value dependent only on

α, the (Γαxβ − Γβxα) dα̃ dβ̃ term in equation (4.7) becomes (Γαxβ) dα̃ dβ̃. Equiva-

lently, they think of each vortex filament as an object carrying a certain amount of

circulation and each filament is discretized using the Lagrangian parameter β.

y

x

z

evolution

!=!2

!=!1 !=!1

!=!2

t = t 1 t = t 2

Figure 4.3: As the vortex sheet evolves, non-uniform stretching may cause two previously parallel
vortex filaments to separate far at some point while stay close elsewhere.

As the sheet surface evolves, stretching and twisting occur and hence refinement

is needed to maintain resolution. Their refinement strategy has two parts. First,
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they check the shortest distance between each pair of adjacent vortex filaments. If

the distance is greater than a tolerance, an entire new filament is inserted. Second,

they check the particles on each filament and if two adjacent particles separate too

far from each other, a new particle is inserted so that resolution is also maintained

along each filament.

The merit of this approach is that it is simple to implement. However, as illus-

trated in Figure 4.3, two adjacent vortex filaments may separate far from each other

locally, but stay relatively close elsewhere. A new filament is added in this case and

this is a waste of computational resources. This difficulty was alleviated by using a

panel method developed by Kaganovskiy [22], as reviewed below.
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Figure 3.3: New hierarchical panel representation.

3.2 New Hierarchical Panel Method

In this section we will describe our new approach to vortex sheet surface represen-

tation and integration. The surface is now discretized as a set of nested rectangles in

parameter space (Γ, θ) and corresponding panels in physical space (x, y, z), see Fig.

3.3

The nested panels are represented by a hierarchical tree structure. We start with one

big panel in parameter space 0 ≤ Γ ≤ 1, 0 ≤ θ ≤ 2π, shown on the left of Fig. 3.3a.

The panels are subdivided recursively. Denote vertices by 1-4, edges middle by 5-8,

and center point by 9, as in Fig. 3.3. In the following discussion we will use them

as indices for the corresponding Γ, θ parameter values as well as x, y, z coordinates.

For example, point 1 has parameter values Γ1, θ1 and coordinates (x1, y1, z1) when

we consider a given panel. Vertices 1-4 are basic to any panel. However, to obtain

a 2nd order approximation of the surface and integration law we use points 5-8 in

the middle of each edge. We will discuss several approaches to splitting panels. The

simplest approach is to have only 4-point panels and once a new point in one of

the edges is introduced, the panel is split into two sub-panels. If more than two

Figure 4.4: Discretization of a circular vortex sheet into quadrilateral panels. Each panel has 4, 5,
or 6 (not shown) points [22].

Kaganovskiy [22] developed a quadrilateral panel method for 3D vortex sheet sim-

ulations and applied the method to vortex rings. He discretized the vortex sheet into

quadrilateral panels, each of which has 4, 5, or 6 points. Figure 4.4 is a schematic

of his discretization. The panels have a tree structure which helps in both the

quadrature and the refinement schemes. When information from neighboring panels

is needed, the algorithm starts from the root and searches for neighboring panels.
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This is naturally adaptive because as panels are split and new particles are added, it

would be difficult to keep track of neighbors without a tree structure. Quadratures

with different orders of accuracy were also developed. Since the refinement scheme

is locally adaptive, an entire filament did not have to be inserted as in Lindsay [34].

This saves computational cost.

4.2 Discretization and Quadrature Developed in This Thesis

A triangulation, similar to the one used by Brady et al. [7], is also used in our

computations. However, the discretization we developed is different than in previous

work in that we do not use the global Lagrangian parameters (α, β). We note that

in equation (4.7), there are derivatives of the flow map x = x(α, β, t) with respect

to the parameters α and β. As the vortex sheet evolves, those derivatives will grow

rapidly in amplitude. We avoid computing these derivatives by discretizing equation

(4.1) rather than equation (4.7). Next we describe how this is done. First, we show

how the γ dS term in equation (4.1) is computed. Then, we explain the underlying

data structure in the representation of the vortex sheet and how the integral in (4.1)

is evaluated. The numerical method we developed is a panel method, for which Katz

and Plotkin [25] is a comprehensive reference.

4.2.1 Computation of Vorticity Carried by Panels

We use triangular panels to discretize the vortex sheet surface. Figure 4.5 shows

a triangular panel abc. We need to compute the vorticity γ dS carried by abc as

the Biot-Savart integral (4.1) requires this quantity. We will compute γ and dS

separately and then take the product. Without loss of generality, assume that the
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Figure 4.5: A triangular panel with vertices a, b, c. The vortex filaments through the vertices assist
in the calculation of the vortex sheet strength γ on the panel abc.

circulation satisfies Γa < Γb < Γc. Then there is a point p on edge ac such that

Γp = Γb, so
−→
bp lies on a vortex filament. We also draw the two vortex filaments

through point a and point c as they will be used in the calculations below. With

the auxiliary point p, the triangle abc can be split into two triangles abp and bcp.

With
−→
bp as the base, abp and cbp have heights ha and hc respectively.

From equation (2.11) it can be derived that the circulation Γ(A,B) between two

points A and B on the vortex sheet is

(4.8) Γ(A,B) =

∫
C

[u] · ds,

where C is any curve on the sheet connecting A to B, and ds is an arc element on

the curve. If A and B are such that a curve C parallel to [u] can be chosen, then

the above integral becomes

(4.9) Γ(A,B) =

∫
C

|[u]| ds,

where ds is an arc-length element on C, and hence |[u]| = dΓ/ds. However, |[u]| is

exactly the magnitude of the vortex sheet strength γ = n× [u]. So we conclude that
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the magnitude of the vortex sheet strength is

(4.10) |γ| = dΓ

ds
,

where ds is an arc-length element in a direction parallel to the velocity jump [u],

which is normal to γ since γ = n × [u]. On triangle abc, dΓ is Γc − Γa and ds is

hc + ha since both hc and ha are normal to γ. The magnitude of the vortex sheet

strength γ is then approximated by

(4.11) |γ| = Γc − Γa

hc + ha

,

and the direction is determined by the vector
−→
bp since it lies on a filament. Then,

the vortex sheet strength γ on this triangle is approximated by

(4.12)
Γc − Γa

hc + ha

−→
bp

|
−→
bp|

.

It remains to calculate the vorticity γ dS carried by the triangle, which is simply the

product of γ and the triangle’s area in this case. We have the following,

(4.13) γ dS =
Γc − Γa

hc + ha

−→
bp

|
−→
bp|

|
−→
bp| hc + ha

2
=

Γc − Γa

2

−→
bp.

We observe that since Γp = Γb, with the assumption that the circulation Γ varies

linearly on edge ac, p can be interpolated as a weighted average of a and c,

(4.14) p =
(Γc − Γb) a + (Γb − Γa) c

Γc − Γa

.

Using this to compute
−→
bp and substituting it into equation (4.13), we obtain the

vorticity γ dS carried by the triangle abc,

(4.15) γ dS =
1

2
(Γa(b− c) + Γb(c− a) + Γc(a− b)),

which is a 3D vector. Now we realize that p was only an auxiliary point as it does

not appear in the final expression. Note that if we orient the triangle abc in the



45

opposite direction acb, the sign of its vorticity γ dS would be reversed. But this

does not cause a problem, because the triangle’s orientation is determined by the

surface orientation, which in turn depends on the underlying physics.

4.2.2 Data Structure and Evaluation of the Biot-Savart Integral

a b

c
de

f

y

x

z

Figure 4.6: A triangular panel consists of three active points a, b, c and three passive points d, e, f .
The linear triangle formed by the active points assists in computation of the vorticity
carried by the panel, while the quadratic triangle formed by all points assists in the
refinement procedure to be described in the next section.

In this thesis, we use the terms points and particles interchangeably. The vortex

sheet is discretized as a set of panels, and each panel has vertices and edges. As shown

in Figure 4.6, a panel consists of three active points a, b, c and three passive points

d, e, f . The three active points form a linear triangle (solid lines), which is used to

compute the vorticity carried by this panel. This quantity is used in the Biot-Savart

integral (4.1) as explained in the previous section. The active and passive points

together determine a quadratic curved triangle (dotted curves), which will be used

in the refinement procedure to be described in the next section. The passive points

are not used in the quadrature to evaluate the Biot-Savart integral, however, but we

include them in the picture for future reference.
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In the computations, we discretize the vortex sheet using M panels pi, i =

1, . . . ,M and N particles xj, j = 1, . . . , N . We may consider two options for im-

plementing the Biot-Savart integral (4.1). First, we can write down the following

trapezoid-like rule for evaluating the sheet velocity (with N particles after discretiza-

tion),

(4.16)
∂xi

∂t
=

1

3

N∑
j=1

Kδ(xi − xj)×wj, i = 1, . . . , N,

where wj is the summation of vorticity carried by all panels incident to particle j.

Recall that the vorticity carried by a panel is computed by formula (4.15). Tests

were conducted to show that this scheme is second-order accurate in space like the

one-dimensional trapezoid rule.

Second, we can also write down the following midpoint-like rule (with M panels

after discretization),

(4.17)
∂xi

∂t
=

M∑
j=1

Kδ(xi −Cj)×wj, i = 1, . . . , N,

where Cj is the centroid of the j-th triangular panel and wj is the vorticity carried

by it. This scheme is also second-order accurate in space. We used the first scheme

in the computations and consider the second scheme as a direction for future research.

4.3 Adaptive Refinement

As the vortex sheet stretches and twists, some method of refinement is needed to

maintain resolution. In this section we explain how the refinement was implemented

in this thesis. The section starts with an introduction to barycentric coordinates,

followed by a description of adaptive panel subdivision and particle insertion.
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4.3.1 Barycentric Coordinates

a b

c

de

f

p

Figure 4.7: A triangle in the xy plane. Any point p in the triangle can be uniquely expressed as a
combination of the three vertices a, b, c using barycentric coordinates.

In Figure 4.7 we draw a triangle abc in the xy plane with a, b, c as vertices and

d, e, f as midpoints of the three edges bc, ca, ab, respectively. Any point p in the

triangle can be defined by barycentric coordinates u, v, w with respect to the three

vertices a, b, c such that we have a unique expression,

(4.18) p = ua + vb + wc, where u, v, w ∈ [0, 1] and u+ v + w = 1.

For instance, with respect to vertices a, b, c, the six points a, b, c, d, e, f in the

figure have barycentric coordinates

(4.19) (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 0),

respectively.

Since a quadratic function in two variables

(4.20) f(x, y) = c20x
2 + c02y

2 + c11xy + c10x+ c01y + c00

has 6 free coefficients, it is uniquely determined by 6 function values. Strictly speak-

ing, it can be shown in approximation theory that it is not always possible to deter-

mine a two-variable quadratic function over a plane with 6 points. The degenerate
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case occurs when the 6 points lie on a quadratic planar curve, which does not arise in

our context because the 6 points as depicted in Figure 4.7 do not lie on a quadratic

planar curve.

It is also possible to write down a quadratic function using barycentric coordinates,

(4.21) f(u, v, w) = c200u
2 + c020v

2 + c002w
2 + c110uv + c101uw + c011vw.

where the c’s are free coefficients and u, v, w are the barycentric coordinates. We

note that although this function has three variables, they are not independent and

the function can be interpreted as a quadratic function over the xy plane in Cartesian

coordinates. It is also worth pointing out that every term in (4.21) is of second order,

while only the first two term in (4.20) are of second order. The quadratic functions

in (4.20) and (4.21) are called Bezier patches, and there is a detailed treatment of

Bezier patches in Goodman and Said [20].

The reason for using barycentric coordinates rather than Cartesian coordinates

is because it is much simpler to interpolate over a triangle using barycentric coor-

dinates. To uniquely determine a quadratic Bezier patch over a triangle, 6 function

values on the patch are required. In the special case when the function values are

prescribed at the three vertices and three midpoints of the edges as shown in Figure

4.7, the Bezier patch as an interpolant can be written down easily as can be found

in Goodman and Said [20].

4.3.2 Adaptive Panel Subdivision and Particle Insertion

We restate that each triangular panel has three active points and three passive

points as drawn in Figure 4.8. We will use barycentric coordinates (u, v, w), calcu-

lated with respect to a, b, c to label those points. The three solid points a, b, c are
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the active points, and they have barycentric coordinates

(4.22) (1, 0, 0), (0, 1, 0), (0, 0, 1),

respectively. The three circled points d, e, f are the passive points, and their

barycentric coordinates are

(4.23) (0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 0),

respectively.

a b

c
de

f

y

x

z

a b

c

de

f
(1,0,0) (0,1,0)

(0,0,1)

(0,1/2,1/2)
(1/2,0,1/2)

(1/2,1/2,0)

Figure 4.8: Barycentric space and phsyical space. On the left is a planar triangle with 6 points
on them, labeled by their barycentric coordinates. On the right is the corresponding
quadratic panel in the physical space.

In Figure 4.8, on the left we draw 6 points on a planar triangle with their barycen-

tric coordinates, and on the right we draw the physical quadratic panel defined over

those six points. In contrast to Figure 4.6, we emphasize the curved triangle formed

by all 6 points and use solid curves for it because it plays an important role in

the refinement process. The linear triangle formed by the passive points a, b, c was

used in evaluating the Biot-Savart integral (4.1) and plays a less important role in

refinement, and hence is dashed in this redrawing.

Now we describe the refinement process. The refinement criteria generalize those

used for the 2D and axisymmetric cases to the fully 3D case. We follow a similar

path in explaining them. An edge is the line segment connecting two active points
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y

x

z

d1

d2

Figure 4.9: Two criteria are checked in the refinement process. d1 is the edge length. d2 is the
distance between an edge’s midpoint and the associated passive point.

on a panel, and we note that there is a passive point associated with each edge. We

refer to Figure 4.9. After each time step, two quantities are checked for each edge,

(1) the length d1 of the edge. (2), the length d2 between the edge’s midpoint and the

passive point associated with the edge. The algorithm uses two thresholds, ε1 and

ε2. If

(4.24) d1 > ε1,

then the edge length is too large and the discretization of the sheet surface is losing

resolution. If

(4.25) d2 > ε2,

then the sheet is developing a large curvature locally. In either case, the edge will be

split, i.e. the passive point becomes active. Note that these strategies are analogs of

the 2D and axisymmetric cases as explained in Chapter III.

Figure 4.10 illustrates how a panel is subdivided and particles are inserted. As

shown in Figure 4.10(a), if it is decided that edge ac will be refined, then panel abc

is split into four new panels and the passive point p associated with edge ac becomes
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(a)

(b)

a
b

c

a
b

c
a

b

cd

a
b

cd

p p

p p

Figure 4.10: Panel subdivision and particle insertion. (a) It is decided that edge ac will be split,
then the panel abc splits into four new panels and particle p becomes active for some
of the new panels. (b) puts panel abc in the surrounding panels. Particle p remains
passive for panel acd after the splitting and is plotted with a thick empty dot. Solid
dots (·) are active points. Empty dots (◦) are passive points.

active for some of the new panels as shown in Figure 4.10(a). Figure 4.10(b) shows

the panel abc in the surrounding environment. We can see that even though panel

abc is split, its neighboring panel acd remains intact and particle p is still passive

for panel acd. Passive points for new panels generated from splitting panel abc are

obtained by interpolation using Bezier patches over both panel abc and panel acd

as described in the previous subsection.
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4.4 Tree-code for Evaluating the Sheet Velocity

The focus of this thesis is on the triangular panel-particle method for vortex

sheet motion, but a tree-code is used to evaluate velocities, and hence the following

description is added for completeness.

Because the number of computational points N needed for a 3D vortex sheet

simulation is generally large, a naive direct summation algorithm for evaluating the

velocity field is not practical as it has operation count O(N2) and hence is too costly.

Fortunately, there are a variety of fast tree-codes available for N -body problems,

which reduces the operation count to O(N logN).

The fundamental idea of a tree-code for particle simulations is a divide-and-

conquer strategy. A tree-code is often applied in particle simulations where every

particle interacts with every other particle. The tree-code divides the domain con-

taining all the particles into hierarchical clusters, with the root cluster containing

all the particles. Rather than evaluating pair-wise particle interactions, a tree-code

computes particle-cluster interactions when the size of a cluster is small compared

to the distance between a particle and the cluster. Cluster-cluster interactions can

also be used, and their effectiveness is under investigation by researchers.

The Barnes and Hut [5] tree-code divides the space evenly into four children for a

two dimensional space. They approximate a cluster by a single particle at the cluster

center. Figure 4.11 is a schematic of a tree structure with 4 levels in 2D.

Greengard and Rokhlin [21] developed the Fast Multipole Method (FMM) for

the case in which the kernel is a harmonic function. A Laurent expansion in 2D

and a spherical harmonic expansion in 3D were used in their algorithm. They used

higher order expansions, in contrast to earlier fast algorithms. They introduced the
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(a)

(b)

Figure 4.11: Tree formation. (a) physical tree in 2D space with four levels. (b) corresponding
logical tree represented as a data structure.
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idea of using both a far-field expansion and a near-field expansion to optimize the

computational cost. Zhao [51] proposed a FMM using Cartesian Taylor expansions

rather than spherical harmonics expansions for problems where the interaction kernel

is the Newtonian potential.

The Rosenhead-Moore kernel (2.10) is not harmonic, and a Taylor expansion in

Cartesian coordinates can be used. Draghicescu and Draghicescu [15] developed

a tree-code using Cartesian Taylor expansion to compute a vortex sheet in a two

dimensional flow, and they achieved an operation count of O(N logN).

The tree-code used in this thesis was developed by Lindsay [34] and Lindsay and

Krasny [33]. They expanded the work of Draghicescu and Draghicescu [15] from

2D to 3D. More specifically, they derived and implemented a recurrence relation

for the Cartesian Taylor coefficients for the regularized Biot-Savart kernel (2.10) in

3D. They also introduced a varying order expansion, which estimates the error and

the execution time of an order p expansion and chooses an optimal p adaptively to

reduce the computational cost. The tree-code in Lindsay [34] only used particle-

cluster interactions.

The accuracy and efficiency of the tree-code are controlled by several parameters.

First, when the root cluster is divided into cascading levels of clusters, it may not be

optimal to reach the lowest level where every leaf only has one particle. Instead, the

tree-code sets a parameter Nc so that any cluster containing less than Nc particles

is not divided further. Second, the tree-code can in principle compute and use all

the terms in the Taylor series expansion. But computing and storing a large number

of Taylor coefficients can add an overhead that slows the algorithm in the end. A

maximum allowable order of expansion Pmax is set in the tree-code, and the code

chooses adaptively whether to perform an expansion of order P ≤ Pmax or a direct
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summation adaptively. Third, there is error control available for the tree-code, and

the code takes a tolerance ε as a parameter such that the error in the evaluated

velocity is less than ε. For all the simulations to be presented in later chapters,

we used the parameters Nc = 500, Pmax = 8, and ε = 0.001. We have tested these

parameters to ensure that they provide sufficient accuracy, and yet are still efficient.



CHAPTER V

Vortex Ring Computations

Understanding the dynamics of vortex rings is important because ring structure

appears frequently in nature. Fortunately, vortex rings can be generated in the lab

and the results can be used as a benchmark for numerical simulations.

This chapter presents numerical simulations of two problems, (1) a single vortex

ring undergoing azimuthal instability, and (2) the oblique collision of two vortex

rings. In the first problem, perturbations grow along the vortex core of an initially

axisymmetric vortex ring and cause the ring to break down. In the second problem,

as two vortex rings collide at an oblique angle, vortex reconnection causes the two

rings to merge into a single ring and then split again.

This chapter is organized as follows. For each of the two problems described

above, first we discuss previous experimental studies, then we present simulations

using the triangular panel-particle method described previously in the thesis.

5.1 Experiments on a Single Vortex Ring

Vortex rings are fundamental structures in fluid motion and they have been stud-

ied by many experimentalists, so a complete review is impossible. Shariff and Leonard

[45] and Lim and Nickels [32] are comprehensive references for vortex rings. Now we

56
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R

X

Figure 5.1: Schematic of the experiment by Didden [14]. An axisymmetric vortex ring is generated
by forcing fluid out of a pipe. A cross section of the ring is drawn. The ring radius
grows like R ∼ t2/3. The axial distance X between the the vortex core and the pipe
exit grows like X ∼ t3/2.

first review experimental work on axisymmetric vortex rings.

In labs, vortex rings can be generated by forcing fluid out of a circular pipe as

was illustrated in Figure 1.3. The fluid is often dyed to assist in observation. The

distribution of vorticity in a vortex ring causes the material particles to rotate around

the core, while propagating along an axis. This axis is not to be confused with the

vortex core axis, which is a closed curve. To differentiate between them, as was

shown in Figure 1.2 we call them the propagation axis and the core axis.

Figure 5.1 shows a schematic view of the experiment by Didden [14] in which an

axisymmetric vortex ring was generated by forcing fluid out of a circular pipe. The

vortex core axis was circular and the ring radius is denoted R. The axial distance

between the core and the pipe exit is denoted X. The growth rates R ∼ t2/3 and

X ∼ t3/2 were observed.

Auerbach [2] performed an experiment for a planar vortex pair and arrived at

similar conclusions regarding the growth rates as Didden [14]. A planar vortex pair

is a 2D analog of an axisymmetric vortex ring and they have similar cross sections.
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The only difference is that in a planar vortex pair the vortex filaments are parallel

straight lines while in an axisymmetric vortex ring the filaments are circles.

Figure 5.2: Photo from Van Dyke [17] visualizing an experiment in which the azimuthal instability of
a vortex ring is studied. The vortex ring was initially axisymmetric, then the azimuthal
perturbations cause it to lose axisymmetry and become turbulent.

It is well known that as a vortex ring propagates, it remains laminar initially but

eventually sinusoidal perturbations develop along the azimuthal core axis and lead

to turbulence. Figure 5.2 is a photo from Van Dyke [17], showing that the vortex

ring has lost axisymmetry and is in an unstable stage. Beside measuring the growth

rates of a vortex ring, Didden [14] also observed the azimuthal instability of vor-

tex rings at later time similar to what is shown in Figure 5.2. We present in the

next section numerical simulations of the azimuthal instability of a single vortex ring.

5.2 Computational Results on Vortex Ring Azimuthal Instability

To use a vortex sheet to simulate a vortex ring, we need to generate an initial

mesh on the circular disk. The exponential map w(z) = ez is used in this process.
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(a) parameter space (b) physical space

Figure 5.3: A Schematic of the conformal mapping w(z) = ez as applied to the generation of a
triangular mesh on the unit disk. The physical mesh shown on the right is generated
after one run of the refinement procedure described in section 4.3. More runs are needed
if a finer mesh is desired.

Figure 5.3 shows a schematic of such a map. The function w(z) = ez is a conformal

mapping that maps the half-infinite strip D = (−∞, 0]× [0, 2π) in the complex plane

into the unit disk.

A triangulation of the strip D leads to a triangulation of the disk, which is the

initial physical space in the simulation of a single vortex ring. We can not take the

entire domain D as it is infinite, but this problem can be solved as follows. We note

that w(z) maps the line segment x = 0, 0 ≤ y ≤ 2π to the outer edge of the unit

disk, and maps the region at infinity in D to the disk center. Since the circulation

distribution on the disk is Γ =
√

1− r2 and dΓ/dr = −r/
√

1− r2 is the vortex sheet

strength, there is essentially no vorticity at the disk center. So we can leave out a

small region around the center. To do this, we ignore the region at infinity in D and

take D̃ = [−π, 0] × [0, 2π] as the parameter space. Then w(z) = ez maps D̃ to the

annulus with an inner radius of e−π = 0.0432 and an outer radius of e0 = 1.0.
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(a) (b)

(c) (d)

Figure 5.4: Initial mesh generation by repetitively applying the refinement process. Three repeti-
tions are shown.

We triangulate D̃ using equilateral triangles of the same size, and this leads to a

triangulation of the unit disk. The refinement procedure as described in section 4.3

is repeatedly applied to this mesh to generate the initial computational mesh on the

disk. The number of repetitions determines how fine the initial mesh is. Figure 5.4
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shows this process with 3 repetitions.

For initial perturbations, we used two wave numbers, k = 5 and k = 8 as in

Kaganovskiy [22]. The following functions are added to the z-coordinate of all com-

putational points for the two modes at t = 0,

(5.1) ε(r, θ) = 0.1 r2 sin(5θ), ε(r, θ) = 0.1 r2 sin(8θ),

where r2 = x2+y2 and θ is the azimuthal angle in the cylindrical coordinates (r, θ, z).

The smoothing parameter in the regularized Biot-Savart kernel (2.10) is δ = 0.1.

The time step is ∆t = 0.05. Recall that in the refinement process, there are two

tolerance parameters ε1 and ε2 as were defined in equation (4.24) and (4.25). These

two parameters are set to be ε1 = 0.1 and ε2 = 0.0025 in the simulation. Those

parameters are tested to ensure that the computations are fully resolved, and yet

they are not too small to sacrifice efficiency.

Figure 5.5 shows a time sequence of the simulation for wave number k = 5, while

the case k = 8 is shown in Figure 5.7. We note that all the pictures of the 3D simu-

lations in this thesis are rendered by TecPlot version 10.0. In Figure 5.5, we can see

that wave number k = 5 is stable and the initial perturbation does not grow much.

Figure 5.7 shows that wave number k = 8 is unstable and the outer filament devel-

oped hairpins. We believe that whether a mode is stable depends on the smoothing

parameter in the regularized Biot-Savart kernel (2.10).
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Figure 5.5: Time sequence of azimuthal instability of a single vortex ring at time t = 0, 1, 2, 3, 4, 5,
ordered top to bottom, then left to right. The perturbation has wave number k = 5. As
can be seen in the picture, the perturbation does not grow much from t = 0 to t = 5.
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(a)

(b)

Figure 5.6: Final time t = 5.0 from the time sequence in Figure 5.5. (a) Mesh on the surface. (b)
Transparent view. Two filaments are shown, the larger one is the outer edge, while
the smaller one is inner edge after deleting a small center region in the initial mesh
generation. The outer filament expanded by a large amount because circulation is
concentrated there. In contrast, the inner filament did not expand much.
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Figure 5.7: Time sequence of azimuthal instability of a single vortex ring at time t = 0, 1, 2, 3, 4, 5,
ordered top to bottom, then left to right. The perturbation has wave number k = 8.
As can be seen in the picture, the perturbation grows considerably from t = 0 to t = 5.



65

Figure 5.8: Final time t = 5.0 from the time sequence in Figure 5.7. (a) Mesh on the surface. (b)
Transparent view. Only the outer filament is shown to assist visualization in contrast
to the case k = 5, the disk center is filled by adding computational points. As can be
seen from the picture, hairpins form on the outer edge.
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bisecting axis

(a) top view (b) front view at t = tl

Figure 5.9: Schematic of experimental set-up for oblique collision of two vortex rings. θ is the
collision angle. A top view is shown in (a). At an early time t = te, the two rings have
little effect on each other and are axisymmetric. As the two rings come closer at a later
time t = tl, the axisymmetry is lost. A front view at the later time t = tl is shown in
(b), where only the vortex core axes are drawn.

5.3 Experiments on Oblique Collision of Two Vortex Rings

Many experiments have been conducted on the interaction of two vortex rings, in-

cluding Fohl and Turner [19], Kambe and Takao [23], Oshima and Asaka [38], Oshima

and Izutsu [40], Schatzle [44], and Lim [30]. In this section we review experimental

work on the oblique collision of two vortex rings. Figure 5.9 is a schematic of the

experimental set-up showing two circular pipes whose axes are at an angle θ from

the bisecting axis. A piston forces fluid out of each pipe causing an axisymmetric

vortex ring to form. The experiment shows that the two rings stay axisymmetric at

an early time t = te, but as they move closer, the axisymmetry is lost at a later time

t = tl. Figure 5.9(a) is a top view, if we look to the ring fronts in the direction of

the bisecting axis, we would see the front view as shown in Figure 5.9(b).

When the two rings come close to each other, they deform due to viscous diffusion.

The interaction between the two vortex rings leads to vortex reconnection which we
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explain next.

(a) t = t1 (c) t = t3(b) t = t2

(e) t = t5(d) t = t4

A

B

Figure 5.10: Schematic of two vortex rings colliding obliquely, front view. The dotted line denotes
the bisecting plane between the two rings, the plane where collision occurs. As the two
rings carrying opposite vorticity come close (a), the first vortex reconnection occurs (b)
and they form one single ring (c). As time progresses further, a second reconnection
occurs (d) and the single vortex ring splits into two counter rotating rings (e). Each
new ring consists of one half from each of the original two rings.

Figure 5.10 shows a schematic time sequence of the reconnection of two rings. In

this figure, we draw two closed vortex filaments to represent the vortex rings. Figure

5.10(a) shows that the rings propagate initially as two counter-rotating rings and

move towards the plane of collision. After they come in contact, vorticity cancella-

tion occurs since the vorticity is of opposite sign as shown in Figure 5.10(b). This

interaction of vorticity merges the two rings into one single ring as shown in Figure

5.10(c). The portions of the vortex rings which are not in contact, denoted A and

B in Figure 5.10(c), are still propagating towards each other and this leads to the

picture in Figure 5.10(d). A second vortex reconnection occurs and the single vortex
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(a) top view
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Fig. 12a-f .  Collision of two vortex rings; a a top-view picture 
showing the vortex rings in the early stage of interaction; b - e  a 
series of front-view photographs depicting different stages of inter- 
action; f a side-view picture showing the break up of an oval ring 
into two vortex rings 

have been more appropriate .  Nevertheless, the results of 

Fohl  and Turner  (1975) show that  for the half angles of 

approach  beyond 16 ~ the sequence of events which occurs 

during the collision of two vortex rings is basically the same. 

Dye used in this investigation was made up of ink in a wa- 

ter/alcohol mixture to give a specific gravity of 1.00. Fo r  ease 

of identification, one ring was coloured red and the other 

was coloured blue. Figure 12 depicts a few selected photo-  

graphs showing different stages of the collision. 

When two identical vortex rings approached one another,  

the induced effect of each ring caused the other ring to 

distort  (Fig. 12 a). The distort ion was a result of a different 

rate of vortex stretching along the circumferential axis of 

each ring. This non-uniform vortex stretching also caused 

the diameter of the vortex core to vary along the circum- 

ferential axis of the ring. Like the vortex ring/inclined wall 

interaction such a variat ion in the vortex core diameter  

eventually led to the generation of bi-helical vortex lines 

a round the circumferential axis of each ring. However in 

slight contrast  to the vortex ring/inclined wall interaction, 

the extent of bi-helical winding in the case of two colliding 

vortex rings appeared to be less pronounced.  This may have 

been due to the weakening in the strength of the vortex cores 

as a result of vorticity cancellation at the region of contact  

before the induced effect of the rings became dominant .  In 

the case of vortex ring/inclined wall interaction, vorticity 

cancellation did not  occur until after the secondary vorticity 

was created at the boundary.  F rom the author 's  under- 

standing, the formation of bi-helical vortex lines had also 

been observed by Fohl  and Turner. 

The results so far indicated a degree of similarity in the 

flow behaviour of the two colliding vortex rings and that  of 

the vortex ring/inclined wall interaction, at least up to the 

formation of bi-helical vortex lines. However, as the process 

of collision continued, significant differences in their flow 

characters began to emerge. The compression of the bi- 

helical vortex lines which was so clearly observed in the 

vortex ring/inclined wall interaction was not  evidenced in 

the case of two colliding rings. Nor  was there any evidence of 

the presence of a secondary vortex (see Fig. 12b e which 

show the latter stages of the collision). Instead the winding 

and the stretching of the vortex lines appeared to have accel- 

erated the rate of viscous diffusion and this coupled with the 

mutual  cancellation of vorticity of opposing sign eventually 

led to a total  annihilat ion of vorticity in the region of con- 

tact. The net result of this process was the joining of the 

vortex lines of one ring with those of the other ring at the 

region of contact, which ult imately gave rise to the forma- 

tion of a single distorted oval ring with one half of the ring 

comprising of the blue dye and the other half of the red dye 

as can be seen in Fig. 12(c). The oval ring, soon after its 

formation, began to oscillate in such a manner  that  the role 

of the minor  and major  axes interchanged. The net outcome 

of this was to cause the vortex lines located at each end of the 

minor  axis to come together. Owing to the viscous diffusion 

the vortex lines were eventually connected at the region of 

contact  to form two rings which subsequently travelled away 

from each other along the axes lying in the plane perpendic- 

ular to the plane of approach.  A front-view and a side-view 

picture of the vortex rings after the break-up are shown in 

Fig. 12 e and f respectively. A striking feature of the rings 

(b) front view

Figure 5.11: Flow visualization by Lim [30]. Two vortex rings are generated as fluid is forced out of
circular pipes. The pipe axes are positioned so that the collision angle θ = 17.5◦. The
two rings eventually collide and then reconnect to form two new rings propagating in
different planes.

ring breaks up into two new rings (e).

Fohl and Turner [19] conducted an experiment of two vortex rings colliding at an

oblique angle. They observed that if the collision angle θ as shown in Figure 5.9 is

greater than 16◦, then the rings reconnect as depicted in Figure 5.10. However, for a

smaller value of θ, they did not observe reconnection. Hence there is a critical angle

θc = 16◦ for reconnection.

Kambe and Takao [23], Oshima and Asaka [39], Oshima and Izutsu [40] also

observed a critical angle. But Oshima and Asaka [39] found that a smaller critical

angle θc < 16◦ was needed for the two rings to reconnect and form two new rings if

the two original rings have larger circulation.

Schatzle [44] conducted a similar experiment using a larger collision angle θ = 30◦

and he observed vortex ring reconnection. He also found that the circulation of the

rings decreases during the collision, and he attributed this to the effect of viscosity.
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Lim [30] performed an experiment in which an axisymmetric vortex ring hits a

wall at an oblique angle. He also did an experiment in which two axisymmetric

vortex rings collide in free space at an oblique angle. Figure 5.11 is a photo from his

experiment for the oblique collision of two rings. In this case, two vortex rings were

generated using the pipe-piston apparatus. The collision angle in the experiment

was θ = 17.5◦. It was found that the two rings collide and merge into a single ring,

and then the single ring splits into two new rings propagating in different planes.

Motivated by all of these experiments reviewed above, in the next section we will

present the simulations of the oblique collision of two vortex rings.

5.4 Computational Results on Oblique Collision of Two Vortex Rings

In simulating this problem, we used the same initial mesh as in section 5.2 for

the simulation of a single vortex ring undergoing instability. Since the problem is

symmetric, only one of the two rings is computed, and the other is obtained by

reflecting the data. We used the same initial circulation Γ(r, 0) =
√

1− r2 as was

used in the single ting case, where r is the distance to the disk center.

Figure 5.12 shows a time sequence of the simulation. Initially the centers of the

two rings are located at (±2.5, 0, 0), which is close to the experimental configuration

in Lim [30]. The collision angle is θ = 17.5◦, which is also what Lim [30] used.

The smoothing parameter in the regularized Biot-Savart kernel (2.10) is δ = 0.2 in

contrast to the δ = 0.1 used in the simulation of a single ring undergoing instability,

because we found that using δ = 0.1 would make the computations too costly for

this case. The time step ∆t = 0.1. The two parameters for refinement are ε1 = 0.1

and ε2 = 0.0025.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Time sequence of simulation of oblique collision of two vortex rings at time t =
0, 8, 12, 16, 20, 24, ordered top to bottom, then left to right.
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We can see that as the two rings come close to each other, the axisymmetry is

lost. Unfortunately, we could not go further because the computations became too

costly at later times with more and more computational points. Figure 5.13 is a

close-up of the final time t = 24.0 of the sequence in Figure 5.12. We present plots

from the same viewpoints as in the experiment shown in Figure 5.11.

(a) simulation, top view. (b) simulation, front view.

Figure 5.13: Oblique collision of two vortex rings.



CHAPTER VI

Vortex Sheet Computations in 3D Density-Stratified Flow

Density-stratified flow has many applications, for example, the ocean is slightly

stratified in density because of different salinity at different depths. This chapter

presents numerical studies of density-stratified flow using the vortex sheet model

previously described.

This chapter is organized as follows. First we review relevant previous work

on density-stratified flow, which includes both numerical and experimental studies.

Then we present the numerical simulations using the method developed in this thesis.

6.1 Review of Previous Work on Density-Stratified Flows

First we review the numerical work on density-stratified flow by Baker, Meiron,

and Orszag [3, 4], and Stock [46]. Then we discuss experimental work on density-

stratified flow by Thomson and Newall [48] and Estevadeordal, Meng, Gogineni, Goss

and Roquemore [18], in which a drop of heavy fluid settles in a background of lighter

fluid.

72
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6.1.1 Rayleigh-Taylor Instability

Rayleigh-Taylor instability is caused by density stratification. When a layer of

heavy fluid lies above a lighter one, the interface is susceptible to small perturbations

as the heavy fluid on top has the tendency to penetrate into the lighter fluid below.

When the geometry of the problem is simple, an explicit dispersion relation can be

derived by linear stability analysis [16].

Baker, Meiron, and Orszag [3] considered an interface between two fluids of dif-

ferent densities. The setting of their study was in free space and they modeled the

interface as a vortex sheet. As the flow evolves, vorticity is generated on the interface

due to the density jump. They derived the equation (2.31) for circulation generation

on the sheet surface. Computational results were presented for the evolution of an

interfacial wave. Baker, Meiron, and Orszag [4] later extended the model presented

by Baker et al. [3] to the axisymmetric case and the fully 3D case.

Stock [46] presented a vortex-in-cell method for 3D vortex sheet simulations. He

considered flows with small Atwood ratio A, in some cases with the Boussinesq ap-

proximation and in other cases with a full density jump accounted for. In one problem

he studied a thermal, which is a volume of light fluid surrounded by ambient heavier

fluid. In another computation he simulated a vortex ring hitting a planar density

interface. He compared simulations for both head-on and oblique collision, and for

both homogeneous and density-stratified flow.

6.1.2 Experimental Work on Density-Stratified Flow

Thomson and Newall [48] performed an experiment in which they released a spher-

ical drop of heavy fluid in water. Figure 6.1 is a schematic of the process. The three
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FIG. 15. Sketch of unstable vortex ring from experiments by Thomson and Newall [48].
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FIG. 15. Sketch of unstable vortex ring from experiments by Thomson and Newall [48].

Figure 6.1: Schematic of an unstable vortex ring from the experiment by Thomson and Newall [48],
picture taken from Walther and Koumoutsakos [50]. A drop of heavy fluid is released
into water. The drop rolls up into a vortex ring which becomes unstable at a later time
and secondary rings form. Only the vortex core is drawn. A time sequence is shown,
ordered from top to bottom, and from left to right.

frames in the left panel are at earlier times, the two frames in the middle panels are

at intermediate times, and the one frame in the right panel is at a later time. As the

drop settles, it loses its spherical shape and the interface rolls up into a vortex ring.

Since there is a density jump on the interface, vorticity is generated baroclinically

as governed by equation (3.20) or (3.22). Vorticity is generated fastest where the

interface is vertical since gravity points in that direction. In the initial stage, a large

amount of vorticity is generated on the equator while the polar areas are still irro-

tational. As time progresses, the drop rolls up into a vortex ring while the density

interface remains topologically a sphere.

More recently, Estevadeordal, Meng, Gogineni, Goss and Roquemore [18] per-

formed a similar experiment. Figure 6.2 is the visualization of their experiment. In

their experiment, they used water suspension of polystyrene to create a heavy drop.

They observed a similar vortex ring instability as by Thomson and Newall [48]. In
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3-D VISUALIZATION OF VORTEX-RING AND
BAG-SHAPED INSTABILITIES USING HOLOGRAPHY

Submitted by J. Estevadeordal,1 H. Meng,2

S. P. Gogineni,1 L. P. Goss,1 and W. M. Roquemore3

(Innovative Scientific Solutions, Inc., Dayton,
Ohio,1 Kansas State University, Manhattan, Kansas,2

Wright–Patterson AFB, Ohio3)

Holography is an ideal tool for visualizing three-

dimensional !3-D" transient flow structures. Visualization is
accomplished by seeding the flow with particles at a high

concentration and instantaneously recording their scattered

light on a hologram using a pulsed laser beam. The image of

the flow marked by the particles is then reconstructed in 3-D

space from the hologram, viewed from different angles, and

focused at different distances and magnifications. Each set of

photographs !a, b, c" displays several views of a holographic

image of a drop falling into water. The holographic tech-

nique is in-line recording and off-axis viewing !IROV".4

Two types of nonlinear breakdown of drops into water

are displayed. The drops, aqueous suspensions with 90% wa-

ter and 0.5 cm in diameter, fell freely from a distance of 1

cm above the water surface. The polystyrene-suspension

drop undergoes vortex-ring instability, and the milk drop ex-

hibits bag-shaped instability. Both drops cascade on smaller

and smaller scales !droplets, wakelets, ringlets" that yield
flow crowns, 3-D arcades, and chaotic structures.5

The images demonstrate the power of 3-D visualization

by holography. If the particle concentration is reduced to the

point where individual particles can be recognized in the

holographic images, the technique can be used to measure

3-D velocity fields as in holographic particle image veloci-

metry.

S5Phys. Fluids 9 (9), September 1997 1070-6631/97/9(9)/5/1/$10.00 © 1997 American Institute of Physics

3-D VISUALIZATION OF VORTEX-RING AND
BAG-SHAPED INSTABILITIES USING HOLOGRAPHY

Submitted by J. Estevadeordal,1 H. Meng,2

S. P. Gogineni,1 L. P. Goss,1 and W. M. Roquemore3

(Innovative Scientific Solutions, Inc., Dayton,
Ohio,1 Kansas State University, Manhattan, Kansas,2

Wright–Patterson AFB, Ohio3)

Holography is an ideal tool for visualizing three-

dimensional !3-D" transient flow structures. Visualization is
accomplished by seeding the flow with particles at a high

concentration and instantaneously recording their scattered

light on a hologram using a pulsed laser beam. The image of

the flow marked by the particles is then reconstructed in 3-D

space from the hologram, viewed from different angles, and

focused at different distances and magnifications. Each set of

photographs !a, b, c" displays several views of a holographic

image of a drop falling into water. The holographic tech-

nique is in-line recording and off-axis viewing !IROV".4

Two types of nonlinear breakdown of drops into water

are displayed. The drops, aqueous suspensions with 90% wa-

ter and 0.5 cm in diameter, fell freely from a distance of 1

cm above the water surface. The polystyrene-suspension

drop undergoes vortex-ring instability, and the milk drop ex-

hibits bag-shaped instability. Both drops cascade on smaller

and smaller scales !droplets, wakelets, ringlets" that yield
flow crowns, 3-D arcades, and chaotic structures.5

The images demonstrate the power of 3-D visualization

by holography. If the particle concentration is reduced to the

point where individual particles can be recognized in the

holographic images, the technique can be used to measure

3-D velocity fields as in holographic particle image veloci-

metry.

S5Phys. Fluids 9 (9), September 1997 1070-6631/97/9(9)/5/1/$10.00 © 1997 American Institute of Physics

3-D VISUALIZATION OF VORTEX-RING AND
BAG-SHAPED INSTABILITIES USING HOLOGRAPHY

Submitted by J. Estevadeordal,1 H. Meng,2

S. P. Gogineni,1 L. P. Goss,1 and W. M. Roquemore3

(Innovative Scientific Solutions, Inc., Dayton,
Ohio,1 Kansas State University, Manhattan, Kansas,2

Wright–Patterson AFB, Ohio3)

Holography is an ideal tool for visualizing three-

dimensional !3-D" transient flow structures. Visualization is
accomplished by seeding the flow with particles at a high

concentration and instantaneously recording their scattered

light on a hologram using a pulsed laser beam. The image of

the flow marked by the particles is then reconstructed in 3-D

space from the hologram, viewed from different angles, and

focused at different distances and magnifications. Each set of

photographs !a, b, c" displays several views of a holographic

image of a drop falling into water. The holographic tech-

nique is in-line recording and off-axis viewing !IROV".4

Two types of nonlinear breakdown of drops into water

are displayed. The drops, aqueous suspensions with 90% wa-

ter and 0.5 cm in diameter, fell freely from a distance of 1

cm above the water surface. The polystyrene-suspension

drop undergoes vortex-ring instability, and the milk drop ex-

hibits bag-shaped instability. Both drops cascade on smaller

and smaller scales !droplets, wakelets, ringlets" that yield
flow crowns, 3-D arcades, and chaotic structures.5

The images demonstrate the power of 3-D visualization

by holography. If the particle concentration is reduced to the

point where individual particles can be recognized in the

holographic images, the technique can be used to measure

3-D velocity fields as in holographic particle image veloci-

metry.

S5Phys. Fluids 9 (9), September 1997 1070-6631/97/9(9)/5/1/$10.00 © 1997 American Institute of Physics

Figure 6.2: Visualization of the experiment by Estevadeordal et al. [18]. A drop of water suspension
of polystyrene is released into water and a time sequence is shown. The drop rolls up
into a vortex ring which later develops azimuthal instability and secondary rings form.

contrast to Thomson and Newall [48], Estevadeordal et al. [18] also performed an-

other experiment in which the Atwood ratio is smaller. In this case they observed

aother instability that looks qualitatively different, which they called a bag-shaped

instability. Next we present numerical simulations motivated by these experiments.

6.2 Computational Results

In this section we present numerical simulations of a drop of heavy fluid settling in

a background of a lighter fluid. We make the Boussinesq approximation and assume

that initially there is no vorticity in the flow. Since there is a density jump on the

interface between the two fluids, vorticity is generated baroclinically on the surface.

As in all the work contained in this thesis, we assume that the flow is inviscid, and

hence the density interface can be modelled as a vortex sheet.

A triangular mesh on a sphere can be generated in a number of ways. For ex-

ample, one can inscribe an icosahedron (a regular polygon consisting of 20 identical
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equilateral triangles) in the sphere. Then one can divide each equilateral triangle

into 4 smaller equilateral triangles and push all new points onto the sphere. If the

mesh is not fine enough, this process is repeated. This approach was adopted by

Stock [46] in simulating a thermal rising in a background of slightly heavier fluid.

Figure 6.3: Initial mesh on a sphere. Two views are shown, perspective view on the left and top
view on the right. The mesh is generated by the advancing front-method which uses
the equator as the initial front.

We tried a mesh generated by repetitively dividing an icosahedron, but it gen-

erates artificial perturbations. In our simulations, the initial mesh on the sphere is

generated using an advancing-front method. The initial front is on the equator, and

it propagates to fill up the whole sphere. In the advancing stage, each edge in the

front tries to find a candidate point on the sphere so that the point combines with

the edge to form a triangle close to being equilateral. Figure 6.3 shows a perspective

view of the initial mesh on the sphere and a top view.

We list the parameters used in the simulations. The initial radius of the sphere

is R = 0.5 and the initial drop is centered at the origin (0, 0, 0). The smoothing

parameter for the Biot-Savart kernel (2.10) is δ = 0.1, which is in contrast to the
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case for simulating the oblique collision of two vortex rings, where δ = 0.2 was used.

The reason for doing this is because the radius of the sphere here is R = 0.5, while

the radius of the disk was R = 1.0 for the vortex ring simulations. We not that a too

small δ value causes the computation to be costly, while a too large δ value makes

the vortex blob method invalid. The time step is ∆t = 0.05. The parameters for the

refinement process are ε1 = 0.1 and ε2 = 0.0025.

An initial perturbation of the form

(6.1) ε(r, θ) = 0.1 r2 sin(5θ),

where r2 = x2 + y2 and θ is the azimuthal angle in cylindrical coordinates (r, θ, z), is

added to the z-coordinates of all computational points at t = 0. The initial condition

for circulation is Γ(x, 0) = 0.

Figure 6.4 shows a time sequence of the simulation. We can see that mode k = 5

appears to be stable, and the secondary vortex rings did not form as in the experiment

shown in Figure 6.2. This may be caused by two reasons. First, the smoothing

parameter δ we used is too large. A smaller δ value would make the problem more

unstable and may force the secondary vortex rings to appear. Second, the wave

number k = 5 is stable for δ = 0.1. In future work, we will vary the wave number of

the perturbation (6.1).
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Figure 6.4: Time sequence of simulation for a spherical drop of heavy fluid settling in a background
of lighter fluid using the vortex sheet model. The plotted times are t = 0, 2, 3, 4, 5, 6,
ordered from top to bottom, then from left to right. An initial perturbation of wave
number k = 5 is added. The initial spherical drop rolls up into a vortex ring but mode
k = 5 appears to be stable.



CHAPTER VII

Summary and Future Work

7.1 Summary

A new panel method was presented for computing vortex sheet motion for ho-

mogeneous and density-stratified flow in 2D, axisymmetric, and 3D geometry. The

computations were motivated by experiments in the literature. The algorithm uses

a triangular panel-particle method to evolve the sheet surface. The velocities are

computed with a Cartesian tree-code.

In Chapter I we introduced vortex sheets, vortex rings, and the work contained in

this thesis. Chapter II contains mathematical background of fluid dynamics relevant

to the vortex sheet model. That chapter also gave a brief review of the literature on

computations of vortex sheet motions. Chapter III described the numerical meth-

ods and presented results for vortex sheets in 2D and axisymmetric flows, including

both homogeneous and density-stratified cases. Chapter IV explained the discrete

panel representation of vortex sheets in a fully 3D flow, and described in detail the

numerical methods used in the simulations. The tree-code for computing particle

velocity was briefly explained. Chapter V presented results for vortex sheets in 3D

homogeneous flow, including a case in which a single vortex ring undergoes azimuthal

instability, and a case in which two vortex rings collide at an oblique angle. Chapter

79
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VI presented results for vortex sheets in 3D density-stratified flow, in which a heavy

drop of fluid settles in a background of lighter fluid. In this case, vorticity is gener-

ated baroclinically on the density interface.

7.1.1 Contributions of Thesis

First, a local quadrature method was successfully implemented. Previously, most

methods for computing vortex sheets used a global parametric description. In con-

trast, the scheme developed here avoids the use of a global parameter space in both

the quadrature and panel-particle refinement. This has the potential to provide

superior resolution when the sheet surface becomes geometrically complex.

Second, a hierarchical triangular panel-particle representation was developed for

3D vortex sheets. In general, the vortex sheet will expand and distort as it evolves, so

mesh refinement is needed to maintain resolution. The hierarchical panel structure

makes the mesh refinement easier to implement, and also makes the code simpler,

but still accurate. Each panel has a set of active points and a set of passive points.

The active points are used in the quadrature. The passive points are used in the

refinement procedure, which includes panel subdivision and particle insertion.

Third, a comparison was made between the Boussinesq approximation and the

full density jump for density-stratified flow in 2D and axisymmetric case. It can be

seen from the numerical results that the full density jump formulation converges to

the Boussinesq approximation as the Atwood ratio tends to 0 at a fixed time.
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7.1.2 Comparison with Previous Methods and Difficulties

The computation of 3D vortex sheet motion was previously studied using a variety

of methods by many authors, including Brady, Leonard, and Pullin [7], Lindsay and

Krasny [33], Kaganovskiy [22], and Stock [46], among others. As the sheet surface

evolves, stretching and twsiting occur which require some method of refinement to

maintain resolution. This issue was addressed in all of the work above. The approach

adopted in Brady et al. [7] was an advancing-front method, which remeshes the

sheet surface after each time step. Lindsay and Krasny [34] inserted a new filament

between neighboring ones if they separate too far from each other. On each filament,

new particles were inserted if neighboring particles separate too far. Kaganovskiy

[22] used a hierarchical quadrilateral panel method in which panels could be locally

refined, so that an entire new filament did not have to be added. Hence his method

saves computational cost compared with Lindsay and Krasny [33]. Stock [46] used

a triangular mesh and a vortex-in-cell method to compute velocity, and refined the

sheet representation by splitting edges when they become too long. In our method

we represent the sheet surface using a hierarchical triangular panel structure, in

which each panel has active points and passive points. The active points are used

in computing the vorticity required by the Biot-Savart integral (4.1) and the passive

points assist in the refinement procedure.

The challenge faced by all methods for refining on a 3D vortex sheet surface is

that as the sheet evolves, non-uniform stretching and twisting occur. If we pick two

orthogonal directions on the sheet surface, the stretching rates can vary drastically

in these directions. Figure 7.1(a) shows a panel that is equilateral at an early time,

but later loses its regularity because of non-uniform stretching.

We can also see twisting of filaments on the sheet surface. Figure 7.1(b) depicts
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(a)

(b)

Figure 7.1: Difficulties in resolving 3D vortex sheets. (a) shows a case in which the sheet is stretched
with different rates in different directions, resulting in a slender triangle. (b) shows two
filaments that are almost parallel initially, but they may twist around each other at a
later time.

this phenomenon schematically. Two vortex filaments are almost parallel initially,

but the distance varies like a small wave. At points where they are close there is

a larger tendency for them to rotate around each other, while at points where they

are distant there is a less tendency for them to rotate. This non-uniformity causes

the two filaments to twist around each other and makes the sheet surface difficult to

resolve.

7.2 Directions of Future Work

The work presented in this thesis can be extended in a number of ways. The

typical running time of our algorithm for simulations of 3D flow takes about ten

hours, so there is a potential to cut the running time significantly by parallelizing

the algorithm. The major part of the running time is devoted to the tree-code which

evaluates the velocity, and the refinement process accounts for much less of the run-
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ning time. Hence it appears that parallelizing the tree-code will be more effective

in cutting the computational cost. Next we present more detailed descriptions of

possible future directions of research.

7.2.1 Higher Order Quadrature

We recall that each panel has a set of active points, which are the three vertices,

and a set of passive points, which are the midpoints of the edges. The three active

points form a linear triangle, while active points and passive points together form

a 6-point quadratic triangle. When the panel was used to compute vorticity, only

the linear triangle was used and the quadrature was second-order accurate. If we

use both active points and passive points, it is possible to write down a quadrature

that is third-order accurate in space. This appears promising for three reasons, (1) a

higher-order accurate scheme is always desirable as it allows for a smaller mesh size

to be used, (2) each panel already has enough information for implementing such a

higher-order scheme, and (3) the advantage of higher-order schemes was verified in

Chapter III for 2D and axisymmetric flows.

In the refinement process, it is possible to do it in the following manner. Recall

that when a panel is split, it breaks into four new panels. Alternatively, we may only

activate a passive point on an edge only when criterion (4.24) or (4.25) is satisfied

on that edge. Figure 7.2 shows a schematic of this idea. To implement it, we need

to derive a quadrature for 4 and 5 point panels.

Another direction to consider is using panels with three active points and four

passive points, as shown in Figure 7.3. The extra pasive point is put over the cen-

troid of the linear triangle formed by the three active points. The rationale for this

is that even though the curvature on edges of the panel may be small, the curvature
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(a) (b)

(c)(d)

Figure 7.2: Schematic of 4 and 5-point panels. In the refinement process, we may not split a
panels into 4 new panels immediately when criterion (4.24) or (4.25) is satisfied on any
edge. But rather we can active a passive point when the criterion is satisfied on the
corresponding edge. New quadrature schemes need to be derived for 4-point panel (b)
and 5-point panel (c).

near the centroid could be large. If the distance between the centroid of the base

triangle and the corresponding passive point, the panel is split into four new panels.

7.2.2 Full Density Jump for Density-Stratified Flow in 3D

For density-stratified flow, the Boussinesq approximation is only valid when the

Atwood ratio is small, i.e. when the relative density jump is small. Equations gov-

erning the baroclinic generation of vorticity on the interface for the full density jump

case were derived by Baker, Meiron, and Orszag [3] and presented in equation (2.31).

Computational results in 2D and axisymmetric flows were presented in Chapter III

for the case when full density jump is accounted for. We not that a full density jump
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(a) (b)
Figure 7.3: A panel with three active points and four passive points. The extra passive point

corresponds to the centroid of the triangle determined by the three active points.

can also be simulated in 3D and it is more physically correct when the Atwood ratio

is large. The difficulty with such a 3D computation is that without the Boussinesq

approximation, since the evolution equation of the vorticity generation is implicit, it

requires much more work to solve.

7.2.3 Head-on Collision of Two Vortex Rings

Figure 7.4: Visualization of the experiment by Lim and Nickels [31]. In the experiment, two ax-
isymmetric vortex rings are generated by forcing fluid out of circular tubes. The two
rings stay axisymmetric initially, but the axisymmetry is lost as they come into contact.
After the contact, the two core axes expand rapidly and smaller rings form on the outer
edge.
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Figure 7.4 shows an experiment performed by Lim and Nickels [31] in which

two vortex rings collide head-on. As the two rings come into contact, their core axes

expand rapidly and smaller ringlets form on the outer edges. The experiment showed

that different Reynolds numbers produce perceivably different results. We simulated

this case and the result stays axisymmetric if no initial perturbations are added. The

main difficulty here is to find perturbations so that ringlets of similar shapes form

as in the experiment.
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