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SUMMARY

In this manuscript, we present non-parametric two-sample tests for paired censored survival data in-
corporating longitudinal covariate information. These tests take advantage of information collected at
baseline and post-baseline to provide e�ciency gains when censoring is uninformative. Additionally,
these methods adjust for potential bias from informative censoring that is captured by the baseline
and longitudinal covariates. Finite sample properties are investigated with simulation, and we illustrate
methodology with an example from the Early Treatment Diabetic Retinopathy Study. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most clinical trials collect prognostic baseline information in order to investigate whether
treatment imbalances have occurred despite randomization and with the added hope of gaining
e�ciency from this prognostic information in estimation and testing of treatment e�ects. In
addition, it is becoming more common for clinical trials to collect longitudinal covariates as
supplemental outcome information that is relevant to the primary clinical endpoint of interest.
For example, the Early Treatment Diabetic Retinopathy Study [1, 2] collected eye-speci�c
baseline retinopathy status classi�ed according to two levels of prognostic disease severity
and later, visual acuity scores in a study assessing early versus delayed photocoagulation for
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the prevention of severe vision loss in patients with diabetic retinopathy in both eyes. In this
paired design alternate eyes were randomized to the two competing treatments, minimizing
variability in comparing time to severe vision loss.
Since severe vision loss is in part de�ned in terms of deteriorating visual acuity score,

visual acuity information obtained after baseline gives partial information towards treatment-
mediated events occurring post-baseline. Hence, if used in a way that bolsters information
regarding event-times, baseline information and follow up visual acuity scores should allow
for more e�cient estimation of survival, especially under relatively heavy censoring as in
the ETDRS. At the same time, in the two-sample testing framework, one must be cautious
to avoid methods that inappropriately adjust for internal covariates observed post-baseline as
described by Kalb�eisch and Prentice [3]. Adjusting a treatment e�ect for internal covariates
observed post-baseline may diminish legitimate treatment di�erences, since these covariates
carry information about the treatment e�ect.
The particular setting of the ETDRS could potentially bene�t from use of estimation and

testing procedures for paired, censored survival data structures that incorporate this prognostic
longitudinal covariate information. However, methods that accommodate this data structure
are not currently available for two-sample testing.
Model-based approaches relevant to two sample testing have been developed for paired,

censored survival data that condition upon baseline covariate information and allow adjustment
for external time-dependent covariates that do not mediate treatment e�ects. Frailty models,
discussed by many authors including Clayton [4], Vaupel et al. [5], Hougaard et al. [6] and
Oakes [7] handle dependence in survival endpoints by incorporating random e�ects shared
by dependent pair members into a baseline survival model. Spiekerman and Lin [8] use
working independence models in the derivation of parameter estimates and account for the
correlation structure in determining standard errors. These model-based methods for paired
censored survival data are able to adjust for selection bias re�ected in baseline covariate
imbalances and are able to give correct inference about a treatment e�ect when modelling
assumptions are valid. However, these methods are not designed to make e�ective use of
internal longitudinal covariate information since inference about the treatment e�ect conditional
on covariates included in these parametric models partially adjusts the treatment e�ect away.
Instead of conditioning upon the covariates as in the analyses described above, one may

incorporate covariates in estimating overall marginal survival for each treatment group. In
the setting of independent treatment groups, Murray and Tsiatis [9] presented non-parametric
two-sample tests comparing marginal survival distributions supplemented by strati�ed longitu-
dinal covariate information, and demonstrated e�ciency gains that grew as more longitudinal
information was incorporated over time in the case censoring remained uninformative. Under
informative censoring, these tests remain consistent when the relationship between the cen-
soring and failure times is captured by the covariate information. The survival estimates used
in their tests have been shown by Murray and Tsiatis [9] to correspond to inverse probability
weighted complete case survival estimates discussed in Robins and Rotnitzky [10] and in
Robins and Finkelstein [11] when inverse weights are non-parametrically estimated. Similar
survival estimates have been developed by Malani [12] using a redistribute to the right al-
gorithm and incorporated into rank-based tests. Although these tests can take advantage of
longitudinal covariate information, they do not accommodate paired designs.
Non-parametric methods have been presented for analysing paired censored survival data

using a variety of sign- or rank-based tests by authors such as Woolson and Lachenbruch [13],
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Wei [14], O’Brien and Fleming [15], Dabrowska [16, 17], and Jung [18]. Murray [19, 20]
developed paired extensions of both sequentially monitored weighted logrank tests discussed
by Gill [21], and tests of integrated survival di�erences discussed by Pepe and Fleming [22].
In her thesis, Messinger [23] developed non-parametric paired two-sample tests comparing
marginal survival adjusting for baseline covariate imbalances in a causal inference manner.
Although these tests accommodate paired designs, they are not able to take advantage of
prognostic covariate information collected post baseline.
In this manuscript, we develop non-parametric two-sample tests for censored survival data

that accommodate dependent treatment groups while incorporating longitudinal covariate in-
formation with three goals in mind. These tests extend to the paired setting (1) the ability
to adjust for potential bias from informative censoring that is captured by the longitudinal
covariates, (2) non-parametric baseline adjustment for treatment imbalances and, under un-
informative censoring, (3) e�ciency gains as additional prognostic time-dependent covariate
information is incorporated without inappropriate alteration of the treatment e�ect from using
these potentially internal covariates. To our knowledge, no single method accomplishing these
goals is available in making marginal survival comparisons in the paired censored survival set-
ting. In Section 2, we describe baseline covariate standardized estimation of marginal survival
incorporating longitudinal data. In Section 3, we present corresponding two-sample tests for
paired, censored survival data. These tests use longitudinal covariate information in a manner
that does not diminish treatment e�ects mediated through the covariates, but instead uses the
information to improve inference. We investigate �nite sample power and size properties of
the proposed tests in Section 4. In Section 5, we revisit the ETDRS study. Discussion follows
in Section 6.

2. SURVIVAL ESTIMATION INCORPORATING LONGITUDINAL COVARIATES
AND BASELINE STANDARDIZATION

Let Tg and Cg denote failure and censoring random variables and Xg= min(Tg; Cg) the possibly
censored event time with corresponding censoring indicator �g= I(Tg¡Cg); g=1; 2. Suppose
that for each of ng subjects in group g, a time-dependent categorical covariate is potentially
measured at each of times T ∗

0 ; : : : ; T
∗
s during the study period. When time-dependent covariates

mediate treatment e�ects they may be viewed as intermediate marker outcomes. For subjects in
group g, let Zgm denote a time-dependent covariate observed at time T ∗

m−1; m=1; 2; 3; : : : ; s+1,
with realization im; im=0; : : : ; k. Also let �gi1 be the probability that Zg1 = i1 at T

∗
0 for a subject

in group g, and let �gi1 :::im be the probability that a subject in group g has Zgm= im at T
∗
m−1,

conditional on the subject surviving at least to time T ∗
m−1 and previously having Zg1 = i1 at

T ∗
0 ; Zg2 = i2 at T

∗
1 ; : : : ; and Zgm−1 = im−1 at T ∗

m−2. Also, for a subject in group g, let Sgi1 :::im(t)
be the probability that a subject survives past time t, conditional on the subject surviving past
time T ∗

m−1 and having Z1 = i1 at T
∗
0 ; Z2 = i2 at T

∗
1 ; : : : ; and Zm= im at T

∗
m−1, and let Hgi1 :::im(t)

and �gi1 :::im(t), respectively, denote the corresponding censoring survival and hazard functions.
Using conditional probability, we may then express marginal survival for this heterogeneous
distribution at times t; T ∗

m−1¡t6T
∗
m as

Sg(t)=
k∑
i1=0

k∑
i2=0

· · ·
k∑

im=0
Sgi1i2 :::im(t)�gi1i2 :::im × · · · × Sgi1i2 (T ∗

2 )�gi1i2Sgi1 (T
∗
1 )�gi1
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Let ngi1 :::im be the number of people in group g having Zg1 = i1 at T
∗
0 ; Zg2 = i2 at T

∗
1 ; : : : ;

and Zgm= im at time T ∗
m−1, let ngi1 :::im−1 = ngi1 :::im−10 + · · · + ni1 :::im−1k represent the number at

risk in group g at T ∗
m−1 having previous covariate history i1; : : : ; im−1, and let Ŝgi1 :::im(t) be the

Kaplan–Meier survival estimate at time t among those in group g who were at risk at time
T ∗
m−1 with past covariate values corresponding to i1; : : : ; im; m=1; 2; : : : ; s+ 1. An estimate for
survival in group g at times t; T ∗

m−1¡t6T
∗
m is

WSg(t)=
k∑
i1=0

k∑
i2=0

· · ·
k∑

im=0
Ŝgi1i2 :::im(t)�̂gi1i2 :::im × · · · × Ŝgi1i2 (T ∗

2 )�̂gi1i2 Ŝgi1 (T
∗
1 )�̂gi1

where �̂gi1 = ngi1=ng represents the group speci�c proportion of patients in each covariate stra-
tum as seen in each treatment group population at baseline and, for m �=1; �̂gi1i2 :::im = ngi1i2 :::im =
ngi1i2 :::im−1 are group speci�c proportions. This estimate for survival and corresponding variance
results have been previously described by Murray and Tsiatis [9, 24].
An alternative estimate for survival at times, T ∗

m−1¡t6T
∗
m , that we propose is

W̃Sg(t)=
k∑
i1=0

k∑
i2=0

· · ·
k∑

im=0
Ŝgi1i2 :::im(t)�̂gi1i2 :::im × · · · × Ŝgi1i2 (T ∗

2 )�̂gi1i2 Ŝgi1 (T
∗
1 )�̂i1

where n:i1 = n1i1+n2i1 ; n= n1+n2, and �̂i1 = n:i1=n represents the overall proportion of patients in
covariate stratum i at baseline so it is common across treatment groups g=1; 2. This estimate
of survival adopts an approach commonly used in lifetable analysis to adjust for selection bias,
where a common standardized distribution of a confounding factor is used to estimate mortality
rates in each of two groups under comparison. Under successful randomization schemes,
using a standardized baseline covariate distribution common to both groups in calculating
W̃Sg; g=1; 2, provides e�ciency gains over the unstandardized estimate, WSg(t) since more
data is used to estimate the common �gi= �i. When baseline covariate imbalances exist,
use of a standardized baseline covariate distribution to estimate marginal survival in a two-
sample testing framework evens out baseline covariate imbalances between the groups so
that di�erences in marginal survival observed across groups are due only to di�erences in the
strata-speci�c survival distributions themselves, and not attributable to bias caused by baseline
covariate disparities. Hence, use of the unstandardized survival estimate, WSg(t) g=1; 2, in a
paired testing framework would accomplish goals (1) and (3) as stated in the Introduction,
whereas use of the standardized estimate, W̃Sg(t) g=1; 2 would accomplish goals (1), (2)
and (3).
In describing W̃Sg(t) we have assumed, without loss of generality, that T ∗

0 is zero so that the
�rst set of covariates are measured at baseline. However, this estimation strategy may also
accommodate settings described by Murray and Tsiatis [9, 24] in which the �rst covariate
incorporated is measured post-baseline, and hence potentially altered by treatment, by using
an arti�cially created baseline covariate that is identical for all patients in each treatment
group. By incorporating arti�cial baseline covariates in this way, the �rst covariates observed
at T ∗

1 remain unstandardized in W̃Sg(t) and the resulting estimate corresponds to work of
Murray and Tsiatis [9] where baseline imbalances could be an issue in making inferences.
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3. DEVELOPMENT OF CORRESPONDING TWO-SAMPLE TESTS FOR PAIRED
DATA STRUCTURES

Using standardized survival estimates W̃Sg(t) that incorporate covariate information collected
at T ∗

0 ; T
∗
1 ; : : : ; T

∗
k , we can now consider a test statistic for paired censored survival data of

the form TPSMk =(n1n2=n)
1=2
∫∞
0 ŵ(t){W̃S1(t) − W̃S2(t)} dt, where the subscript k on the test

statistic matches the k subscript on the last time covariate information was collected and in-
corporated into the survival estimation procedure, T ∗

k . This test statistic is powered to detect
alternatives of the form

∫∞
0 w(t)S1(t) dt �=

∫∞
0 w(t)S2(t) dt, which is the same set of alterna-

tives considered by the original Pepe–Fleming statistic. The random weight function, ŵ(t),
must be chosen so that it vanishes whenever the number at risk within any group and stratum
is zero and supu∈[0;t) |ŵ(u)− w(u)| approaches zero in probability for deterministic w(u). For
instance, if we de�ne Ygi1 ;:::;ik+1(t) as the number of individuals at risk at time t for covariate
history i1; : : : ; ik+1 in group g; ŵ(t)=

∏
g;i1 ;:::;ik+1 I(Ygi1 ;:::;ik+1(t)¿0) will result in an interpreta-

tion corresponding to the average years of life saved (YLS) between treatment groups during
the period from (0;max(t) : ŵ(t)¿0). The limiting function w(u) associated with this choice
of weight is an indicator function with positive value over the time frame where patients
corresponding to each group and strata pro�le have positive probability of remaining at risk.
In calculating the asymptotic variance of this two-sample test in the paired setting, we must

fully appreciate and account for correlation between survival and marker endpoints longitudi-
nally across treatment groups. The required methodological derivation of the asymptotic test
variance is included in Appendix A along with estimates for the each of its components.
Under successful randomization, it can be shown that the asymptotic variance of TPSMK is

smaller than that of TPMK =(n1n2=n)
1=2
∫∞
0 w(t){WS1(t) − WS2(t)} dt, the corresponding test

we also develop in this manuscript using unstandardized WS survival estimators in place of
W̃S, under the null hypothesis as well as under many interesting alternatives where we have
uninformative censoring. For instance such alternatives includes all cases with �1 =�2 = 1=2,
where �g is the probability of being assigned to treatment group g. Having complete pairs is a
special case where �1 =�2. Another example is the set of alternatives where A2i1 (0)=A1i1 (0)+
C, where Agi1 (0)=

∫∞
0 w(t)Sgi1 (t) dt, and C can be interpreted as a constant, perhaps weighted,

YLS due to treatment for each stratum. The null hypothesis of C=0 is a special case of this
set of alternatives. Additionally, it can be shown that e�ciency gains using the standardized
survival estimators are achieved under all alternatives when treatment groups are independent.
Each test statistic developed for paired censored survival data in this manuscript exceeds by
far the e�ciency of methods currently available for independent treatment groups although
we recommend use of TPSMK . A study of gains made from use of longitudinal data follows
in the next section.

4. SIMULATIONS

Simulations relating to an 11 year study period with baseline and 4 year dichotomous marker
information were constructed to investigate �nite sample power and size properties with inde-
pendent and dependent treatment groups. Each treatment group consists of 4 possible survival
pro�les constructed from piecewise bivariate lognormal failure times with a 4-year changepoint
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Figure 1. The piecewise bivariate lognormal survival curves displayed above correspond to the scenario
underlying results in Tables I and II, where the average di�erence in years lived over the �rst 4 years
due to baseline stratum is approximately 6 months in each treatment group. Average di�erences in
years lived after 4 years due to covariate stratum determined at T∗

1 for each treatment group depending
on baseline strata 1 and 2 were approximately 2.5 and 1.5 years, respectively. Log-scale means are

displayed in proximity to the curves with a 4-year change point.

as illustrated in Figure 1. Correlation, or the lack thereof, comes from two di�erent sources,
the log-scale correlation parameter used in generating the piecewise bivariate lognormal curves
and the degree of correlation imposed upon the longitudinal covariates. In simulations con-
ducted with independent treatment groups, the log-scale correlation parameter, �, was taken
to be zero and the covariates were generated independently across treatment groups. In the
correlated setting, �=0:3 and pair members shared the same covariate pro�les, unless there
was induced selection bias in which case covariates were generated independently.
Parameter values corresponding to the null and alternative hypotheses, with and without se-

lection bias, are outlined in the following paragraphs along with the results of each simulation.
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Prognostic ability of the covariates in the various simulations are described using the average
di�erence in years lived between covariate stratum survival pro�les over a speci�c time pe-
riod. To target the degree of censoring during the 11 year study period to be 20 per cent and
encourage identical study periods across all simulations, we modelled the censoring mecha-
nism acting on the endpoints using the random variable C=L× I(B=1) + 11× I(B=0). In
this expression, L is a bivariate lognormal random variable with mean and variance on the log
scale equal to 2.5 and correlation equal to that of the corresponding failure times, and B is a
Bernoulli random variable with success probability related to the desired level of censoring.
For each investigation, 1000 Monte Carlo simulations were run with 300 either uncorrelated
or correlated failure time pairs.
To verify size under the null hypothesis, the log-scale means and variances of the baseline

failure time distributions for each treatment group were (2:5; 1) and (1:5; 1) for covariate
strata 1 and 2, respectively, corresponding to an average di�erence in years lived over the
�rst 4 years of approximately 6 months. The log-scale means and variances of the conditional
failure time distributions applied to those at risk at T ∗

1 for each baseline covariate stratum were
(2:3; 1); (0:8; 1) for covariate strata 1 and 2, respectively. These parameters a�ecting survival
beyond T ∗

1 correspond to an average di�erence in years lived over the remaining study period
between covariate stratum determined at T ∗

1 of approximately 2.5 and 1.5 years according to
baseline stratum 1 and 2, respectively.
Selection bias scenarios displayed for the null hypothesis assume �11 = �22 = 0:55 and �12 =

�21 = 0:45. Otherwise, in the absence of selection bias, equal proportions were designed to
fall into the di�erent baseline strata. Covariates generated at T ∗

1 were designed to fall into the
di�erent strata with equal proportions.
Size results are located in Table I. From top to bottom, the rows in Table I correspond to

results from the paired test statistics incorporating covariate information from 2 looks (TPSM1),
baseline only (TPSM0), and ignoring all covariate information (TP). From left to right, the
columns of the table represent results with independent treatment groups and then correlated
treatment groups without and with selection bias. Appropriate size results were observed
for paired, standardized tests using either baseline information alone or both baseline and
longitudinal information in each scenario. The test statistic that ignores covariate information,
TP, had in�ated type I errors for the selection bias setting.
To study power, the log-scale means and variances of the four failure time distribution

pro�les in each treatment group were generated to study alternatives over a range of prognostic
ability of the baseline covariate. Baseline covariate prognostic ability corresponded to an
average di�erence in years lived between strata over the �rst 4 years of approximately 0; 6,

Table I. Size under null hypothesis.

Test Independent Paired Paired with selection bias

TPSM1 0.048 0.058 0.052
TPSM0 0.052 0.043 0.049
TP 0.048 0.042 0.109

Average di�erences in years lived after 4 years between covariate stratum de-
termined at T∗

1 for each treatment group depending on baseline strata 1 and 2
were approximately 2.5 and 1.5 years, respectively.
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Table II. Power under alternative hypothesis∗.

Test Independent Paired Paired with mild selection bias

TPSM1 0.608 0.717 0.666
TPSM0 0.589 0.664 0.643
TP 0.569 0.619 0.264

∗Average di�erence in years lived over the �rst 4 years due to baseline stratum
is approximately 6 months in each treatment group. Average di�erences in
years lived after 4 years between covariate stratum determined at T∗

1 for each
treatment group depending on baseline strata 1 and 2 were approximately 2.5
and 1.5 years, respectively.

or 9 months. When simulating no average di�erence in years lived over the �rst 4 years
according to baseline stratum, log-scale means and variances of the baseline failure time dis-
tributions were (2; 1) for both covariate strata 1 and 2 and treatment groups 1 and 2. For
an average di�erence in years lived of 6 months over the �rst 4 years due to baseline co-
variate stratum, these parameters become (2:5; 1) and (1:5; 1) for covariate strata 1 and 2,
respectively. For an average di�erence in years lived of 9 months over the �rst 4 years due
to the baseline covariate stratum, these parameters become (2:8; 1) and (1:2; 1) for covariate
strata 1 and 2, respectively. The log-scale means and variances of the conditional failure
time distributions applied to those at risk at T ∗

1 depends on treatment group g, and covariate
history i1i2. For those in treatment group 1, these parameters were (3:2; 1); (1:4; 1); (3:2; 1),
and (1:1; 1), respectively, corresponding to covariate histories 11; 12; 21; 22. For treatment
group 2, these parameters were (2:3; 1) (0:8; 1); (2:3; 1) (0:8; 1), respectively, corresponding
to covariate histories 11; 12; 21; 22. These parameters a�ecting survival beyond T ∗

1 corre-
spond to an average di�erence in years lived over the remaining study period between
covariate stratum determined at T ∗

1 of approximately 2.5 and 1.5 years according to base-
line stratum 1 and 2, respectively, in the case shown in Figure 1. Further information on
prognostic ability for the various simulation results are footnoted in the appropriate power
tables.
In the absence of selection bias, equal proportions were designed to fall into the di�erent

baseline strata. A range of selection bias scenarios were investigated under the alternative
hypotheses. Parameter values corresponding to mild selection bias were �11 = �22 = 0:55 and
�12 = �21 = 0:45. These parameters become �11 = �22 = 0:60 and �12 = �21 = 0:40 for alternatives
with moderate selection bias, and become �11 = �22 = 0:65 and �12 = �21 = 0:35 for an even
greater degree of selection bias. Covariates generated at T ∗

1 were designed to fall into the
di�erent strata with equal proportions.
Power results located in Table II show power increasing under independent and paired

settings both with and without mild selection bias with each additional incorporated covariate
look. In this selection bias setting, the test statistic that ignores covariate information, TP, is
too conservative while the paired standardized tests using either baseline covariate information
alone or baseline and longitudinal information adjust for potential bias.
Power results located in Table III further illustrate the performance of the test statistics

over a range of selection bias and prognostic ability of the baseline covariate. The left col-
umn of the table indicates the average di�erence in years lived between covariate strata over

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:301–318
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Table III. Power with varying degrees of baseline covariate prognostic ability and selection bias.

Baseline prognostic ability �11 = �22 = 0:55 �11 = �22 = 0:60 �11 = �22 = 0:65
(YLS over 4 years) Test �12 = �21 = 0:45 �12 = �21 = 0:40 �12 = �21 = 0:35

0∗ TPSM1 0.693 0.702 0.662
TPSM0 0.626 0.642 0.621
TP 0.633 0.636 0.613

6 months† TPSM1 0.666 0.723 0.707
TPSM0 0.643 0.680 0.653
TP 0.264 0.092 0.047

9 months† TPSM1 0.695 0.693 0.672
TPSM0 0.678 0.673 0.661
TP 0.162 0.081 0.306‡

∗Average di�erence in years lived after 4 years in each treatment group and baseline covariate stratum
between covariate stratum determined at T∗

1 is approximately 2.5 years.
†Average di�erences in years lived after 4 years between to covariate stratum determined at T∗

1 for each
treatment group depending on baseline strata 1 and 2 were approximately 2.5 and 1.5 years, respectively.

‡All but one of these were rejections of the null hypothesis in favour of the inferior treatment. This is worse
than having zero power since the wrong treatment is recommended in most cases.

the �rst 4 years of the study period. The next column indicates the test statistic for which
the results are displayed in the following three columns with increasing degrees of base-
line imbalance. In cases where the baseline covariate is prognostic over the �rst 4 years,
results show power increasing with each additional incorporated covariate look as in Table
II. Comparable power results for TP and TPSM0 are displayed for all levels of selection bias
when the baseline covariate is not prognostic over the �rst 4 years with power gains only
apparent for TPSM1 in these cases. Increasing selection bias only modestly a�ects the power
of TPSM0 and TPSM1 as sample size increases for estimating survival curves and �ggi2 param-
eters associated with Z11 and Z22, and sample size decreases for estimating survival curves
and �g(3−g)i2 parameters associated with Z12 and Z21. However increasing selection bias has a
more profound a�ect upon the power of TP, which o�ers no adjustment for bias due to an
imbalanced and prognostic baseline covariate. This impact of increased selection bias on TP
is greater when baseline covariates have greater prognostic ability. In the worst case, illus-
trated in the bottom right corner of the table, the power is even worse in consequence than
0 per cent since rejections of the null hypothesis are most often in favour of the inferior
treatment.
We additionally investigated power of the test statistics when the e�ect of treatment man-

ifested itself through changes in the covariate marker after baseline. Parameters to generate
data were identical to those for paired data under the null hypothesis, with the exception
of the parameters corresponding to the post baseline covariate distribution. In this scenario,
covariates generated at T ∗

1 were designed to fall into covariate strata 1 and 2 with probability
0.65 and 0.35, respectively, for treatment group 1 and with probability 0.35 and 0.65, respec-
tively, for treatment group 2 regardless of baseline status. Results are displayed in Table IV
for mild selection bias or no selection bias. Again we see increased power with each addi-
tional incorporated covariate look. Although treatment di�erences appear only after T ∗

1 ; TPSM0
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Table IV. Power when treatment e�ect is captured
by post baseline covariate.

Test No selection bias Mild selection bias

TPSM1 0.672 0.684
TPSM0 0.647 0.656
TP 0.608 0.311

•Covariates generated at T∗
1 were designed to fall into covariate strata

1 and 2 with probability 0.65 and 0.35, respectively, for treatment
group 1 and with probability 0.35 and 0.65, respectively, for treatment
group 2 regardless of baseline status.

•Average di�erences in years lived after 4 years between to covari-
ate stratum determined at T∗

1 for each treatment group depending on
baseline strata 1 and 2 were approximately 2.5 and 1.5 years, respec-
tively.

is still able to make gains in power through a coarsened capturing of the treatment e�ect. In
the selection bias setting presented, the test statistic that ignores covariate information, TP, is
even more conservative than it was with no selection bias present.

5. EXAMPLE

Recall the Early Treatment Diabetic Retinopathy Study (ETDRS) described in the Introduction
enrolling 3711 patients each having some degree of diabetic retinopathy in both eyes. For
each patient, one eye was randomized to a treatment group receiving early photocoagulation
therapy and the other to a treatment group deferring photocoagulation therapy until a time
when high-risk proliferative retinopathy was detected. The clinical endpoint of interest was
time to severe vision loss, where this loss was de�ned as visual acuity less than 5

200 at two
consecutive visits. The statistics discussed in this paper test the di�erence in average days of
sight between treatment groups observed over a study period of about 8 years.
The ETDRS collected eye-speci�c baseline retinopathy status classi�ed according to two

levels of prognostic disease severity. Level of observed baseline retinopathy severity in this
group is moderately predictive survival and, to a lesser degree, censoring times. For each
level of baseline retinopathy, follow-up visual acuity at 3 years, de�ned as low or high
visual acuity with respect to the median, is signi�cantly predictive of survival conditional on
having survived to that point as can be seen in Figure 2. After inspection, the strata speci�c
conditional censoring survival distributions are similar amongst those at risk at 3 years. In
this setting, we expect to make gains by incorporating both the baseline and 3-year prognostic
covariate information.
Estimates for the average extended days of sight over the 8-year period in the early pho-

tocoagulation group along with the associated test variances are displayed in Table V. All
test methods considered give similar estimates of average extended days of sight in the early
photocoagulation group of about 41 days. Both tests incorporating prognostic covariate infor-
mation in the paired setting perform better than the TP, the paired Pepe–Fleming test ignoring
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Figure 2. Survival probabilities by baseline retinopathy status and 3-year visual acuity score (VAS) in
early and deferred photocoagulation groups of the ETDRS.

Table V. Results from ETDRS.

Test Average extended days of sight Associated variance 95 per cent CI

TPSM1 41.86 65.88 (25.95,57.77)
TPSM0 41.23 85.83 (23.07,59.39)
TP 41.45 107.68 (21.11,61.79)

TPSM1 is the paired test developed in this work using standardized baseline covariate information and other
longitudinal covariates. TPSM0 is the paired test using only standardized baseline covariate information. TP is
the paired test ignoring covariate information.

covariate information. TPSM1 , incorporating visual acuity at 3 years in addition to baseline
retinopathy, leads to a 23 per cent reduction in the estimated variance of the treatment dif-
ference over TPSM0 , which uses only baseline retinopathy status.
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6. DISCUSSION

This work develops methodology for studying paired censored survival data that makes use of
baseline and internal longitudinal covariate information in a manner that improves statistical
inference regarding treatment e�ects. These paired tests extend the ability to adjust for potential
bias from informative censoring that is captured by the longitudinal covariates, adjust for
di�erential selection, and can take advantage of covariate information to make e�ciency
gains in the absence of these sources of bias. We have demonstrated that additional e�ciency
gains are achieved with each prognostic covariate look under uninformative censoring in the
paired censored survival setting. The potential for gaining information in the paired censored
survival setting through incorporation of additional covariate information exceeds that seen
when treatment groups are independent since, in the paired setting, covariate information
collected longitudinally for one treatment group gives partial information about the opposing
treatment group endpoint. Simulations observed in Section 4 show a tendency toward larger
increases in power in the paired setting that encourage this intuition. This observation alone
is a new contribution to the literature that inspires the need for more research with auxiliary
covariate information in the paired censored survival setting.
When treatment groups are comparable at baseline, baseline covariate standardization ad-

vocated by this research provides e�ciency gains due to additional information being used
to estimate marginal survival. It should be underscored that standardization methods are only
appropriate when applied to baseline covariates and not subsequent covariate information
that potentially mediates treatment e�ects. Standardizing post-baseline covariate distributions
across treatment groups when estimating survival would potentially mask the treatment e�ect
of interest.
In her thesis, Messinger [23] developed strati�ed tests for dependent treatment groups using

weighted integrated survival based methods. In addition to adjusting for potential bias from
baseline covariate imbalances and allowing the censoring distributions to vary by baseline stra-
tum, incorporating baseline covariate information through strati�cation also yields e�ciency
gains when treatment alternatives are more clearly detectable within each covariate stratum.
There may also be advantages to strati�ed tests in cases where there are great disparities in
the follow-up periods of the various baseline covariate strata de�ned groups, since TPSM does
not take advantage of di�erences beyond the end of follow-up in the least followed stratum.
However, strati�ed tests are unable to exploit the additional covariate information collected
after baseline for purposes of either e�ciency gain or informative censoring adjustment. Hence
in cases where prognostic longitudinal information is available, TPSM gives more advantages
than the paired strati�ed tests developed by Messinger. In addition, TPSM maintains the philos-
ophy of comparing overall marginal survival di�erences in terms of years of life saved that
is appealing when working with non-statistically minded investigators.

APPENDIX A

In calculating the asymptotic variance of TPSMK , the underlying correlation structure in both
the survival times and longitudinal covariate information between the treatment groups must
be accounted for. In what follows, we outline the strategy for calculating this asymptotic
variance, with further details available from the authors upon request.
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Recall TPSMk =(n1n2=n)
1=2
∫∞
0 ŵ(t){W̃S1(t)− W̃S2(t)} dt, which is asymptotically equivalent

in distribution to (�1�2)1=2
√
n
∫∞
0 w(t){W̃S1(t)−W̃S2(t)} dt, where �g is the overall probability

of falling into treatment group g. Hence,

Var(TPSMk )≈ �1�2 Var
[√
n
∫ ∞

0
w(t){W̃S1(t)− W̃S2(t)} dt

]

= �1�2

[
2∑
g=1
Var

{√
n
∫ ∞

0
w(t)W̃Sg(t) dt

}

−2Cov
{√

n
∫ ∞

0
w(t)W̃S1(t) dt;

√
n
∫ ∞

0
w(t)W̃S2(t) dt

}]
We �rst consider

2∑
g=1
Var

{√
n
∫ ∞

0
w(t)W̃Sg(t) dt

}
=

2∑
g=1
Var

{
√
n
∫ T∗

1

0
w(t)W̃Sg(t) dt

+
√
n
∫ ∞

T∗
1

w(t)W̃Sg(t) dt

}

To calculate this term, we use conditioning arguments with respect to FT∗
1 −Z2 , representing the

survival, censoring and covariate information up until and including T ∗
1 with the exception

of the value of Z2. At this point, care must be taken so that W̃Sg(t) is de�ned appropri-
ately in each time interval. Let Sgi1·(t)=P(T¿t|T¿T ∗

1 ; Z1 = i1)=
∑k

i2=0 �i1i2Sgi1i2 (t). Then, for

T ∗
0¡t6T

∗
1 , W̃Sg(t) becomes

∑k
i1=0 �̂i1 Ŝgi1 (t), and for T ∗

1¡t, W̃Sg(t) becomes∑k
i1=0 �̂i1 Ŝgi1 (T

∗
1 )WSgi1·(t), where WSgi1·(t)=

∑k
i2=0 �̂gi1i2WSgi1i2 (t) corresponds to an unstandardi-

zed estimate of Sgi1·(t). Applying conditioning arguments,
∑2

g=1 Var{
√
n
∫∞
0 w(t)W̃Sg(t) dt}

becomes,

2∑
g=1
Var

{
k∑
i1=0

n·i1√
n

∫ T∗
1

0
w(t)Ŝgi1 (t) dt +

k∑
i1=0

n·i1√
n
Ŝgi1 (T

∗
1 )
∫ ∞

T∗
1

w(t)Sgi1·(t) dt

}

+
2∑
g=1
E

[
Var

{
√
n
∫ ∞

T∗
1

w(t)W̃Sg(t) dt|FT∗
1 −Z2

}]
(A1)

After some further calculation following from equation (A1), this asymptotic closed form
variance becomes

2∑
g=1

(
2∑
h=1
�h

k∑
i1=0
�hi1{Agi1 (0)− �Ahg(0)}2 (A2)

+
k∑
i1=0

k∑
j1=0

�i1j1Agi1 (0)Agj1 (0)− � �A1g(0) �A2g(0) (A3)
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+
k∑
i1=0
(�i1=�gi1)

[∫ T∗
1

0
{Sgi1 (t)Hgi1 (t)}−1{Agi1 (t)}2�gi1 (t) dt (A4)

+Sgi1 (T
∗
1 )H

−1
gi1 (T

∗
1 )Var

{
√
ngi1·

∫ ∞

T∗
1

w(t)WSgi1·(t) dt|FT∗
1 −Z2

}])
(A5)

where Agi1 (x)=
∫∞
x w(t)Sgi1 (t) dt, �Ahg(0)=

∑k
i1=0�hi1Agi1 (0) for g; h=1; 2 with

�Ahg(0)= �Ag(0)
for h= g and �gi1 is the probability of falling into treatment group g for individuals in baseline
strata i1. Also, de�ne ñi1j1 as the number of pair members in baseline stratum i1 of group 1
with corresponding counterparts in baseline stratum j1 of group 2, �i1j1 = E(2ñi1j1=n), and � =∑k

i1=0

∑k
j1=0 �i1j1 . A result by Murray and Tsiatis [9] for Var

{√ngi1·
∫∞
T∗
1
w(t)WSgi1·(t) dt|FT∗

1 −Z2
}

gives,

Var

{
√
ngi1·

∫ ∞

T∗
1

w(t)WSgi1·(t) dt|FT∗
1 −Z2

}

≈
s+1∑
�=2

k∑
i�=0

Sgi1i2 (T
∗
2 )

Hgi1i2 (T ∗
2 )
�gi1i2 · · ·

k∑
i�=0
�gi1 :::i�

×
{∫ T∗

�

u=T∗
�−1

A2gi1 :::i�(u)�gi1 :::i�(u)
Hgi1 :::i�(u)Sgi1 :::i�(u)

+D2gi1 :::i�(T
∗
�−1)

}

where Agi1 :::i�(x)=
∫∞
x w(t)Sgi1 :::i�(t) dt, �Agi1 :::i�−1 (x)=

∑k
i�=0

�gi1 :::i�Agi1 :::i�(x), and Dgi1 :::i�(x)=
Agi1 :::i�(x)− �Agi1 :::i�−1 (x).
To derive the �nal term in the variance of TPSMk , 2 Cov{√

n
∫ ∝
0 w(t)W̃S1(t) dt,√

n
∫∞
0 w(t)W̃S2(t)dt}, we again use conditioning arguments. Initially we condition only on

baseline covariate information, and then calculate subsequent covariance terms by conditioning
with respect to FT∗

1 −Z2 . Using this strategy, we �rst address terms relating to covariability in
the baseline covariates, and then terms relating to covariability in the corresponding survival
estimates.
So,

−2Cov
{√

n
∫ ∞

0
w(t)W̃S1(t) dt;

√
n
∫ ∞

0
w(t)W̃S2(t) dt

}

≈ − 2Cov
{

k∑
i1=0

n·i1√
n

∫ ∞

0
w(t)S1i1 (t);

k∑
j1=0

n·j1√
n

∫ ∞

0
w(t)S2j1 (t)

}

−2E
[
Cov

{√
n
∫ ∞

0
w(t)W̃S1(t);

√
n
∫ ∞

0
w(t)W̃S2(t)|F∗

T0

}]
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= − 2
k∑
i1=0

k∑
j1=0

n−1A1i1 (0)A2j1 (0)Cov{n·i1 ; n·j1}

−2E
[

k∑
i1=0

k∑
j1=0

Cov
{
n·i1√
n

∫ ∞

0
w(t)WS1i1 (t);

n·j1√
n

∫ ∞

0
w(t)WS2j1 (t)|F∗

T0

}]
(A6)

where Cov{n·i1 ; n·j1}=Cov{n1i1 ; n1j1}+ Cov{n2i1 ; n2j1}+ Cov{n1i1 ; n2j1}+ Cov{n2i1 ; n1j1}. This
can be evaluated by recognizing that Cov{ngi1 ; ngj1} is a multinomial covariance with sample
size ng, and Cov{n1i1 ; n2j1} becomes np(�̃i1j1 − �1i1�2j1), where np is the total number of pairs,
�̃i1j1 =�i1j1=� represents the proportion of pairs where the group 1 member is in baseline
stratum i1 and the group 2 member is in baseline stratum j1 relative to the total number of
pairs. Therefore, −2∑k

i1=0

∑k
j1=0 n

−1A1i1 (0)A2j1 (0)Cov{n·i1 ; n·j1} becomes

−
{

k∑
i1=0

k∑
j1=0

A1i1 (0)A2j1 (0)(�i1j1 + �j1i1)− �( �A1(0) �A2(0) + �A12(0) �A21(0))

}
(A7)

−2�1
{

k∑
i1=0
�1i1A1i1 (0)A2i1 (0)− �A1(0) �A12(0)

}
(A8)

−2�2
{

k∑
i1=0
�2i1A1i1 (0)A2i1 (0)− �A2(0) �A21(0)

}
(A9)

Combining expressions (A3) and (A7) we have

k∑
i1=0

k∑
j1=0

�i1j1{A1i1 (0)A1j1 (0) + A2i1 (0)A2j1 (0)− A1i1 (0)A2j1 (0)− A2i1 (0)A1j1 (0)}

−�{ �A1(0) �A21(0) + �A12(0) �A2(0)− �A1(0) �A2(0)− �A12(0) �A21(0)}

which reduces to
k∑
i1=0

k∑
j1=0

PFi1PFj1 (�i1j1 − ��1i1�2j1) (A10)

where PFi1 =
∫∞
0 w(t){S1i1 (t)− S2i1 (t)} dt=A1i1 (0)− A2i1 (0).

We can also combine expressions (A2), (A8), (A9) giving us,

�1
k∑
i1=0
�1i1{(A1i1 (0)− �A1(0))2 + (A2i1 (0)− �A12(0))2}

+�2
k∑
i1=0
�2i1{(A1i1 (0)− �A21(0))2 + (A2i1 (0)− �A2(0))2}

−2�1
(

k∑
i1=0
�1i1A1i1 (0)A2i1 (0)− �A1(0) �A12(0)

)
− 2�2

(
k∑
i1=0
�2i1A1i1 (0)A2i1 (0)− �A21(0) �A2(0)

)
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which reduces to

2∑
g=1
�g

k∑
i1=0
�gi1 (PFi1 − PFg)2 (A11)

where PFg=
∑k

i1=1 �gi1PFi1 .
De�ne n∗

i1j1 = n1i1n2j1=ñi1j1 . Then combining expressions (A4)–(A6), (A10) and (A11), and

noting that n·i1n·j1=nn
∗
i1j1

P→ �i1j1=2(�1i�2j)
−1=2, the asymptotic variance for the standardized test

statistic in the paired setting incorporating time-dependent covariates becomes

Var(TPSMk )

=�1�2

(
2∑
g=1
�g

k∑
i1=0
�gi1 (PFi1 − PFg)2 +

k∑
i1=0

k∑
j1=0

PFi1PFj1 (�i1j1 − ��1i1�2j1)

+
2∑
g=1

k∑
i1=0

�i1
�gi1

[∫ T∗
1

0

{Agi1 (t)}2�gi1 (t) dt
Sgi1 (t)Hgi1 (t)

+
Sgi1 (T

∗
1 )

Hgi1 (T ∗
1 )

× Var

{
n1=2gi1·

∫ ∞

T∗
1

w(t)WSgi1·(t) dt

∣∣∣∣∣FT∗
1 −Z2

}]

−
k∑
i1=0

k∑
j1=0

�i1j1 (�1i2�2j1)
−1

×E
[
Cov

{√
n∗
i1j1

∫ ∞

0
w(t)WS1i1 (t);

√
n∗
i1j1

∫ ∞

0
w(t)WS2j1 (t)|F∗

T0

}])
(A12)

We have left to evaluate Cov{√n∗
i1j1

∫∞
0 w(t)WS1i1 (t) dt,

√
n∗
i1j1

∫∞
0 w(t)WS2j1 (t) dt|F∗

T0}, which
involves terms from correlated survival estimates after removing covariability related to base-
line covariates. Before presenting the asymptotic results for this remaining covariance term, we
must �rst de�ne some additional notation. Let Tgi1 ;:::;im and Cgi1 ;:::;im , respectively, denote random
variables corresponding to the conditional survival and censoring survival functions Sgi1 :::im(t)
and Hgi1 :::im(t) with Xgi1 ;:::;im = min(Tgi1 ;:::;im ; Cgi1 ;:::;im). Let Si1 ;:::;im;j1 ;:::;jm(u; v), Hi1 ;:::;im;j1 ;:::;jm(u; v), and
�i1 ;:::;im;j1 ;:::;jm(u; v) represent the bivariate survival, censoring survival, and hazard functions
where the group 1 pair member was at risk at time T ∗

m−1 with covariate history corre-
sponding to i1; : : : ; im and the group 2 pair member was at risk at time T ∗

m−1 with covari-
ate history corresponding to j1; : : : ; jm. Also let �g1i1 ;:::;im|g2j1 ;:::;jm(u|v) represent the associated
conditional hazard where the pair member from group g1 has covariate history i1; : : : ; im, and
the pair member from group g2 has covariate history j1; : : : ; jm. Using this notation, de�ne
Gi1 ;:::;im;j1 ;:::;jm(u; v)=P(X1i1 ;:::;im¿u; X2j1 ;:::;jm¿v){P(X1i1 ;:::;im¿u)P(X2j1 ;:::;jm¿v)}−1{�i1 ;:::;im;j1 ;:::;jm(u; v)
− �1i1 ;:::;im|2j1 ;:::;jm(u|v)�2j1 ;:::;jm(v) − �2j1 ;:::;jm|1i1 ;:::;im(v|u)�1i1 ;:::;im(u) + �1i1 ;:::;im(u)�2j1 ;:::;jm(v)}. Let
ñi1 ;:::;im;j1 ;:::;jm represent the number of pairs with covariate history i1; : : : im, j1; : : : ; jm at T

∗
m−1 and

let ñi1 ;:::;im−1 ;j1 ;:::;jm−1 represent the number of pairs with covariate history i1; : : : ; im−1; j1; : : : ; jm−1
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where both members were at risk at T ∗
m−1, and let �̃i1 ;:::;im;j1 ;:::;jm =E(ñi1 ;:::;im;j1 ;:::;jm =ñi1 ;:::;im−1 ;j1 ;:::;jm−1).

Then, after some further evaluation, expression A12 becomes,

Var(TPSMk )

=
k∑
i1=0

k∑
j1=0
(�1i1�2j1)

−1�i1j1C(0)

+
s∑
l=1

∑
i1 ;:::;il

∑
j1 ;:::;jl

(�1i1�2j1)
−1�

l∏
�=1

{
Si1 ;:::;i� ;j1 ;:::;j�(T

∗
� ; T

∗
� )Hi1 ;:::;i� ;j1 ;:::;j�(T

∗
� ; T

∗
� )

H1i1 ;:::;i�(T
∗
� )H2j1 :::j�(T

∗
� )

�̃i1 ;:::;i� ;j1 ;:::;j�

}

×
[ ∑
i1 ;:::;il+1

∑
j1 ;:::;jl+1

�̃i1 ;:::;il+1 ;j1 ;:::;jl+1{A1i1 ;:::;il+1(T ∗
l )A2j1 ;:::;jl+1(T

∗
l ) + C(l)}

A1i1 ;:::;il(T
∗
l )A2j1 ;:::;jl(T

∗
l )

S1i1 ;:::;il(T ∗
l )S2j1 ;:::;jl(T

∗
l )

]

where for l=1; : : : ; s,

C(l)

=
∫ T∗

l+1

T∗
l

∫ T∗
l+1

T∗
l

[{A1i1 ;:::;il+1(T ∗
l+1) + A1i1 ;:::;il+1(u)}{A2j1 ;:::;jl+1(T ∗

l+1) + A2j1 ;:::;jl+1(v)}

−2A1i1 ;:::;il+1(T ∗
l+1)A2j1 ;:::;jl+1(T

∗
l+1)]Gi1 ;:::;il+1 ;j1 ;:::;jl+1 (u; v) du dv

In estimating the variance of the test statistic, variance terms may be substituted by their
maximum likelihood estimates. Let Âgi1 ;:::;im(x)=

∫∞
x w(u)Ŝgi1 ;:::;im(u) du. An estimate for

Gi1 ;:::;im;j1 ;:::;jm(u; v) is Ĝi1 ;:::;im;j1 ;:::;jm(u; v)

= n∗
i1 ;:::;im;j1 ;:::;jm{Ỹ 1i1 ;:::;im(u)Ỹ 2j1 ;:::;jm(v)}−1

× Ỹ i1 ;:::;im;j1 ;:::;jm(u; v)[{Ỹ i1 ;:::;im;j1 :::;jm(u; v)}−1 dÑ i1 ;:::;im;j1 ;:::;jm(u; v)

−{Ỹ i1 ;:::;im;j1 ;:::;jm(u; v)Ỹ 2j1 ;:::;jm(v)}−1 dÑ 1i1 ;:::;im |2j1 ;:::;jm(u|v) dÑ 2j1 ;:::;jm(v)

−{Ỹ i1 ;:::;im;j1 :::;jm(u; v)Ỹ 1i1 ;:::;im(u)}−1 dÑ 2j1 ;:::;jm|1i1 ;:::;im(v|u) dÑ 1i1 ;:::;im(u)

+{Ỹ 1i1 ;:::;im(u)Ỹ 2j1 ;:::;jm(v)}−1 dÑ 1i1 ;:::;im(u) dÑ 2j1 ;:::;jm(v)]

Here, n∗
i1 ;:::;im;j1 ;:::;jm =(ni1 ;:::;imnj1 ;:::;jm =ñi1 ;:::;im;j1 ;:::;jm), Ỹ gi1 ;:::;jm(u) counts the number still in group g at

risk for failure at time u with covariate history i1; : : : ; im, and dÑ gi1 ;:::;im(u) counts the number
in group g with covariate history il; : : : ; im, that failed at time u. Also, Ỹ i1 ;:::;im;j1 ;:::;jm(u; v) counts
the number of complete pairs still at risk for failure at times u and v with covariate histories
i1; : : : ; im, j1; : : : ; jm, dÑ i1 ;:::;im;j1 ;:::jm(u; v) counts individuals from complete pairs where the group
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1 member with covariate history i1; : : : ; im, failed at time u, and the group 2 member with
covariate history j1; : : : ; jm failed at time v, and dÑ g1i1 ;:::;im|g2j1 ;:::;jm(u|v) counts the number of
pairs where the group 1 member with covariate history i1; : : : ; im failed at time u and the group
2 member with covariate history j1; : : : ; jm is still at risk at time v.
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