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A Scan Statistic for Identifying Chromosomal Patterns
of SNP Association
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We have developed a single nucleotide polymorphism (SNP) association scan statistic that takes into account the complex
distribution of the human genome variation in the identification of chromosomal regions with significant SNP associations.
This scan statistic has wide applicability for genetic analysis, whether to identify important chromosomal regions associated
with common diseases based on whole-genome SNP association studies or to identify disease susceptibility genes based on
dense SNP positional candidate studies. To illustrate this method, we analyzed patterns of SNP associations on
chromosome 19 in a large cohort study. Among 2,944 SNPs, we found seven regions that contained clusters of significantly
associated SNPs. The average width of these regions was 35 kb with a range of 10–72 kb. We compared the scan statistic
results to Fisher’s product method using a sliding window approach, and detected 22 regions with significant clusters of
SNP associations. The average width of these regions was 131 kb with a range of 10.1–615 kb. Given that the distances
between SNPs are not taken into consideration in the sliding window approach, it is likely that a large fraction of these
regions represents false positives. However, all seven regions detected by the scan statistic were also detected by the sliding
window approach. The linkage disequilibrium (LD) patterns within the seven regions were highly variable indicating that
the clusters of SNP associations were not due to LD alone. The scan statistic developed here can be used to make gene-based
or region-based SNP inferences about disease association. Genet. Epidemiol. 30:627–635, 2006. r 2006 Wiley-Liss, Inc.
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INTRODUCTION

High-throughput genotyping capabilities and
technologies ranging from multiplexing assays to
the Affymetrix gene chips [Matsuzaki et al., 2004]
are changing the face of genetic epidemiological
studies focusing on identifying new genes for
common chronic diseases. For example, it is now
possible to do genome-wide association studies
in epidemiological samples. With the growing
emphasis on dense single nucleotide polymorphism
(SNP) and genome-wide association studies, there
is an increasing need for new analytical methods
to identify significant chromosomal regions with
genetic influence on common disease risk.

Several different analytical methods have been
proposed for dense SNP association studies
[Cheng et al., 2003; Meng et al., 2003; Lin and

Altman, 2004; Neale and Sham, 2004], but most do
not take into account the biological organization
of the SNP data on chromosomes or only consider
the linkage disequilibruim (LD) structure to
define haplotype blocks. The haplotype associa-
tion methods come the closest to exploiting the
chromosomal position of the genetic data when
applied as a moving window analysis across
a chromosome [Cheng et al., 2003; Meng et al.,
2003]. In situations where haplotypes are appli-
cable, they have been shown to outperform single-
locus testing [Zhang et al., 2002; Wu et al., 2004].
However, proposed moving window approaches
have some of the same data-driven weaknesses as
the moving window approaches used for identify-
ing chromosomal patterns of gene expression.
These weaknesses include subjective selection of
the moving window size, lack of a standard
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methodology for rigorously testing applicable
hypotheses of association, and haplotype estima-
tion issues in regions of low LD.

In recent years, scan statistics have been receiv-
ing more attention as a method for genomic
analysis. The scan statistics arise naturally in the
scanning of time and space, looking for clusters
of events. In particular, scan statistics have been
used within the field of molecular biology to
identify chromosomal regions harboring a greater
than expected number of restriction sites [Karlin
and Macken, 1991] or clusters of transcription
factor binding sites [Wagner, 1997, 1999; Su et al.,
2001] potentially indicating groups of co-regulated
genes. Hoh [Hoh and Ott, 2000] proposed the use
of a simple scan statistic for linkage studies to
refine the search for new genes. While each new
application sheds light on how scan statistics can
uncover features of the genome, the current
methodologies often rely on the unrealistic
assumption of uniform gene density and uniform
spacing between genetic elements.

We have developed a scan statistic that
takes into account the complex landscape of the
human genome in the identification of significant
patterns of SNP associations in their chromosomal
context. This scan statistic has wide applicability
for genomic analysis, including the ability
to detect potential regions of DNA amplification
in tumors from gene expression profiles [Levin
et al., 2005]. In this paper, we extend this
scan statistic to identify new genes for common
disease in genome-wide association studies or
dense SNP mapping to follow-up linkage peaks.
Current methods for performing genome-wide
associations or dense SNP association mapping
of positional candidate SNPs, such as a haplotype
window approach, utilize the order of
SNPs on a chromosome. However, these methods
tacitly assume that the distances between
SNPs are fixed across the chromosome. For these
reasons, we have developed a scan statistic that
incorporates variation in SNP distances in an
effort to identify chromosomal regions with
clustered SNP association patterns. Different from
haplotype tests, this scan statistic is based on
single-locus test and is likely to be most useful
when haplotype tests are not appropriate or
possible (e.g. low LD between markers or widely
spread SNPs). In an example application, we
demonstrate the utility of the new scan statistic
for identifying chromosomal regions with clus-
tered significant SNPs that are associated with a
common chronic disease.

METHODS

As a proof of concept, we used a sample of 1,041
unrelated Caucasians with clinically diagnosed
disease status. They were genotyped for a total
of 2,944 SNPs on chromosome 19 (Boerwinkle E,
unpublished data). Each SNP was mapped to the
chromosome 19 reference sequence of the human
genome using the UCSC Golden Path databases
and the chromosomal positions were recorded for
statistical analysis. Single SNP associations with
disease status were assessed using a w2 test when
all three genotypes were observed and the least
frequent genotype observation was more than 5.
In situations where these criteria were not met,
Fisher’s exact test was used to test the association.
The p-values from single SNP association tests
were recorded and used to compare results
between a sliding window method and the scan
statistic method (as described below). The R2

measure of pair-wise SNP LD was calculated
using SNP Assistant version 1.0.9 (BioData, Ltd.).

SIMPLE SLIDING WINDOW APPROACH

Neal and Sham [2004] recently proposed using
Fisher’s [1932] product method to make gene-based
inferences in genetic association studies. Using a
simple sliding window approach, this statistic can
also be used to identify chromosomal regions with
significant SNP effects. The test statistic combines
p-values from multiple independent tests of the
same hypothesis and involves the w2 calculation

w2
2m ¼ �2� �

m

i¼1
lnðpiÞ ð1Þ

where m is the number of p-values, pi is the
p-value of the ith hypothesis test, and the w2

distribution has 2m degrees of freedom (df), under
the null hypothesis. In this study, we investigated
sliding windows of size 3, 4, and 5 consecutive
SNPs and then merged results across adjacent
windows to detect larger regions of SNP associa-
tion. For example, two overlapped regions were
detected in the first scan, R1 5 (SNP1, SNP2, SNP3,
SNP4, SNP5), and R2 5 (SNP3, SNP4, SNP5,
SNP6). In the merging step, if the extended region,
R 5 (SNP1, SNP2, SNP3, SNP4, SNP5, SNP6), has a
p-value lower than the a level of 0.01, region R
with six SNPs is reported as the final result.

SCAN STATISTIC METHODOLOGY

Scan statistic methodologies have used two
common approximations to the distribution of
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events over time or space in order to develop
statistical theory which can be used to identify
clusters. These two common approximations
fall into two categories, depending on whether
or not one considers the total number of events
(i.e. in our case the number of SNPs on a
chromosome) to be a fixed or a random quantity.
For the fixed or ‘‘conditional’’ case (conditioning
on a fixed N), the most common method
[Wallenstein and Neff, 1987] for computing scan
statistics does so as a function of binomial
probabilities assuming events occur randomly
along a uniform distribution. In the non-fixed or
‘‘unconditional’’ case, the total number of events is
taken to be a random variable, and similar to the
conditional case, the positions of events are
expected to occur at random. A Poisson process
model is most often used [Conover, 1979] for the
unconditional case because it conforms well to the
notion of a random number of events distributed
across some time/space dimension. The waiting
times or distances between events in a Poisson
process are independent and identically distrib-
uted exponential random variables. Given that the
number of SNPs in a population or sample is
better approximated as a random variable than
a fixed quantity and that the distribution of
SNPs is more likely to be exponentially distrib-
uted rather than uniformly distributed on chro-
mosomes, a Poisson approximation model was
used to develop the scan statistic method pre-
sented here. We acknowledge that the distribution
of SNPs used in any genetic analysis results from
a mixture of processes (e.g. evolutionary forces,
available SNP information, investigator-driven
SNP selection routines, ability to genotype, minor
allele frequency detectable in the sample) that
may not conform to the Poisson process assump-
tions. It is important that the distribution
of distances between SNPs in any analysis
using this scan statistic method be examined
before analysis and the distances transformed
(if necessary) appropriately so that the underlying
distribution of distances is approximately expo-
nentially distributed.

The scan statistic developed here expands
upon the method developed by Wagner [1999]
and is influenced by the landmark paper in
this area of scan statistic research [Dembo and
Karlin, 1992]. The scan statistic for identifying
SNP association clusters uses two data types—the
base pair SNP position and the p-value of
SNP-disease association. To detect a regional
SNP association with a disease, statistical

evidence of both a clustering of SNP locations
and a clustering of low p-values within that
cluster of SNPs is required. For example,
SNPs that have low p-values but span a
large genomic region are not as likely to be
detected as a SNP association cluster by our scan
statistic.

To adequately describe the method, we start
with a description of the simple Poisson process
underlying the scan statistic. A simple Poisson
process is a counting process denoted by
fNðtÞ; t � 0g, where N(t) is a count of the number
of events that occur in some time or space of
length t. To identify clusters of SNPs on a
chromosome, the occurrence of a SNP on the
chromosome is considered to be the event of
interest. Accordingly, let N(t) be the number of
SNPs which occur over a given base pair length
t on a chromosome described by a single
parameter, lg, which is the rate of occurrence of
SNPs over a distance of t base pairs (i.e. N(t)/t).
The expected number of SNPs, E[N(t)], over a
region of t base pairs is equal to lg

�t. For a given
group of N(t) SNPs, we can test the null hypoth-
esis that the N(t) 5 E[N(t)] against the alternative
that N(t)4E[N(t)]. Rejecting the null in favor of
the alternative would be consistent with a
particular group of SNPs being identified as a
SNP cluster on a chromosome.

Reformulating this Poisson process in terms
of a scan statistic, we consider the r distances
between the N(t) 5 r11 SNPs, where r represents
the number of intervals between N(t) SNPs. Let Xi

represent the position of the ith SNP on the
chromosome, then the distance between SNP i
and SNP i11 can be described as Yi ¼ Xiþ1 � Xi.
For a group of r11 SNPs, the distance from
SNP i to SNP i1r may be expressed as the sum
of the r distances, Si;r, between these r11 SNPs
such that Si;r ¼

Piþr�1
i Yi. Since fNðtÞ; t � 0g is

a simple Poisson process, the Yi’s are independent
identically distributed exponential random vari-
ables with parameter lg. Also, Si;r is distributed as
a gamma random variable with rate parameter lg,
shape parameter r, and density as follows:

fðsi;rÞ ¼
lg

GðrÞ
ðlgsi; rÞ

r�1e�lgsi; r

where the gamma function G(r) 5 (r�1)!. This
density function can be used to estimate the
probability of a cluster of r11 SNPs over a base
pair distance of Si;r. Specifically, the probability of
observing a cluster of r11 SNPs over a base pair
distance as short or shorter than the observed
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value of Si;r is computed from the density f(Si;r) as
follows:

PðSi;rosi;rÞ ¼
lg

GðrÞ

Zsi;r

0

ðlgsi; rÞ
r�1e�lgsi; r dsi; r: ð2Þ

The statistical significance of the calculated prob-
ability can be evaluated by comparing it to some
previously determined a level (e.g. a5 0.01). If the
observed probability is smaller than this selected
a level, then the group of SNPs is identified as a
cluster of SNPs not likely to have occurred by
chance alone.

Although a simple scan statistic using a Poisson
process model is sufficient to detect clusters of
SNPs on a chromosome, a compound Poisson
process model is necessary to further incorporate
SNP-disease association information. Briefly, the
compound Poisson process model involves parti-
tioning the simple Poisson process model
fNðtÞ; t � 0g used to characterize the distances
between SNPs into two independent Poisson
processes: one for SNPs exceeding a particular
SNP-disease association threshold, fN1ðtÞ; t � 0g,
and a second for those that do not, fN0ðtÞ; t � 0g.

The justification for considering the two Poisson
processes, fN1ðtÞ; t � 0g and fN0ðtÞ; t � 0g as inde-
pendent arises from the following consideration.
For tag SNPs that are chosen to be uncorrelated
from other tag SNPs on a chromosome, their
association with disease is also expected to be
independent. Although epistasis among SNPs
may create dependencies among SNP tests, these
are not likely to be dependent on distance and
hence not affect inferences about clustering.
Therefore, the distribution of significant SNPs on
a chromosome can be considered to be indepen-
dent of the distribution of non-significant SNPs.
In cases where SNPs are correlated in their
frequency, the tests of association will be corre-
lated as a function of LD and p-values of
association will need to be decorrelated (see
discussion for example) or correlated SNPs re-
moved in order for the condition of independence
to hold. We note that violation of the indepen-
dence assumption will simply result in regions
being judged significant based on its correlation
structure.

Let Pi be the p-value for the ith SNP ordered on
the chromosome (i 5 1 to m SNPs). Based on the
Pi’s, an indicator variable Ii is defined to classify
the p-value for a particular SNP i as significant
or not—for example, Ii 5 1 if Pio0.1 and ‘‘0’’

otherwise. Using the p-value from the w2 test or
Fisher’s exact test for SNP-disease association,
rather than the test statistic value, ensures that all
SNP comparisons occur over the same distribu-
tion and facilitate the definition of a common
threshold value equally applicable to all SNPs.
Because the Poisson process fN1ðtÞ; t � 0g is a
subset of the original process, we can say that
SNPs with significant p-values occur at a portion
of the rate lg. In other words, SNPs with
significant p-values occur at a rate equal to
l1 5lgp1, where p1 is the probability that a
SNP’s p-value is below the specified threshold.
Setting the threshold at 0.1, for example,
p1 5 P(Ii 5 1) 5 0.1. Likewise, SNPs without sig-
nificant p-values occur at a rate equal to
l0 5lg(1�p1) such that l11l0 5lg(p1)1
lg(1�p1) 5lg. Based on these two independent
Poisson processes, we define the compound
Poisson process, fUðtÞ; t � 0g, for identifying re-
gions of significant SNP association clusters. U(t)
is the sum of the independent and identically
distributed Ii as follows: UðtÞ ¼

PiþNðtÞ�1
i Ii. There-

fore, U(t) counts the number of SNPs with
p-values below the set threshold over a base pair
distance t containing a total of N(t) SNPs. The
same type of formulation could be applied to
identify clusters of non-significant p-values.

In the original scan statistic described above,
Si;r ¼

Piþr�1
i Yi which equals the total distance

between SNP i to SNP i1r. Therefore, the base pair
width of an identified cluster of significant SNP
associations between SNP i and SNP i1r is then
represented by Si;r;k ¼ Si;r ¼

Piþr�1
i Yi where k

(similar to r above) is the number of intervals
between U(t) highly significant SNPs. This Si;r;k

statistic is used to calculate the probability of a
highly associated cluster based on the gamma
density as follows:

PðSi;r;kosi;r;kÞ ¼
l1

GðkÞ

Zsi;r;k

0

ðl1si;r;kÞ
k�1e�l1si;r;k dsi;r;k: ð3Þ

In the case where U(t) 5 N(t) (i.e. the number of
SNPs observed over a base pair distance of size
t are all significant), k is equal to r and the
probability calculation is virtually identical to the
probability calculated using equation (2), with
the exception of substituting l1 for lg.

A fundamental assumption underlying this scan
statistic is that the distance between SNPs is
exponentially distributed. For the 2,944 SNPs
genotyped in this study, we used their chromoso-
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mal position to obtain all distances between
neighboring SNP pairs. Raw and transformed
SNP distance distributions were compared with
matching random exponential distribution using
the R statistical software package. In Figure 1,
we display the quantile-quantile (Q-Q) plot of the
SNP-SNP distances that indicate that a square root
transformation of the distances fits an exponential
distribution for the majority of SNPs on chromo-
some 19.

RESULTS

We applied our SNP association scan statistic to
the 2,944 chromosome 19 SNPs using a p-value
threshold of 0.1 to categorize each single SNP test
of disease association as an event or not, and
statistically significant regions were determined
using the scan statistic using a regional a level of
0.01 (same as sliding window). The scan statistic
detected seven significant regions containing
between 3 and 6 SNPs (Fig. 2 and Table I) and
ranging from 10 to 73 kb in size. The average span
of these regions was about 35 kb, which is much
shorter than the average span of the sliding
window results. The most significant region

(p 5 0.00069) contained 6 SNPs and spanned
40 kb. LD patterns were then investigated within
significant SNP association clusters between sig-
nificant and non-significant SNPs in each region.
In Table II, the R2 measure of LD between pairs
of SNPs is plotted to demonstrate the LD structure
within each region. Since the scan statistics
algorithm was only based on SNP association
and chromosomal position, it was not surprising
to see that the identified regions have very
different LD structures. Only one of the seven
regions, region 3, displayed very tight LD among
significant SNPs, while the remaining six regions
had a wide range of LD, indicating that the region
was not identified solely because of LD.

Fig. 1. QQ- plot to compare square root of distances of 2,944

human chromosome 19 SNPs to a matching exponential
distribution. Square root of SNP distances was plotted as

y-axis. A random exponential distribution was generated with

same k as the 2,943 square root of SNP distances (1/mean) and

plotted as x-axis. R2 was calculated by linear regression of two
data sets.

Fig. 2. A comparison of the statistically significant regions

identified using the scan statistic and sliding window ap-
proaches. Seven significant regions detected by scan statistic

and 22 significant regions detected by a sliding window

algorithm were aligned with human chromosome 19. Region

p-value cutoff was 0.01.
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The sliding window approach using Fisher’s
product method was applied to chromosome 19
SNP data using a regional a level of 0.01. Using a
fixed window size of 3 SNPs, there were 20
genomic regions detected with p-values lower
than the above threshold. The increased window
size of 4 and 5 SNPs each detected 17 significant
regions. Combining the significant regions from
each of the individual fixed window sizes yielded
a total of 22 statistically significant regions
(Table II). The number of SNPs in these regions
ranged from 3 to 15. Using this method, we found
nine regions that spanned greater than 100 kb.
The smallest region spanned 10.1 kb and the

largest region spanned 615 kb. The average span
was 131 kb. The most significant region
(p 5 6� 10�6) included 15 SNPs and spanned
147 kb. All seven regions detected by the scan
statistics approach were also found to be signifi-
cant using the sliding window approach (Fig. 2),
despite some slight differences in region sizes.

The individual SNP p-values of significant
regions and region sizes from the scan statistic
and sliding window approaches are presented in
Figure 3A and B, respectively. Among the seven
scan statistic regions, there was at most one
SNP with a p-value above 0.1 in each region.
Conversely, 18 of the 22 sliding window regions

Region
ID  

Total 
SNPs   

significant
SNPs  

non-
significant
SNPs   

Region
Size
(bp)   

Region
p-value  

LD R2 between significant
SNPs  

LD R2 between significant and
non-significant SNPs  

1 5  4 1 22131 2.00E-03

2 5  4 1 72991 7.08E-03
3 4  3 1 10101 8.71E-03

4 3  3 0 15601 7.78E-03 NA 

5 5  4 1 44201 3.20E-03

6 6  5 1 40501 6.90E-04

7 5  4 1 38901 3.46E-03

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.0 0.4 0.6 0.8 1.0

TABLE I. Distribution of linkage disequilibrium among SNPs that were significantly associated with disease versus
not significantly associated in the identified regions

TABLE II. Chromosome 19 SNP-disease association results of sliding window scan

Region ID Total SNPs Significant SNPs Non-significant SNPs Region size (bp) Region p-value

1 8 4 4 61741 0.004882
2 5 3 2 77561 0.005757
3 8 3 5 66571 0.006071
4 8 4 4 42961 0.00423
5 5 4 1 72991 0.006874
6 4 3 1 10101 0.005016
7 5 2 3 239001 0.008791
8 5 4 1 188801 0.005297
9 3 2 1 91801 0.008089

10 8 2 6 615001 0.002657
11 7 4 3 144201 0.006726
12 7 3 4 202101 0.008999
13 4 2 2 118601 0.009398
14 5 3 2 365701 0.006981
15 5 3 2 228201 0.008235
16 6 3 3 32301 0.006633
17 15 7 8 146701 6.06E-06
18 4 1 3 11201 0.008351
19 5 3 2 35901 0.005172
20 9 5 4 52801 0.000545
21 7 4 3 53401 0.008659
22 4 2 2 21901 0.009433

632 Sun et al.

Genet. Epidemiol. DOI 10.1002/gepi



contained more than one SNP with p-value above
0.1. In addition, only one out of four SNPs within
region 18 had a significant p-value. This may
indicate that the regions with fewer significant
SNPs but more significant individual p-values
tend to be picked up by the sliding window
algorithm incorrectly. Comparing the seven over-
lapped regions detected by both algorithms,
five of seven had longer spans in the results of
the sliding window approach.

In order to test the significance of the number
of detected SNP clusters, we ran 1,000 permuta-
tion tests by shuffling the SNP order on the
chromosome. Among the permutation test results
of the sliding window approach, the highest
number of detected regions was 20. For the scan
statistic, the highest number of detected regions
among 1,000 permutation tests was 5. The
permutation results strongly support that the

detected regions from the two methods are not
solely due to the random effects.

DISCUSSION

With the proliferation of SNP genotyping
technologies and the availability of the human
genome sequence, multiple studies suggest that
high-density SNP genotype data should be used
to detect genes that are associated with common
diseases [Risch, 2000; Cardon and Bell, 2001]. As
such, the number of methods being put forth to
study genome-wide disease association is grow-
ing [Cheng et al., 2003; Meng et al., 2003; Neale
and Sham, 2004]. Generally, these methods use
only the relative position of SNPs and assume that
the distances between the SNPs are fixed and
constant within and across chromosomes. In the

Fig. 3. Individual p-value and region size of all significant regions from using the scan statistic (A) and sliding window approaches (B).

Common SNPs detected by both algorithms are in dark color.
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context of studying the association between
disease and regional SNP patterns, the scan
statistic proposed here represents a significant
advance over previous methods because it ac-
counts for variation in the distance between
consecutive SNPs.

A major advantage of the scan statistic method
is that inferences can be made for a chromosomal
region rather than being restricted to single SNP
inferences or a preset moving window of SNPs.
Also, it is important to reiterate that this metho-
dology identified regions where not all SNPs in
a putative region were associated. In addition, this
method can be used for making gene-based
inferences when multiple SNPs within a gene
are measured. There are many instances in the
literature where multiple SNPs are measured in a
single gene but the results from single SNP
associations differ [Patterson and Cardon, 2005;
Swarbrick et al., 2005]. In this case, the distribution
of significant SNPs may be different across
populations but the same gene may be implicated
because it is identified as a region of SNP
association. Different patterns of SNP associations
with a disease outcome in separate studies are
expected because of differences in the underlying
frequency and LD distribution of SNPs across
studies. In general, the scan statistic offers a
statistical method for making regional or gene-
based inferences about disease association that is
likely to be more robust across studies than single
SNP association results.

The ability to incorporate the spatial features of
genetic elements in the genome into a statistical
analysis of chromosomal patterns of SNP effects
has direct implications for dense chromosomal or
genome-wide SNP association studies. In this
situation, the data used in the scan statistic were
the chromosomal position of the SNP and the
results from the single SNP associations with the
phenotype of interest (e.g. a w2 statistic or p-value).
Because the forces of LD are correlated to their
physical distance (although not monotonically
or necessarily exclusive of long-range LD), closely
spaced SNPs that demonstrate some level of
disease association are likely to represent the
same underlying functional SNP or haplotype.
By incorporating the exact distance between SNPs
in a region, the scan statistic proposed here can be
used to identify chromosomal regions with SNP
patterns of association that are unlikely to occur
by chance alone and provides a statistical means
to prioritize regions for more detailed molecular
or haplotype investigation.

In comparison to the sliding window methods
to detect chromosomal patterns of SNPs associa-
tion, the scan statistic approach using the com-
pound Poisson process formulation has the
advantage of being parametric. Thus, the statis-
tical significance of clustering in the data is
determined in comparison to a theoretical null
distribution rather than having to estimate it using
permutation strategies where the results are data-
dependent and cannot be easily compared across
different data sets. There are, however, important
features that must be addressed when using
the scan statistic for genome-wide association or
dense SNP studies. For the Poisson process model
to be appropriate, the distances between events
must be exponentially distributed or transformed
to approximate that distribution. For dense SNP
studies of positional candidate genes, it may be
that each gene in the chromosomal region must
be analyzed separately so that this assumption
holds. In genome-wide SNP studies, this may be
less of an issue.

We observed a wide range of LD across the
seven regions detected by the scan statistic.
However, a more precise model which incorpo-
rates the LD information would improve the
utility of the scan statistic method to identify
important gene regions that contain multiple SNP
association. We are currently evaluating methods
to incorporate correlation structure into the scan
statistic methods to guard against inflation of
the significance of an SNP cluster, because of the
correlations among SNPs due to LD. With highly
correlated SNP genotyping data, a decorrelation
step should be cautiously applied to adjust the
single-locus test results before running the scan
statistics. Zaykin et al. [2002] suggest an approach
to decorrelate the p-values by premultiplying a
vector of p-values by the Cholesky factor of the
vector’s correlation matrix. A newly proposed
method [Conneely and Boehnke, 2005] for esti-
mating the correlation matrix among p-values
provides additional computationally efficient
and a potentially powerful option. Another poten-
tial approach to minimize LD effects is to apply
the SNP association ranks instead of p-values in
the scan statistic, because recent findings suggest
that the effect of even strong LD on true
association ranks is too small to be of substantial
importance in genome-wide association studies
[Zaykin and Zhivotovsky, 2005]. Combined with
better SNP selection strategies, such as a tag-SNP
approach from the HapMap project [The Interna-
tional HapMap consortium, 2003, 2004], LD
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structure would be a less important issue for the
scan statistic developed here.

Overall, this scan statistic’s limitation caused by
the inter-SNP correlation can be corrected by the
above statistical adjustments. A final advantage
of the scan statistic presented here is that it can be
used with any type of hypothesis test—e.g. tests
of gene-environment interaction or tests of allele
frequency differences across ethnic groups. In
general, the chromosomal or gene-based regions
detected by the scan statistic are expected to
provide a better statistical foundation from which
to identify these regions and to make comparisons
across studies.
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