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SUMMARY

In lattice Boltzmann simulations, variable viscosity can complicate the truncation error analysis and
create additional interaction between the truncation error and the boundary condition error. In order to
address this issue, two boundary conditions for the lattice Boltzmann equation (LBE) simulations are used,
including an exact, but narrowly applicable scheme previously proposed by Noble et al. (Phys. Fluids
1995; 7(1):203–209) and the popular bounce-back-on-link scheme. Using a 2-D laminar channel flow
with a specified variable viscosity as a test case, it is shown that the boundary treatment error does not
have a significant interaction with the truncation error associated with variable viscosity. The truncation
error behaviour of the LBE for flows with variable viscosity is further investigated through a comparison
between the LBE solution and the Navier–Stokes solution, showing that in the presence of strong variable
viscosity the truncation error behaviour of the LBE solution is consistent with that of the Navier–Stokes
solution, indicating that the LBE model closely matches the Navier–Stokes model for fluid flows with
large viscosity variation. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The lattice Boltzmann equation (LBE) method offers a meso-scale framework for fluid dynamics
computations. It recovers the macroscopic fluid flow solution based on averaging of the particle
distribution functions, obtained by solving the simplified form of the Boltzmann equation [1–4]. It
is shown that the LBE method has been quite successful in the computations of complex fluid flow
applications, such as interfacial dynamics [5, 6], turbulent flows [7] and porous media fluid flows [8].
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Since large velocity gradients often accompany substantial viscosity variations due to either
shear-thinning effects or turbulence models, errors associated with the variable viscosity model
need to be addressed before exploring the accuracy for these problems. With variable viscosity such
as for turbulent flows treated with the eddy viscosity models [9], or for fluids with flow-dependent
properties, additional truncation error appears in the macroscopic equations derived from the LBE
[10]. With the help of the truncation error analysis, computational accuracy for those flows can
be further understood. The truncation error behaviour of the LBE with constant viscosity has
been recently studied by Holdych et al. [11]. However, the truncation error for variable viscosity
problems has not been studied systematically in the literature.

Like other computational models, the LBE method needs to address the wall boundary conditions
[12]. In particular, the no-slip wall boundary condition in the LBE method is based on the
bounce-back concept [2, 3, 13]. A lot of work has been done to extend this simple scheme to
curved boundaries with second-order accuracy [12, 14–17]. These methods can handle geometrical
complexities easily; however, they cannot exactly recover the no-slip boundary condition [18] at
the mesoscopic level [12]. This inconsistency gives rise to the boundary condition error. Although
the no-slip boundary condition of the LBE has been derived from hydrodynamic conditions on
walls by Noble et al. [19] and Inamuro et al. [20], these exact no-slip boundary schemes are
incapable of handling geometrically complex boundaries because they require the computational
nodes to coincide with the physical boundaries.

The original bounce-back scheme and other improved treatments have been successful in constant
viscosity laminar flows with expected accuracy [2, 4, 12, 21]. However, for variable viscosity prob-
lems, the boundary condition error for no-slip walls may interact with the truncation error. Thus,
besides the truncation error behaviour itself, whether the second-order accuracy of the bounce-back
scheme can be maintained in the presence of the variable viscosity is another open question.

In this paper, these issues are investigated via a fully developed laminar channel flow with a
specified variable viscosity. With the help of the finite difference analysis, the truncation error of the
LBE with variable viscosity is investigated. Two different specified viscosity distributions, which
lead to different boundary layer characteristics, are employed to examine the errors associated with
the variable viscosity, in the LBE model. The exact solution of this channel flow exists and can
be used for error analysis.

In what follows, the LBE method and the boundary conditions will first be reviewed. We then
present the variable viscosity laminar channel flow equations along with the exact solution. Based
upon the exact solution and the finite difference analysis, the error behaviours due to the variable
viscosity and the boundary condition schemes will be assessed. To separate the error associated
with the variable viscosity from that with the boundary treatment, both Noble et al.’s scheme
[19], which is exact but restricted to straight boundaries, and bounce-back-on-link (BBL) scheme,
which is not exact but can handle irregular geometries, will be employed.

2. LBE METHOD AND WALL BOUNDARY CONDITIONS

2.1. LBE method

The lattice Boltzmann equation with the singer-relaxation-time (SRT) Bhatnagar–Gross–Krook
(BGK) model can be written as [22, 23]

f�(xi + e��t, t + �t) − f�(xi , t) = − 1

�
[ f�(xi , t) − f (eq)

� (xi , t)] (1)
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where f� denotes f (x, e�, t), which is the distribution function in the direction of the �th discrete
velocity e�, f (eq)

� is the corresponding equilibrium distribution function in the discrete velocity
space, � = �/�t , � is the relaxation time, and xi represents computational nodes in physical space.
By using the Chapman–Enskog multi-scale expansion, Navier–Stokes equation can be recovered
from the LBE (Equation (1)) with the leading truncation error of O[(�x)2, (�u)3] [10].

The most popular lattice model for simulating two-dimensional flows is the nine-velocity square
lattice model, which is often referred to as the 2-D 9-velocity (D2Q9) model [24]. In this lattice
model, the discrete velocities (e�) are as follows:

e0 = 0

e� = c(cos((� − 1)�/4), sin((� − 1)�/4)) for � = 1, 3, 5, 7

e� = √
2c(cos((� − 1)�/4), sin((� − 1)�/4)) for � = 2, 4, 6, 8

(2)

where c= �x/�t . The corresponding equilibrium distribution functions are defined as

f (eq)
� = �w�

[
1 + 3

c2
e� · u + 9

2c2
(e� · u)2 − 3

2c2
u · u

]
, � = 0, 1, . . . , 8 (3)

where w� is the weight coefficient given by

w0 = 4
9 , w1 = w3 = w5 = w7 = 1

9 , w2 = w4 = w6 = w8 = 1
36 (4)

The density and momentum fluxes can be obtained from the moments of the distribution function
as

� =
8∑

�=0
f� =

8∑
�=0

f (eq)
� , �u=

8∑
�=0

e� f� =
8∑

�=0
e� f (eq)

�
(5)

The kinematic viscosity associated with the D2Q9 lattice model can be expressed as

�= (� − 1
2 )c

2
s �t (6)

where cs is the speed of sound, which is equal to c/
√
3 for D2Q9 lattice model. The corresponding

equation of state is p= �c2s .
For a hexagonal lattice model [19], the discretized velocities are

e0 = 0

e� = c(cos((� − 1)2�/6), sin((� − 1)2�/6)) for � = 1, 2, . . . , 6
(7)

The corresponding equilibrium distribution functions are

f (eq)
0 = d0 − �

c2
(u · u)

f (eq)
� = � − d0

b
+ �D

c2b
(e� · u) + �D(D + 2)

2c4b
(e� · u)2 − �D

2c2b
(u · u) for � = 1, 2, . . . , 6

(8)
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where for the 2-D hexagonal lattice model, the dimension rank is D = 2, the number of lattice
direction is b= 6, the average rest particle density is d0 = �/2. The kinematic viscosity for 2-D
hexagonal lattice model is

�=
(
2� − 1

8

)
�x2

�t
(9)

2.2. Wall boundary conditions

Equation (1) is a first-order difference equation for which boundary conditions for f� are needed.
Among various approximations, the bounce-back boundary scheme is the most popular one. How-
ever, the bounce-back scheme results in a slip wall velocity [18], which increases with the relaxation
time [19]. Different bounce-back schemes have been proposed so far. For example, if the compu-
tational nodes are located on the wall, it is referred to as bounce-back-on-node (BBN) scheme.
Whereas, if the boundary is shifted into fluid side by one half lattice unit, i.e. placing the wall
between computational nodes as shown in Figure 1, second-order accuracy can be achieved by
bounce-back scheme [4, 14, 15, 25]; this is referred to as bounce-back-on-the-link (BBL) scheme
[14]. For arbitrary curved walls with no-slip boundaries, second-order schemes have been proposed
[4, 9, 12, 17].

Noble et al. developed an exact no-slip wall condition for hexagonal lattice [19]. This boundary
scheme was derived from macroscopic mass and momentum conservation on a no-slip boundary.
However, in this method, the boundary nodes have to be located exactly on walls. This restriction
prevents the scheme from being used for flows with complex geometries. Noble et al.’s scheme
is illustrated in Figure 2. For the boundary that is parallel to e1 and e4 shown in Figure 2, the
following expressions for the unknown distribution functions f2 and f3 and unknown density � at
boundary nodes can be obtained by solving density and mass flux from the boundary nodes (see
details in Reference [19])

f2 + f3 = � − ( f0 + f1 + f4 + f5 + f6)

f2 − f3 = 2�u − (2 f1 − 2 f4 − f5 + f6)

f2 + f3 = (2/
√
3)�v + ( f5 + f6)

(10)

The standard BBL scheme and Noble et al.’s scheme (10) will be used in the present work to
assess the computational errors associated with variable viscosity.

Wall

xfxf xf

xb

eα eα eα

eαeαeα

Figure 1. Boundary nodes and their neighbours using the square lattice.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1457–1471
DOI: 10.1002/fld



ERROR ASSESSMENT OF LBE FOR VARIABLE VISCOSITY FLOWS 1461

23

4 1

3f 2f

4f 1f

5f 6f

5 6

Fluid
( f )

Boundary
(b)

Wall
(w)

Figure 2. A boundary cell using the hexagonal (FHP) lattice [19].

3. RESULTS AND DISCUSSION

3.1. Fully developed laminar channel flow with variable viscosity

The governing equation of a 2-D fully developed steady laminar flow with variable viscosity in
a channel of height H is

−1

�

dp

dx
+ d

dy

(
�total

du

dy

)
= 0 and u|y=0 = 0,

du

dy

∣∣∣∣
y=H/2

= 0 (11)

The viscosity �total is modelled as

�total = �0 + �st

�st
�0

= �2

	2(1 + �3/�)
= (�/	)2

[1 + (�/	)3 · 	3/�] , 0�� = y

H
�0.5

(12)

where �0 is a constant and the symmetry gives �total for 0.5<��1. The two dimensionless parameters
� and 	 control the profile shapes for viscosity and velocity. Employing the boundary conditions
and integrating Equation (16) twice yield

u(�) = H2

��0

dp

dx

⎧⎪⎪⎨
⎪⎪⎩

1

2
(�2 − �) − D� + A ln(�/a + 1) + B

2
[ln(�2 + b� + c) − ln(c)]

+
(
Q − 1

2
bB

)
2√

4c − b2

[
tan−1

(
2� + b√
4c − b2

)
− tan−1

(
b√

4c − b2

)]
⎫⎪⎪⎬
⎪⎪⎭ (13)

The derivation and the definitions of the parameters in Equation (13) are given in Appendix A.
In order to explore the truncation error due to variable viscosity under the condition of large

velocity gradient over a short distance, the parameters � and 	 in Equation (12) need to be chosen
carefully so that boundary-layer like velocity profile can be obtained in Equation (13). The first
term in Equation (13) in the curly bracket corresponds to the parabolic velocity profile with the
constant viscosity �0. Other terms are due to variable part of the viscosity �st. For small values
of � and 	, the fourth term B/2[ln(�2 + b� + c) − ln(c)] does not change dramatically across the
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Figure 3. Two set of viscosity distributions used in this study.

whole channel. The second term −D� is a negative linear term and the third term A ln(�/a + 1)
is positive across the channel, the sum of these two terms varies slowly in the near wall region.
The last term in the near wall region varies rapidly because, for small � and 	, under further
assumption of

	 � �3/2 (14)

it is asymptotically equal to(
Q − 1

2
bB

)
2√

4c − b2

[
tan−1

(
2� + b√
4c − b2

)
− tan−1

(
b√

4c − b2

)]
≈ −1

2
	 tan−1

(�

	

)
(15)

Thus, with small values of � and 	, the tan−1(. . .) term in Equation (13) results in the boundary
layer type of behaviour.

For comparison purpose, two sets of viscosity distributions, which satisfy Equation (14) for
small � and small 	, are used in this study:

Case I: (�0, �, 	) = (0.004167, 0.0005, 0.0102)

Case II: (�0, �, 	) = (0.008333, 0.002, 0.0289)

The corresponding viscosity profiles are shown in Figure 3. The resulting velocity distributions
corresponding to these two viscosity distributions are shown in Figure 4. The boundary layer
effect from the tan−1(. . .) terms in Equation (13) or Equation (15) for Case I is shown in the inset
of Figure 4. Equation (15) also gives a guideline for estimating the grid resolution required for
resolving the boundary layers. Since tan−1(1)/ tan−1(∞) = 1/2, it is seen that over a distance of
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Figure 4. The exact velocity profiles of the channel flows with different boundary layer thicknesses due
to different viscosity distributions. The parameters are: (�0; �; 	)= (0.004167; 0.0005; 0.0102) for Case I

and (�0; �; 	)= (0.008333; 0.002; 0.0289) for Case II.

� = 	, the velocity reaches 50% of the maximum given by Equation (15). Thus, for dimensionless
grid size h = 1/H that is close to or larger than 	, numerical solutions will not have sufficient
resolution for this thin layer.

3.2. The lattice Boltzmann equation treatment

In LBE method, the viscosity is associated with the relaxation time � by Equation (6). The variable
viscosity in LBE can still be realized via a spatially varying relaxation time, and the total viscosity
at a given location can be expressed as

�total(x, y)= 2�(x, y) − 1

6
for square grid

�total(x, y)= 2�(x, y) − 1

8
for hexagonal grid

(16)

Thus, the relaxation time can be represented by the local fluid viscosity as

�(x, y)= 6�total(x, y) + 1

2
for square grid

�(x, y)= 8�total(x, y) + 1

2
for hexagonal grid

(17)

The computational set-up for BBL scheme is shown in Figure 5. The first computational node
is half a lattice away from the channel wall. For Noble et al.’s scheme, the set-up is the same
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Figure 5. Square lattice distribution in channel flow simulation.

except that the grid is hexagonal and the computational boundary nodes are on the channel
walls. For comparison purpose, the computations on hexagonal grid and square grid should have
the same grid resolution across the channel height. For the same grid resolution the channel
height of the square grid setup is 2/

√
3 times that of the hexagonal grid setup. In order to

make absolute comparison among the velocity profiles, the pressure gradients are accordingly
adjusted in each computation so that H2(dp/dx) remains the same. Periodic boundary condition
is used at the left and right side boundaries. The constant pressure gradient in Equation (11)
is treated as a body force, and is added to the distribution functions after the collision step
[21]. The error analysis for the computations with both boundary conditions is carried out by
examining the difference between the exact solution and the computational results at each y
location.

3.3. Assessment

Since Case I exhibits thinner boundary layers and sharper near-wall velocity gradients than Case
II, we first discuss Case I. Figure 6 compares three velocity profiles for H = 50 (h = 1/H = 0.02):
(a) exact solution; (b) LBE solution using the standard BBL boundary condition and square lattice
formulation; (c) LBE solution using Nobel et al.’s exact boundary condition and hexagonal lattice
formulation. For the parameters considered, H = 50 (h = 0.02>	 = 0.0102) does not resolve the
thin boundary layer near the wall, as clearly shown in the inset of Figure 6. It is noted that due
to the exactness of the boundary condition used, the hexagonal formulation gives only a slight
overshoot in the velocity one full lattice away from the wall (at h/	 ∼ 2); however, it results
in an overshoot for the rest of the lattices in the channel. The LBE solution using square lattice
formulation suffers from both the inaccuracy of the bounce-back boundary condition and the
insufficient near wall resolution and gives lower velocity throughout the entire channel. Both LBE
velocity profiles have errors of similar magnitudes. This implies that when the velocity in the
boundary layer is not sufficiently resolved, the exact boundary condition with the hexagonal lattice
formulation would not offer any advantage compared to the approximate BBL condition using
the square lattice formulation. For h ranging from 0.004 to 0.1 (H : 10–250 in lattice unit) the
square lattice formulation with the BBL boundary scheme shows different over/under-predictions
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Figure 6. Comparison of the LBE velocity profiles using square lattice (with bounce-back on the link
boundary condition) and hexagonal lattice (with Nobel et al.’s exact boundary condition) with the exact

solution at H = 50 lattice units.

for the velocity profiles from the hexagonal formulation comparing with Noble et al.’s scheme.
While the results are not shown here for brevity, it suffices to note that the magnitudes of the
over-predictions in the hexagonal lattice case are comparable to those of the under-predictions in
the square lattice case. These velocity profiles indicate that the errors of the LBE solution using
both boundary condition schemes are comparable. Thus, the relative L2-norm error of the LBE
solution, defined as

E2 =
{∫ H

0 [uLBM(y) − uexact(y)]2 dy
}1/2

[∫ H
0 u2exact(y) dy

]1/2 (18)

is examined for both boundary condition schemes.
The LBE computations with these two sets of viscosity distributions are carried out by using both

Noble et al.’s scheme and the BBL scheme for grid size h ranging from 0.004 to 0.1. Their relative
L2-norm errors in the velocity profiles with respect to grid resolution are shown in Figure 7(a).
As expected, the relative L2-norm error curve of Case I shifts up with respect to that of Case II
because Case II has a thicker boundary layer which implies better computational resolution than in
Case I for the same h (= 1/H). For sufficiently high grid resolution (h<0.01, points A-D shown
in Figure 7(a)), both Noble et al.’s scheme and the BBL scheme yield the asymptotic second-order
accuracy, which is consistent with the truncation error analysis for both square and hexagonal
lattice schemes.

For the present fully developed 2-D channel flow with low speed, the velocity field satisfies
∇ · u = 0. Thus the errors in LBE computations are mainly from the truncation error (due to

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1457–1471
DOI: 10.1002/fld



1466 J. CHAO, R. MEI AND W. SHYY

h

R
el

at
iv

e 
L

2 
no

rm
 e

rr
or

0.02
(a)

(b)

0.04 0.06 0.08 0.1 0.12
10-5

10-4

10-3

10-2

10-1

100

h

R
el

at
iv

e 
L

2 
no

rm
 e

rr
or

0.02 0.04 0.06 0.08 0.1 0.12
10-5

10-4

10-3

10-2

10-1

100

BBL scheme (CaseI)
Noble et al.'s scheme (CaseI)
BBL scheme (CaseII)
Noble et al.'s scheme (CaseII)

1

2

2

1

A

B

C
D

FD-S (CaseI)
FD-H (CaseI)
BBL scheme (CaseI)
Noble et al.'s scheme (CaseI)

1

2

2

1

Figure 7. Dependence of the relative L2-norm error on the lattice size h in the fully developed channel flow
with variable viscosity. The viscosity parameters are: (�, 	)= (0.0005, 0.0102) for Case I, (0.002, 0.0289)
for Case II. (a) The LBE with the boundary conditions of Noble et al.’s scheme and BBL scheme for
both Case I and Case II. (b) The finite difference and the LBE with boundary conditions of Noble et al.’s

scheme and BBL scheme for Case I.

variable viscosity) and the boundary condition treatment. When there is sufficient grid resolution
(points A–D in Figure 7(a)), the relative L2 norm errors of BBL scheme are about 15% larger
than those of Noble et al.’s scheme. Since Noble et al.’s scheme does not contain boundary
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condition-induced error, this 15% difference in error in the BBL scheme results from the boundary
condition treatment. Thus comparing the results using Noble et al.’s scheme and the BBL scheme,
it can be inferred that in the presence of the strong velocity profile variation the truncation error
contributes a significant part of the overall computational error.

Because a substantial part of the overall error is from the truncation error as opposed to
the boundary condition error with highly variable viscosity or strongly varying velocity profile,
the truncation error associated with the variable viscosity thus deserves close attention. However,
the truncation error could have very complex form, even for the problems with constant viscosity
[11]. It is recognized that there is a close relation between the LBE and the finite difference form
of the momentum transport represented by the Navier–Stokes equation [18, 26, 27]. For example,
He et al. [18] showed that the square lattice formulations for the particle distribution functions
in a 2-D pressure driven channel flow with constant viscosity, after averaging, leads to a second
order, central-difference formulation for the axial velocity. For the present channel flow problem
with the large variation in viscosity, such derivation could not be easily obtained. However, if the
relative L2-norm error of the finite difference method still behaves similarly to that of the LBE,
it is reasonable to expect that the truncation error behaviour of the LBE is similar to that of the
finite difference-based macroscopic model (in the present case, the Navier–Stokes equation). This
hypothesis will be assessed first.

In the Navier–Stokes model, the governing equation (Equation (11)) is discretized by standard
central difference scheme (with �y = 1 lattice unit):

0= − H2

�

dp

dx
(��)2 + � j+1/2(u j+1 − u j ) − � j−1/2(u j − u j−1) (19)

To compare the errors of the finite difference and LBE schemes, two finite difference solutions
on different grid arrangements are obtained for the velocity profile. The first finite difference
solution has the same grid arrangement as in the hexagonal lattice so that the first fluid node
is one full mesh away from the wall. The second finite difference solution has the same grid
arrangement as in the square lattice with the BBL scheme so that the first fluid node locates half
a mesh away from the wall. This second finite difference solution requires an approximation for
the velocity condition at the walls; a linear extrapolation is used in conjunction with the no-slip
condition at the wall. For completeness, a second-order extrapolation is also used to approximate
the derivative at the wall in solving Equation (11); the error is consistently larger than the linear
extrapolation and hence the results are not presented. The viscosity distribution of Case I is
chosen for the finite difference computations for Case I gives sharper near-wall velocity gradients
than Case II.

The results of the relative L2-norm errors over a range of h = 0.004 to 0.1 from these two
finite difference solutions are shown in Figure 7(b). The results labelled as ‘FD-H’ refer to the
finite difference solution obtained on the hexagonal grid and the results labelled as ‘FD-S’ refer
to the finite difference solution obtained on the square grid. For small values of h (h<0.01), the
O(h2) asymptotic behaviour in error is clearly visible, which is similar to the LBE cases. This
asymptotic error behaviour is expected because the LBE scheme has second-order accuracy and
the boundary conditions are, depending on the specific scheme chosen, either exact or second-order
accurate, and the finite difference scheme with the central difference discretization gives global
second-order accuracy. As h increases close to or greater than 0.01, both the finite difference and
the LBE errors increase faster than O(h2). Since the velocity profile given by the exact solution
has a thin layer of thickness 	 = 0.0102, the error starts to increase more rapidly for h>0.01
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when the resolution of the thin layer becomes inadequate. For 0.01<h<0.033 where the numerical
resolution is insufficient, all the error curves are quite close, indicating that the need for a better
resolution of the boundary layer exceeds the need for a better boundary condition. One also notes
that when h exceeds the boundary layer thickness, truncation errors associated with high-order
velocity gradients may not be small.

Comparing the relative L2-norm errors of the finite difference solution with those of the LBE
solution in Figure 7(b), it is seen that the relative L2-norm error of ‘FD-H’ follows that of the
LBE with Noble et al.’s scheme closely, and the relative L2-norm error ‘FD-S’ follows that of
the LBE with the BBL scheme closely. This consistent behaviour of the relative L2-norm errors
between both the LBE method and the finite difference method suggests that one could obtain an
insight on the truncation error of the LBE schemes by studying the truncation error of its finite
difference counterpart.

For both LBE and finite difference schemes, their modified equations associated with the cor-
responding truncation errors can be represented as

L(ELBE) = TE of the LBE method (20)

L(EFD) = TE of the finite difference method (21)

where L is the differential operator −d/dx(�total(d/dx)), ELBE = uexact−uLBE, and EFD = uexact−
uFD. Using Taylor series expansion the truncation error in Equation (21) is

TE=
[
1

12
vtotal

�4u
��4

+ 1

6

�vtotal

��

�3u
��3

+ 1

8

�v2total

��2
�2u
��2

+ 1

24

�v3total

��3
�u
��

]
(��)2 + HOT (22)

Although the truncation error of the LBE is unknown, comparing the solution errors, EFD and
ELBE, on the left-hand sides of Equations (20) and (21) can offer insight into the truncation
errors on the right-hand sides of these equations while this indirect comparison avoids the tedious
derivation of the truncation error of the LBE. The value of EFD can be computed by subtracting
uFD from the exact solution after the velocity uFD is solved from Equation (19). To highlight the
behaviour of the leading term of the truncation error, the values of EFD are approximated by E∗

FD
obtained from solving Equation (21) with small h. For ELBE it can only be determined directly
by subtracting uLBE from the exact solution.

Equation (21) can be solved, with the boundary conditions EFD(0) = EFD(1)= 0, by using
the same central difference scheme given by Equation (19), and replacing the entire TE by the
leading term of the TE provided that the resolution is sufficient and the high-order terms in
the TE can be neglected. Caution must be exercised in interpreting the results from the nu-
merical solution of Equation (21). In this equation, even if the leading term of the TE on the
right-hand side can be analytically evaluated, the variation of the viscosity on the left-hand
side is the source of the TE in the first place. When solving for E(�) the effect of the TE
associated with the ODE (Equation (21)) now is further compounded by the variation of the
viscosity.

The finite difference computation for Equation (21) is carried out on a grid with the same grid
arrangement and size as in the hexagonal lattice case so that the exact velocity boundary condition
can be used. For Case I, the thin wall layer has a length scale 	 = 0.0102 and can be adequately
resolved using �� = 1/H = 1/200, which is confirmed by the comparison between EFD and E∗

FD in
Figure 8. The curve representing EFD is almost on top of the curve representing E∗

FD. Figure 8 also
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Figure 8. Comparison of ELBE = uexact − uLBE with EFD = uexact − uFD for H = 200, and � = 0.0005,
	= 0.0102, E∗

FD is the numerical approximation of EFD obtained from solving Equation (21).

shows the variation of ELBE across the channel. Overall, E∗
FD from Equation (21) is smaller than

ELBE across the whole channel which implies that these two methods indeed have quantitatively
different truncation errors. However, if we adjust the scale for E∗

FD by a factor of 2, these two
curves lie almost on top of each other, as shown in the inset of Figure 8. The matching of the error
curves between two solutions demonstrate that the LBE truncation error behaves very similarly to
that observed in the finite difference scheme in the presence of a strong variation in the velocity
profile. This is in agreement with the observation on the relative L2-norm error behaviour shown
in Figure 7(b).

Based on the foregoing discussions, it is seen that BBL scheme performs similarly as Nobel’s
scheme in the presence of strong velocity profile variation. In view of the simplicity and flexibility
of the BBL scheme over the Noble et al.’s scheme and comparable performance in accuracy, it
is attractive to use the BBL scheme (or its extended version such as Bouzidi et al. [17] and Yu
et al. [4]) for handling problems of substantial velocity profile variations caused either by complex
geometry or variable viscosity.

For complex 3-D flows with curved boundaries, Navier–Stokes solvers currently have more
flexibility on grid arrangement. For example, body-fitted coordinates and grid stretching can be
more easily implemented to improve grid resolution near boundaries than in the LBE solvers.
Although the recent developments in LBE method such as multi-block [4] and composite grid [9]
techniques can alleviate the difficulty in grid arrangement in LBE simulations to certain extent,
further research efforts in LBE are needed. As the present study has indicated the boundary
condition induced error may not be dominant, there is a great potential in improving the overall
capability of the LBE solvers for complex flows with very strong velocity variation by focusing
future research efforts on extending the grid flexibility of LBE schemes.
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4. SUMMARY AND CONCLUSION

In this paper, the error behaviour of the LBE method for a flow with strong variation in viscosity is
studied. The variable viscosity in the LBE method is modelled through a variable relaxation time.
Solutions for a laminar channel flow with a specified variable viscosity are obtained using both
the LBE method and the finite difference method to examine the truncation error behaviour of the
LBE method for flows with strong varying viscosity. The effect of the boundary condition error
of the BBL scheme on the overall error is investigated via the comparison of the error behaviour
of the BBL scheme and that of Noble et al.’s scheme. The results show that with rapid viscosity
variation the boundary condition error of the BBL scheme does not induce noticeable, additional
errors, and the overall error of such flows is dominated by the truncation error itself. The results
also show that in the presence of strong variable viscosity the truncation error behaviour of the
LBE solution is consistent with that of finite difference solution to Navier–Stokes equations.

APPENDIX A: THE EXACT SOLUTION FOR THE CHANNEL FLOW

Employing the boundary conditions in Equation (11), twice integrations of the governing equation
yield

u(�) = H2

��

dp

dx

∫ �

0

(
 − 0.5)(
3 + �)


3 + �

	2

2 + �

d
 for 0�
�0.5 (A1)

Let � = �/	2 and �3 +��2 +� = (�+a)(�2 +b�+ c). It is easily seen that a3 −�a2 = �, b= �−a
and c= �/a, where the value of a can be obtained numerically in terms of � and �. Integrating
Equation (A1) results in the exact solution of this laminar channel flow, that is,

u(�) = H2

��0

dp

dx

⎧⎪⎪⎨
⎪⎪⎩

1

2
(�2 − �) − D� + A ln(�/a + 1) + B

2
[ln(�2 + b� + c) − ln(c)]

+
(
Q − 1

2
bB

)
2√

4c − b2

[
tan−1

(
2� + b√
4c − b2

)
− tan−1

(
b√

4c − b2

)]
⎫⎪⎪⎬
⎪⎪⎭

where

D = − �, A= �[(1/2 + �)a2 + �]
a2 + 2c

, B = �(1 + 2� − a)

a(a2 + 2c)
� and Q = − (Ab + Ba)
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