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SUMMARY

We propose a non-parametric multiple imputation scheme, NPMLE imputation, for the analysis of inter-
val censored survival data. Features of the method are that it converts interval-censored data problems to
complete data or right censored data problems to which many standard approaches can be used, and that
measures of uncertainty are easily obtained. In addition to the event time of primary interest, there are
frequently other auxiliary variables that are associated with the event time. For the goal of estimating the
marginal survival distribution, these auxiliary variables may provide some additional information about
the event time for the interval censored observations. We extend the imputation methods to incorporate
information from auxiliary variables with potentially complex structures. To conduct the imputation, we
use a working failure-time proportional hazards model to de�ne an imputing risk set for each censored
observation. The imputation schemes consist of using the data in the imputing risk sets to create an
exact event time for each interval censored observation. In simulation studies we show that the use of
multiple imputation methods can improve the e�ciency of estimators and reduce the e�ect of missing
visits when compared to simpler approaches. We apply the approach to cytomegalovirus shedding data
from an AIDS clinical trial, in which CD4 count is the auxiliary variable. Copyright ? 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

There is a large literature on statistical methods to estimate the survival function for interval-
censored data. For example, Peto [1] and Turnbull [2] proposed the non-parametric maximum
likelihood estimator (NPMLE) to estimate the survival function. Frydman [3] modi�ed Turn-
bull’s method. Finkelstein and Wolfe [4], Satten [5], and Goggins et al. [6] used a Cox
proportional hazards model to analyse interval-censored data. Most of these methods used
intensively iterative computation to obtain measures of uncertainty, i.e. the standard error of
the estimator.
In survival analysis, the event times for interval censored observations can be regarded as

missing event times [7]; hence multiple imputation, a tool for handling missing data, can be
applied to handle interval-censored observations. After imputation, the interval-censored data
will be simpli�ed to complete or right-censored data. Then standard statistical methods can
be performed on the imputed data sets. As a result, estimates and measures of uncertainty
can be easily obtained by following well established rules described in Rubin and Schenker
[8]. Examples of imputing event times for interval censored observations can be found in
References [9–13]. Brookmeyer and Goedert [9] and Law and Brookmeyer [10] imputed the
AIDS infection time by the midpoint of the censored interval. Pan [11] drew imputed values
derived from a non-parametric distribution. Pan [12, 13] imputed failure times using the data
augmentation technique [14] based on a Cox regression model iteratively �tted to the imputed
data.
A common situation where interval censored data arises is in a screening study where partic-

ipants are observed for the presence of a characteristic at scheduled visits. The censored inter-
val for a subject is the time interval during which the characteristic changes from negative to
positive. If the scheduled visits are widely spread or if participants miss visits then the width
of the censored interval could be considerable. It is also typically the case that some subjects
will be right censored in such a study, if they remain negative at all visits.
Besides the interval-censored data, in many studies there is other information obtained

about subjects, and such data are often informative about the health condition of the subjects.
Some examples of this are CD4 counts and viral load in studies of HIV and AIDS. These
markers are often associated with the event times and, therefore, may be treated as auxiliary
variables that can help recover some of the lost information, due to the uncertainty about
the event times, for interval censored subjects. In this paper, our interest is in estimating
the marginal survival distribution; thus the relationship between the auxiliary variable and the
event time is not of primary interest, but it will be used to provide some additional information
on endpoint occurrence times for interval censored observations. Therefore, while we try to
simplify interval censored data problems to right censored data problems, at the same time,
we are also interested in recovering information for interval-censored observations using the
auxiliary variables.
The published work on interval censored data is either concerned with estimating the

marginal survival distribution [1–3, 10, 11] or focused on discovering the association between
the event times and the auxiliary variables [4–6, 9, 12], but does not consider incorporating
auxiliary variables into the estimate of the marginal survival distribution. In addition, most
of the methods have used either parametric or partially parametric models. We will focus on
non-parametric techniques to handle and analyse interval censored data that incorporate the
auxiliary variables.
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Taylor et al. [15] and Hsu et al. [16, 17] have studied multiple imputation for right censored
data in the one sample case [15] and with additional covariates [16, 17]. Taylor et al. [15]
showed how imputation schemes can reproduce the standard Kaplan–Meier (KM) estimates,
thus providing a theoretical foundation for non-parametric imputation of event times. Hsu et
al. [16, 17] considered the situation of possibly multiple time-independent or time-dependent
continuous covariates. In Hsu et al. [16, 17] two risk scores derived from two working pro-
portional hazards (PH) models, one for the failure time and one for the censoring time, were
used to de�ne a neighbourhood for each censored case. Then the event time was drawn from a
non-parametric distribution based on this neighbourhood. By incorporating predictive auxiliary
variables into the multiple imputation method one can both increase e�ciency and reduce bias
due to dependent censoring of the marginal survival distribution. Hsu et al. [16, 17] showed
conditions under which the non-parametric imputation enhanced estimate is consistent and
reproduces the weighted Kaplan–Meier estimator [18], a method for incorporating categorical
auxiliary variables.
In this paper we adapt and generalize the ideas in References [15–17] to handle the case

of interval censored data. We propose �tting a working failure-time PH model to reduce the
auxiliary variables into a single scalar index of risk that is a combination of the auxiliary
variables. This index is then used to de�ne the imputing risk set for each case of interval
censoring. Based on the imputing risk set, non-parametric multiple imputation methods are
then conducted. If the auxiliary variables used to de�ne the imputing risk set are predictive
of the event times, the analyses based on the multiply-imputed data should be more e�cient
than the analyses based on the data without imputation.
This paper is organized as follows. In Section 2, we review the NPMLE of the survival

function for interval censored data. In Section 3, we describe the imputation procedures. In
Section 4, we study properties of imputation procedures for survival analysis in �nite sample
sizes through a simulation study. In Section 5, we apply the techniques to cytomegalovirus
(CMV) shedding data. A discussion follows in Section 6.

2. THE NPMLE FOR INTERVAL CENSORED DATA

A key component of multiple imputation is to draw a value for each missing observation
from an appropriately chosen distribution. For right censored data, Taylor et al. [15] selected
an event time using a Kaplan–Meier estimator of the distribution of event times among those
still at risk for each censored subject. For interval censored data, we propose to select an
event time using a NPMLE of the distribution of event times, analogous to the KM estimates
derived from right censored data, among those with similar risk to the censored subject. This
section thus provides a review of the NPMLE of the survival distribution for interval censored
data.
Let T denote time to the outcome of interest, with c.d.f. F(t). T is said to be censored into

a non-zero interval, if we only know that T falls in some interval (L; R), where L¡T¡R.
Right censoring is equivalent to R=∞. Let S(t)=1−F(t), where S(t) is the survival function
for T . Let (Li; Ri) denote the observable random interval and (li; ri) denote the observed time
interval for each subject under study. The observed data are thus Y= {(l1; r1); : : : ; (ln; rn)},
from a random sample. Under the survival function S, the likelihood for the ith observa-
tion is {S(Li) − S(R−

i )} and the likelihood for all the data is L(S)=
∏n
i=1{S(Li) − S(R−

i )}.
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Peto [1] used a two-step procedure to obtain the NPMLE, i.e. Ŝ, of S, which is the maximizer
of L(S). In the �rst step, the support of Ŝ is characterized as a �nite number of disjoint inter-
vals. The endpoints of these intervals are elements of the set {l1; l2; : : : ; ln; r1; : : : ; rn}, thus there
are at most 2n+1 disjoint intervals. The set of probabilities associated with these disjoint in-
tervals determines S. In the second step, a constrained Newton–Raphson (NR) method is used
to compute Ŝ. In contrast, Turnbull [2] proposed a self-consistency algorithm, a special case
of the EM algorithm, to compute Ŝ. It needs intensive computation to obtain measures of un-
certainty of the survival estimator. The computational algorithms and large sample properties
of the NPMLE can be found in Reference [19].

3. IMPUTATION PROCEDURES

In this section, we describe how to calculate risk scores, how to select the imputing risk set
using the risk scores, and two strategies for non-parametric multiple imputation with censored
survival data.

3.1. Calculating risk scores

Let Z= {z1; : : : ; zn} denote the values of auxiliary variables for the n subjects. For imputation
methods, these auxiliary variables are only used to de�ne the imputing risk set. We propose
to combine the auxiliary variables into a scalar summary variable (risk score) that measures
an individual’s risk of disease or death. This is done by �tting a working proportional hazards
(PH) model that gives risk scores summarizing the association between the auxiliary variables
and the failure time. For the purpose of �tting the working PH model we modify the data
to make it right censored. Right censored subjects remain right censored at li. For interval
censored subjects, we use the midpoint (mi) of the observed time interval as the hypothetical
failure time, i.e. mi=(li+ri)=2. The modi�ed data set is then used to �t the working PH model
with the regression coe�cients estimated by maximizing the partial likelihood. Because the
PH model uses auxiliary variables as covariates, each risk score is then a linear combination
of Z.
We �t this working PH model to the available data to obtain a risk score de�ned as

RSf= �̂fZ , where �̂ denotes the estimates of the parameters of the PH model for fail-
ure times. Each risk score is centred and scaled by subtracting the mean and dividing by
the standard deviation of the risk scores. The centred and scaled risk score is denoted as
RS∗

f= {�̂fZ −mean(�̂fZ)}=SD(�̂fZ). This strategy summarizes the multi-dimensional struc-
ture of the auxiliary variables into one dimension. We note that in the case with one auxiliary
variable the risk score is equivalent to the covariate itself. Therefore, there is no need to �t
this working model.

3.2. De�ning the imputing risk set

The scale-free risk score is used to measure the distance between subjects. The distance, based
on the original data, between subject j and k is de�ned as

d(j; k)= {RS∗
f(j)− RS∗

f(k)}2
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For each censored subject j, this distance is then employed to de�ne a set of nearest neigh-
bours. The neighbourhood consists of all subjects who have a distance from the censored
subject j smaller than d. Note that we did not include in the de�nition of nearest neighbour
a condition that the neighbour k had to survive longer than censored subject j, e.g. rk¿lj,
because this would have created a selection bias problem since an individual with a wider
interval is more likely to be selected. This nearest neighbourhood for the censored interval,
(lj; rj), is de�ned as the imputing risk set R(j; d). Instead of specifying d to be the same for
each interval, we choose NN, the size of the nearest neighbourhood, to control the closeness
between subjects. For example, R(j;NN=10) consists of ten subjects who have the 10 near-
est distances from the censored subject j. In the rare case where all subjects in the nearest
neighbourhood are interval censored earlier than lj, we recommend increasing the number in
the neighbourhood to ensure some individuals are at risk in a way that overlaps subject j’s
risk interval.

3.3. Imputation schemes

We propose two multiple-imputation schemes to impute the event time for an interval-censored
observation. Once the new data set is created, the procedure can be independently repeated
M times to obtain multiple imputed data sets for use in estimation. In this paper, the survival
estimates for each augmented data set are computed using the KM method and combined
to give �nal estimates. The methods for analysing multiply imputed data sets follow well
established rules as described in Reference [8].

3.3.1. Uniform imputation (UNII). For each of the censored intervals, (lj; rj), the UNII
method simply imputes a event time drawn at random from Uniform(lj; rj). For the right
censored observations, the UNII method does not impute event times, they remain as right
censored. Hence for each censored interval, (lj; rj), the UNII method does not use an imputing
risk set based on the available auxiliary variables.

3.3.2. NPMLE imputation (NPMLEI). An alternative method that does use the informa-
tion in the auxiliary variables draws an event time utilizing the NPMLE of the distribution
of event times among those in the imputing risk set. The NPMLE is de�ned on the whole
line, but for interval censored subject j we are only interested in the portion between lj and
rj. Thus we draw an event time from the NPMLE conditional on t ∈ (lj; rj). As mentioned in
Reference [11], the NPMLE based on interval-censored data tends to have a smaller number
of jumps and hence larger jump sizes than the empirical distribution function based on com-
plete data. Therefore, we propose to use a linear interpolation of the NPMLE to impute for
interval-censored observations. Speci�cally, for each censored interval, (lj; rj), a NPMLE sur-
vival curve (right continuous), Ŝ(j; t), is estimated from among those individuals in R(j;NN)
with the linearly interpolated version denoted as Ŝ∗(j; t). Then the NPMLEI method imputes
a value t∗j , which satis�es lj¡t

∗
j ¡rj, from the corresponding linearly interpolated cumulative

distribution function 1−Ŝ∗(j; t). We note that if there are no jumps in the time interval (lj; rj),
i.e. Ŝ(lj)= Ŝ(r−j ), for Ŝ(j; t), then the NPMLEI method just randomly draws an event time
from Uniform(lj; rj). If there are no individuals at risk in the imputing risk set for the cen-
sored subject j, the NPMLEI method will randomly draw an event time from Uniform(lj; rj).
For a right censored subject j, there is a probability S∗(j; RM )=S∗(j; lj) that the NPMLEI
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method will treat the subject j as right censored at RM , where RM = max(r1; r2; : : : ; rn). There
is a probability 1 − (S∗(j; RM )=S∗(j; lj)) that the NPMLEI method will impute a value t∗j ,
which satis�es lj¡t∗j ¡RM , from the corresponding linearly interpolated cumulative distribu-
tion function 1− Ŝ∗(j; t). When there are no auxiliary variables, the NPMLE for imputation
is estimated by using the whole data set with no need to de�ne the nearest neighbourhood.

3.3.3. Bootstrap imputation procedure. Procedures for imputing event times, such as the
NPMLEI, by themselves do not incorporate the full uncertainty in the imputes, because they
regard the distribution from which the imputes are drawn as known, rather than as an estimate
with uncertainty. Therefore, they would not be viewed as proper multiple imputation schemes.
In a parametric imputation scheme this can be recti�ed by including a �rst stage corresponding
to an initial parameter draw. The NPMLEI procedure can be enhanced by including a Bootstrap
stage in the procedure, which is designed to make it proper [8]. Consider the bootstrap
sample {(l1; r1)(B); : : : ; (ln; rn)(B)} selected with replacement from the original data set. A PH
model for failure time is �tted to this bootstrap sample. Based on this model, a risk score,
RS(B)f = �̂(B)f Z

(B) can be obtained. After centring and scaling, it is denoted as RS(B)∗f . The
distance between the censored subject j, we want to impute for, in the original data and the
subject k in the bootstrap sample is de�ned as

d(B)(j; k)= {RS∗
f(j)− RS(B)∗f (k)}2

A nearest neighbourhood R(B)(j;NN) consists of NN subjects who have the NN nearest dis-
tances from the censored subject j in the Bootstrap sample. Then the imputing risk set for
the censored interval, (lj; rj), is this nearest neighbourhood. For the censored interval, (lj; rj),
the NPMLEI method incorporating the bootstrap method, hereafter denoted as the NPMLEIB
method of imputation, imputes a value t(B)∗j from the smooth estimated distribution function,
{1 − Ŝ(B)∗(j; t)}, from the risk set R(B)(j;NN) conditional on the interval (lj; rj). Multiple
imputations are created by independently repeating the bootstrap stage for each of the M data
sets. The inclusion of a Bootstrap stage has been shown to improve the properties of multiple
imputation procedures [8, 15, 20].

4. SIMULATION STUDY

We perform several simulation studies to investigate the properties of the multiple imputation
based procedures under a variety of parameter combinations. First, we consider situations
without any auxiliary variables, which is aimed at comparing the KM estimates from the
imputation based analyses and the NPMLE. Second, we consider the situation with several
time-independent continuous auxiliary variables. In both situations, for the survival estimates
we investigate bias, variance and coverage rates of con�dence intervals, and how these are
a�ected by the probabilities of missing four follow-up examinations, and by the inclusion of
the bootstrap stage in the multiple imputation procedure. In addition, the e�ect of the size
of the nearest neighbourhood on survival estimates is investigated in cases with continuous
auxiliary variables.
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4.1. Data generation

A subject is enrolled at the admission time �0(0). For each enrolled subject, the �rst post-
baseline examination is conducted at time �1, treated as random. After the �rst post-baseline
examination, there are four follow-up examinations, i.e. �k = �1 + (k − 1) ∗ len, k=2; 3; 4; 5.
To mimic the pattern of the CMV shedding data described in the next section, the time
interval between two adjacent examinations is considered to be constant, e.g. len =0:25. An
enrolled subject may miss any of the four follow-ups with some probability, but will not
miss the admission time at �0 and the �rst visit at �1. Speci�cally, a random interval-censored
sample is generated as follows: Step 0: Specify the probabilities of missing each of the
four follow-up visits, e.g. 0.1, 0.1, 0.2, 0.2. Step 1: For i=1 to n repeat Steps 2–4. Step
2a: Generate auxiliary variables (Zi) from some speci�ed distributions, e.g. U(0; 1), and then
linearly combine them such that the hazard function of the event time is a function of auxiliary
variables (Z), e.g. �1Z1 + �2Z2. Step 2b: Generate the event time Ti from some speci�ed
distribution, which could be a function of auxiliary variables (Z). Step 3: Generate the �rst
post-baseline examination time �i1 from some speci�ed distribution. Step 4: Calculate other
�ik (k=2; : : : ; 5) as described above and let �i6 =∞. We then obtain an interval-censored
observation (Li; Ri), where Li= �ij and Ri= �ik for some 06 j¡k6 6 and (�ij; �ik) is the
shortest interval covering Ti such that the subject did not miss the examinations at �ij and �ik .
The distribution of �i1 (i=1; : : : ; n) is Uniform(0; �), where � is chosen such that about 25 or
35 per cent of subjects are right censored at their last visits. For the probabilities of missing
visits, we consider two settings. One is (0,0,0,0), i.e. each subject will not miss any of the
four follow-ups. One is (0.1,0.1,0.2,0.2), i.e. a subject may miss any of the four follow-ups
and is more likely to miss a latter visit.

4.2. Imputation and analysis

For the ‘Fully-Observed’ (FO) analysis (the gold standard), we apply KM estimation to each
data set before any censoring is applied. For the ‘Partially-Observed’ (PO) analysis, we apply
NPMLE to each data set with random interval censoring. For the multiple imputation methods,
for each simulated data set, we multiply impute times for each censored subject as described
in Section 2. We then compute Kaplan–Meier estimates for each augmented data set and
combine the results to give �nal estimates. We focus on S(t) at two �xed time points, chosen
so that S(t) is equal to, or close to, 0.5 or 0.35.

4.3. Results

4.3.1. Without covariates. Table I shows the survival estimates at the two time points
and their associated operating characteristics. For the situation with no missing visits at the
four follow-ups, the results indicate that the FO, NPMLEI, and NPMLEIB methods produce
point estimates very close to the true values, sometimes closer than the PO analysis gets. The
coverage rates for both the NPMLEIB and the PO method tend to be slightly lower than the
nominal level. The NPMLEI method without the inclusion of the bootstrap stage produces
a low coverage rate. There is no di�erence in e�ciency, as measured by SD, between PO,
NPMLEI and NPMLEIB. The UNII method produces biased point estimates and a substantially
lower coverage rate than the other methods. These trends also manifest themselves as the
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Table I. Monte Carlo results without covariates: survival estimates. The event times ∼
exponential with mean 4.0 and a right censoring rate of 25 per cent. Results based on 500

replications and M =10.

Sample size= 50; NN=50 Sample size= 200; NN=200

Method True value Average SD∗ SE† CR‡ Average SD SE CR

Missing visit probabilities= (0:0; 0:0; 0:0; 0:0)
FO 0.50 0.50 0.070 0.070 94 0.50 0.034 0.035 95
PO§ 0.52 0.151 0.145 91 0.52 0.074 0.074 94
UNII 0.64 0.046 0.086 70 0.51 0.072 0.045 77
NPMLEI 0.50 0.155 0.085 68 0.64 0.023 0.043 2
NPMLEIB 0.50 0.154 0.145 88 0.51 0.074 0.075 92

FO 0.35 0.35 0.067 0.067 95 0.35 0.033 0.034 96
PO 0.36 0.129 0.124 95 0.35 0.068 0.065 93
UNII 0.50 0.050 0.089 69 0.35 0.068 0.042 78
NPMLEI 0.34 0.133 0.078 73 0.49 0.025 0.044 2
NPMLEIB 0.33 0.121 0.117 86 0.35 0.067 0.065 91

Missing visit probabilities= (0:1; 0:1; 0:2; 0:2)
FO 0.50 0.50 0.069 0.070 94 0.50 0.036 0.035 94
PO 0.53 0.147 0.147 94 0.51 0.080 0.076 91
UNII 0.64 0.046 0.086 67 0.50 0.079 0.045 75
NPMLEI 0.50 0.147 0.086 72 0.64 0.024 0.044 2
NPMLEIB 0.51 0.145 0.148 90 0.50 0.077 0.075 90

FO 0.35 0.35 0.067 0.067 95 0.35 0.035 0.034 93
PO 0.37 0.131 0.128 92 0.35 0.071 0.066 92
UNII 0.50 0.050 0.089 65 0.35 0.071 0.042 75
NPMLEI 0.34 0.136 0.079 74 0.50 0.025 0.045 2
NPMLEIB 0.33 0.126 0.121 86 0.35 0.068 0.066 91

∗Empirical standard deviation.
†Estimated standard error based on Greenwood’s formula for FO, UNII, NPMLEI, and NPMLEIB
and standard error estimated from 500 bootstrap samples for PO.

‡Coverage rate of 95 per cent con�dence interval calculated as estimate ±t(0:975)� standard error.
§Based on NPMLE.

probabilities for missing visits at the four following times increase, although the bias of the
UNII method is more apparent than before.
Overall, the results in Table I for the case without covariates show that NPMLEIB esti-

mates target the point estimate a bit better, but with a slightly lower coverage rate than the PO
estimates. As the sample size increases, the similarity in results between the PO (NPMLE)
approach and the NPMLEIB approach mimics that seen when comparing non-parametric im-
putation based methods in Taylor et al. [15] and Kaplan–Meier estimation. The results where
the right censoring was increased to 35 per cent are similar (results not shown).

4.3.2. Continuous time-independent covariates. We primarily focus on the e�ects of the sizes
of the nearest neighbourhood (NN), sample size and model misspeci�cation. To have better
understanding of these e�ects, we conduct more than one set of simulations. The general
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Table II. Monte Carlo results with two covariates, Z1 and Z2 from U(0; 1): survival esti-
mates. Results based on 500 replications, M =10, and missing visit probabilities at the four

follow-ups (0:1; 0:1; 0:2; 0:2).

Exponential∗ Lognorm†

Method True value Average SD‡ SE§ CR¶ Average SD SE CR

Sample size= 100
FO 0.50 0.50 0.050 0.050 93 0.50 0.051 0.050 94
PO‖ 0.53 0.112 0.111 92 0.50 0.074 0.070 93
UNII 0.67 0.030 0.060 9 0.51 0.047 0.055 98

NPMLEI (NN=10) 0.53 0.084 0.057 78 0.48 0.062 0.052 89
NPMLEIB 0.57 0.056 0.075 88 0.48 0.053 0.056 94

NPMLEI (NN=20) 0.48 0.105 0.057 70 0.49 0.065 0.053 87
NPMLEIB 0.51 0.078 0.092 96 0.48 0.058 0.058 93

NPMLEI (NN=50) 0.50 0.115 0.061 68 0.49 0.069 0.053 85
NPMLEIB 0.50 0.106 0.105 93 0.49 0.062 0.062 93

Sample size= 200
FO 0.50 0.50 0.036 0.035 94 0.50 0.033 0.035 94
PO 0.52 0.083 0.081 93 0.50 0.054 0.067 99
UNII 0.66 0.023 0.043 0 0.51 0.030 0.039 98

NPMLEI (NN=10) 0.52 0.057 0.040 81 0.48 0.038 0.037 93
NPMLEIB 0.57 0.040 0.053 78 0.48 0.033 0.040 96

NPMLEI (NN=20) 0.48 0.073 0.041 72 0.49 0.040 0.037 92
NPMLEIB 0.51 0.056 0.064 96 0.48 0.036 0.041 96

NPMLEI (NN=50) 0.50 0.080 0.043 72 0.49 0.043 0.038 92
NPMLEIB 0.49 0.074 0.071 91 0.49 0.039 0.044 97

∗The event time ∼F(t)= 1− exp[−t ∗ (0:3Z1 + 0:25Z2)].†The event time ∼ lognorm(0:2Z1 − 0:6Z2).‡Empirical standard deviation.
§Estimated standard error based on Greenwood’s formula for FO, UNII, NPMLEI, and NPMLEIB
and standard error estimated from 500 bootstrap samples for PO.

¶Coverage rate of 95 per cent con�dence interval calculated as estimate ±t(0:975)� standard error.
‖Based on NPMLE.

results are similar across di�erent scenarios. We, therefore, only report two of the simulation
studies in Table II. The results where the event time is from an exponential distribution, as
expected, indicate that the biases of the UNII method are consistently greater than that of other
methods (FO, PO, NPMLEI, NPMLEIB) in all situations. The bias results in low coverage
rates for the UNII method. In both situations, i.e. sample size 100 and 200, when the size of
the NN is small, e.g. 10, the NPMLEI and NPMLIEIB methods both produce a small degree
of bias that is corrected for large sizes of NN. This implies that a reasonable size of the
NN is needed to provide a good NPMLE for the distribution of event times for imputation.
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However, as the size of the NN increases from 20 to 50, the coverage rate for the NPMLEIB
method decreases a little due to lost e�ciency in estimation. For example, the coverage rate
(n=200) decreases from 95.8 to 91.4 per cent. This indicates that the nearest neighbours are
not being identi�ed well for very large sizes of NN, which are too inclusive. When these
issues relating to the choice of NN are balanced appropriately, the NPMLEIB can improve
e�ciency in estimation compared to the PO method. For example, at the 50th percentile of the
survival function, the NPMLEIB (NN=20) gains about 50 per cent of e�ciency compared
to the PO method in terms of the standard deviation (SD). In addition, we also note that the
big di�erence in bias between the NPMLEI method and the NPMLEIB method decreases as
the size of the NN increases. For example, these two produce comparable point estimates as
the size of the NN increases to 50. When the working model is misspeci�ed (i.e. the event
time is from a lognormal distribution), the NPMLEIB method still can produce reasonable
survival estimates and improve e�ciency in estimation compared to the PO method.

5. APPLICATION TO CMV SHEDDING DATA

ACTG-181 clinical trial [6, 21] was a substudy of ACTG-081 [22]. In this trial, each patient
was tested at regular intervals to determine whether he=she was shedding CMV in their
urine. Urine samples were taken every four weeks. Therefore, the time of onset of CMV
shedding for each patient is only known to fall in some interval. In addition, for each patient,
several baseline characteristics (e.g. gender and race) were measured and CD4 counts were
measured at two di�erent time points, i.e. the beginning and end of the trial. We apply
the non-parametric multiple imputation schemes to the interval-censored urine samples. We
are interested in obtaining the distribution of CMV shedding-free survival. Since CD4 count
is a critical aspect of the immune system, with low values indicating more severe immune
de�ciency, we incorporate CD4 count at the beginning (CD4b) and end (CD4e) of the trial
as auxiliary variables for estimating the distribution of CMV shedding-free survival. The two
CD4 counts are used as time-independent covariates in the working PH model. For patients
who had at least one positive test for CMV virus in the urine, their last CD4 counts were
measured at the end of the trial after their events have occurred. In this situation, directly
incorporating a patient’s last CD4 count into survival analysis gives regression coe�cients
that are hard to interpret. However, in this paper, we only incorporate a patient’s last CD4
count to help de�ne a set of nearest neighbours for each interval censored observation, thus
the lack of interpretation of the regression coe�cients is less of a concern.
There were 210 patients (out of 232 randomized to the trial) who were tested for CMV

shedding at least once before or during the trial. Of these, 127 were interval censored or right
censored based on their urine samples. Since our approach is designed to handle interval-
censored or right-censored data, we restrict our analysis to these 127 patients. We �t the
working model, �(t)= �0(t)e�1CD4b+�2CD4e , for the failure times to calculate risk scores to
choose 20 subjects who have the 20 nearest distances from the censored subject. The event
time is drawn from the NPMLE based on the 20 subjects.
The results at two �xed time points, six months and one year, are shown in Table III.

This table provides the NPMLE from the partially observed (PO) analysis, that is the anal-
ysis of the observed interval-censored event time data using the NPMLE method, and also
provides the KM estimates from the multiple imputation analyses, including UNII, NPMLEI,
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Table III. Estimates of CMV shedding-free survival probabilities
and estimated standard errors based on interval-censored data
(NPMLE) and multiply-imputed data (UNII: Uniform imputa-
tion, NPMLEI: NPMLE imputation, NPMLEIB: NPMLE-Based

imputation using Bootstrap, NN=20, and M =10).

Method Ŝ(180)∗ (SÊ180)† Ŝ(365) (SÊ365)

PO‡ 0.818 0.0360 0.674 0.0448
UNII 0.805 0.0382 0.580 0.0543
NPMLEI 0.792 0.0394 0.589 0.0677
NPMLEIB 0.813 0.0391 0.650 0.0531

∗KM survival estimate of remaining CMV shedding-free at six
months.

†Estimated standard error based on Greenwood’s formula for UNII,
NPMLEI, and NPMLEIB andstandard error estimated from 500
bootstrap samples for PO.

‡Based on NPMLE.
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Figure 1. Comparison of CMV shedding-free curves based on the interval censored data (No Imputation)
and based on NPMLEIB method using the baseline and last CD4 counts as the auxiliary variables.

and NPMLEIB using the earliest and latest observed CD4 counts as the auxiliary variables. As
can be seen in this table and Figure 1, the PO and NPMLEIB methods produce comparable
estimates of survival. The results indicates that about 81 per cent of patients will remain CMV
shedding-free after six months and 67 per cent of patients will remain CMV shedding-free
after one year. The UNII and NPMLEI methods produce a little lower survival estimates than
other methods, especially in the tail.
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6. DISCUSSION

The research in this paper provides a direct approach, non-parametric multiple imputation,
to handle interval censored data. This approach converts interval-censored data problems to
complete data or right censored data problems to which standard methods can be applied.
This is an attractive feature of multiple imputation approaches. Another attractive feature is
that the measures of uncertainty can be easily obtained using well established rules described
in Reference [8].
The idea of imputing event times for interval censored data was discussed in Reference

[11]. However, our method di�ers because we impute for right censored observations and also
incorporate auxiliary variables into the imputation schemes to improve analysis. When there
are no auxiliary variables, our approach behaves similarly to Pan’s. When there are auxiliary
variables, our approach does recover information for interval-censored observations by incor-
porating the auxiliary variables into the imputation. As can be seen in the simulation studies,
the use of this non-parametric multiple imputation method can lead to improved performance
of estimators when auxiliary variables exist. In general, the NPMLEI and NPMLEIB multiple
imputation point estimates are closer to the truth than are the estimates produced by randomly
imputing event times (UNII) from the censored intervals without using the auxiliary variables.
The NPMLEIB has the most attractive operating characteristic of the imputation methods stud-
ied. To the extent that the risk scores correctly identify appropriate nearest neighbours, these
methods also reduce the e�ects of dependent censoring on estimation. These methods can also
be extended to allow the choice of nearest neighbours to depend on a second working PH
model for the censoring distribution as Hsu et al. [16, 17] described for the right censored
case.
In the situations with auxiliary variables, we use the midpoints of the censored intervals

as the event times in order to �t a working model. The midpoint is only used as a conve-
nience in calculating the risk score to choose the imputing risk set. More sophisticated and
computationally intensive approaches for �tting the working model could be used, such as
proportional hazard models for interval-censored data [4–6], but we suspect would only lead
to marginal improvement in the endpoint imputation, but not the bias, which is the major
concern for midpoint imputation. We believe that the bias in the regression coe�cients may
only be a problem if many of the censoring intervals are wide and the conditional event time
distribution in the interval is highly skew. In addition, parametric assumptions connected with
statistical models are only employed to de�ne the imputing risk set. As a result, the reliance
on the statistical model is weaker for our non-parametric multiple imputation schemes than
that of parametric multiple imputation schemes. Due to this weak reliance on a model, the
potential gains due to the multiple imputation will be largest when the auxiliary variable is
strongly associated with the event time. The estimated event time distribution from which
the imputes are drawn is derived from the NPMLE. Hence, the performance of imputation
procedures will highly depend on the performance of the NPMLE. In small sample size, the
NPMLE can be biased. This creates a small bias for the imputation methods in a case with
a small nearest neighbourhood. Simulations also suggest the size of NN is very important.
Future research could focus on this issue.
In addition to its robustness in this application, the general approach of multiple imputation

methods has features that make it attractive. One such feature is that after imputation the
data analyst is now free to choose and can easily perform any analysis appropriate for the
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goals of their study. Conditions for the appropriateness of this philosophy are discussed in
Reference [23].
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