EDITORIALS

Replacing Neocortical
Neurons after Stroke

Fifteen years ago, a research report claiming that brain
injury stimulates production of new neurons in post-
natal mammalian forebrain would have been met with
widespread skepticism. Since then, considerable exper-
imental evidence has emerged indicating that neural
stem cells and neurogenesis persist in specific regions of
the neonatal and adult mammalian forebrain (reviewed
in Ming and Song'). Many investigators now focus on
analysis of the properties, regulation, and functional
impact of neural stem and progenitor cells in the cen-
tral nervous system.

The persistence of neurogenesis throughout life
raises the possibility that the brain mounts an intrinsic
regenerative response to replace neurons lost after
stroke or other insults. Indeed, work in adult rodent
stroke models over the past 5 years indicates that focal
ischemic injury increases cell proliferation and neuro-
genesis in the forebrain subventricular zone (SVZ), the
predominant germinative zone in the adult mammalian
brain (see Lichtenwalner and Parent® for review).
Stroke-induced neurogenesis is augmented by growth
factor infusion and other manipulations.”” Neuro-
blasts derived from SVZ progenitors, moreover, appear
to be diverted to the injured striatum or hippocampus
after ischemic injury to form medium spiny neurons or
pyramidal cells, respectively.”®? This potential regen-
erative response to stroke is long-lasting'® and occurs
even in aged rodents.'"'? A recent study of autopsy
material from stroke patients suggests that neurogenesis
in the adult human forebrain SVZ also is stimulated by
ischemic injury."?

Findings that neocortical neurons are replaced after
experimental stroke in the adult are controversial be-
cause unequivocal evidence is lacking. The functional
consequences of stroke-induced neurogenesis also re-
main uncertain. Many newborn neurons generated af-
ter focal ischemia in the adult fail to survive,® and ev-
idence to date that the remaining cells integrate and
restore function is scarce. The recent development of
animal models that allow specific depletion of neural
progenitors should soon provide insight into some of
these issues.

Because postnatal neurogenesis peaks in the first few
weeks of life,"*' several groups have examined neona-
tal rodent models of hypoxic-ischemic (HI) injury,
seeking a more robust forebrain neurogenic response.
Although initial studies found stroke-induced SVZ
neurogenesis in this setting, it surprisingly was short-
lived and more modest in the neonate than had been

found in adult stroke models."®™'® Similar to results in
the adult, no neocortical neurogenesis was found.
However, a recent study in a chronic hypoxia model in
neonatal mice'” did provide evidence of cortical neu-
rogenesis.

Yang and colleagues™’ report in this issue of Annals
of Neurology gives further impetus for optimism regard-
ing self-repair prospects after neonatal brain injury. Us-
ing a well-characterized model of HI in neonatal rat,
this group found a marked stimulation of SVZ neuro-
genesis and substantial numbers of new neurons in
both striacum and neocortex after focal ischemic injury.
These authors injected retroviral reporters into the stri-
atal SVZ to show that many of the newborn neurons
arise from the SVZ and migrate to injury.

The neurogenic response to neonatal HI was long-
lived as some neurons generated after stroke persisted
for several months. The numbers of surviving neocor-
tical neurons, however, was small compared with the
extent of neuronal injury and the large number of im-
mature neurons observed initially. The authors, more-
over, found no newly generated pyramidal neurons in
neocortex. Only small, calretinin-immunoreactive, pu-
tative interneurons were identified as arising from pro-
genitors after HI. This finding may reflect a fixed in-
trinsic programming of the SVZ neuronal progenitors,
which derive from the ganglionic eminences in the em-
bryo that generate interneurons in the neocortex and
olfactory bulb, some striatal projection neurons, but no
neocortical pyramidal cells.*' >

Although Yang and colleagues®™ suggest that their
findings provide evidence that a more robust regener-
ative response exists in the injured neonatal cortex than
in the adult, this conclusion appears to be premature.
Many methodological factors could contribute to the
different findings obtained in this study of neonatal
brain injury versus studies in adult rodent brain injury
models. The anatomic distribution and severity of tis-
sue injury, the genetic background of the animals, the
timing of bromodeoxyuridine administration, the tim-
ing of outcome analysis, and the rigor of the search for
newly generated neurons are all critical variables that
greatly influence experimental results. Patterns of brain
injury, moreover, are not strictly comparable in neona-
tal and adult rodent stroke models. From a clinical per-
spective, the frequent occurrence of poor neurodevel-
opmental outcomes in neonates who have incurred
hypoxic-ischemic brain injury®® belies the putative re-
silience of the neonatal brain.

Several other important themes emerge from the re-
sults of this study. As has been reported previously in
other forebrain regions,” the injured neonatal cortex
favored survival of new oligodendroglia and astrocytes.
Whether the functional impact of these new glia is
beneficial or deleterious is unknown; however, the
close anatomic relation observed between migrating
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neuroblasts and astrocytes suggests that gliogenesis
strongly contributes to regenerative responses after
brain injury. Another issue that Yang and colleagues’
point out is that specific inflammatory mediators likely
play pivotal regulatory roles in neurogenic and other
regenerative responses. The potental trophic influence
of certain inflammatory mediators therefore brings into
question whether antiinflammarory therapy could inad-
vertently disrupt the reparative process.

The small numbers of newborn neocortical neurons
generated after HI and lack of pyramidal neuron re-
placement in neocortex suggest that major challenges
exist for stimulating repair from endogenous progeni-
tors after stroke. Growth factor infusion or other ma-
nipulations to augment endogenous repair likely will
be necessary. Optimal recovery from stroke or other
brain insults, moreover, may require combining this
approach with some types of neural stem cell trans-
plantation to provide additional cell replacement or
trophic support for endogenous progenitors.

Jack M. Parent, MD' and Faye S. Silverstein, MD"?

Departments of ' Neurology and ° Pediatrics
University of Michigan Medical Center
Ann Arbor, MI

References

1. Ming GL, Song H. Adult neurogenesis in the mammalian cen-
tral nervous system. Annu Rev Neurosci 2005;28:223-250.

2. Lichtenwalner R]J, Parent JM. Adult neurogenesis and the isch-
emic forebrain. ] Cereb Blood Flow Metab 2006;26:1-20.

3. Chen ], Zacharek A, Zhang C, et al. Endothelial nitric oxide
synthase regulates brain-derived neurotrophic factor expression
and neurogenesis after stroke in mice. J Neurosci 2005;25:
2366-2375.

4. Jin K, Sun Y, Xie L, et al. Post-ischemic administration of
heparin-binding epidermal growth factor-like growth factor
(HB-EGF) reduces infarct size and modifies neurogenesis after
focal cerebral ischemia in the rat. ] Cereb Blood Flow Metab
2004;24:399-408.

5. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hip-
pocampal pyramidal neurons after ischemic brain injury by re-
cruitment of endogenous neural progenitors. Cell 2002;110:
429-441.

6. Teramoto T, Qiu J, Plumier JC, Moskowitz MA. EGF ampli-
fies the replacement of parvalbumin-expressing striatal interneu-
rons after ischemia. ] Clin Invest 2003;111:1125-1132.

7. Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with
erythropoietin enhances neurogenesis and angiogenesis and im-
proves neurological function in rats. Stroke 2004;35:

1732-1737.

186 Annals of Neurology Vol 61 No 3 March 2007

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement

from endogenous precursors in the adult brain after stroke. Nat
Med 2002;8:963-970.

. Parent JM, Vexler ZS, Gong C, et al. Rat forebrain neurogen-

esis and striatal neuron replacement after focal stroke. Ann
Neurol 2002;52:802—813.

Thored P, Arvidsson A, Cacci E, et al. Persistent production of
neurons from adult brain stem cells during recovery after
stroke. Stem Cells 2006;24:739-747.

Jin K, Minami M, Xie L, et al. Ischemia-induced neurogenesis
is preserved but reduced in the aged rodent brain. Aging Cell
2004;3:373-377.

Yagita Y, Kitagawa K, Ohtsuki T, et al. Neurogenesis by pro-
genitor cells in the ischemic adult rat hippocampus. Stroke
2001;32:1890-1896.

Macas J, Nern C, Plate KH, Momma S. Increased generation
of neuronal progenitors after ischemic injury in the aged adult
human forebrain. J Neurosci 2006;26:13114-13119.

Bayer SA. 3H-thymidine-radiographic studies of neurogenesis
in the rat olfactory bulb. Exp Brain Res 1983;50:329-340.
Rosselli-Austin L, Altman J. The postnatal development of the
main olfactory bulb of the rat. ] Dev Physiol 1979;1:295-313.
Ong J, Plane JM, Parent JM, Silverstein FS. Hypoxic-ischemic
injury stimulates subventricular zone proliferation and neuro-
genesis in the neonatal rat. Pediatr Res 2005;58:600—606.
Plane JM, Liu R, Wang TW, et al. Neonatal hypoxic-ischemic
injury increases forebrain subventricular zone neurogenesis in
the mouse. Neurobiol Dis 2004;16:585-595.

Yang Z, Levison SW. Hypoxia/ischemia expands the regenera-
tive capacity of progenitors in the perinatal subventricular zone.
Neuroscience 2006;139:555-564.

Fagel DM, Ganat Y, Silbereis ], et al. Cortical neurogenesis
enhanced by chronic perinatal hypoxia. Exp Neurol 2006;199:
77-91.

Yang Z, Covey M, Bitel C, et al. Sustained neocortical neuro-
genesis after neonatal hypoxic/ischemic injury. Ann Neurol
2007;61:199-208.

Anderson SA, Qiu M, Bulfone A, et al. Mutations of the ho-
meobox genes Dlx-1 and DIx-2 disrupt the striatal subventricu-
lar zone and differentiation of late born striatal neurons. Neu-
ron 1997;19:27-37.

Stenman J, Toresson H, Campbell K. Identification of two dis-
tinct progenitor populations in the lateral ganglionic eminence:
implications for striatal and olfactory bulb neurogenesis. ] Neu-
rosci 2003;23:167-174.

Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla
A. Young neurons from medial ganglionic eminence disperse in
adult and embryonic brain. Nat Neurosci 1999;2:461-466.
Gluckman PD, Wyatt JS, Azzopardi D, et al. Selective head
cooling with mild systemic hypothermia after neonatal
encephalopathy: multicentre randomised trial. Lancet 2005;
365:663-670.

Zaidi AU, Bessert DA, Ong JE, et al. New oligodendrocytes are
generated after neonatal hypoxic-ischemic brain injury in ro-
dents. Glia 2004;46:380-390.

DOI: 10.1002/ana.21088



