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The LHX3 transcription factor plays critical roles in pituitary and nervous system development. Mutations in the human LHX3 gene cause
severe hormone deficiency diseases. The gene produces two mRNAs which can be translated to three protein isoforms. The LHX3a
protein contains a central region with LIM domains and a homeodomain, and a carboxyl terminus with the major transactivation domain.
LHX3b s identical to LHX3a except that it has a different amino terminus. M2-LHX3 lacks the amino terminus and LIM domains of LHX3a/
b. In vitro experiments have demonstrated these three proteins have different biochemical and gene regulatory properties. Here, to
investigate the effects of overexpression of LHX3 in vivo, the alpha glycoprotein subunit («GSU) promoter was used to produce LHX3a,
LHX3b, and M2-LHX3 in the pituitary glands of transgenic mice. Alpha GSU-beta galactosidase animals were generated as controls. Male
aGSU-LHX3a and oGSU-LHX3b mice are infertile and die at a young age as a result of complications associated with obstructive uropathy
including uremia. These animals have a reduced number of pituitary gonadotrope cells, low circulating gonadotropins, and possible

sex hormone imbalance. Female «GSU-LHX3a and «GSU-LHX3b transgenic mice are viable but have reduced fertility. By contrast, «GSU-
M2-LHX3 mice and control mice expressing beta galactosidase are reproductively unaffected. These overexpression studies provide
insights into the properties of LHX3 during pituitary development and highlight the importance of this factor in reproductive physiology.

J. Cell. Physiol. 212: 105-117, 2007. © 2007 Wiley-Liss, Inc.

The mammalian anterior pituitary gland releases hormones that
regulate many aspects of development and physiology, including
reproduction, growth, the response to stress, metabolism,
and lactation. In the mature gland, specialized cells produce
and secrete these hormones; for example, the gonadotrope
cell synthesizes luteinizing hormone (LH) and follicle-
stimulating hormone (FSH) and the thyrotrope makes thyroid-
stimulating hormone (TSH). The regulatory signals that
coordinate the determination, expansion, and differentiation of
hormone-secreting cells from the progenitors that populate
Rathke’s pouch, the pituitary primordium, are only partially
characterized. It is known that following early inductive events
between Rathke’s pouch and the neural ectoderm of the ventral
diencephalon, the actions of several classes of transcription
factors orchestrate the establishment of the hormone-
secreting cell types of the anterior lobe (Keegan and Camper,
2003; Savage et al.,, 2003; Zhu and Rosenfeld, 2004). These
transcription factors include EGRI, HESXI, ISLI, LHX3, LHX4,
PAXS, PITI, PITXI, PITX2, PROPI, SFI, SIX3, SIX6, and TPIT.
LHX3, LHX4, and ISL| are members of the LIM-homeodomain
(LIM-HD) family of transcription factors that includes many key
regulators of mammalian organogenesis (Hunter and Rhodes,
2005). LIM-HD proteins are classified by the presence of two
cysteine-rich finger-like structures, the LIM domains, and a
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characteristic DNA-binding homeodomain. The LIM motif has
been shown to participate in the gene regulatory functions of
LIM-HD proteins by modulation of DNA binding affinity and
mediation of interactions with ubiquitous and tissue-restricted
protein partners (Bach, 2000; Hobert and Westphal, 2000;
Hunter and Rhodes, 2005).

Much of what is understood about pituitary developmental
biology originates from studies involving the characterization of
loss of function and overexpression mouse models and the
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analysis of human patients with hormone deficiency disorders.
In mammals, LHX3 mRNAs are detected in the embryonic
nervous system and in both the developing and established
anterior/intermediate lobes of the pituitary (Seidah etal., 1994;
Bach etal., 1995; Zhadanov et al., 995). The phenotype of mice
with a homozygous deletion of the entire Lhx3 gene reflects the
importance of this transcription factor in pituitary and nervous
system development (Sheng et al., 1996, 1997; Sharma et al,,
1998). These animals are not viable after birth, and
morphological and molecular analyses demonstrate that they
have incomplete pituitary development and aberrant motor
neuron differentiation (Sheng et al., 1996, 1997; Sharma et al.,
1998). The partially developed pituitary of Lhx3 null mice retains
some adrenocorticotropin (ACTH)-expressing corticotrope
cells, but other anterior pituitary hormones are not detected,
consistent with a required role for LHX3 in gonadotrope,
lactotrope, somatotrope, and thyrotrope cell differentiation
(Sheng et al., 1996). Molecular and cellular in vitro studies have
shown that LHX3 can bind to regulatory elements in the
promoters or enhancers of anterior pituitary-expressed genes,
including the FSHB, aGSU, prolactin (PRL), TSHB, gonadotropin
releasing hormone receptor, and Pit-1/POUIF| genes (e.g.,
Roberson et al., 1994; Bach et al., 1995; Sloop et al., 1999,
20013; Pincas et al,, 2001; West et al., 2004; McGillivray et al.,
2005; Granger et al., 2006).

Loss of LHX3 gene function in human patients causes severe
hormone deficiency diseases. Patients with these recessive
mutations have low or absent LH, FSH, TSH, growth hormone
(GH), and PRL, with associated short stature, thyroid
deficiency, and reproductive disease (Netchine et al., 2000;
Bhangoo et al., 2006). In addition, these patients exhibit a rigid
cervical spine leading to limited head rotation that likely results
from abnormal motor neuron development. In humans and
mice, loss of one LHX3 allele does not appear to have
deleterious effects (Sheng et al., 1996; Netchine et al., 2000;
Bhangoo et al., 2006).

Mammalian LHX3 genes produce two major mRNAs known as
LHX3a and LHX3b (Zhadanov et al.,, 1995; Sloop et al., 1999,
20013a; Yaden et al., 2006). The mouse LHX3a and LHX3b
mRNAs have distinct temporal expression profiles during
developmentandare differentially expressed in rodent cell lines
that represent various anterior pituitary cell types (Zhadanov
et al.,, 1995; Sloop et al., 1999, 2001a; West et al., 2004).
Translation from the first methionine codons of the LHX3a and
LHX3b mRNAs generates the LHX3a and LHX3b protein
isoforms, respectively (Zhadanov et al., 1995; Sloop et al,,
1999). These proteins are identical for most of their amino acid
sequences (LIM domains, homeodomain, and carboxyl
terminus) but differ in their distinct amino termini resulting
from alternate use of 5 exons in the gene (Zhadanov et al.,
1995; Sloop et al., 1999, 2000). A third protein isoform,
M2-LHX3, is generated via translation of the second in-frame
methionine (M2) codon of the LHX3a mRNA (Sloop et al.,
2001a). M2-LHX3 lacks the amino terminus and LIM domains
found in LHX3a and LHX3b (Sloop et al.,, 2001a). The three
LHX3 protein isoforms display different biochemical and
functional properties (Sloop et al., 1999, 2001a,b; Yaden et al,,
2005). The LHX3a isoform transactivates pituitary gene
promoters, such as those of FSHB, «GSU, and TSHS, more
effectively than the LHX3b isoform (Sloop et al., 1999, 2001 3;
West et al., 2004). The differences in gene activation properties
between LHX3a and LHX3b reflect distinct DNA binding
affinities; the LHX3b amino terminus is a specific inhibitor of
homeodomain DNA binding and therefore gene activation
(Sloop et al., 2001a). In vitro experiments suggest that the
LHX3b amino terminus impacts the DNA binding affinity of the
LHX3 homeodomain but not its specificity; both LHX3a and
LHX3b recognize similar optimal DNA binding sites (Bridwell
et al, 2001; Yaden et al., 2005). The M2-LHX3 isoform has
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unique biochemical and gene regulatory properties. Because it
lacks the amino terminus and LIM domains but retains the major
activation domain of LHX3 (located in the carboxyl terminus of
the molecule), M2-LHX3 binds target DNA sequences more
avidly than the LHX3a and LHX3b isoforms and it can
induce transcription from the PRL, «GSU, and TSHpB promoters
more robustly than LHX3b (Sloop et al., 2001a).
Observations of loss of LHX3 gene function (the Lhx3 knockout
mouse model and the discovery of human patients with LHX3
mutations) have demonstrated the requirement for LHX3
during pituitary development. However, little is known of the
regulatory roles of LHX3 protein isoforms in vivo. To
investigate the effects of LHX3 targeted expression in vivo, we
generated strains of transgenic mice overexpressing each of the
three LHX3 isoforms during pituitary development. Transgenic
mice expressing specific LHX3 proteins display a sex-specific
reduction in viability and develop reproductive diseases
associated with hormonal dysregulation. This study provides
insights into the sensitivity of the pituitary to LHX3 dosage and
has generated transgenic mice that will serve as models for male
reproductive diseases.

Materials and Methods
Experimental animals

All animal experimentation described in this study was conducted in
accord with accepted standards of humane animal care, the NIH
guidelines for the care and use of experimental animals, and protocols
approved by the institutional animal care and use committees of the
Indiana University School of Medicine, the Purdue University School of
Science Indianapolis, and the University of Missouri.

Cell culture and transfection assays

Mouse pituitary GHFT I -5 cells (a gift from Dr. P. Mellon, University of
California San Diego) were cultured and transfected as described
(Sloop et al., 2001a).

Transgene construction

Transgene design is shown in Figure |A. The aGSU-nLacZ transgene
plasmid has been described (Kendall etal., 1994). In addition to —4.6 kb
of the mouse a¢GSU promoter, this vector contains the Escherichia coli
lacZ gene fused to the SV40 T antigen nuclear localization signal and a
portion of the murine protamine-| gene that provides 3'-UTR, intronic,
and polyadenylation signal sequences. To generate the «GSU-LHX3a,
aGSU-LHX3b, and «GSU-M2-LHX3 transgenes, LHX3 coding
sequences were amplified by the PCR from existing LHX3 expression
vectors using Pfu DNA polymerase (Stratagene, La Jolla, CA) and the
following primers: 5'-cgggatccaccatgctgetggaaacgggget-3, 5'-cgggatect-
caattcagatcctcttctgagatgagtttttgttcgaactgagegtggtctaccteate-3’
(LHX3a); 5'-cgggatccaccatggaggegegeggggaget-3/, 5'-cgggatcctcaattcag-
atcctcttctgagatgagtttttgttcgaactgagegtggtetaccteate-3' (LHX3b); and 5/-
cgggatccaccatggaggacageeggetegtg-3’, 5'-cgggatectceaatteagatectcttetga-
gatgagtttttgttcgaactgagegtggtctaccteate-3' (M2-LHX3). The substrates
for LHX3a and LHX3b transgenes were full-length cDNAs in which the
second methionine (M2) had been replaced with alanine by site-
directed mutagenesis (Sloop et al., 2001a) to prevent production of
M2-LHX3. The PCR products were inserted into a BamHl site
downstream of the «GSU promoter cloned in pGEM7Zf+ (Kendall
et al,, 1994) that had been partially BamHI digested and calf intestinal
alkaline phosphatase treated. Transgene integrity was confirmed using
a Perkin EImer DNA sequencer (Biochemistry Biotechnology Facility,
Indiana University School of Medicine). Sequence analyses and
assembly were performed using DNASIS (Hitachi Software
Engineering, South San Francisco, CA) software.

Generation of transgenic mice

The aGSU-nLacZ, aGSU-LHX3a, aGSU-LHX3b, and aGSU-M2-LHX3
plasmids were linearized by digestion with Kpnl/Hindlll. The linearized
fragments were microinjected into F2 zygotes from (C57BL/6) x CBA)
F1 parents (Purdue University Transgenic Mouse Core Facility,
West Lafayette, IN). Embryos at the two-cell stage were transferred to
0.5-day post-coitum pseudopregnant CD-| females. Genomic DNA
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Fig. I. Transgenic mice expressing LHX3 isoforms. A: «GSU-nLacZ and «GSU-LHX3 transgenes. Complementary DNAs encoding nLacZ,
human LHX3a, LHX3b, or M2-LHX3 were placed under the control of 4.6 kb of the mouse «GSU promoter. The LHX3 cDNAs were tagged with
a Myc-epitope (m) and followed by a mouse protamine intron and poly(A) signal (Pr-1). B: The «GSU-nLacZ transgene is expressed at high
levels within the anterior pituitary lobe. Whole mount wild-type (WT) and transgenic (¢GSU-nLacZ) pituitaries stained for 3-galactosidase
activity at 12 weeks of age. PP = posterior pituitary; IP = intermediate pituitary; AP = anterior pituitary. C: Detection of transgene expression
in «GSU-nLacZ mice using anti-B-galactosidase antibodies to probe coronal sections of pituitary glands. Staining is concentrated on the
ventral side of the gland. D,E: Expression of transgene mRNA in tissues. Using quantitative real-time PCR, male transgenic mice were
assayed at |12 weeks of age for expression of transgene product. Results are the means of three assays = SEM. After RNA extraction from
pituitary tissue, cDNAs were generated using oligo d(T), and PCR was performed using transgene-specific primers. Reactions were monitored in
real time using internal fluorescent transgene-specific TagMan probes. Calculated RNA levels were normalized to measurements of the
acidic ribosomal phosphoprotein PO (ARBP/36B4) mRNA levels performed in parallel control reactions. Pit = pituitary, brn =brain, Ing = lung,
liv=liver, spl = spleen, kid = kidney, adr = adrenal, gon = gonad, ure = urethra. F: Genotype and sex-specific variation of tGSU-LHX3 transgene
expression in the pituitary assayed by quantitative real-time PCRin | 2-week-old mice. "P < 0.000 1 versus control.[Color figure can be viewedinthe
online issue, which is available at www.interscience.wiley.com.]
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prepared from tail biopsies of weanlings was screened for the presence
of the transgene and a control amplicon by the PCR using the following
primers: 5'-aggactgggtggcttccaactcccagacac-3/, 5 -agcettcteattgetgegeg-
cc-aggttcagg-3’ (positive control, Rapsn [acetylcholine receptor] gene);
5’-ttcactggecgtegttttacaacgtegtga-3’, 5'-atgtgagcgagtaacaacccgteggattc-
t-3' («GSU-nLacZ); 5'-tgtgtaagggtcaataatattaca-3’, 5'-gtgccagtggcggtcca-
gagectt-3’ (¢GSU-LHX3a and aGSU-LHX3b); and 5'-tgtgtaagggtcaataat-
attaca-3’, 5'-gcgegecggettgggegaggtgtt-3' («GSU-M2-LHX3). Transgenic
founder animals and their progeny were crossed to C57BL/6) mice
(The Jackson Laboratory, Bar Harbor, ME). Transgenes were
maintained in a hemizygous state. Mice were housed in a specific
pathogen-free environment under controlled conditions of
temperature and light and provided with tap water and commercial
mouse chow. Wild-type and transgenic mice used in fertility studies
were housed as single breeding pairs for at least 4 months for fertility
and fecundity tests. Comparative data for wild-type male and female
reproductive performance were obtained from The Jackson
Laboratory database. The frequency of birth, number of offspring, and
genotype were recorded. Vaginal plugs were monitored each morning
to confirm copulation.

RNA extraction and cDNA synthesis

Tissues harvested during necropsy were homogenized directly in Tri-
Reagent (Molecular Research Center, Cincinnati, OH) and frozen in
liquid nitrogen. RNA was isolated using the Tri-Reagent extraction
protocol with the following changes: bromochloropropane was used as
a chloroform substitute, and prior to RNA precipitation, 2.0 U of
RNase-free DNase | (Ambion, Austin, TX) were added to each sample
and placed at 37°C for 30 min. The RNA/DNase | mixture was back-
extracted with Tri-Reagent to purify DNA-free RNA. Complementary
DNA was synthesized using Superscript Il reverse transcriptase and an
oligo d(T) primer (Invitrogen, Carlsbad, CA).

Quantitative PCR analyses of gene expression

Reverse transcriptase (RT) reactions were performed in duplicate as
described above using oligo d(T) primer and total RNA. Parallel
negative control reactions omitted the RT. Real-time quantitative
PCR was performed using the 5’ fluorogenic nuclease assay

and an ABI 7900 PRISM (Applied Biosystems, Foster City,

CA). The 5 terminus of fluorogenic probes was labeled with
6-carboxy-fluorescein, and the 3’ terminus contained the quenching
dye 6-carboxytetramethylrhodamine. Positive control reactions
amplified the 36B4 cDNA (encoding the acidic ribosomal
phosphoprotein P0) as described (West et al., 2004). Negative control
reactions were performed lacking RT. The aGSU, LHX3-Myc, and 36B4
primers and probes were synthesized by Biosearch Technologies
(Novato, CA). Primer and probe sequences were as follows: «GSU
forward primer, 5'-ctgttgcttctccagggeata-3’, aGSU reverse primer, 5'-
ttctttggaaccageattgtctt-3’, «GSU TagMan probe, 5'-cccactcccgecaggte-
caa-3'; LHX3-Myc forward primer, 5'-ggtagaccacgctcagttcga-3’, LHX3-
Myc reverse primer, 5'-cggcatctgctectgett-3’, LHX3-Myc TagMan
probe, 5'-agaagaggatctgaattgaggatccgeag-3'; 36B4 forward primer, 5'-g-
geccgagaagacctectt-3/, 36B4 reverse primer, 5'-tcaatggtgcctctggagatt-
3’, 36B4 TagMan probe, 5'-ccaggctttgggcatcaccacg-3'. Amplifications
were run in triplicate 20 pl reactions that contained Universal Master
Mix (Applied Biosystems), 4 pmol of each forward and reverse primer,
3 pmol probe, and 4 pl diluted cDNA from the RT reactions. Two-step
PCR cycling was carried out as follows: 50°C 2 min for one cycle, 95°C
10 min for one cycle, and 95°C 15 sec and 60°C | min for 40 cycles.
Data were normalized by determining the relative abundance of 3684
mRNA.

Histology and immunohistochemistry

Harvested tissues were fixed in 4% paraformaldehyde in PBS (pH 7.2) at
4°Cfor2-24h. The fixed samples were washed in PBS, dehydrated, and
embedded in paraffin. Tissue sections of 6 um were prepared for
subsequent hematoxylin/eosin staining or immunohistochemical
analyses. Tissue sections were deparaffinized, rehydrated, and antigen
unmasked (10 min boil in 10 mM citric acid [pH 6.0]) prior to
immunostaining. Immunohistochemistry was performed with
polyclonal antisera against E. coli 3-galactosidase (1:2,000) (Chemicon,
Temecula, CA), human ACTH (1:1,000 for diaminobenzidine [DAB,
Sigma, St. Louis, MO] chromogen staining) (AFP-39032082), rat « GSU
(1:500 DAB) or (1:100 fluorescence [Fluor]) (AFP-66P9986), rat GH
(1:1,000 DAB) (AFP-5672099), rat LHB (1:800 DAB) or (1:400 Fluor)
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(AFP-571292393), rat TSHp (1:1,000 DAB) or (1:500 Fluor)
(AFP-1274789) (National Hormone and Pituitary Program [NHPP],
Torrance, CA), human c-Myc (1:200 DAB) or (1:50 Fluor) (Santa Cruz
Biotechnology, Santa Cruz, CA), mouse LIM-3/LHX3 (1:1,000 DAB)
(Chemicon) and mouse LIM-3/LHX3 (1:1,000 DAB) (Developmental
Studies Hybridoma Bank at the University of lowa under the auspices of
the National Institute of Child Health & Human Development).
Biotinylated secondary antibodies were used with avidin and
biotinylated peroxidase or fluorescent avidin alone (Vectastain rabbit
and M.O.M. kits; Vector Laboratories, Burlingame, CA). Normal serum
was substituted for primary antibody in parallel negative control
experiments. Selected slides were hematoxylin and eosin
counterstained in order to examine tissue morphology.

Whole mount pituitaries to be assayed for 3-galactosidase activity
were fixed for 10 min in 0.2% glutaraldehyde, washed three times in
detergent rinse (0.1 M NaH,PO, [pH7.3], 2 mM MgCl, 0.2% NP-40),
and incubated at 37°C overnight in an X-Gal solution containing | mg/
ml X-Gal (Roche Applied Science, Indianapolis, IN), 5 mM K3Fe(CN),,
and 5 mM K4Fe(CN)g - 3H,O in detergent rinse.

Microscopy

Light and epifluorescence images were acquired with a Nikon Eclipse
TE 200-U inverted microscope equipped with DAPI, FITC, TRITC, and
CyS5 epifluorescence filter cubes or a Nikon Eclipse E400 microscope
with an Olympus DP70 camera.

Magnetic resonance imaging (MRI)

A Varian 9.4 Tesla, 31 cm horizontal bore MR system (Varian, Inc., Palo
Alto, CA; Department of Radiology, Indiana University School of
Medicine) was used to image mouse urogenital anatomy. Mice were
euthanized and imaged using a small 30 mm dual tuned (‘H) volume coil.
Proton density spin echo images were obtained in the transverse and
sagittal imaging planes. Repetition time = | sec, echo time = 12 msec,
number of signal averages = |, imaging time =4 min 19 sec, slice
thickness = 0.5 mm, in-plane resolution = 137 x 148 microns.

Hormone and blood chemistry analyses

For sera collection, group housed mice were euthanized in the morning
and whole blood was harvested via cardiac puncture; serum then was
isolated and stored at —20°C. LH, FSH, testosterone, and estradiol
levels were measured by the University of Virginia Center for Research
in Reproduction Ligand Assay and Analysis Core. LH was measured in
serum by a modified super-sensitive two-site sandwich immunoassay
using monoclonal antibodies MABI (#581B7) against bovine LH and
TMA (#5303; Medix, Kauniainen, Finland) against the human LH3
subunit. The tracer antibody (#518B7, kindly provided by Dr. Janet
Roser, Department of Animal Science, University of California, Davis)
was iodinated by the chloramine T method and purified on Sephadex
G-50 columns. The capture antibody (#5303) was biotinylated and
immobilized on avidin-coated polystyrene beads (7 mm; Nichols
Institute, San Juan Capistrano, CA). Mouse LH reference preparation
provided by Dr. A. F. Parlow (NHPP) was used as standard. The assay
has a sensitivity of 0.07 ng/ml, and the average intra-assay and inter-
assay coefficients of variation for the quality controls were 3.6% and
I'1.1%, respectively. Mouse FSH levels were determined by RIA using
reagents provided by Dr. Parlow. Mouse FSH reference preparation
was used for assay standards, and mouse FSH antiserum (guinea pig)
AFP-1760191, diluted to a final concentration of 1:400,000, was used as
a primary antibody. Secondary antibody was purchased from
Antibodies, Inc., Davis, CA (catalog #51-534) and was diluted to a final
concentration of 1:60. The assay has a sensitivity of 2.0 ng/ml and
less than 0.5% cross-reactivity with other pituitary hormones. The
intra-assay and inter-assay coefficients of variation were 10.1% and
13.3%, respectively. Testosterone levels were measured by solid-phase
25| RIA using the Diagnostic Products Corporation (Los Angeles, CA)
Coat-A-Count Total Testosterone Kit according to the
manufacturer’s instructions. Serum estradiol levels were assessed
using the Diagnostic Systems Laboratories (Webster, TX) estradiol
RIA Kit (DSL-4400) according to the manufacturer’s instructions.
Blood urea nitrogen (BUN) assays were performed by the University of
Missouri Veterinary Medical Diagnostic Laboratory (Columbia, MO)
using the Olympus Urea Nitrogen Kit in tandem with an Olympus
AU400 analyzer (OSR6134, Olympus, Melville, NY) according to the
manufacturer’s instructions.
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Statistical analysis

Data points were compared using a one-tailed Student’s t-test for
paired samples using Excel (Microsoft Corp., Redmond, WA). Values
were considered significantly different when P <0.01.

Results
Generation of «GSU-LHX3 transgenic mice

In order to characterize the in vivo consequences of persistent
overexpression of LHX3, we generated transgenic mice
expressing human LHX3a, LHX3b, or M2-LHX3 during
pituitary development. The —4.6 kb mouse aGSU promoter, a
well-characterized promoter transcribed starting at embryonic
day 9.5 throughout the pituitary primordium and later in
thyrotrope and gonadotrope cell types (Kendall et al., 1994),
therefore was chosen for these experiments. Prior to
transgene construction the M2 methionine codon (which has
the potential to produce the M2-LHX3 isoform) of the human
LHX3a and LHX3b cDNAs was replaced with alanine to ensure
uniform production of discrete LHX3 isoforms. Expression
constructs containing the modified LHX3a (M134A) and LHX3b
(M139A) cDNAs were assayed for their transactivation
capacities using pituitary promoter luciferase reporter genes.
The modified cDNAs had the same transcriptional capacities as
wild-type controls (data not shown). The Myc epitope-tagged
LHX3 cDNAs were then cloned under the control of the
mouse aGSU promoter (Fig. 1A), and these fragments were
used to generate transgenic mice. AlphaGSU-nLacZ (beta
galactosidase) mice were also generated to serve as
comparative negative controls. Semi-quantitative RT-PCR of
pituitary RNA was used to assay transgene expression within
the aGSU-LHX3a, aGSU-LHX3b, «GSU-M2-LHX3, and «GSU-
nLacZ founder pedigrees. Approximately 50% of the transgenic
lines expressed the transgene. No male transgene-expressing
aGSU-LHX3a or aGSU-LHX3b founder mice survived. Six lines
expressing the «GSU-M2-LHX3 transgene and three lines
expressing the «GSU-nLacZ transgene were generated and bred
for further study. By breeding through the females, one «GSU-
LHX3a and two aGSU-LHX3b expressing lines survived. The
three aGSU-LHX3a/b pedigrees developed the same disease
phenotype (see below); the «GSU-M2-LHX3 and oGSU-nLacZ
transgenic mice did not display any significant problems.
Subsequently, representative lines demonstrating the highest
levels of each transgene expression were used in the described
experiments.

aGSU-LHX3 transgene expression

By whole mount X-Gal substrate staining of pituitary glands and
immunohistochemistry of pituitary sections using anti-LacZ
antibodies, the «GSU-nLacZ transgenic control mice were found
to exhibit appropriate LacZ expression within the anterior lobe
of the gland, demonstrating the expected behavior of the
promoter (Fig. 1B,C). Real-time PCR was used to quantitatively
evaluate the specific level of LHX3 transgene expression in
various tissues. The pituitary was the principal site of transgene
production in all three pedigrees, but minor levels of transgene
transcripts, but not protein, were detected in some other
tissues (Fig. 1 D,E; and data not shown). Quantitative assays of
LHX3 transgene transcripts within adult pituitaries revealed
differences in expression levels across genotypes (Fig. |F). The
aGSU-M2-LHX3 animals had the highest level of transgene
expression, and the «GSU-LHX3b transgenics had a higher level
of expression than «GSU-LHX3a mice. Interestingly, there were
also sex-specific differences in transcript abundance with males
maintaining a higher level of transgene expression than females.
Real-time PCR experiments examining the endogenous a«GSU
gene were consistent with this observation, demonstrating that
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male mice exhibit higher expression levels than female mice
(data not shown).

Specific detection of the LHX3 transgene products using anti-
Myc antibodies showed expression in the anterior pituitary of
the aGSU-LHX3a, aGSU-LHX3b, and aGSU-M2-LHX3
transgenic mice with strong detection in the nuclei of cells on
the ventral side of the lobe, consistent with targeting the
gonadotrope and thyrotrope cell types, compared to negative
controls (Fig. 2A-D). Confirming the quantitative PCR data of
mRNA transcript levels, the anti-Myc immunostaining showed
there were similar differences in the levels of transgene protein
expression with «GSU-M2-LHX3 > aGSU-LHX3b > «GSU-
LHX3a levels (Fig. 2B—D). Transgenic overexpression of LHX3
isoforms does not appear to significantly affect the abundance
of endogenous LHX3. Immunohistochemical staining
experiments using two different anti-LHX3 antibodies were
consistent with these observations (data not shown).
Transgenic mice expressing LHX3 isoforms demonstrated no
notable alterations in overall pituitary morphology in
comparison to wild-type littermates (Fig. 2A-D).
Immunostaining assays of other tissues such as the reproductive
tract did not detect LHX3 protein in non-pituitary tissues (data
not shown).

To confirm the cellular specificity of transgene expression,
double-label immunohistochemistry was performed using
fluorescently labelled antibodies to detect transgene-derived
LHX3 protein and a«GSU hormone expression. Control
pituitary glands derived from wild-type littermates displayed no
appreciable background immunofluorescence for the LHX3
transgenes and maintained the expected aGSU expression
patterns (Fig. 2E,l). Again, the differences in levels of transgene
expression between the «GSU-LHX3a, aGSU-LHX3b, and
aGSU-M2-LHX3 lines were observed (Fig. 2F-H). Interestingly,
these assays also indicated that the distribution of the «GSU-
LHX3aand aGSU-LHX3b gene products in the anterior pituitary
was somewhat more restricted to the ventral side of the gland
than the M2-LHX3 transgene-produced protein (Fig. 2F—H). At
higher magnification, it could be seen that in most aGSU-
staining cells from «GSU-M2-LHX3 mouse pituitaries, there was
nuclear staining of coexpressed LHX3 transgene product
(Fig. 2L). However, in «GSU-LHX3a (Fig. 2J) and «GSU-LHX3b
(Fig. 2K) pituitaries, there were some aGSU-positive cells that
appeared to lack expression of the transgene.

Pituitary gonadotrope and hormonal changes
associated with LHX3 isoform overexpression

To assess the effect of LHX3 overexpression during pituitary
development, the anterior lobe hormone-secreting cell
populations of transgenic and wild-type mice were compared at
PI. In both sexes, overexpression of LHX3a and LHX3b was
found to reduce the number of cells staining for LH, suggesting
that the presence of the transgene product had decreased the
number of differentiated pituitary gonadotropes (Fig. 3). The
distribution and hormone expression levels of other pituitary
cell types including thyrotropes, somatotropes, lactotropes,
and corticotropes also were examined; however, no significant
changes were observed between wild-type and transgenic
animals (Fig. 3). Real-time PCR experiments also found reduced
levels of LHB and FSHB mRNAs but not TSHB mRNA (data not
shown). To confirm the immunohistological results which
indicated a reduction of gonadotropes in the «GSU-LHX3a
overexpressing mice, serum LH, FSH, testosterone, and
estrogen were measured. Alpha GSU-LHX3a male mice had a
~50% reduction in circulating LH and FSH concentrations
(Fig. 4A,B). Although there was variability in the measured levels
(such that differences were not statistically different with

P> 0.01), the «GSU-LHX3a transgenic male mice had a trend of
lower levels of testosterone than littermate non-transgenic
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Fig. 2. aGSU-LHX3 transgene expression in the pituitary gland. A-D: Coronal pituitary sections from newborn (PI) wild-type (WT, part A),
aGSU-LHX3a (tg A, part B), «GSU-LHX3b (tg B, part C), and «GSU-M2-LHX3 (tg M2, part D) mice were immunostained for transgene product
using an antibody against the Myc-epitope tag and detection using DAB chromogenic reactions. E-L: Double-labelled immunofluorescent assays
of pituitary transgene expression in wild type (part E,l), «GSU-LHX3a (part F,}), «GSU-LHX3b (part G,K), and «GSU-M2-LHX3 (part H,L)

mice. Fluorescein-labelled anti-Myc antibodies were used to detect transgenic LHX3 protein and Texas Red conjugated antibodies were

used to demarcate «GSU hormone subunit expression.

Wild type Transgenic

TSHA

Fig. 3. Overexpression of LHX3a decreases the number of anterior pituitary gonadotropes. Wild-type and «GSU-LHX3a (P1) coronal
pituitary sections were immunostained using antibodies directed against pituitary hormones: aGSU, TSHf3, LH3, ACTH, and GH. Similar
observations were made in animals of both sexes.
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Circulating reproductive hormone levels in GSU-LHX3 transgenic male mice. Wild-type (n = 8) and «GSU-LHX3a (n = 8) male

mice (12 weeks) were assayed for circulating concentrations of LH (part A), FSH (part B), testosterone (part C), and estrogen (part D).
Serum levels of LH were measured by sandwich immunoradiometric assay. All other hormones were quantified using radioimmunoassays.

WT = wild type. "P < 0.001 versus control.

controls (Fig. 4C). Estrogen production was in the normal range
(Fig. 4D). In this study, we concentrated on the males but serum
hormone concentrations measured in the «GSU-LHX3a female
mice indicated trends for reductions in LH and estrogen but

these values were not in the statistically different range (data
not shown).

LHX3a and LHX3b overexpression affects fertility
and leads to a sex-specific reduction in viability

Fertility analyses were conducted by mating «GSU-nLacZ, «GSU-
LHX3a, «GSU-LHX3b, and a«GSU-M2-LHX3 mice with wild-type

JOURNAL OF CELLULAR PHYSIOLOGY DOI 10.1002/)JCP

animals (Table 1). The percentage of breeding pairs successfully
generating offspring (productive matings), average number of
litters produced, and mean litter sizes were recorded over a 4-
month mating period in order to calculate the relative fecundity
(R.F.) of the specific pedigrees. Alpha GSU-nLacZ and aGSU-M2-
LHX3 mice had similar fertilities to non-transgenic mice
(Table I, and data not shown). However, all «GSU-LHX3a and
aGSU-LHX3b male mice analyzed in these reproductive studies
were found to be infertile (Table |); therefore, these pedigrees
were maintained through breeding of transgenic females.
Subsequent generations of male mice produced through the
breeding of «GSU-LHX3a and «GSU-LHX3b females were also
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TABLE I. Reproductive performance of aGSU-LacZ, aGSU-LHX3a, aGSU-LHX3b, and aGSU-M2-LHX3 mice

Genotype-specific matings n Productive matings %* Average litters® Average litter size Relative fecundity®
aGSU-LacZ male x wt female 11 91 3.6+04 7.6+0.3 25
aGSU-LHX3a male x wt female 13 0 0 0 0
aGSU-LHX3a female x wt male 45 82 24403 6.9+0.2 14
aGSU-LHX3b male x wt female 11 0 0 0 0
aGSU-LHX3b female x wt male 30 90 29+03 55402 14
aGSU-M2-LHX3 male x wt female 15 87 33+04 8.1+0.3 23

*Number of mice able to produce at least one litter/total number of animals bred. All mice were maintained as breeding partners for a minimum of 4 months or until extended cessation of

Eroductive mating (greater than 2 months).

Average number of litters produced from breeding pairs housed together over a 4-month mating period.
“Relative fecundity is calculated as the following product: (productive matings) x (litter size) x (number of litters).

shown to be infertile, indicating that this phenomenon was not
founder-specific. The infertile «GSU-LHX3a and a«GSU-LHX3b
male mice have normal size testes and produce sperm with
apparently normal morphology and motility (data not shown).
Furthermore, these mice demonstrate copulatory behavior,
but fail to form vaginal sperm plugs when placed with wild-type
breeding partners.

Reproductive characteristics of females of the «GSU-nLacZ
(R.F.=25) and a«GSU-M2-LHX3 (R.F. = 23) pedigrees appeared
to be unaffected by transgene expression, and these mice
demonstrated similar relative fecundities to non-transgenic
mice (Table I). However, reproduction of the «GSU-LHX3a
(R.F.= 14) and «GSU-LHX3b (R.F. = 14) female mice was
affected by transgene expression in comparison to controls
(Table ). The data generated from the fertility studies alone did
not account for the low numbers of transgenic offspring
generated by breeding «GSU-LHX3a and «GSU-LHX3b females.
Therefore, the efficacy of transgene propagation was measured
within each of the transgenic mouse lines (Table 2). As
expected, approximately one-half of «GSU-nLacZ offspring
were confirmed to be transgenic at weaning (Table 2). Similar
observations were made for «GSU-M2-LHX3 females (Table 2).
By contrast, ~45% (male plus female) of «GSU-LHX3a and only
~18% of «GSU-LHX3b progeny were determined to be
transgenic. In the «GSU-LHX3a line, the percentage of
transgenic male progeny (~42%) appeared to be the major
source of the overall reduction in total transgenic yield,
whereas in the aGSU-LHX3b pedigree both sexes maintained
significant reductions in transgenic offspring percentage
(Table 2). These data suggest that there are two factors
contributing to the low numbers of transgenic offspring from
the breeding of aGSU-LHX3a and aGSU-LHX3b female mice.
First, the females are reproductively compromised with low
R.F. Secondly, it appears that embryonic and postnatal lethality
reduce the number of transgenic offspring from matings of the
aGSU-LHX3a and aGSU-LHX3b pedigrees: examination of
sacrificed pregnant transgenic mothers reveals some resorbing
transgenic embryos and some pups die postnatally before
weaning (data not shown).

In addition to the reproductive consequences associated with
the pituitary overexpression of LHX3a and LHX3b, most of the
male mice generated from the «GSU-LHX3a and o GSU-LHX3b
pedigrees die prematurely as young adults (Fig. 5). During the

generation of the transgenic lines, it was noted that many of the
aGSU-LHX3a and «GSU-LHX3b male founders died; RT-PCR
testing revealed that only transgene-positive male founders
who did not express the transgene had survived (data not
shown). Female aGSU-LHX3a and «GSU-LHX3b founder mice,
who continued to spawn male offspring exhibiting the lethal
phenotype, were therefore used to generate animals for
subsequent analyses. By || and 9 weeks of age, respectively,
approximately 50% of the «GSU-LHX3a and a«GSU-LHX3b
transgenic males died (Fig. 5). Few aGSU-LHX3a male mice
survived past 22 weeks of age. No transgene-associated
reductions in viability have been observed within the male
aGSU-nLacZ or aGSU-M2-LHX3 pedigrees (Fig. 5). Similarly,
adult «GSU-LHX3a and GSU-LHX3b transgenic females do not
appear to be compromised in longevity compared to controls
(data not shown). The aGSU-LHX3a and oGSU-LHX3b mouse
male infertility and early death, and the reduction in female
fertility made the generation of mice for subsequent analyses
very challenging.

aGSU-LHX3a and «GSU-LHX3b male
urogenital tract pathology

Post-pubertal male «GSU-LHX3a and aGSU-LHX3b transgenic
mice die suddenly, occasionally exhibiting symptoms such as
lethargy, increased respiration, dehydration, exophthalmos,
and rough hair coats 1-2 days prior to death. Dissection of
terminal oGSU-LHX3a and aGSU-LHX3b transgenic males
revealed a variety of gross lesions, including a markedly
distended urinary bladder, moderate bilateral hydronephrosis,
brick red discoloration of the pelvic urethra, and swelling of the
corpus cavernosum bulbi that lead to midline caudal separation
of the bulbocavernosis muscles (Fig. 6; and data not shown).
These phenotypic characteristics are all compatible with
urinary tract obstruction. Additionally, hemorrhage was often
observed within the urinary bladder and the seminal vesicles.
No structural changes in the urogenital tract or other tissues
involved in the obstructive uropathy were observed before the
animals were noticeably sick. Magnetic resonance imaging (MRI)
of wild-type and terminally affected «GSU-LHX3a male mice
was performed to determine if a urinary tract obstruction
existed (Fig. 6C—F). Sagittal MRI revealed radiolucency in the
penile urethra of the transgenic mice that appeared to physically

TABLE 2. Sex-specific efficiency of transgene propagation within the aGSU-LacZ, aGSU-LHX3a, aGSU-LHX3b, and aGSU-M2-LHX3 pedigrees

Genotype-specific matings n Males/litter total Females/litter total % TG males % TG females
aGSU-LacZ male x wt female I 4.0+0.3 3.6+03 52.6 527
aGSU-LHX3a male x wt female 13 0 0 0 0
aGSU-LHX3a female x wt male 45 3.6+02 33+02 42.1 49.6
aGSU-LHX3b male x wt female 11 0 0 0 0
aGSU-LHX3b female x wt male 30 29+0.2 2.6+0.2 20.1 153
aGSU-M2-LHX3 male x wt female 15 4.1+03 40+0.3 51.7 524

Transgenic status was confirmed at weaning.
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Fig. 5. Transgene-specific lethality. Survival curves for wild-type, «GSU-LacZ transgenic, and «GSU-LHX3 isoform transgenic male mice.
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impede urine outflow and to cause significant dilation of the
corpus cavernosum bulbi, pelvic urethra, and urinary bladder
(Fig. 6D). The urogenital tracts of wild-type, «GSU-LHX3a, and
aGSU-LHX3b transgenic males were examined histologically in
an effort to determine the nature of the material obstructing
the penile urethra. Copulatory plug material consisting of
eosinophilic coagulum containing entrapped spermatozoa was
found to dilate and fill the penile urethrae and often the pelvic
urethrae of terminally ill «GSU-LHX3a and o GSU-LHX3b
transgenic mice (Fig. 6G,H, and data not shown). Copulatory
plugs of lesser magnitude were also evident in the urethrae of
aGSU-LHX3a and aGSU-LHX3b transgenic mice (n = 16/17)
who had not yet displayed acute symptoms of urinary
obstruction. By contrast, only a small amount of copulatory
plug material was observed within the pelvic urethra of a
single wild-type animal (n=1/9).

The urethral sinus is a bulblike expansion or diverticulum of the
membranous urethra located proximal to the bulb of the penis.
This diverticulum is lined by urethral epithelium, extensive
cavernous tissue (corpus cavernosum bulbi) containing urethral
glands, and inner and outer smooth muscle layers, known as the
bulbocavernosis muscles (Fig. 7A). In terminally affected
transgenic mice, the corpus cavernosum bulbi was markedly
congested and hemorrhagic (Fig. 7B). Furthermore, the
urethral glands, which are numerous in the proximal portion of
the urethral sinus, exhibited multifocal to diffuse necrosis
(Fig. 7B). The congestion and hemorrhage extended along
the submucosal cavernous tissue of the pelvic urethra as did the
necrosis of the urethral glands (data not shown). In both the
urethral sinus and pelvic urethra of LHX3a and LHX3b
transgenic animals, necrosis and associated suppurative
inflammation, hemorrhage, and edema was observed to often
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extend into the surrounding musculature (data not shown). The
copulatory material found to occupy and distend the urethral
lumen of transgenic mice contained infiltrating neutrophils and
resulted in severe urethritis of adjacent epithelium, supporting
the hypothesis that plug formation was not a post-mortem
event (Fig. 7C,D).

Many histological changes, secondary to the urethral
obstruction, were documented in the «GSU-LHX3a and aGSU-
LHX3b male mice. There was chronic fibrosis of the vesicular
gland (Fig. 7E,F). Kidneys from terminally affected mice were
enlarged and exhibited mild to severe tubular dilation by
flocculent proteinaceous material (Fig. 8A,B, and data not
shown). The transitional epithelium of the distended bladders
was single layered, had a ruffled apical surface, and was finely
vacuolated compared to controls (Fig. 8C,D). Other lesions
documented in the «GSU-LHX3a and a«GSU-LHX3b mice
included mild interstitial inflammation of the prostate gland and
retrograde sperm accumulation in the lumina of the prostate
gland (Fig. 8E,F, and data not shown). The reproductive organs
of «GSU-LHX3a and aGSU-LHX3b female mice were
histologically unremarkable (data not shown).

The observed urogenital tract lesions in «GSU-LHX3a and
aGSU-LHX3b transgenic males suggested that cause of death
was severe uremia. To test this hypothesis, BUN levels

were measured in both wild-type and aGSU-LHX3a
transgenic adult mice (Fig. 8G). As expected, averages for the
wild-type mice (~3| mg/dl) fell within the normal BUN range.
However, the «GSU-LHX3a mice exhibited greater than
ninefold higher BUN levels (286 mg/dl; Fig. 8G). These
findings support the hypothesis that «GSU-LHX3a and aGSU-
LHX3b male mice die from uremia resulting from obstructive
uropathy.
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Fig. 6. aGSU-LHX3a and «GSU-LHX3b transgenic male mice
develop gross abnormalities of the urogenital tract. A,B: Photographs
of wild-type (part A) and «GSU-LHX3b (part B) urogenital tracts.
The aGSU-LHX3b transgenic mouse displays a markedly distended
urinary bladder (u.b.) and a hemorrhagic pelvic urethra (plv.u.) in
comparison to the wild-type control. C-F: Magnetic resonance
imaging (MRI) of wild-type and «GSU-LHX3a urogenital tracts.
Sagittal (parts C,D) and transverse (parts E,F) MRI of wild-type
(parts C,E) and «GSU-LHX3a (parts D,F) male urogenital tracts. The
urinary bladder (u.b.), pelvic urethra (plv.u.), and corpus cavernosum
bulbi (c.c.b.) of the «GSU-LHX3a mouse are markedly distended in
comparison to wild-type control. The «GSU-LHX3a sagittal image
(part D) exhibits radiolucency in the penile urethra that appears

to physically impede urine outflow resulting in the observed
urogenital tract distention. G,H: Copulatory plug material obstructs
the penile urethrae of «GSU-LHX3a and «GSU-LHX3b transgenic
mice. Photomicrographs of hematoxylin and eosin-stained tissue
sections of the urethral tracts of wild-type (part G) and «GSU-LHX3b
(part H) transgenic male mice. Eosinophilic copulatory plug material
fills and dilates the urethra of the «GSU-LHX3b mouse. Significant
hemorrhage and congestion of the cavernous tissue is also apparentin
the representative transgenic animal. c.c.b. = corpus cavernosum
bulbi; plv.u. = pelvic urethra; pen.u. = penile urethra. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Fig. 7. Reproductive tissue disease in «GSU-LHX3a and
aGSU-LHX3b transgenic mice. A,B: Photomicrographs of a
hematoxylin and eosin stain of the cavernous tissue of the urethral
sinus (us) of a «GSU-LHX3b transgenic male mouse (part B) compared
to a wild-type animal (part A). The «GSU-LHX3b transgenic

mouse (part B) displays hemorrhage and congestion of the cavernous
tissue (*) and diffuse necrosis of the urethral glands (arrow).

Part A shows the urethral sinus of a wild-type mouse with no
congestion or hemorrhage and normal urethral gland morphology
(arrows =urethral glands). C,D. «GSU-LHX3a and «GSU-LHX3b
transgenic male mice retain urethral plugs that alter urethral
morphology. Photomicrographs of hematoxylin and eosin-stained
sections. Wild-type (part C) and «aGSU-LHX3a (part D) pelvic
urethrae. D: Proteinaceous copulatory material fills the urethral
lumen (ul) of the aGSU-LHX3a pelvic urethra () and detached
transitional epithelial cells (ep) can be seen on the surface of the
plug. E,F: «GSU-LHX3a and «GSU-LHX3b transgenic mice develop
abnormal vesicular glands as a result of obstructive uropathy.
Photomicrographs of hematoxylin and eosin-stained vesicular
gland sections harvested from wild-type (part E) and «GSU-LHX3b
(part F) male mice. The «GSU-LHX3b animal exhibited severe chronic
fibrosis of the vesicular tissue, likely due to chronic inflammation.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Discussion

Loss of function studies have confirmed the necessity of the
LHX3 gene for development of the pituitary gland (Sheng et al.,
1996; Netchine et al., 2000; Bhangoo et al., 2006). To examine
the consequences of LHX3 protein overexpression, the «GSU
promoter was used to drive overexpression of individual
cDNAs encoding LHX3a, LHX3b, and M2-LHX3 in the
developing pituitary. The pituitary glands of the «GSU-LHX3a
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Fig. 8. Tissue damage and uremia in «GSU-LHX3a and
aGSU-LHX3b transgenic mice. A,B: «GSU-LHX3a and a«GSU-LHX3b
animals develop hydronephrosis resulting from obstructive
uropathy. Photomicrographs of wild-type (part A) and «GSU-LHX3a
(part B) of hematoxylin and eosin-stained kidney sections. In the
aGSU-LHX3a transgenic mouse, there is moderate tubular dilation
and accumulation of flocculent proteinaceous material (arrows).
C,D:Dysmorphology of the urinary bladder epithelium is observed
in «GSU-LHX3a and «GSU-LHX3b transgenic mice as a result of
urinary tract blockage. Photomicrographs of hematoxylin and
eosin-stained urinary bladder epithelium sections isolated from
wild-type (part C) and representative «GSU-LHX3b (part D) male
mice. The transitional epithelium (t.e.) of the «GSU-LHX3b mouse is
single layered, has a ruffled apical surface, and is finely vacuolated.
Ip =lamina propria. E,F: «GSU-LHX3a and «GSU-LHX3b transgenic
mice develop abnormal prostate glands as a result of obstructive
uropathy. Photomicrographs of hematoxylin and eosin-stained
wild-type (part E) and «GSU-LHX3a (part F) prostatic tissue.
Retrograde sperm and associated inflammation is present in the
lumen of the transgenic animal (part F). G: Obstructive uropathy and
early death in the «GSU-LHX3 mice is associated with uremia. Blood
urea nitrogen (BUN) analysis of wild-type (n=6) and «GSU-LHX3a
transgenic mice (n = 6). The average concentration of BUN was
within the normal range for wild-type mice (18-31 mg/dl). However,
the «GSU-LHX3a transgenic animals exhibited BUN levels ninefold
above this range. P < 0.001 versus control. [Color figure can be
viewed in the online issue, which is available at
www.interscience.wiley.com.]

and aGSU-LHX3b mice have fewer numbers of gonadotrope
cells compared to controls and low circulating gonadotropin
hormone levels. The male «GSU-LHX3a and oGSU-LHX3b
transgenic mice are infertile due to obstructive uropathy and
die of secondary consequences of this disease, including kidney
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dysfunction and uremia. The female «GSU-LHX3a and aGSU-
LHX3b transgenic mice are viable but have reduced fertility.
Transgenic mice expressing the M2-LHX3 isoform or the beta
galactosidase enzyme are apparently normal.

Comparatively, the aGSU-M2-LHX3 animals (which have no
obvious phenotype) maintain a transgene expression level
significantly higher than either the aGSU-LHX3a or aGSU-
LHX3b pedigrees. It is interesting to note that, in all tested
cases, female mice expressed the transgene at lower levels than
their male counterparts. Real-time PCR experiments evaluating
the endogenous aGSU gene demonstrated that males have a
higher level of expression than females; it therefore appears
that the transgene promoter operates in a similar fashion. The
observed sex-specific differences in transgene expression levels
may contribute to the sex-related differences in fertility and
viability observed in LHX3a or LHX3b transgenic animals.

It was somewhat surprising to find that overexpression of
LHX3a or LHX3b elicited loss of gonadotrope cells. LHX3
expression has been associated with the proliferation and
differentiation of many anterior lobe cell types, including the
o GSU-expressing gonadotropes and thyrotropes. Therefore,
predictions of the consequences of LHX3 isoform
overexpression might have included phenotypes such as
pituitary hyperplasia and/or increased hormone production.
The similar disease displayed by the «GSU-LHX3a and aGSU-
LHX3b male mice is an intriguing result. Previous experiments
have shown that LHX3a has greater DNA binding and gene
regulatory capacities than LHX3b on the limited number of
suggested target genes for LHX3 (Sloop et al., 1999, 2001a;
Bridwell et al., 2001; Yaden et al., 2005), but overexpression of
both factors yielded a similar outcome in this study. In fact, the
phenotype of the «GSU-LHX3b mice may be more severe; these
mice die at a somewhat faster rate (Fig. 5).

Itisalso important to consider that using the *GSU promoter to
target LHX3 protein to the pituitary gland should disturb the
usual dorsal/ventral gradient of Lhx3 expression. During
development in mice, LHX3 is more abundant dorsally and ISL |
more abundant ventrally (Ericson et al., 1998; Raetzman et al,,
2002). Studies of the early growth factor signals that prime the
expression gradients of transcription factor such as LHX3
across the developing pituitary indicated that the gradients are
critical for the differentiation of pituitary cell types, especially
the thyrotrope cells (Ericson et al., 1998; Treier et al., 1998,
2001). A ventral expression of LHX3 guided by the «GSU
promoter might therefore be predicted to resultin a major shift
in proportions of cell types. However, this is not observed in
the aGSU-LHX3a/b mice described here, in which only a partial
loss of gonadotropes is seen. Other cell types, including the
thyrotropes, appear unaffected. It may be that the
gonadotropes are especially sensitive to LHX3 levels during
pituitary development.

The observed phenotype of the «GSU-LHX3a or aGSU-LHX3b
pedigrees suggests that there is an upper threshold sensitivity of
the mouse anterior pituitary to LHX3 transcription factor
levels. By contrast, the lack of one LHX3 allele in heterozygous
mice and humans does not appear to affect pituitary function
(Sheng et al., 1996; Netchine et al., 2000; Bhangoo et al., 2006).
The inappropriate activation of regulatory genes can sometimes
elicit physiological responses as deleterious as the ablation of
the gene functions. Recent studies have illustrated sensitivity to
transcription factor dosage. For example, whereas Pitx2"**/"°
homozygotes (a hypomorphic allele) fail to differentiate
gonadotropes and have a reduction of thyrotropes and
somatotropes, «GSU-Pitx2 transgenic mice display an increased
number of gonadotropes (Suh etal., 2002; Charles et al., 2005).
Several hypotheses can explain the actions of LHX3a/b
overexpression shown in this study. These include the
mechanism that the LHX3a and LHX3b proteins promote
determination or differentiation events associated with
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gonadotrope development too early during pituitary
organogenesis, and as a result, many gonadotropes are lost.
This would suggest that LHX3a and LHX3b have similar roles
during gonadotrope specification and that many of the true
target genes for these factors remain uncharacterized. Indeed,
both of the mRNAs encoding these proteins are found in
rodent cell lines that represent stages of gonadotrope
development (Sloop etal., 200 1a; West et al., 2004). Recently, a
side population enriched in progenitor cells has been
characterized in the anterior pituitary (Chen et al., 2005). A
majority of these cells produced stem cell antigen | and were
found to coexpress LHX4, whereas differentiated cells were
shown to downregulate LHX4 and to upregulate LHX3. In the
transgenic mice described in this study, the overexpression of
LHX3 driven by the «GSU promoter throughout the developing
anterior lobe may lead to premature differentiation of
gonadotropes from some stem cells, thus reducing the pool of
progenitor cells required for their normal expansion.

An alternate explanation is that the excess LHX3a and LHX3b
proteins may interfere with normal gonadotrope development
in a dominant negative manner. Both LHX3a and LHX3b
proteins have the LIM domains that mediate interactions with
many suggested cofactors of LIM-HD protein function (Bach,
2000; Hunter and Rhodes, 2005). Consistent with this model,
the M2-LHX3 isoform lacks this region and the «GSU-M2-LHX3
mice do not develop the disease.

The lack of an overt phenotype in the «GSU-M2-LHX3 mice
(despite a high level of transgene expression) suggests that the
gonadotrope and thyrotrope cell types are not sensitive to
increased levels of this protein. This may indicate that M2-LHX3
does not play a significant role in vivo or that M2-LHX3 is
important in other environments, such as in other pituitary cell
types or in the nervous system. It has been speculated that M2-
LHX3 might play a dominant negative role in some
circumstances (Sloop et al.,, 2001a) but, to date, in vitro
experiments do not support this idea (JJS, KWS, SJR,
unpublished results). The observations made in this study also
suggest that a dominant negative role is unlikely, at least in
aGSU-expressing cells. A recent study has identified a human
patient with pituitary disease and likely nervous system defects
associated with a mutation that causes a frame-shift prior to the
M2 codon in the LHX3a transcript (Bhangoo et al., 2006). It is
probable that LHX3 mRNAs are subject to nonsense-mediated
decay in this patient (Bhangoo et al., 2006) However, if that is
not the case, then only the M2-LHX3 protein could perhaps be
translated in such a patient. If so, this would be evidence that
M2-LHX3 protein is alone insufficient for the roles of LHX3 in
normal pituitary and nervous system development. Overall,
these data indicate that the amino terminus and LIM domains of
LHX3 are important in functions in the pituitary.

It has been hypothesized that male obstructive uropathy
syndrome can result from hormonal dysregulation (Sokoloff
and Barile, 1962). This syndrome is characterized by the
presence of a copulatory plug blocking the flow of urine from
the urinary bladder, pelvic urethra, and/or penile urethra
(Maronpot et al., 1999). The condition differs from the protein
plugs that are occasionally present in the urethrae of euthanized
mice, due to the coincidence of lesions such as dilated bladder,
hydronephrosis, and inflammation of the urinary tract and
adjacent tissues (Maronpot et al., 1999). The reproductive
hormone imbalances in the «GSU-LHX3a and aGSU-LHX3b
mice may therefore be the cause of the observed syndrome.
Indeed, urogenital pathologies have been observed in other
mouse models exhibiting hypothalamus-pituitary-gonad (HPG)
axis hormonal imbalances. The EL mouse is a model for
multifactorial idiopathic epilepsy (Todorova et al., 2003). In
addition to seizures, male EL mice experience a high frequency
of sudden death resulting from abnormal ejaculation and
obstructive uropathy at sexual maturity (Todorova etal., 2003).
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It has been hypothesized that seizure activity occurring in the
limbic structures of EL mice may affect the HPG axis and result
in obstructive urogenital syndrome (Todorova et al., 2003).
aGSU-PTTG (pituitary tumor-transforming gene) transgenic
male mice died prematurely as a result of urinary tract
obstruction and display elevated levels of LH and testosterone
(Abbud et al.,, 2005). However, the authors of this work
attribute the sudden death of these animals to testosterone
induced prostatic hyperplasia with renal tract inflammation
(Abbud et al., 2005). Urethral obstructions associated with
decreases in testosterone have also been described. Transgenic
male mice expressing human P450 aromatase have elevated
estradiol levels combined with reduced testosterone levels (Li
et al., 2003). P450 aromatase catalyzes the final steps in
ovarian E; biosynthesis and can utilize testosterone as a
substrate for this process (Li et al., 2003). The P450 aromatase
transgenic mice displayed higher maximal bladder pressure and
decreased urinary flow rate in comparison to controls, which
the authors attributed to functional, rather than physical,
urethral obstruction resulting from smooth muscle atrophy (Li
et al,, 2003). Overall, we favor a model in which imbalances in
the pituitary and gonadal sex hormone levels in the mice is
associated with the onset of the conditions that lead to the
obstructive uropathy. We cannot exclude other mechanisms
such as a transient expression of the transgene in the embryo
causing developmental defects in the developing urogenital
tract; however, we have not observed any expression of the
transgene protein in embryonic or adult urogenital tract tissue
(SCC, JJS, RDM, and SJR, unpublished observations).

We hypothesize that death of the «GSU-LHX3a and aGSU-
LHX3b male mice results from uremia due to obstructive
uropathy. Male mice normally discharge viscous sperm-
containing fluid, even without participation in copulatory
behavior. The incomplete emission of copulatory fluid in
transgenics produces a solidified plug in the distal end of the
urethra, resulting in significant dilation of the urogenital tract.
Normal cavernous tissue smooth muscle function is requisite
for rodent and human penile erection (Mizusawa et al., 2001).
The aGSU-LHX3a and aGSU-LHX3b transgenic mice display
profound structural abnormalities of the corpus cavernosum
tissue and surrounding musculature. Mice with excised
bulbocavernosis and levator ani muscles are severely impaired
in their ability to impregnate females, presumably due to
reduced capacity for erection and suboptimal deposition of
copulatory fluid (Sachs, 1982). The amount of copulatory fluid
adhering to the glans penis of mice with excised
bulbocavernosis and levator ani muscles was nearly four times
greater than that of control males (Sachs, 1982), reminiscent of
the incomplete emission of seminal fluid observed within the
aGSU-LHX3a and aGSU-LHX3b pedigrees. Testosterone has
been shown to be important for many aspects of corpus
cavernosum development and function in mouse. The etiology
of the obstructive uropathy documented in the «GSU-LHX3a
and aGSU-LHX3b pedigrees is likely complex. However, it does
appear that the reduction of gonadotropins and apparent
subsequent decrease in testosterone concentration observed
in the transgenic mice is likely to be a causative factor in the
obstructive uropathy. The «GSU-LHX3a and «GSU-LHX3b male
transgenic mice highlight anterior pituitary sensitivity to
regulatory protein abundance and represent an interesting
model to study endocrine influence on male reproductive
disease.
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