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of a complex multi-factorial etiology, the common
approach in medical practice is to classify and
treat all individuals using one risk factor model

INTRODUCTION

Ischemic heart disease (IHD) is the leading
cause of mortality and morbidity in westernized
societies [Murray and Lopez, 1997]. The dev-
elopment of IHD is a direct consequence of
interactions between the effects of many suscepti-
bility genes and many environmental factors
[Sing et al., 2003]. Because the combined number
of interacting genes and environments is large,
every incident case cannot have experienced the
effects of the same combination of genetic varia-
tions and exposures to high risk environmental
variations. In spite of this obvious consequence
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created using information obtained from a pooled
sample of cases. There is a need to identify
subgroups of individuals at substantially increa-
sed risk of IHD that are each characterized by
a particular combination of risk factors and
their variations who may benefit from particular
treatment regimes. To simplify the complexity,
but still be able to generalize within well-
characterized subgroups, we present here an
application of the Patient Rule-Induction Method
(PRIM) [Friedman and Fisher, 1999]. This statis-
tical method balances two competing objectives:
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identification of partitions of individuals at sub-
stantially increased risk of IHD and maximization
of the number of IHD cases explained by the
partitions.

The PRIM was applied to model the cumulative
incidence of IHD in a sample of 5,455 unrelated
individuals from the Copenhagen City Heart
Study (CCHS). A comprehensive set of risk factors
established by prior population-based research
studies with a documented role in the etiology of
IHD were considered [Schnohr et al., 2002; Song
et al., 2004; Wittrup et al., 1999b; Davignon et al.,
1998; Reilly et al, 1991; Frikke-Schmidt et al.,
2000a; Mahley et al.,, 1995]. The objective of the
PRIM is to select variations in subsets of risk
factors which identify a partition of individuals
that has a statistically significant increased risk of
disease. Iterative applications of the PRIM results
in multiple, partition specific, predictive models.
We applied the PRIM sequentially to determine if
single nucleotide polymorphisms (SNPs) in two
genes that impact the risk of IHD, apolipoprotein E
(APOE) and lipoprotein lipase (LPL), add to
the prediction of IHD beyond the traditional,
lipid and body mass index (BMI) risk factors.
The ability of the risk model obtained for each
partition to predict IHD was evaluated in a
sample of 362 unrelated individuals representa-
tive of the city of Copenhagen.

METHODS

PARTICIPANTS

The CCHS is a prospective longitudinal study of
the general population of Copenhagen, Denmark
described in Schnohr et al. [2001]. Individuals
without prior IHD were recruited in 1976-1978,
1981-1983 and 1991-1994. During each recruit-
ment period, individuals who were previously
ascertained into the study were also re-evaluated.
The PRIM prediction models were built using
5,455 participants who were ascertained in 1976-
1978, were older than 45 years of age and did not
have IHD at the third recruitment phase and
were followed until December 31, 1999. A sample
of 362 participants ascertained in 1981-1983, who
were also older than 45 years of age and did not
have IHD at the third recruitment phase and were
followed until December 31, 1999, was used to
evaluate the hypothesized risk models obtained.
Informed consent was obtained from all partici-
pants. More than 99% were white and of Danish
descent. The study was approved by a Danish
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ethics committee: Nos. 100.2039/91, Copenhagen
and Frederiksberg committee.

VARIABLE DEFINITIONS

Information on diagnoses of IHD (World Health
Organization; International Classification of
Diseases, 8th edition: codes 410-414; 10th edition:
codes 120-125) was collected and verified through
December 31, 1999 by reviewing all hospital
admissions and diagnoses entered in the Danish
National Hospital Discharge Register, all causes
of death entered in the Danish National Register of
Causes of Death and medical records from hospi-
tals and general practitioners. The diagnosis of IHD
included those with a myocardial infarction and/
or characteristic symptoms of angina pectoris
[Julian et al., 1997]. A diagnosis of myocardial
infarction required the presence of at least two of
the following criteria: characteristic chest pain,
elevated cardiac enzymes and electrocardiographic
changes indicative of myocardial infarction.

Smoking status, hypertension status, diabetes
status, gender and age (at the third recruitment
period) were denoted for the purposes of this
study as traditional risk factors. Smoking, hyper-
tension and diabetes have been shown to be the
three most important predictors of IHD in both
genders in this cohort [Schnohr et al., 2002]. These
three risk factors were dichotomized and defined
as ever-smokers, ever-diabetic and ever-hyperten-
sive. If a participant smoked during the second or
third recruitment period, (s)he was labeled as
“ever-smoker.” The same rationale defined ever-
diabetic and ever-hypertensive [Frikke-Schmidt
et al.,, 2007]. Information about these three risk
factors from the first recruitment period was
discarded to ensure that the sample of participants
used to build the PRIM models had a comparable
amount of exposure for all predictors as the
sample that was used to validate the models.
Age was also dichotomized as greater than 65 and
less than or equal to 65. Although the CCHS is
a longitudinal cohort study that records incident
cases of IHD, for the present study we consider
the totality of cases at the end of the 8 years of
follow up in a cross-sectional analysis to deter-
mine the added value of genetic variants for
predicting the cumulative incidence of IHD.

Plasma levels of total cholesterol (CHOL), high-
density lipoprotein cholesterol (HDL-C) and trigly-
cerides (TRIG) and BMI were included in the PRIM
analysis to evaluate their contribution to prediction
of IHD beyond the traditional risk factors. CHOL
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and BMI were each categorized into three groups
using 200 and 240 mg/dl and 25 and 30kg/m? as
the cutpoints as suggested by Cleeman et al. [2001]
and Donato et al. [1998], respectively. HDL-C and
TRIG were dichotomized into low and high groups
using 40 and 150mg/dl as cutpoints, respectively,
as suggested by Cleeman et al. [2001].

Genotype information was collected on five
SNPs in the APOE gene and three SNPs in the LPL
gene, denoted here as the genetic risk factors (see
Fig. 1 in Frikke-Schmidt et al. [2007] for a feature
map that gives the locations of these SNPs in the
two genes). The APOE and LPL genes were
selected because they encode proteins that are
major components of human lipid metabolism
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[Mahley and Rall, 2001; Brunzell and Deeb, 2001]
and because variants of these genes have been
identified as statistically significant predictors of
quantitative variation in lipid traits [Reilly et al.,
1991; Frikke-Schmidt et al., 2000a; Mahley et al.,
1995; Wittrup et al., 1997, 1999a, 2002] and inter-
individual differences in IHD susceptibility [Song
et al., 2004; Wittrup et al., 1999b; Frikke-Schmidt
et al., 2000b] in population-based studies.

STATISTICAL ANALYSES

PRIM. The objective of a PRIM analysis is to
select the subset of variables, and their values, that
are the optimum predictors of the cumulative
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Fig. 1. This illustration of the PRIM shows the peeling and pasting stages creating four partitions. The dataset contains N individuals,
with a disease cumulative incidence of P. The first partition is defined by two peeling (‘var; not A’ and ‘var, not E’) and one pasting
term (‘var; is C’). The n; individuals that are in this partition have a cumulative incidence of P;. After the first partition is produced, the
remaining unassigned N—n; individuals that were not placed in that partition are used to produce a second partition. The process of
producing a new partition based on the unassigned individuals from the previous partition continues until all individuals are assigned
to a partition. Sequential permutation testing is then used to determine how many of the produced partitions are statistically
significant. The individuals that are not included in any of the statistically significant partitions are assigned to the remainder
partition. In this illustration, only three partitions were statistically significant, leaving N—n;—n,—n; individuals in the remainder
partition.
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incidence of a disease in a subsample of individuals.
Multiple mutually exclusive subsamples, denoted
partitions, of the total sample may be produced.
Each partition will include individuals with the
same values for a subset of the predictor variables.
The selected subset of predictor variables is ex-
pected to vary from partition to partition because of
the heterogeneity of the etiological relationships
between the outcome and the genetic and environ-
mental agents of causation among individuals in a
representative sample of the population at large.

Repeating the two stages of implementation of
PRIM (peeling and pasting) creates the mutually
exclusive partitions of individuals. Features of the
peeling and pasting stages are illustrated in Figure
1. Peeling is an iterative process that creates a
partition by excluding individuals with particular
values of predictor variables, while pasting itera-
tively amends individuals to the partition, also
based upon values of predictor variables, after the
peeling stage has been completed. All possible
potential values of each predictor variable are
considered to find the optimum (typically defined
as the largest cumulative incidence, 0) at each step
of the peeling and pasting stages.

There are two ways that peeling and pasting
stages can terminate: if the minimum support (p) is
achieved or no term (defined by a predictor
variable and its values) at a step achieves a
threshold defined by the complexity (4). The
support for a partition is the number of individuals
in that partition divided by number of unassigned
individuals that could have potentially been
in that partition. The minimum support is the
proportion of unassigned individuals that must be
in a partition. This parameter is selected via
a grid search using a likelihood approach (see
below). Complexity is the minimum increase
in 0 necessary to further refine a partition by
incorporating another predictor and its values
into the definition of the partition. Therefore,
to produce a valid term at any of the peeling
or pasting stages it must have enough individuals
(E [B x number of unassigned individuals]) and
an increase in 0 by at least 4.

In the illustration of PRIM presented in Figure 1,
‘var; not A’ was the variable and its value, among
all possible variables and values in the dataset, that
identified a subset of individuals that resulted in
a partition with the largest cumulative incidence of
cases during the first peeling attempt such that
there were enough individuals to satisfy f and 0
increased by at least 4. Individuals having predictor
term ‘var, not E” were added to the partition during
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the second peeling attempt that also satisfied the
support and complexity criteria. However, no
variable and value identified additional individuals
that satisfied the support and complexity criteria
during the third peeling attempt. Then the pasting
process begins by examining all possible variables
and values in the subset of observations excluded
during the peeling process to determine if amend-
ing one combination to the current peeled partition
will fulfill the complexity criterion. In the illustra-
tion given in Figure 1, individuals that were
excluded during the peeling process having the
value C for var; were added back into the partition.
No further pasting on the updated partition
satisfied the complexity criterion and thus the first
partition is finished.

After the first partition is produced, the remain-
ing unassigned individuals (N—n; in Fig. 1) that
were not placed in that partition are considered
for constructing a second partition. The process of
producing a new partition based on the unas-
signed individuals from the previous partition
continues until all individuals are assigned to
a partition. Sequential permutation testing (see
below) is then used to determine how many of
the produced partitions have a statistically signi-
ficant increase in cumulative incidence. The
individuals that are not included in any of the
statistically significant partitions are assigned to
the remainder partition. Of the N individuals
considered in the illustration presented in Figure
1, n; were placed in partition 1 based on values of
‘var;’ and ‘var,’. The remaining N—#; individuals
are then used to build the second partition of n,
individuals. In this example, only three partitions
were statistically significant, leaving N—n;—n,—n3
individuals in the remainder partition.
Determining the minimum support parameter. Selec-
tion of the support parameter “involves both
statistical and application domain dependent
considerations” [Friedman and Fisher, 1999].
There is no standard, automated selection mecha-
nism for reducing the inherent subjectivity in
defining plausible “considerations.” A grid search
of the support parameter space, ranging from
0.05 to 0.50 (incremented by 0.005), was employed
to determine the optimal . We only considered
support parameters in this range to ensure that
each partition consisted of at least 5%, but less
than 50% of the unassigned individuals. The
lower and upper bounds exist to ensure that a
minimum percentage and at most half of indivi-
duals are determined to be high risk, respectively.
For each of these potential support parameters,
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the PRIM was carried out and permutation testing
(see below) was used to determine the number of
significant partitions. To select a support para-
meter, the PRIM models for a set of significant
partitions associated with a particular support
parameter was compared to the null model via a
likelihood ratio test (LRT) using logistic regres-
sion. The null model fit a logistic regression with
the intercept as the only predictor, while the
logistic regression for a support parameter used
the partition class identifier from its correspond-
ing PRIM model as a categorical predictor. The
support parameter which resulted in the most
significant LRT was chosen for use in the peeling
and pasting stages when defining the optimal set
of partitions. In other words, we chose the support
parameter (and respective significant partitioning)
that maximizes the explained deviance versus a
model with no partitioning. Deviance is defined
as the —2 times the log likelihood of a given
model, computed using the predicted values and
true response.
Permutation testing and error estimation. Given the
results of a PRIM analysis, sequential permutation
testing was carried out to determine which of the
partitions have a statistically significant larger
cumulative incidence than expected by chance
alone. Briefly, for each partition the available
exchangeable observations are randomly shuffled
and a PRIM model with only one partition is
produced. The exchangeable observations for a
partition are the set of observations from which
the partition was created; therefore observations
already assigned to a partition cannot be
exchangeable for any subsequent partition. The
same complexity and minimum support para-
meters that were used in the original analysis to
obtain the observed cumulative incidence were
used to obtain this partition. The cumulative
incidence associated with the partition obtained
when the observations are randomly shuffled
represents a realization of the distribution of the
cumulative incidence that is expected under the
null distribution for the observed cumulative
incidence. The reshuffling process is repeated k
times to produce the null distribution of the
observed cumulative incidence. If less than 5%
of the k cumulative incidence values obtained via
the permutation mechanism are greater than the
observed cumulative incidence, the partition is
declared to have a statistically significant increase
in cumulative incidence.

Initially, we tested the first partition using the
method outlined above (all available observations

are considered exchangeable). In Figure 1, this
corresponds to the total N observations. If the
cumulative incidence of the first observed parti-
tion is declared significant, all of the individuals
that are members of partition 1 are removed from
the data set for testing the significance of the
cumulative incidence associated with the second
partition. This reduced data set (the N-—ny
individuals not a member of partition 1 from
Fig. 1) is then used to generate a null distribution
to determine whether the cumulative incidence
for the original second partition is statistically
significant. Sequential testing is continued,
excluding individuals in this fashion at each step,
until a partition is declared not significant. The
individuals from that partition and all subsequent
partitions are included in a remainder partition.

Stepwise PRIM algorithm. To test the added
value of including additional variables in the model
for predicting IHD, a stepwise PRIM analysis was
employed. For the first step in the analysis, the
traditional risk factors, smoking, hypertension,
diabetes, gender and age, were used to build PRIM
models. At the second step, each of the resultant
partitions was split up into partitions using the
PRIM and the lipid and BMI variables. The third
step in the analysis used the genetic risk factors to
determine their ability to define significant parti-
tions within each of the partitions defined by the
traditional, lipid and BMI risk factors in the first
two stepwise applications of PRIM.

RESULTS

Summary statistics for data collected at the
time of the third recruitment on the sample of
5455 individuals who were enrolled during
the first recruitment phase (1976-1978) of the
CCHS and used to build the partitions is given in
Table 1. Five hundred nineteen (9.5%) developed
IHD during the 8 year follow-up period from
1991-1994 through the end of 1999. To determine
which predictors were associated with IHD, a z>
test or t-test was used for categorical or continuous
predictors, respectively. Participants that devel-
oped IHD were significantly older (5.1 years) and
more often male. Those with IHD had a significant
excess of smokers, diabetics and hypertensives.
There was no evidence for a statistically significant
association between IHD status and any of the
eight genetic variations considered.

For each of the PRIM models, the complexity
parameter was set at zero and the support para-
meter was chosen from the results of the analyses

Genet. Epidemiol. DOI 10.1002/ gepi
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TABLE I. Characteristics of participants in the
Copenhagen City Heart Study recruited in 1976-1978

and followed until December 31, 1999

With IHD Without IHD

Covariate (n=>519) (n =4,936)
Traditional risk factors

Age at exam 3 70.2 (8.8) 65.1 (9.2)***

(yrs, + SD)

Gender

Female 233 (0.45) 2,964 (0.60)***

Male 286 (0.55) 1,972 (0.40)
Smoking

No 187 (0.36) 2,157 (0.44)***

Yes 332 (0.64) 2,779 (0.56)
Diabetes mellitus

No 466 (0.90) 4,704 (0.95)***

Yes 53 (0.10) 232 (0.05)
Hypertension

No 77 (0.15) 1,448 (0.29)***

Yes 442 (0.85) 3,488 (0.71)
Lipids and BMI
Cholesterol

<200 71 (0.14) 651 (0.13)

(200,240) 164 (0.32) 1,665 (0.34)

>240 284 (0.55) 2,620 (0.53)
HDL -C

<40 90 (0.17) 536 (0.11)***

>40 429 (0.83) 4,400 (0.89)
Triglycerides

<150 231 (0.45) 2,706 (0.55)***

>150 288 (0.55) 2,230 (0.45)
BMI

<25 188 (0.36) 2,179 (0.44)**

(25,30) 225 (0.43) 1,957 (0.40)

>30 106 (0.20) 800 (0.16)
Genetic risk factors
APOE —491A>T (E560)

AA 364 (0.70) 3,526 (0.71)

AT 144 (0.28) 1,290 (0.26)

TT 11 (0.02) 120 (0.03)
APOE —427T >C (E624)

TT 427 (0.82) 3,946 (0.80)

TC 87 (0.17) 931 (0.19)

CC 5 (0.01) 59 (0.01)
APOE —219G>T (E832)

GG 135 (0.26) 1,404 (0.28)

GT 274 (0.53) 2,451 (0.50)

TT 110 (0.21) 1,081 (0.22)
APOE g.2059T >C (E3937)

TT 364 (0.70) 3,429 (0.69)

TC 141 (0.27) 1,375 (0.28)

CC 14 (0.03) 132 (0.03)
APOE g.2197C>T (E4075)

CC 446 (0.86) 4,151 (0.84)

CT 68 (0.13) 762 (0.15)

TT 5 (0.01) 23 (0.01)
LPL g.8756G> A (LPL9)

GG 504 (0.97) 4,803 (0.97)

GA 15 (0.03) 133 (0.03)
LPL g.16577A>G (LPL291)

AA 489 (0.95) 4,689 (0.95)

AG 30 (0.05) 245 (0.05)

GG 2 (0.00)
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TABLE 1. Continued

With THD Without IHD
Covariate (n=>519) (n=14,936)
LPL g.22772C>G (LPL447)
CC 424 (0.82) 4,016 (0.81)
CG 90 (0.17) 868 (0.18)
GG 5(0.01) 52 (0.01)

All exonic sites in APOE and LPL are named according to human
mutation nomenclature (Den Dunnen and Antonarakis, 2001). To
correspond with well established literature names of promoter
variants in APOE, nucleotide numbering is counted from
transcriptional start site. The name in the parenthesises is
shorthand notation used throughout the paper. The combination
of the E3937 and E4075 SNPs represents the traditional three-
allelic [g2, €3, e4] APOE polymorphism.

***Significant at 0.001 level of probability;

**Significant at 0.01 level of probability.

presented in Figure 2 that were obtained in
carrying out the algorithm described above. For
each permutation test performed for every step in
the analysis, the number of permuted samples, k,
was 2,000. Utilizing a Dell High Performance
Computing Cluster (62 nodes, 124 processors), the
three step PRIM algorithm took 12hours to
complete. Figure 3 displays in a tree diagram the
statistically significant partitions that resulted from
the completion of the three steps of the analysis.
Table II provides the description of the terms that
defined each partition at each of the three steps.

STEP 1 ANALYSES

The traditional risk factors were used to build
a PRIM model on the entire data set of 5,455
individuals. Using the likelihood approach de-
scribed above, 0.145 was chosen as the optimum
support parameter (see Fig. 2). The second column
in Table II displays the terms of the traditional risk
factors that define each of the five statistically
significant partitions. The cumulative incidence of
IHD in these partitions ranged from 0.034 to 0.195
(Fig. 3). Eighty-eight percent of the cases placed
into one of the five significant partitions. The first
partition (hypertensive males, older than 65 years)
had the largest cumulative incidence of 0.195, over
twice the estimated cumulative incidence (0.095)
for the population at large. The second partition
(smoking females, older than 65 years or diabetic)
had a cumulative incidence of 0.127 compared to
0.075 in the remaining sample after exclusion of
individuals included in the first partition. The
third partition (hypertensive, non-smoking and
non-diabetic females, older than 65 years) had a
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Fig. 2. This plot is used to determine the support parameter
used in the PRIM model of the variables in the first step
(traditional risk factors). The support which achieves the
smallest p-value is then used as the support parameter in the
model for that step. This methodology is used to select the
support parameter for each of the PRIM models constructed.

cumulative incidence of 0.095 compared to 0.060
in the remaining sample after exclusion of the
individuals included in the first and second
partitions. The fourth partition (smoking, hyper-
tensive and non-diabetic males, 65 years or
younger) had a cumulative incidence of 0.092
compared to a cumulative incidence of 0.050 in the
remaining sample after excluding those included
in the first three partitions. The fifth partition
(non-hypertensive, smoking and non-diabetic
males) had a cumulative incidence of 0.081
compared to 0.041 in the remaining sample after
excluding those in the first four partitions. The
remainder partition had a cumulative incidence of
0.034 (Table II, Figure 3).

STEP 2 ANALYSES

A PRIM analysis was next performed on each
of the six partitions (P, Py, P53, Py, P5s and Pg)
produced by the analysis carried out in step 1
using the three lipid traits and BMI. Five of the six
PRIM models (partitions Py, P, P3, P5 and Pg)
produced further partitioning. These partitions
are defined by the terms displayed in the fourth
column of Table II. The selected support para-
meters for the sub-partitioning of partitions P;, P,
P, Ps and Pr were 0.130, 0.055, 0.350, 0.085 and
0.145, respectively. The cumulative incidences of
the partitions defined by the second step of PRIM
analyses ranged from 0.026 to 0.289. The terms
used to partition the individuals from partition 1
were high TRIG, high CHOL and low HDL. The

other partitions in this step were defined primar-
ily by a variety of terms defined by the lipid
variables.

STEP 3 ANALYSES

Next we used the genetic predictors to further
partition each of the eleven partitions produced
by the first two steps, P11, PlR/ P21, PQR, P31, P3R, P4,
Psi, Psg, Pr; and Prg. Only 4 of the 11 step 2
partitions could be further partitioned using the
genetics risk factors. The last column in Table II
presents the terms that partitioned Pi;, Pir, Prs
and Pgg using 0.455, 0.085, 0.180 and 0.325 as the
selected support parameters, respectively. At least
one term from each of the eight SNPs appeared in
a minimum of one of these sub-partitions. The
addition of the genetic risk factors identified a
group of 425 individuals that had no observed
IHD cases. The highest cumulative incidence
observed after this third step in the analysis
(0.438) resulted from a further partitioning of the
Py, group, in part distinguished by the E3937 and
E4075 SNPs that define the well-known €2, €3 and
¢4 alleles of the APOE gene.

VALIDATION OF THE PARTITION MODELS

Assignment of risk to new individuals from the
population of inference is done in a sequential
fashion. That is, an individual is evaluated to
determine whether they fall into the first partition
of step 1 (i.e., hypertensive male, older than 65). If
that individual is not a member of the first
partition, (s)he is evaluated to determine whether
(s)he belongs to the second partition established
by the step 1 analyses (i.e., female smoker, older
than 65 or diabetic). One continues in this manner
for each individual until (s)he is assigned to a step
1 partition. The sequential nature of the assign-
ment assures that each new individual is assigned
to only one of the partitions at step 1. Then, given
the step 1 partition assignments of all individuals,
one considers assignment of each individual to
a step 2 partition. Therefore, if a person was
assigned any partition except P, in step 1, a
refined assignment including the step 2 predictors
commences. Once the step 2 assignment has
completed, one proceeds (if necessary) with step
3 assignments of all individuals to a terminal
partition. Table III displays the predictions on the
validation set of 362 individuals, enrolled into the
CCHS during the second recruitment period. In
spite of the limited size of this validation sample,
which makes it difficult to definitively assess the

Genet. Epidemiol. DOI 10.1002/ gepi
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(64) (57) (78) (723)
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(79) (326) (531) (343) (206) (425)
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PARTITION

KEY: I|HD CUMULATIVE INCIDENCE @ PARTITION TERMINATOR

(PARTITION N)

Fig. 3. This is a tree-based graphical representation of the PRIM models used in this paper. Details on the variables and values used to
define each partition are displayed in Table II. In this figure, the black text is the partition label; the red number below it is the
cumulative incidence of THD within that partition; and the green number in parenthesis below that is the sample size within that

partition.

PRIM models, the predicted number of indivi-
duals estimated to develop IHD is a close
approximation of the actual number. Notable
exceptions include partition Prrg which had an
estimated risk of 0.000 (no cases of IHD in the
sample used for model-building), but had two
IHD cases in the validation sample. This discre-
pancy is most likely due to overfitting of the
models to the model-building data set.

DISCUSSION

ANALYTICAL STRATEGIES

PRIM was introduced by Friedman and Fisher
[1999] as an alternative to the greedy classification
strategy implemented by the Classification and
Regression Trees (CART) algorithm. PRIM mimics
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CART by applying simple Boolean rules to assign
each individual to a partition of individuals with
the same values of predictor variables. A direct
comparison of the two methods is complicated by
the differences in the parameters that define the
rules for model fitting. Friedman and Fisher
[1999] compared the two techniques by selecting
optimal partitions from CART and finding PRIM
partitions of approximately the same number
and concluded that PRIM “exhibits performance
superior to comparable procedures such as
CART.” PRIM results in a lower deviance than
CART for the same number of prediction classes
for the data analyzed in our study. A tree grown
until six prediction classes was reached for the
CART analysis, resulting in a deviance of 3,239
compared to 3,222 from the PRIM analysis. PRIM
should produce better predictive models than
CART since it allows high risk individuals that
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TABLE II. Statistically significant partitions from 3 step PRIM analysis

Partition  Traditional IHD
label risk factor terms label

Partition Lipids and BMI IHD
risk factor terms label

Partition  Genetic IHD risk
factor terms

Pu HDL <40 & TRIG > 150

Pin (B3937#£TC & E4075£CT &
E624£TC & LPL291£AG)

& CHOL>200 or E560 =TT
Py >65 & male & hypertensive PR not Pyyy
Pir1 (E4075#CT & E560£AT &
Pir not Pyq E624 = TC & LPL9#£GA)
or E4075 =TT
Pirr not Pir
P, (>65 & female & smoker) P> HDL <40 & CHOL=(200,240)
or diabetic Por not Py
Ps >65 & hypertensive & P3; (TRIG > 150 & CHOL=#(200,240))
female & non-smoker or CHOL <200
& non-diabetic Par not Pz
P, <65 & male & smoker

& hypertensive
& nondiabetic

Ps; (HDL <40 & CHOL <240)

Ps Male & non-hypertensive or BMI>30
& smoker & non-diabetic Psr not Ps;
Pri1 (E3937 = TC & E624#TC
Pr1 BMI>25 & TRIG > 150 & LPL291#AG & LPL447#CG)
& HDL>40 & CHOL>200 or E624 = CC
Prir not Priy
Prr1 (E3937 =TT & E560£AT &
E624 =TT & LPL291#£AG)
Pr Not P;-Ps or LPL9 = GA

PRR not PR]

Prro E3937#TT & E5604TT

& E624#£CC & E8324GG

& LPL447 = CC
Pars  E39374£CC & E4075£CT

& E624 =TT & E832+#GG

& LPL291#AG & LPL447£GG
Prrr not Prri—Prr3

The resultant terms of the partitions from the 3 step analysis of the CCHS data are shown. The “partition label” columns correspond to those
in Figure 3, with the respective terms listed in the column to the right. An ‘&’ symbol represents an additional peeling term added to a

partition, while an ‘or’ represents a pasting term. The symbols ‘=", ‘>,

‘<’, '#’ represent logical expression relating a predictor and its

chosen values. For the remainder partitions, those with an ‘R’ in the partition label, a ‘not’ expression is used to illustrate that individuals in
that partition are those not a member of the ones listed. The table should be read across, such that if an individual is in partition 111 if they

also fulfill the requirements of partitions 1 and 11.

were discarded at an earlier peeling operation to
be pasted into a partition while permitting the
user to control the “patience” or “greed” of the
classification.

Our study is not the first to apply the PRIM
to the analysis of medical data. However, it is the
first application to the analysis of predictors of
IHD. LeBlanc et al. [2002] developed a modified
PRIM that was constrained to produce partition
terms monotonically. That is, each produced
partition term includes only one extreme of a
continuously distributed or ordered categorical
predictor variable. However, because their algo-
rithm uses only continuous and ordered catego-
rical variables as predictors, it excludes the

consideration of genetic data since either an order
or a numerical value would have to be assigned
to a genotype class (both untenable, especially for
the APOE genotype). Cole et al. [2003] used PRIM
to detect genes that were differentially expressed
while controlling the amount of false-negative
errors. This method focused on the ratio of, and
difference between, expressions of each gene in
two conditions and did not include measures of
SNP variation for the individuals under study. Yu
et al. [2004] used the peeling and pasting
procedures from PRIM as a part of the gene
shaving method [Hastie et al., 2000] to identify
haplotypes that are most likely to share a common
ancestor.

Genet. Epidemiol. DOI 10.1002/ gepi
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TABLE III. Estimated IHD risk for participants entering
CCHS during the 2nd recruitment period (1981-1983)

Estimated
number of Developed

Number individuals IHD

Partition Estimated of developing (as of
label risk individuals IHD 31 DEC 1999)
Py 0.438 0 0 0
Pir 0.123 3 0 0
Pir1 0.359 2 1 0
Pirr 0.162 44 7 7
Py 0.246 8 2 4
Por 0.118 51 6 9
P3; 0.130 4 1 1
Psr 0.068 16 1 0

P, 0.092 45 4 6
Ps; 0.235 9 2 0
Psg 0.056 38 2 2
Prit 0.152 5 1 0
Prir 0.040 33 1 1
Prr1 0.047 46 2 3
Pgrro 0.032 17 1 1
Prr3 0.015 9 0 0
Prrr 0.000 32 0 2

Logistic regression is a standard analytical tool
for testing the added value of the genetic effects
for the prediction of IHD. To demonstrate the
improvement gained by utilizing a PRIM analysis,
a logistic regression analysis produced by follow-
ing conventional methods was performed. Initi-
ally all nine of the non-genetic covariates
introduced above and all of their possible pair-
wise interactions were used as regressors in a
logistic regression model for predicting IHD. The
application of a backward elimination variable
selection procedure resulted in the retention of the
eight covariate effects and four pair-wise inter-
actions between covariates presented in Table IV.
Each of the eight SNPs under study were then
tested to determine if it alone explained a statis-
tically significant amount of variation beyond the
covariates-only model. The results in Table V
illustrate that none of the SNPs would have been
deemed a significant predictor of IHD beyond the
traditional risk factors. Our finding that the APOE
gene does not improve the prediction of disease
beyond traditional risk factors is supported by a
recent study by Volcik et al. [2006]. While the
logistic regression analysis establishes that the
effect of each SNP may not be significant in the
sample representative of the population at large,
PRIM reveals that there are significant genotypic
effects on risk of disease in particular sub-samples
of such a sample. The key difference is that tradi-
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tional analyses seek to develop a single prediction
model for making inferences about genetic effects
that are applicable to every individual in the
population of inference under study, while the
PRIM facilitates separate models of inferences
about genetic effects that are appropriate for
sub-populations of individuals.

The models produced in this analysis appear
to predict well and were validated in a small
independent sample from the CCHS. Validation of
any model (or models) can only be produced
using an independent sample from the same
population of inference. Replication of these (or
any) validated models built using observational
human data is unachievable because it would
require a replicate sample. Such a sample is
impossible to obtain because it would require that
the individuals in the new sample be drawn from
a population of inference having the same relative
allele and genotype frequencies and life histories
of environmental exposures as the original
population.

BIOLOGICAL-ETIOLOGICAL IMPLICATIONS

The literature is replete with studies which
implicate high risk alterations of hundreds of the
agents involved in the etiology of the onset,
progression and severity of IHD [Lusis, 2006; Sing
et al, 2003]. All cases of IHD cannot have
experienced all of these high risk variations. The
PRIM does not assume that every individual
with disease has the same etiology, but addresses
the question of which alterations in which risk
factors are involved in predicting disease in which
subset of individuals. In our study, PRIM parti-
tioned the participants of the CCHS into 16
subsets of individuals with statistically significant
(higher than expected by chance alone) risks. The
acknowledged heterogeneity of the etiology of
IHD is documented by the different combinations
of predictors and predictor values that charac-
terize these different partitions. As might be
expected, when considering non-genetic risk
factors only, older hypertensive males with low
HDL and elevated total cholesterol and triglycer-
ides have the greatest risk of IHD (cumulative
incidence = 0.289, n = 121, steps 1 and 2, Py; in Fig.
3 and Table II). Adding information about the
APOE and LPL genotypes increased the risk to
0.438 (n =64, P11; in Fig. 3 and Table I) for a
subset of this high risk group. Individuals in this
subgroup are four times more likely to have IHD
than individuals who are randomly selected
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TABLE IV. ANOVA of significant main effects and
interactions using logistic regression to predict IHD

Covariate df i statistic p-value
BMI 2 13.4 0.001
Gender 1 39.9 0.000
Diabetes 1 14.7 0.000
Smoking 1 9.3 0.002
Hypertension 1 42.3 0.000
Cholesterol 2 24 0.299
Triglycerides 1 5.1 0.024
Age 1 95.7 0.000
BMI x Smoking 2 8.1 0.017
Gender x Cholesterol 2 6.9 0.033
Diabetes x Age 1 6.9 0.008
Smoking x Hypertension 1 5.4 0.020

All marginal effects and their potential two-way interactions were
tested.

TABLE V. Tests of significance of SNP effects after
inclusion of statistically significant traditional risk
factors from Table IV

SNP df »* statistic p-value
LPL9 1 0.264 0.607
LPL291 2 0.497 0.780
LPL447 2 0.011 0.995
E560 2 0412 0.814
E624 2 2.075 0.354
E832 2 3.202 0.202
E3937 2 0172 0918
E4075 2 4.684 0.096
€2, €3, &4 5 5.247 0.386
from the population at large (cumulative

incidence = 0.095).

Because of the involvement of the APOE
and LPL gene products in regulating lipid
metabolism, they are a priori assumed to likely
have a significant impact on the prediction of
IHD. However, the added value of measuring
the eight single site APOE and LPL genotypic
variations in the third stage of the stepwise PRIM
analysis did not improve prediction in all
partitions. This finding is consistent with our
previous work [Reilly et al.,, 1991; Kardia et al.,
1999; Lussier-Cacan et al., 2002; Zerba et al., 2000]
which documented the context dependency of
the APOE genotype effects on measures of
lipid metabolism. It is also consistent with the
argument that interactions between genetic and
environmental agents, not their separate indepen-
dent effects, are the primary causes of variability
in traits that have a complex multifactorial
etiology.

MEDICAL RELEVANCE

There is a long-standing controversy between
those who advocate a rational, evidence based
single risk factor model strategy for making
recommendations that aims at improving health
at the population level and those who face the
everyday experience in medical practice that
recognizes the uniqueness of patients who rarely
fit into average risk groups defined from popula-
tion studies. Genetic information is most often
regarded to be of importance for evaluating the
health of the population if it has an independent
“causal” effect on a disease phenotype at the
population level [Smith et al., 2006]. This assump-
tion is seldom likely to be true as environmental
context, indexed by variables such as age, gender,
and body size, nearly always plays a role in
determining the influence of genetic variation on
measures of health that have a complex multi-
factorial etiology. As an alternative to population-
based single model risk stratification schemes
[Conroy et al.,, 2003; Anderson et al., 1990] and
population-based marginal genetic effects [Smith
et al., 2006], the PRIM makes possible a more
personalized risk prediction strategy that incorpo-
rates both rare and common environmental and
genetic risk factors, an objective that has been the
goal of medical genetics in particular, and clinical
practice in general.

In a time of limited health care resources, it is
of greatest importance to identify the subsets of
individuals with specific high risk combinations
of environmental, biochemical and genetic mar-
kers that would benefit the most from intensified
prevention and medical treatment. The common
single model approach assumes that all cases of a
disease having a complex multifactorial etiology
in the reference population have a similar etiology
[Conroy et al., 2003]. However, a large patient
group will harbor extensive environmental and
genetic heterogeneity [Sing et al., 2003] that is not
likely to be captured with the application of a
single statistical model derived from the average
effects of risk factors. The models shown in
Table II demonstrate that not all risk factors are
predictors of IHD in all subsets of individuals.
PRIM constructs models with subsets of predictor
variables that are appropriate for subsets of
individuals. The resultant partitions illustrate that
the eight genetic variants under study contribute
to the prediction of IHD only in particular
subgroups of individuals defined by the tradi-
tional and established risk factors. In particular,

Genet. Epidemiol. DOI 10.1002/ gepi
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individuals from the initial high risk (P;, cumu-
lative incidence = 0.195) and low risk (Pg, cumu-
lative incidence =0.034) partitions may be
partitioned into ten subgroups with cumulative
incidences ranging from 0.162 to 0.438 and
0.000-0.152, respectively. We suggest that the
PRIM serves as a compromise between a single
model of risk prediction for an average individual
and individualized risk prediction models that
presently are not quantifiable and result in
unacceptable implementation costs for most
health care systems. Furthermore, the stepwise
application of PRIM that we present here mimics a
physician’s logic through the diagnostic process
and can be easily converted into user friendly
software applications.

Through the pasting process of PRIM, rare
alleles or infrequent risk factors, such as diabetes
in the CCHS, are included in the definition of the
partitions, while other classification and regres-
sion techniques (including CART) do not have this
capability. This feature is of high value in clinical
practice because valid risk estimates for rare
conditions in the general population are lacking.
Only a few studies have been large enough to
obtain odds or hazard ratio estimates for IHD for
rare genetic variants [Nordestgaard et al.,, 1997;
Tybeerg-Hansen et al., 1998, 2005; Frikke-Schmidt
et al., 2005; Cohen et al., 2006]. The SCORE project,
which provides risk score algorithms for primary
prevention [Conroy et al., 2003], does not include
diabetes in the algorithm because it is infrequent,
but instead assigns diabetes patients to higher risk
age and gender groups.

Despite major influences on quantitative varia-
tion in lipid traits, and despite involvement in
severe forms of dyslipidemia such as type III
hyperlipoproteinemia [Mahley and Rall, 2001] and
the chylomicronemia syndrome [Brunzell and
Deeb, 2001], the marginal effects on IHD risk of
genotypes defined by individual SNPs in APOE
and LPL have been subtle [Song et al, 2004;
Wittrup et al.,, 1999b]. Because these variations
confer only minor marginal risk predictions at the
population level compared to major traditional
risk factors, these SNPs have not found their way
into clinical practice. Our study suggests that an
analytical strategy that acknowledges the genetic
and environmental heterogeneity in the etiology
of cardiovascular disease can identify subgroups
of the population where genetic testing for the
common variants in APOE and LPL could increase
the ability to predict IHD markedly. Using such
information could lead to a more efficient allo-

Genet. Epidemiol. DOI 10.1002/ gepi

cation of limited resources for diagnosis and
treatment of IHD by targeting of intensified
prevention and treatment towards those subsets
with significantly higher risk, while not wasting
precious resources on those subsets of individuals
with significantly low IHD risk.
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