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We tested whether methylation profiles generated by real-time
methylation-specific PCR (MSP) can be useful in differentiating
benign, reactive mesothelial cell proliferation (RM) from malig-
nant mesothelioma (MM). Forty-two of the 63 cases (67%)
yielded informative results for RARb2, GPC3, CDKN2A (p16),
TERT, and CCND2 (cyclinD2) gene methylation. DNA methyla-
tion of any gene was observed in much higher frequency in MM
cases than RM cases (63% vs. 33%, P < 0.05). Individual gene
methylation was higher in the MM than the RM cases for most
of the genes; however, this was not statistically significant
(RARb2: 58% vs. 33%, P > 0.05; GPC3: 36% vs. 27%, P >
0.05; CDKN2A: 4% vs. 0%; TERT: 4% vs. 0%), while CCND2
methylation was not detected in any case. Although preliminary,
we demonstrate that real-time MSP can be applied to archival
specimens and gene methylation profiling may have potential to
be a useful ancillary tool to help distinguish MM from RM.
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It is often difficult to differentiate malignant mesothe-

lioma (MM) from reactive mesothelial cell proliferation

(RM) in cytological specimens. Ancillary techniques,

including immunohistochemical staining, have failed to

completely eliminate diagnostic uncertainty. Methylation

of tumor suppressor genes has been shown to be critical

in cancer development, and methylation profiling has

shown potential for clinical utility.1,2 Mesotheliomas, like

other malignancies, have been demonstrated to have a

number of genes methylated, including RASSF1A and

CDKN2A (p16).3,4 In one study, RASSF1A was found

methylated in 32% mesotheliomas,4 and its methylation

was correlated with loss of RASSF1A expression and the

presence of SV40 DNA.4,5 CDKN2A gene alterations are

relatively common in MM, most often inactivated by

homozygous deletion and less common by point muta-

tion.3 Inactivation of CDKN2A gene product expression

by DNA methylation has also been found.3 Another gene

that has been found to be methylated in MM is TERT.
The protein product of TERT gene is the catalytic subunit

of telomerase, which is involved in maintaining telomere

length. Surprisingly, the activation of TERT is related to

DNA methylation of the promoter region, in contrast to

most known tumor suppressor genes’ down-regulation by

DNA promoter methylation.6–8 Reports regarding TERT
activation and MM development have been mixed.9,10 In

contrast, in ovarian and cervical cancer, TERT methyla-

tion increases with age and is associated with a poor

prognosis, regardless of TERT expression.11 DNA

sequence analysis of the TERT promoter region (�500 to

þ1, relative to ATG translational site) correlated DNA

methylation with TERT expression among tumors and

TERT positive cell lines.7 Glypican 3 (GPC3) gene meth-

ylation has also been implicated in mesothelioma.12

Allelic loss at GPC3, whose human homolog is mutated

in the Simpson-Golabi-Behmel overgrowth syndrome,

was infrequent (6.9%) in MM cell lines, and no mutations

were found. However, in majority of MM tumors and

MM cell lines, GPC3 transcript levels were markedly

decreased, and the GPC3 promoter region was shown to

have aberrant methylation.12 Similarly, methylation of

RARb2 and CCND2 (CyclinD2) gene has been associated

with various types of cancers from breast, stomach, lung,

1Department of Pathology, University of Michigan Medical School,
Ann Arbor, Michigan

2Department of Cellular Pathology and Genetics, Armed Forces Insti-
tute of Pathology, Rockville, Maryland

3Department of Pathology, Johns Hopkins Medical Institutions, Balti-
more, Maryland

4Veterans Health Administration, Washington, District of Columbia
*Correspondence to: Robert T. Pu, M.D., Ph.D., Department of Pa-

thology, The University of Michigan Medical School, 1500 E. Medical
Center Drive, Room 2G332, Ann Arbor, Michigan, 48109.
E-mail: robertpu@umich.edu

Received 5 October 2006; Accepted 2 February 2007
DOI 10.1002/dc.20692
Published online in Wiley InterScience (www.interscience.wiley.com).

498 Diagnostic Cytopathology, Vol 35, No 8 ' 2007 WILEY-LISS, INC.



to head and neck.1,2,13–16 Clinical feasibility of methyla-

tion-specific PCR using cytology samples such as breast

FNA biopsies and ductal-lavage specimens has been dem-

onstrated.1,17 Real-time MSP, which offers faster turn

around time than conventional MSP and also has potential

for semi-quantitative analysis, has been used in clinical

research.16,18

In this article, we present results of a pilot study in

which we investigate the use of methylation profiles of a

panel of genes including RARb2, GPC3, CDKN2A, TERT,
and CCND2 derived from real-time MSP to distinguish

MM from RM using archival surgical and cytological

specimens.

Materials and Methods

Tissues

Sixty-three cases were retrieved from the AFIP and Uni-

versity of Michigan archives with IRB approval. Those

cases had either unstained slides or paraffin blocks pre-

pared from biopsy or effusion available. Forty-one cases

were MM, diagnosed by unequivocal morphological fea-

tures and most also confirmed by immunohistochemical

studies and clinical follow up information, while 22 cases

were RM with different underlying diseases. Unstained

slides were soaked with extraction buffer and scraped into

Eppendorf tubes for DNA extraction.1 Sections from par-

affin blocks were cut at 4-lm thickness for Hemotoxylin/

Eosin staining and morphologic examination, and 4–6

sections of 10-lm thickness sections were collected into

an Eppendorf tube for genomic DNA extraction following

previous established protocol.1,19 Purified genomic DNA

was treated with sodium bisulfite according to established

protocols1,19 and analyzed using a real-time MSP assay.

Real-Time Methylation-Specific PCR

Sodium bisulfite-treated genomic DNA was amplified

using fluorescence-based real-time methylation-specific

PCR. Methylation of CDKN2A, RARb2, CCND2, TERT,
and GPC3 genes was examined using b-Actin and/or Her-
2 as the internal control for DNA quantification. Control

of sodium bisulfite treatment was also ensured by includ-

ing genomic DNA from the MDA-MB-231 cell line that

generates positive result for RARb2 amplification reaction,

since RARb2 is known to be methylated in this cell line.1

Briefly, sodium bisulfite-converted genomic DNA was

amplified with locus-specific PCR primers and dual la-

beled fluorogenic probes. During the extension phase of

PCR, the 50 to 30 nuclease activity of Taq-polymerase

cleaves the probe and releases the reporter, whose fluores-

cence can be detected by the laser detector of the ABI

Prism 7700 Sequence Detection System. After crossing a

fluorescence detection threshold, the PCR amplification

results in a fluorescent signal proportional to the amount

of PCR product generated. Primers and probes, specifi-

cally for sodium bisulfite-converted DNA sequences for

CDKN2A, RARb2, and CCND2 genes, were based on

published data.16 For HERT and GPC3, the primers and

probes were designed based on sequence analysis. All

primer and probe sequences are listed in Table I. For

DNA quantity control, Her-2 primers and probes were

used. Another control used was selected from a region of

b-Actin that contains no CpG di-nucleotides thus not

affected by DNA methylation status and sodium bisulfite-

treatment (Table I). Real-time PCR was set up in a total

volume of 50 ll containing 1X Taqman universal PCR

master mix, 400 nM of each primer, 100 nM of probe and

up to 2 ll sodium bisulfite treated-DNA samples. After

an initial denature step at 508C for 2 min and 958C for 10

min, 45 or 50 cycles of 15 sec at 958C and 1 min at 608C
were followed. Amplification data, collected by the 7700

sequence detector was analyzed using software developed

by PE Applied Biosystems (Foster City, CA). Samples

with reactions that show exponential increase of signal

over cycle numbers were considered positive while reac-

tions had no such increase was considered negative (Fig. 1).

Statistical Analysis

This was performed using Fisher Exact test; a two-sided

P value of less than 0.05 was considered significant.

Table I. List of Primers and Probes for the Real-Time MSP Assay

Actin
Forward TGG TGA TGG AGG AGG TTT AGT AAG T
Reverse AAC CAA TAA AAC CTA CTC CTC CCT TAA
Probe FAM-ACC ACC ACC CAA CAC ACA ATA

ACA AAC ACA-TAMRA
RARb2
Forward TTT GAG GAT TGG GAT GTC GAG
Reverse CGA ATC CTA CCC CGA CGA TA
Probe FAM-CGC GAG CGA TTC GAG TAG GGT

TTG TTT-TAMRA
Her-2
Forward ATG CAG ATT GCC AAG GTA TGC
Reverse GGA AGC ACC CAT GTA GAC CTT CT
Probe Vic-CCG GAG CAA ACC CCT ATG TCC

ACA A-TARMA
CDKN2A(P16)
Forward GGG GAG AGT AGA TAG CGG GGC
Reverse AAC CAA TCA ACC GAA AAT TCC ATA
Probe FAM-TAC TCC CCG CCG CCG ACT

CCA T-TAMRA
GPC3
Forward GGT CGG GAT CGT GCG TAT
Reverse CCT ATC CCG AAA AAT CCA AAC TAA
Probe FAM-CGT GTT TGG TGG TGG CGA

TGT TG-TAMRA
TERT
Forward AAG CGC GGT TTA GAT TTT CG
Reverse GAA TCC ACT AAA AAC CCG ACC TAA C
Probe FAM-TTC GTT CGG AGT AGT TGC GTT

GTC GG-TAMRA
CCND2
Forward TTT GAT TTAAGG ATG CGT TAG AGT ACG
Reverse ACT TTC TCC CTA AAA ACC GAC TAC G
Probe FAM-AAT CCG CCA ACA CGA TCG ACC

CTA-TAMRA
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Results

Of the 63 cases, 42 (67%) yielded informative results

(generated PCR products on either the b-Actin and/or

Her-2 amplification reaction, Fig. 1). Of these 42 cases,

27 were MM cases and 15 were from cases with diagno-

sis of RM. MM cases consisted of mostly the epithelial

type (25 cases) with two cases of the sarcomatoid type.

The demographic information was available from only

12 MM patients with similar gender distribution (7 male and

5 female) and a mean age of 63.2 yr and from 13 RM

patients who were mostly female and slightly younger (11

female and 2 male, mean age: 47.0, Table II). In the MM

group, 17 of the 27 cases demonstrated methylation of at

least one of the genes tested (Fig. 2). Eight of them had

two or more genes methylated. In contrast, in the RM

group, methylation was found in only 5 of 15 cases, sig-

nificantly lower than the MM group (P < 0.05, Fig. 2).

Individually, the frequency of RARb2 gene methylation

was higher in the MM cases than in the RM cases,

although the difference was not statistically significant

(15 of 27 cases vs. 4 of 15 cases, P > 0.05, Fig. 2).

GPC3 gene methylation frequency was also found to be

higher in the MM group than the RM group (9 of 25

cases vs. 4 of 15 cases, P > 0.05, Fig. 2). Methylation of

Fig. 1. Example of real time-PCR of the b-Actin gene amplification plot
of one set of reactions. Each color represents one sample. On the graph
of reaction (DRn) vs. Cycle number, the threshold cycle occurs where
the sequence detection application begins to detect the increase in signal
associated with exponential growth of PCR product (positive specimens).
At any given cycle within the exponential phase of PCR, the amount of
product is proportional to the initial number of template copies. With
negative specimens, product lines do not show exponential increase or
cross over the threshold. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Table II. Demographic Data of the 25 Patients in the Cohort Show
Similar Age Between Methylation Positive (þ Methyl) and Negative
(� Methyl) Cases in MM or RM Groups

Diagnosis

Gender Age (mean, yr)

Male Female All cases þ Methyl � Methyl

MM 7 5 63.2 63.4 62.8
RM 2 11 47.0 45.3 48.4

Fig. 2. Gene methylation is more frequently observed in MM than RM
cases. Solid-black block indicates methylation while empty block indi-
cates no methylation observed and ‘‘/’’ indicates not performed.

PU ET AL.

500 Diagnostic Cytopathology, Vol 35, No 8

Diagnostic Cytopathology DOI 10.1002/dc



TERT and CDKN2A was each found in one case of the

MM group (4%), respectively, but none of the RM group.

CCND2 methylation was not detected in any of the cases

examined (Fig. 2). RASSF1A was not methylated in any

cases, although few cases were examined (data not

shown).

There was no significant age difference of the patients

with respect to their methylation status among the MM

and RM groups (Table II). Although the MM group

patient were older (mean age: 63.2) than the RM group,

within each group the methylation positive or negative

patients have similar age. In MM patient group, methyla-

tion positive patients had an average age of 63.4 while

methylation negative patients with an average age of

62.8. In RM group, methylation positive patients had an

average age of 45.3 while methylation negative patients

with an average age of 48.4.

Discussion

We were able to use real-time MSP to acquire methyla-

tion profiles of MM and RM from archival paraffin sec-

tions in surgical biopsy and cytology effusion specimens.

Real-time PCR offers rapid turnaround time and has the

potential for semi-quantitative analysis. The rate of in-

formative results (*67%) was similar to the conventional

MSP method (R. Pu, data not shown) and the real-time

MSP results from other investigators (vide infra). For

example, one study showed 29 of 45 paraffin block speci-

mens were informative for real-time PCR amplification.20

The inability to obtain methylation profiles in 1/3 of the

cases was most likely due to less than optimal DNA qual-

ity and low quantitative yields of DNA from the archival

material. The informative rate can be enhanced by using

fresh material if real-time MSP proved to be useful ancil-

lary tool by more comprehensive studies in the future.

Although our study did not show significant differences in

individual gene methylation frequency, the overall meth-

ylation in MM was significantly higher than that of RM

(63% vs. 33%, P < 0.05). In our study, MM patients

were older than the RM patients, a potential problem in

interpretation of the result since some DNA methylation

events have been shown to be age-related phenom-

ena.11,21,22 However, in both MM and RM groups, the

patient age was similar in methylation positive and nega-

tive patients, arguing against the possibility that aging

contributes to the higher observed methylation percentage

in MM group.

It is known that certain tumor suppressor gene methyla-

tion events may occur earlier than the other genes during

tumorigenesis. RARb2 is noted to have moderate levels of

methylation in benign and pre-cancer lesions, e.g. fibroa-

denoma and papilloma in breast.1 We found methylation

of RARb2 in 56% of MM cases, highest among all the

genes examined, but also in 33% of RM cases. Our result

suggests that methylation of RARb2 may occur in benign

condition and, if involved in MM development, likely an

early event, similar to its role in other types of neopla-

sia.1,13 Similarly, GPC3 gene methylation may be an

early event during MM development as we found moder-

ate level of methylation in MM (36%) as well as RM

(27%) cases. Although alterations of CDKN2A are very

common in MM, we found methylation of CDKN2A in

only a small percentage of MM cases (4%), similar to

8.8% reported by others.3 This suggests that methylation

of CDKN2A does not play a major role in its down regula-

tion in MM, in contrast to a high prevalence of CDKN2A
methylation in other type of cancers, such as squamous

cell carcinoma of the lung (90%).13

Methylation of TERT promoter, resulting in activating

telomerase activity, was considered idiosyncratic in com-

parison to the usual function of methylation in down-reg-

ulation of gene expression.6 Whether any of the CpG di-

nucleotides in the TERT promoter region is important for

its function in MM has not been analyzed in detail,

although most of the promoter region has been shown to

be methylated in other types of TERT-positive tumors and

cell lines.7 We found only one case of MM having DNA

methylation in the promoter region that we interrogated

while none in the benign cases. The sequences of our pri-

mers and probe correspond to the DNA sequence from

�273 to �346 relative to ATG translation start site and

contain 9 CpG di-nucleotides. Although TERT methyla-

tion was less common than we anticipated, it is possible

that in MM, those 9 CpGs are not as frequently methyl-

ated as in other TERT positive tumors or cell lines studied

by sequencing analysis.7 Similarly, CCND2 methylation

was not found in any MM/RM cases examined. The

CCND2 sequences examined in this case, however, have

been shown to be methylated in other malignancies.1,16

This suggests that in MM tumorigenesis, CCND2 methyl-

ation may not play as an important role as it does in other

carcinomas.1,16

In summary, we found DNA methylation is more fre-

quent in MM (epithelial type) than RM in most of the

genes examined, although no individual gene showed stat-

istically significant differences in methylation. The poten-

tial clinical utility of methylation profiling using real-time

MSP to differentiate MM from RM and from other malig-

nancy is supported by our results and other publication.23

Increasing the number of samples and genes examined,

and utilizing freshly obtained specimens may provide a

more complete evaluation of whether methylation profil-

ing can be used as an ancillary tool in differentiating mes-

othelioma from benign mesothelial proliferation.
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