
Journal of Cellular Biochemistry 102:1095–1102 (2007)

New Trends in the Treatment of Bone Metastasis
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Abstract Bonemetastasis is often the penultimate harbinger of death formany cancer patients. Bonemetastases are
often associated with fractures and severe pain resulting in decreased quality of life. Accordingly, effective therapies to
inhibit the development or progression of bone metastases will have important clinical benefits. To achieve this goal
understanding the mechanisms through which bone metastases develop and progress may provide targets to inhibit the
metastases. In the past few years, there have been advances in both understanding the mechanisms through which bone
metastases develop and how they impact bone remodeling. Additionally, gains in promising clinical strategies to target
bone metastases have been developed. In this prospectus, we will discuss some of these advances. J. Cell. Biochem. 102:
1095–1102, 2007. � 2007 Wiley-Liss, Inc.
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Bone metastases can accompany any meta-
static tumor type; however, certain tumors have
a predisposition to forming bone metastases.
These include breast cancer, prostate cancer,
thyroid carcinoma, multiple myeloma, and
renal cell carcinoma. Typically, metastases are
osteolytic, that is, they resorb bone resulting in
decreased bone mineral content. An exception
to this rule is prostate cancer bone metastases
as they have a combination of osteolytic
activity and osteoblastic activity (i.e., induce
bone mineral production). A small portion of
patients with breast cancer bone metastases
have primarily osteoblastic activity. Both osteo-
lytic activity and osteoblastic activity result in
weakening of the normal healthy bone and
predispose the patient to a variety of skeletal-
related events.
The skeletal-related events associated with

bone metastasis result in significant complica-
tions that diminish the quality of life in affect-
ed patients. These complications include bone
pain, impaired mobility, pathological fracture,

spinal cord compression, and symptomatic
hypercalcemia [Galasko, 1986; Coleman, 1997;
Moul and Lipo, 1999]. Despite advances in the
diagnosis andmanagement of primary localized
cancers, advanced disease with skeletal meta-
stasis remains incurable. Current therapeutic
modalities are mostly palliative, and may
include hormonal therapy, pharmacological
management of bone pain, radiotherapy for
pain and spinal cord compression [Szostak and
Kyprianou, 2000], various chemotherapy regi-
mens, and the use of bisphosphonates to inhibit
osteoclast activity [Papapoulos et al., 2000].
Although these therapies may have palliative
effects, they typically do not cure the cancer.
Understanding the mechanisms that promote
bone metastasis may help identify new ther-
apeutic targets to stop the progression of this
devastating aspect of cancer. We highlight
several active areas of bonemetastasis research
below.

CHEMOTAXIS

Chemotaxis is a basic physiological process
through which cells migrate along a chemical
gradient. For example, hematopoietic stem cells
(HSC) express the receptor for stromal-derived
factor (SDF), CXCR4. Bone marrow is a source
of SDF and HSC migrate down the chemotactic
gradient to the bone marrow. Similar to the
HSCs, it was observed that melanoma, breast
cancer and prostate cancer cells express CXCR4
[Fourcin et al., 1996; Muller et al., 2001;
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Taichman et al., 2002], which allows them to
target bone. Since these initial observations, it
has been reported that many cancer types
expressCXCR4 and co-opt theHSC chemotactic
system. SDF-1 promotes chemotaxis through
upregulation of migration in the target cells
[Libura et al., 2002]. In terms of prostate cancer,
it has been reported that androgen receptor
negatively affects regulation of CXCR4 [Akashi
et al., 2006],which suggest that loss of androgen
receptor enhances prostate cancer migration.
This may be important to the development of
metastasis because as prostate cancer pro-
gresses, androgen receptor expression is
altered. In breast cancer, NFkB was shown to
upregulate chemotaxis through inducing
CXCR4expression in breast cancer cells [Helbig
et al., 2003]. NFkB activity is often
upregulated secondary to inflammatory proc-
esses. Thus, this observation suggests that
inflammation may promote metastasis through
NFkB-mediated induction of CXCR4. As more
research in this area is performed, it is likely
that some of these mechanisms through which
CXCR4 is regulated and promotes metastasis
will be found relevant to multiple tumor types.

Due to its importance in the metastatic
process, many efforts have been focused on
targeting the CXCR4:SDF-1 axis. Towards this
end, cancer investigators have taken advantage
of the fact that human immunodeficiency virus
(HIV) uses CXCR4 as a co-receptor and there is
an armentarium of anti-HIV drugs that target
CXCR4 activity [Juarez et al., 2004; Tsutsumi
et al., 2007]. For example, T140, a peptide
analog of CXCR4, was shown to decrease
pulmonary metastasis in a murine model of
breast cancer [Tamamura et al., 2003]. In
another strategy, bisphosphonates, compounds
that target osteoclasts, have been shown to
decrease CXCR4 in breast [Denoyelle et al.,
2003] andprostate cancer [Miwaet al., 2005].As
these compounds are developed and tested in
clinics they may make an impact on cancer
metastasis to bone.

THE BONE MICROENVIRONMENT

The final target site where metastatic cells
grow and develop into clinically relevant meta-
stases, termed the metastatic microenviron-
ment, is clearly a key regulator of metastasis.
This concept, first described as ‘‘the seed and
soil’’ hypothesis by Paget [1829], posits that the

metastatic microenvironment (i.e., the ‘‘soil’’)
must contain the appropriate elements for
cancer cells (i.e., the ‘‘seed’’) to establish clin-
ically detectable metastases. This concept is
supported by the findings that although tumor
cells are often circulating throughout the body
their presence does not predict the development
of metastases [Morgan et al., 2007; Pfitzenma-
ier et al., 2007]. Additionally, the observation
that specific tumor types favor specific meta-
static sites further supports the specificity of
metastatic niches. For example, colon cancer
selectively metastasizes to liver [Zvibel et al.,
2000] and prostate cancer preferentially meta-
stasizes to bone [Shah et al., 2004]. Identifying
the cellular and molecular components of the
microenvironment thatpromotedevelopment of
bone metastasis has identified targets to block
the development of metastases.

RECEPTOR ACTIVATOR OF NFkB LIGAND
AND OSTEOPROTEGERIN

The metastasis of prostate cancer to bone is
accompanied by a disruption in the normal bone
remodeling equilibrium, although the mecha-
nisms through which this occurs are largely
unknown at present. In healthy adults, the
regulated destruction (resorption or lysis) of
normal lamellar bone matrix by large multi-
nucleated osteoclasts is tightly coupled to the
consequent formation of new bone by osteo-
blasts, such that lysis and formation are bal-
anced (reviewed in Manolagas and Jilka
[1995]). However, in prostate cancer bonemeta-
stasis, bone lysis is stimulated at sites of tumor
growth and excess woven bone is synthesized
[Clarke et al., 1991]. This results in a general
increase in both bone turnover and volume,
although woven bone has less collagen and
therefore less tensile strength than normal and
is more susceptible to fracture. Evidence sug-
gests that lysis is a prerequisite for the
establishment of tumor cells in bone [Roland,
1958; Nielsen et al., 1991], therefore under-
standing the regulation of bone resorption may
suggestmechanisms throughwhich tumors can
develop in bone and may indicate novel ther-
apeutic targets.

In normal bone, osteoblastic cells regulate
osteoclastogenesis and osteoclast activity by
interacting with mononuclear hematopoietic
osteoclast precursors [Roodman, 1996]. The
molecular mediators of this interaction were
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shown to be the osteoblast-expressed proteins,
osteoprotegerin (OPG) and receptor activator of
NFkB ligand (RANKL). Binding of RANKL to
the osteoclast precursor-expressed RANK ini-
tiates a cascade of intracellular signals that
culminates in the acquisition and activation of
the osteoclast phenotype [Lacey et al., 1998;
Yasuda et al., 1998a]. The absolute requirement
of this interaction for osteoclastogenesis was
shownby the generation of transgenic rankl�/�
and rank�/� mice that developed severely
hyperdense bones due to an absence of osteo-
clasts [Dougall et al., 1999; Kong et al., 1999].
Furthermore, administration of soluble extrac-
ellular RANKL to mice resulted in hypercalce-
mia and reduced bone volume, concomitant
with a doubling of osteoclast size [Lacey et al.,
1998]. The soluble glycoprotein OPG regulates
excessive bone resorption by acting as a soluble
decoy receptor for RANKL [Simonet et al.,
1997], and therefore neutralizes its interaction
with RANK, abrogating osteoclast formation,
activation and survival in vitro [Yasuda et al.,
1998a,b] and in vivo [Lacey et al., 1998]. The
crucial role of OPG in bone remodeling was
demonstrated using transgenic opg�/� mice,
which showed uncontrolled bone resorption and
severe osteoporosis [Mizuno et al., 1998]. These
studies suggest that the balance between
RANKL andOPGdetermines the extent of bone
resorption, in that a relative decrease in OPG
results in excessive resorption and a relative
increase in OPG inhibits resorption.
Expression of OPG, RANKL and/or RANK

aredysregulated in anumber of cancers in bone,
including osteoclastoma [Atkins et al., 2000],
breast cancer [Lau et al., 2006; Kapoor et al.,
2007] and prostate cancer [Brown et al., 2001;
Perez-Martinez et al., 2007], suggesting that
these proteins may be involved in tumor-
mediated bone destruction. In the case of breast
cancers, it appears they express OPG and
RANK but not RANKL [Thomas et al., 1999]
or that RANKL expression is inversely related
to estrogen receptor expression [Cross et al.,
2006]. However, co-culture with hematopoietic
bone marrow cells and osteoblasts resulted in a
net increase in RANKL expression, suggesting
an indirect mechanism through which localized
bone lysis may occur in breast cancer bone
metastasis, by activation of osteoclast precur-
sors [Thomas et al., 1999]. This was supported
using a murine in vitro model in which inter-
actions between mouse breast cancer cells and

bone marrow cells similarly resulted in a net
increase in RANKL activity [Chikatsu et al.,
2000]. Furthermore, it has been suggested that
breast cancer can induced tumor-associated
macrophages (TAMs) to differentiate into osteo-
clasts through RANKL-dependent and -inde-
pendent mechanisms [Lau et al., 2006]. The
cancer–stromal interaction is also critical in
multiplemyeloma, where co-culture produced a
net increase in RANKL expression and in
osteoclastogenesis that was inhibited by addi-
tion of soluble RANK [Pearse et al., 2001]. The
production of active soluble RANKL by prostate
cancer cells in vitro has been implicated as a
mechanism throughwhich prostate cancer cells
can directly initiate osteoclastogenesis and
therefore stimulate bone resorption [Zhang
et al., 2001].

Several exciting and provocative studies have
examined the therapeutic uses of soluble RANK
and OPG in the treatment of hematological and
solid tumors in bone [Dougall and Chaisson,
2006b]. As a fusion protein with human IgG,
RANKhas proven efficacious in the inhibition of
bone resorption in a mouse model of humoral
hypercalcemia of malignancy as induced by
PTHrP administration [Oyajobi et al., 2001],
and in the prevention of myeloma-induced
osteoclastic bone destruction in a SCID-human
model [Pearse et al., 2001] and prostate cancer
model [Zhang et al., 2003]. In vitro experiments
treating osteoclastoma-derived cells with OPG
reduced the number of mature osteoclasts and
inhibited bone resorption [Atkins et al., 2001].
Dramatic decreases in the numbers of mature
osteoclasts and in the size and/or number of
lesions in bone were observed following the
treatment with OPG of mice carrying human
breast cancer cells [Morony et al., 2001],murine
multiple myeloma [Croucher et al., 2001], and
human prostate cancer cells [Zhang et al.,
2001]. In human prostate cancer cells, OPG
has been shown to be a survival factor through
its ability to inhibit TRAIL-mediated apoptosis
[Holen et al., 2002]. These studies suggest that
in bone metastatic tumors, inhibition of the
primary resorptive stage may be sufficient to
inhibit tumor establishment and halt progres-
sion of disease, even in those tumors that have
primarily an osteoblastic phenotype. Impor-
tantly, treatment with OPG has also been
demonstrated to block pain-related behavior in
mice carrying bone cancers [Honore et al., 2000;
Luger et al., 2001].Development ofOPGpeptide
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mimetics may also offer some promise to
sequester RANKL activity [Heath et al., 2007].
Although theseprevious studiesprovide proof of
concept that blocking RANKL can impact
skeletal metastasis, currently, the most likely
clinical candidate to target RANKL is Denosu-
mab (AMG162), a fully humanmonoclonal anti-
body that can bind and inhibit human RANKL
[Dougall and Chaisson, 2006a]. A phase 1
clinical trial in patients with multiple myeloma
or breast carcinoma with bone metastases
showed that a single subcutaneous injection of
denosumab caused rapid and sustained sup-
pression of bone turnovermarkers andwaswell
tolerated. While studies are at an early stage at
present, it appears that therapeutic targeting of
the OPG/RANKL/RANK proteins holds great
promise for treatment of bone metastases.

BISPHOPHONATES

Bisphosphonates are a group of chemicals that
inhibit osteoclast activity resulting in decreased
bone resorption and thus have received much
attention as inhibitors of clinical complications
of bone metastases [Mundy, 1999; Diel et al.,
2000; Major et al., 2000]. Bisphosphonates work
directly on osteoclasts to induce their apoptosis
[Fleisch, 1997;Roweet al., 1999]. Animal studies
have demonstrated that bisphosphonates can
diminish tumor-induced osteoclastogenesis and
osteolysis [Hall and Stoica, 1994; Yoneda et al.,
1997, 2000; Kurth et al., 2000; Clohisy et al.,
2001]. Although, in some instances, it appears to
only reduce tumor-induced lysis, but not tumor
burden [Dallas et al., 1999]. Studies in breast
cancer and myeloma patients have shown that
these agentsmarkedly inhibit the progression of
bone disease resulting in improved survival and
decreasedmorbidity frombonepainand fracture
[Apperley and Croucher, 1999; Lipton, 2000].
These results have led to their incorporation into
standard treatment regimens for skeletal meta-
stases associated with these cancers.

In addition to inhibiting osteoclast survival,
bisphosphonates may have direct effects on
tumor cells [Shipman et al., 1998b]. For exam-
ple, several bisphosphonates induce apoptosis
inmyeloma cells [Aparicio et al., 1998; Shipman
et al., 1998a; Takahashi et al., 2001]. However,
this is not the case for all bisphosphonates
[Shipman et al., 2000]. In addition to inducing
apoptosis, bisphosphonates have been shown to
inhibit breast carcinoma cell adhesion to bone

[Magnetto et al., 1999]. Furthermore, alendro-
nate blocked collagen degradation and MMP
release from prostate cancer cells [Stearns,
1998; Stearns andWang, 1998]. Taken together,
these findings suggest that bisphosphonate
action is not limited to inhibition of osteoclasts.

Studies of bisphosphonates use in patients
with prostate cancer skeletal metastases have
generally shown a decrease in bone pain
although some studies have shown no benefit
[Harvey and Lipton, 1996; Pelger et al., 1998;
Heidenreich et al., 2001]. A recent randomized
study of the oral bisphosphonate clodronate
showed an encouraging decrease in the rate of
progression to symptomatic bone metastases in
men with prostate cancer [Fernandez-Conde
et al., 1997]. Consistent with this observation is
the finding that zoledronic acid is a third
generation bisphosphonate that has demon-
strated significantly increased activity in pre-
clinical models when compared to early agents
in this class. Exposure of prostate cancer cell
lines to zoledronic acid results in marked
inhibition of cell proliferation suggesting that
this agent may have a direct antitumor effect
beyond its ability to inhibit osteoclast activity
[Coleman, 2000; Dearnaley and Sydes, 2001].
Zoledronic acid also has been shown to inhibit
the invasion of prostate carcinoma cell lines
in vitro [Boissier et al., 2000]. Clinical studies
have demonstrated efficacy in treating hyper-
calcemia of malignancy, leading to recent FDA
approval for use in this clinical setting [Major
et al., 2001]. Treatment with zoledronic acid
results in a significant and sustained decrease
in markers of bone metabolism. However,
osteonecrosis of the jaw (ONJ) has been recog-
nized as a serious complication of bisphospho-
nate therapy [Mortensen et al., 2007]. It is not
clear if this is due to generalized inhibition of
osteoclast activity induced by bisphosphonates,
in which case inhibition of RANKL may also
cause ONJ, or if this is specific to bisphospho-
nates. It has been suggested that prior existing
dental pathologymay underlie some of the ONJ
cases, but this is not clearly known [Dunstan
et al., 2007].

SUMMARY

Bone metastases are a severe consequence of
many cancers. Advances in the biology of bone
metastases have led to new therapies that
target their establishment and progression in
animal models. These therapies have proven
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efficacious in certain clinical circumstances and
many are undergoing evaluation in clinical
trials. The majority of therapies are targeted
at inhibiting the osteolytic activity induced by
the cancer; however, others, such as inhibition
of SDF-1 activity, are directed at inhibiting
various components of the metastatic cascade
suchasmigration. In some instances, therapies,
suchas chronic bisphosphonate administration,
may actually have severe clinical consequences
indicating the need to continually increase our
understanding of the pathophysiology of bone
metastasis and the need to continue developing
improved therapeutics. Additional research in
the area of mechanisms of bone metastasis may
lead to additional promising therapies in the
future.
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