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Optimal Designs for Two-Stage Genome-Wide Association Studies
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Genome-wide association (GWA) studies require genotyping hundreds of thousands of markers on thousands of subjects,
and are expensive at current genotyping costs. To conserve resources, many GWA studies are adopting a staged design in
which a proportion of the available samples are genotyped on all markers in stage 1, and a proportion of these markers are
genotyped on the remaining samples in stage 2. We describe a strategy for designing cost-effective two-stage GWA studies.
Our strategy preserves much of the power of the corresponding one-stage design and minimizes the genotyping cost of the
study while allowing for differences in per genotyping cost between stages 1 and 2. We show that the ratio of stage 2 to
stage 1 per genotype cost can strongly influence both the optimal design and the genotyping cost of the study. Increasing the
stage 2 per genotype cost shifts more of the genotyping and study cost to stage 1, and increases the cost of the study. This
higher cost can be partially mitigated by adopting a design with reduced power while preserving the false positive rate or
by increasing the false positive rate while preserving power. For example, reducing the power preserved in the two-stage
design from 99 to 95% that of the one-stage design decreases the two-stage study cost by �15%. Alternatively, the same cost
savings can be had by relaxing the false positive rate by 2.5-fold, for example from 1/300,000 to 2.5/300,000, while retaining
the same power. Genet. Epidemiol. 31:776–788, 2007. r 2007 Wiley-Liss, Inc.
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INTRODUCTION

Genome-wide association (GWA) scans represent
an exciting opportunity to identify common genetic
variants that predispose to human disease
[Kruglyak, 1999; Risch and Merikangas, 1996;
Cardon and Bell, 2001; Hirschhorn and Daly, 2005].
GWA studies require efficient study designs to
examine hundreds of thousand of markers on the
hundreds or thousands of samples required to detect
disease predisposing variants of modest effect. Even
though chip-based genotyping products have de-
creased genotyping costs dramatically, GWA studies
are still very expensive.

In this paper, we demonstrate how to construct
powerful and cost-effective GWA studies using two-
stage designs. Two-stage designs gain their effi-
ciency by excluding markers for further testing that
show little evidence of association in the first stage.
This can substantially reduce the genotyping
requirements, and therefore cost, while preserving
much of the power of the corresponding one-stage
design in which all samples are genotyped on all
markers [Satagopan and Elston, 2003; Satagopan

et al., 2004; Thomas et al., 2004]. We consider two-
stage designs that genotype all markers on a
proportion of the sample in stage 1, and follow-up
a small proportion of the most significantly asso-
ciated markers on the remaining samples in stage 2.
At the end of stage 2, the overall evidence for
association is evaluated by combining the statistics
from the two stages [Skol et al., 2006].

Here, we describe how to design optimal two-
stage GWA studies given a fixed set of available
samples. We explore how the ratio of stage 2 to stage
1 per genotype cost affects the optimal two-stage
design and its cost, and how the target power and
the false positive rate of the two-stage design can be
used to manage study cost.

We find that given large ratios of stage 2 to stage 1
per genotype cost optimal designs genotype a larger
proportion of samples in stage 1, follow up a smaller
proportion of markers in stage 2, and have greater
overall cost than when cost ratios of per genotype
cost are lower. We also demonstrate that the
genotyping cost of optimal two-stage designs can
be further reduced by modestly decreasing study
power while maintaining the false positive rate, or
by modestly increasing the false positive rate while
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maintaining power. We believe our framework for
designing two-stage GWA studies will help investi-
gators construct designs that balance the goals
of high power, low false positive rate, and reason-
able cost.

METHODS

IDENTIFYING AN OPTIMAL
TWO-STAGE DESIGN

Four parameters define our two-stage GWA
design: M, the number of markers tested for
association; 2N, the number of samples genotyped;
psamples, the proportion of samples genotyped in
stage 1; and pmarkers, the proportion of markers
selected for follow-up in stage 2. We treat M and N
as fixed, and pmarkers and psamples as values to be
selected by the investigator. We define the optimal
two-stage design as that with values (pmarkers,
psamples) which attains the desired power at the
minimum total genotyping cost. We specify the
desired power as a proportion ppower of the one-
stage design power. Typically ppower is not much less
than 1. The optimal two-stage design is influenced
by ppower, by the stage 2 to stage 1 per genotype cost
ratio R, and by the marker-wise false positive rate
amarker. Our approach to designing optimal two-
stage designs differs from that of Wang et al. [2005],
whose goal is to attain a fixed power and allow the
sample size to vary.

For simplicity, in what follows, we assume a case-
control study of disease association. Generalization
to family-based designs and quantitative traits is
straightforward. We simplify the power calculation
by assuming that all markers are in linkage
equilibrium, which allows the marker-wise false
positive rate to be written as amarkerEW/M, where
W is the acceptable number of false positives in the
GWA study. For example, for a genome-wide scan
with 300,000 markers in which one false positive
is considered tolerable, we set amarker 5 1/300,000
E 3.3� 10�6.

We identify the optimal two-stage design which
preserves ppower� 100% of the corresponding one-
stage study’s power using Brent’s algorithm [1973]
to select the values of psamples and pmarkers that
minimize cost when power is held constant.
A unique optimal design exists for each value of
ppower. A more detailed description of the optimiza-
tion algorithm may be found in the online supple-
mentary material (http://interscience.wiley.com/
jpages/0741-0395/suppmat).

COST OF THE TWO-STAGE DESIGN

The expected genotyping cost for a two-stage
study is Ctwo-stage 5 M 2 N psamples c11M pmarkers 2 N

(1�psamples) c2, where ci is the per genotype cost for
stage i. The genotyping cost of the corresponding
one-stage study, in which all samples are genotyped
on all markers in a single stage, is Cone-stage 5 M 2 N
c1. Note that, for simplicity, we assume the same per
genotype cost c1 for both the one-stage design and
stage 1 of the two-stage design. In the Discussion
section, we consider the impact of genotyping costs
that vary according to the number of samples
genotyped. Defining R 5 c2/c1 as the ratio of stage
2 to stage 1 per genotype cost, we can express
the cost of the two-stage design as a proportion
of the one-stage design cost as pcost 5 Ctwo-stage/
Cone-stage 5 psamples1pmarkers (1�psamples) R. In Ap-
pendix A, we describe how to accommodate a per
genotype cost structure based on custom genotyping
arrays that restrict the possible number of markers
that can be genotyped in stage 2.

CALCULATING POWER FOR TWO-STAGE
DESIGNS

Assume N cases and N controls are available for
genotyping and that a proportion psamples of these
samples are genotyped in stage 1. Evidence for
association at stage 1 is evaluated for each of the M
markers and used to select pmarkers M markers for
follow-up genotyping in the remaining (1�psamples)
N cases and (1�psamples) N controls in stage 2.

To evaluate evidence for association at stage 1, let
p̂1
0 and p̂1 be the estimated risk allele frequencies in

cases and controls, respectively, and define the test
statistic

z1 ¼
p̂1
0 � p̂1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½p̂1
0ð1� p̂1

0Þ þ p̂1ð1� p̂1Þ�=ð2NpsamplesÞ

q :

Under the null hypothesis of no association and
assuming N psamples is sufficiently large, z1 follows
an approximate Normal distribution with mean 0
and variance 1. The threshold T1 for selecting
markers for follow-up is determined using the
quantiles of the standard Normal distribution by
finding T1 such that P(|z1|4T1) 5 pmarkers. pmarkers

thus has two interpretations: the false positive rate
for stage 1, and the expected proportion of markers
followed up in stage 2, provided the number of
disease related variants is small compared with the
number of markers M.

In stage 2, we calculate z2, a statistic analogous to
z1 constructed with stage 2 data only. We then
compare the statistic

zjoint ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psamples

p
z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� psamples

q
z2 ð1Þ

to a significance threshold Tjoint chosen to control the
false positive rate at the desired level, amarker. Rather
than combining the raw genotype data, the statistic
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zjoint combines evidence for association summarized
in the stage 1 and stage 2 statistics. This construction
eliminates the risk of false positives generated by
heterogeneity between the stage 1 and stage 2
sample populations. The false positive rate corre-
sponding to thresholds T1 and Tjoint is amarker 5

P(|z1|4T1 and |zjoint|4Tjoint) 5 P(|z1| 4T1)
P(|zjoint|4Tjoint||z1|4T1), and can be calculated
numerically by evaluating a simple integral (see
equation (2) below).

Stage 1. Power for stage 1 is the probability that
a disease predisposing variant is selected for follow-
up in stage 2. The statistic z1 in large samples follows
an approximate Normal distribution with mean

m1 ¼
p0 � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½p0ð1� p0Þ þ pð1� pÞ�=ð2NpsamplesÞ
p

and variance

Fðp; p0Þ ¼

ðp0 þ 3p� 2p2 � 2p0pÞ2ðp0ð1� p0ÞÞ

þðpþ 3p0 � 2p02 � 2p0pÞ2ðpð1� pÞÞ

4ðp0ð1� p0Þ þ pð1� pÞÞ3
;

where p0 and p are the frequencies of the disease
predisposing allele in the case and control popula-
tions, respectively. This formulation of F(p0, p) was
suggested by Bukszár and van den Oord and is
justified in Appendix B [Bukszar and van den Oord,
2006]. F(p0, p) equals one under the null hypothesis
and is very close to one for most other genetic
models. The probability that a marker is selected for
stage 2 genotyping is

P1 ¼ 1� F
T1 � m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fðp0; pÞ
p
" #

þ F
�T1 � m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fðp0; pÞ
p
" #

;

where F[x] is the cumulative distribution function
for the standard Normal distribution evaluated at x.

Stage 2. Conditional on the observed value a for
the stage 1 statistic z1, the statistic for joint analysis
zjoint follows an approximate Normal distribution
with mean

mjointjz1¼a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psamples

p
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� psamplesÞ

q
�

p0 � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p0ð1� p0Þ þ pð1� pÞ�=½2Nð1� psamplesÞ�

p
and variance (1�psamples) F(p0, p). The probability of
detecting an association in stage 2 given the marker
was selected for follow-up after stage 1 is

Pjoint ¼ Pðjzjointj4TjointjIÞ ¼Z �T1

�1

Pðzjoint4Tjointjz1¼ xÞ þ Pðzjointo� Tjointjz1¼ xÞ
� �

fðxjIÞdxþ

Z 1
T1

Pðzjoint4Tjointjz1 ¼ xÞ
�

þPðzjointo� Tjointjz1 ¼ xÞ�fðxjIÞdx; ð2Þ

where f(x|I) is the probability density function of z1

given event I defined as |z1|4T1. The power of the
joint analysis is P1Pjoint.

We have developed an interactive power calculator
CaTS (www.sph.umich.edu/csg/abecasis/CaTS/)
for two-stage GWA studies which implements
these calculations and allows investigators to calcu-
late power, thresholds T1 and Tjoint, and the
genotyping cost for any user specified design. Our
power calculator can aid investigators in designing
optimal two-stage studies and also provides power
calculations for one-stage designs for comparison
purposes.

RESULTS

Unless otherwise noted, our examples assume a
GWA study with 1,000 cases and 1,000 controls
genotyped on M 5 300,000 independent markers, a
marker-wise false positive rate amarker 5 1/300,000
E3.3� 10�6 (corresponding to one expected false
positive per genome), a disease with 10% preva-
lence, and a susceptibility variant of modest effect
(multiplicative genotype relative risk GRR 5 1.375
and risk allele frequency in the controls p 5 .35). The
one-stage design’s power for this setting is 80%.
Although the optimal two-stage design depends on
the false positive rate, the trends we report generally
vary only slightly for other false positive rates and
genetic effect sizes; we note when this is not the case.
Also, while we discuss results for a single variant,
we would have the same power to detect any variant
with the given effect size.

INFLUENCE OF STAGE 2 TO STAGE 1 PER
GENOTYPE COST RATIO R ON OPTIMAL
TWO-STAGE DESIGNS

The stage 1 per genotype cost has fallen drama-
tically due to competitive pricing and the economies
of scale inherent in chip-based genotyping technol-
ogies which genotype standard sets of hundreds of
thousands of markers. The stage 2 per genotype cost
is greater since many fewer markers are genotyped
and the markers selected vary between studies and
so require study-specific genotyping arrays. Hence,
R41.

Larger values of R result in optimal designs which
shift the genotyping burden from stage 2 to stage
1 (Fig. 1). As R increases from 1 to 40, the proportion
of samples genotyped in stage 1 psamples increases
from .37 to .63, the proportion of markers followed
up in stage 2 pmarkers decreases from .124 to .004,
and total genotyping cost increases from 45 to 69% of
the one-stage design cost. Interestingly, all of
the increase in genotyping cost is due to increased
stage 1 cost (black bars), while stage 2 cost remains
nearly unchanged or decreases (gray bars). In
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our example, the expense of stage 2 genotyping
decreases from 7.8 to 5.5% of the one-stage study
cost.

MISSPECIFICATION OF THE PER GENOTYPE
COST RATIO R

An important consideration when designing a
two-stage GWA study is the impact that misspecify-
ing the per genotype cost ratio R has on study cost,
since R may change between the time of study
planning and execution. The inefficiency resulting
from designing a study with R misspecified is
illustrated in Figure 2. It shows the cost of two-stage
designs which preserve ppower 5 99% of the one-
stage design power for a range of psamples values
when R is 1, 5, 10, 20, and 40. The minimum of each
cost curve occurs at the optimal psamples given R.
If we define RE as the cost ratio estimated at design
time and RA as the actual cost ratio when the study
is carried out, then inefficiency due to misspecifying
R (RE 6¼RA) can be quantified as the difference
between the estimated optimal design cost using
RE and the cost of that design carried out using RA.
In Figure 2, this is the length of the vertical line
drawn from the lowest point on the RE cost curve to
the cost curve of RA. An alternative measure of

inefficiency is the difference in cost between the
study above designed using RE but carried out using
RA and the cost of a study designed and carried out

Fig. 1. The designs above employ 1,000 cases and 1,000 controls and have 79% power (ppower 5 .99) to detect a variant with GRR 5 1.375

and p 5 .35 for a disease with prevalence 5 .10 when amarker 5 1/300,000. The black bars in the left and center panels denote the values of
psamples and pmarkers of the optimal two-stage design. The right panel shows the cost of the optimal two-stage design and how it is

divided between stage 1 (black bar) and stage 2 (gray bar).

Fig. 2. The designs above employ 1,000 cases and 1,000 controls

and have 79% power (ppower 5 .99) to detect a variant with

GRR 5 1.375 and p 5 .35 for a disease with prevalence 5 .10

when amarker 5 1/300,000. The curves show how cost changes as a
function of psamples for five per genotype cost ratios (1, 5, 10, 20,

and 40). The value of psamples of the optimal two-stage design

occurs at the minimum of each curve.
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using the actual R, RA. This difference is the vertical
distance between lowest point on the RA cost curve
and the point on the RA curve above the lowest point
on the RE curve. When R is underestimated, the
study will be more costly than estimated, and will
always be more expensive than if R had been
correctly specified at design time. In contrast, when
R is overestimated, the study will be less costly than
estimated, but still will be more expensive than if R
had been correctly specified at design time.

Figure 3 illustrates both of the inefficiency
measures which result from misspecifying R when
the two-stage study is designed expecting R 5 10.
For example, the GWA study that preserves 99% of
the one-stage design power when R 5 10 costs 61%
that of one-stage design (dashed horizontal line). If
upon completing stage 1 genotyping, we discover
that the stage 2 per genotype cost is less than initially
estimated such that the actual R 5 5 not 10, then
completing the study as designed will cost less than
expected (58% of the one-stage study’s cost [black
bar]), but slightly more than if we initially had know
that R 5 5 (56% of the one-stage design cost [gray
bar]). In contrast, if the stage 2 per genotype cost
is greater than initially estimated, such that R is
actually 20 not 10, then completing the study as
designed will cost more than expected (67% of
one-stage design cost), but only slightly more than if
it had been designed knowing R 5 20 (65% of
the one-stage design cost). When R has been under-
estimated, increasing the proportion of samples
genotyped in stage 1 is an alternative that could be
considered.

When R is underestimated, the proposed budget
may be insufficient to complete the study’s geno-
typing and hence result in reduced power. However,
unless R is grossly underestimated, power loss is
minimal (data not shown).

FURTHER DECREASING THE COST
OF TWO-STAGE DESIGNS

While two-stage designs can reduce the cost of
GWA studies substantially, cost may still be unac-
ceptably high. Two strategies which further reduce
genotyping costs are (a) decreasing power while
maintaining the false positive rate or (b) increasing
the false positive rate while maintaining power.

Decreasing power reduces the genotyping cost of
the optimal two-stage design (Fig. 4, Table I). Even a
small decrease in ppower can have substantial cost
benefits. These cost savings come mainly from
decreasing the proportion of the sample genotyped
in stage 1. Although the proportion of markers
to follow-up in stage 2 also decreases as ppower is
lowered, the number of samples genotyped in stage
2 increases, so that the total cost of stage 2
genotyping may increase (Table I). For example,
when R 5 10, decreasing ppower of our GWA study
from .99 to .95 reduces the cost of the optimal two-
stage design from 60.7 to 51.0% of the one-stage
design cost (Fig. 4, Table I). This �16% decrease in
two-stage study genotyping cost results entirely
from reduction in stage 1 cost (stage 1 now costs
44.7% compared with 54.5% of one-stage design
cost). Stage 2 cost actually increases slightly (from
6.2 to 6.3%).

The genotyping costs saved by reducing ppower are
nearly independent of R when cost is measured as a
proportion of one-stage study cost (Table I). When
cost is measured relative to the two-stage design
with ppower 5 99%, genotyping costs saved by redu-
cing ppower are greater for smaller R. For example,
the proportions of the one-stage design cost saved
by reducing ppower from .99 to .95 range from 9.4 to
9.7% for values of R between 10 and 40, and
represent savings between 13.7 (R 5 40) and 16.0%
(R 5 10) relative to the two-stage design preserving
ppower¼:99. These results also appear nearly inde-
pendent of the power of the one-stage design (data
not shown). Savings are slightly smaller when using
a stricter false positive rate (amarker 5 .05/300,000)
(see online Supplementary Tables I and II).

An alternative approach for further decreasing
genotyping costs is to relax the false positive rate
while keeping power constant (Fig. 5, Table II). For
example, consider the optimal two-stage design for
our study using ppower 5 .99 (power 5 79.2%) when
R 5 10 which costs 61.0% of the one-stage design.
Suppose this design is too expensive, and that
sacrificing additional power is unacceptable. Relaxing

Fig. 3. The designs above employ 1,000 cases and 1,000 controls

and have 79% power (ppower 5 .99) to detect a variant with
GRR 5 1.375 and p 5 .35 for a disease with prevalence 5 .10

when amarker 5 1/300,000. The dashed horizontal gray line

denotes the cost of the optimal two-stage study when R 5 10.

The gray bars show the cost of the study designed assuming
R 5 10 but carried out when R is actually the value on the x-axis.

The black bars show the cost of the optimal two-stage study

designed using the value of R on the x-axis.
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TABLE I. Cost saving achieved and change in optimal design when decreasing ppower

Optimal design

Cost as % of one-stage design cost
Cost as % of reference

design cost

Stage 1 Stage 2 Total Total

R
ppower

(%)
psamples

(%)
pmarkers

(%) Cost
Absolute
savings� Cost

Absolute
savings� Cost

Absolute
savings� Cost

Relative
savings�

10 99 54.5 1.36 54.5 0 6.19 0 60.7 0 100 0
97.5 49.3 1.24 49.3 5.2 6.29 �0.10 55.6 5.1 91.6 8.4

95 44.7 1.14 44.7 9.8 6.29 �0.10 51.0 9.7 84.0 16.0
90 39.2 1.02 39.2 15.2 6.17 0.02 45.4 15.3 74.9 25.1

20 99 59.0 0.71 59.0 0 5.85 0 64.8 0 100 0
97.5 53.8 0.65 53.8 5.2 6.02 �0.17 59.9 5.0 92.3 7.7

95 49.2 0.60 49.2 9.8 6.07 �0.23 55.2 9.6 85.2 14.8
90 43.6 0.53 43.6 15.4 6.03 �0.18 49.6 15.2 76.6 23.4

40 99 63.3 0.38 63.3 0 5.53 0 68.8 0 100 0
97.5 58.2 0.34 58.2 5.1 5.76 �0.23 63.9 4.9 92.9 7.1

95 53.5 0.32 53.5 9.7 5.87 �0.34 59.4 9.4 86.3 13.7
90 47.9 0.28 47.9 15.4 5.89 �0.36 53.8 15.0 78.2 21.8

Note: The designs above employ 1,000 cases and 1,000 controls and have power 80%�ppower to detect a variant with GRR 5 1.375 and
p 5 .35 for a disease with prevalence 5 .10 when amarker 5 1/300,000. Cost is given as a percentage either the corresponding one-stage design
cost or the two-stage design cost that retains 99% of the one-stage design power.
�Absolute savings is the difference in cost when using alternative values of ppower instead of ppower 5 .99 (measured as a proportion of the
one-stage study cost). Relative savings measures the same difference, but expressed relative to the cost of the reference design with
ppower 5 .99.

Fig. 4. The designs above employ 1,000 cases and 1,000 controls and have power of 79, 78, 75 or 72% (ppower 5 .99, .975, .95, or .90) to

detect a variant with GRR 5 1.375 and p 5 .35 for a disease with prevalence 5 .10 when amarker 5 1/300,000. The black bars in the left and
center panels denote the values of psamples and pmarkers of the optimal two-stage design. The right panel shows the cost of the optimal

two-stage design and how it is divided between stage 1 (black bar) and stage 2 (gray bar).
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the false positive rate to allow W 5 5 (instead
of 1) false positives (amarker 5 5/300,000) while
maintaining 79.2% power decreases the total study
cost to 47.6% of the one-stage design (a 22%
reduction in cost relative to using amarker 5 1/
300,000). We achieve this additional savings because
relaxing the false positive rate (from 1/300,000 to
5/300,000) increases the power of the one-stage
design (from 80 to 88%), requiring us to preserve
only ppower 5 79%/88% 5 .90 of the one-stage design
power instead of .99. Further relaxing the false
positive rate reduces study cost only modestly;
relaxing the false positive rate from 5/300,000 to
10/300,000 decreases study cost only another 2%.
This cost saving strategy is less effective when a
smaller proportion of the one-stage power is
preserved (initial ppower 5 .95 versus .99). In addi-
tion, the cost saving is nearly invariant to R and
initial amarker when cost is expressed as a percentage
of the one-stage study cost. Cost savings increase
when the one-stage design power is smaller and
decrease when one-stage design power is larger (see
online Supplementary Tables III and IV).

INCREASING POWER BY INCREASING FALSE
POSITIVE RATE WHILE HOLDING COST
CONSTANT

As a corollary to the previous approach, increasing
the false positive rate can be used to improve power
when study cost is held fixed. Such an approach
may be logical if power to detect a disease predis-
posing variant of a certain effect size is low.
However, there is no guarantee that reasonable
power will be reached before the false positive rate
becomes unacceptably large.

In contrast to previous strategies, the optimal
design that maximizes power at a fixed cost changes
little across a range of false positive rates (see online
Supplementary Fig. 1) or one-stage design powers
(results not shown). For example, at a set cost that
is 60% of the one-stage study, a two-stage design
having power of 69% when using amarker

5 1/300,000, can be improved to 85% power by
using amarker 5 20/300,000. The optimal designs
for these two studies are remarkably similar:
psamples 5 .54, pmarkers 5 .014 when amarker 5 1/
300,000 and psamples 5 .53, pmarkers 5 .015 when
amarker 5 20/300,000. This suggests that if an inves-
tigator decides to use a false positive rate different
from that used to design the study, little power will
be lost. Indeed, the power of the two-stage study
designed using amarker 5 1/300,000 but analyzed
using amarkers 5 20/300,000 would improve by less
than 0.03% if designed using the larger amarker.
Smaller budgets limit the effectiveness of this
strategy (see online Supplementary Fig. 1).

DISCUSSION

The design of two-stage studies that use a fixed
number of samples is influenced primarily by three
factors: the proportion of the one-stage power
retained, the acceptable number of false positives,
and the stage 2 to stage 1 per genotype cost ratio.
Although we have limited control over the per
genotype cost ratio, by making small compromises
in the false positive rate or proportion of the one-
stage power retained we can control study cost.

The per genotype cost ratio influences not only the
cost of the optimal two-stage design but also its
configuration. As the cost ratio increases, more
samples are genotyped in stage 1 and fewer markers
are followed up in stage 2. When the per genotype
cost in stage 2 is r10 times that in stage 1, an
optimal design typically genotypes as little as 30% of
the sample in stage 1 and follows up 410% of
the markers in stage 2. When the ratio is Z20,
50–70% of the sample typically is genotyped in
stage 1, and o1% of the markers are selected for
stage 2 genotyping.

Although two-stage designs provide substantial
cost savings over one-stage designs, at current per
genotype costs GWA studies with large sample sizes
that preserve almost all of the one-stage design
power can still be too costly. We described two
strategies that further decrease the study cost: (1)
preserve a somewhat smaller proportion of the one-
stage design power while maintaining the false
positive rate, or (2) relax the false positive rate while
maintaining power. Decreasing the percentage of the
one-stage design power preserved from 99 to 97.5%
(95%) reduces the cost of the study by about 5% (9%)
of the one-stage design cost, and approximately 8%
(16%) of the cost of the two-stage design that
preserves 99% of the power. Similar cost savings
can be achieved (17% of the two-stage design cost)
by increasing the false positive rate 2.5-fold, for
example, from 1/300,000 to 2.5/300,000, while
maintaining the same power. The savings achieved
by preserving less power is nearly unaffected by the
stage 2 to stage 1 per genotype cost ratio, the false
positive rate amarker, or the one-stage power. The
savings achieved by relaxing the false positive rate is
also nearly unaffected by the per genotype cost ratio
and false positive rate, but do depend on the power
of the corresponding one-stage design.

Alternatively, relaxing the false positive rate may
be used to improve power while holding study cost
constant. The power that can be gained by relaxing
the false positive rate is greatest when the genotyp-
ing budget is not too small (450% of the one-stage
design cost) and the per genotype cost ratio
is not too great (Rr10). The optimal two-
stage design that maximizes power given a fixed
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budget changes little as amarker increases, suggesting
that relaxing the false positive rate after the study
has been completed will result in very little loss of
efficiency.

We have made several observations that are
complementary to those of Wang et al. [2006]. Wang
et al. demonstrated, as we do, that when the stage 2
to stage 1 per genotype cost ratio increases, the
genotyping shifts from stage 2 to stage 1, and that
the cost of the optimal design increases. Our
perspectives differ, however, because of how we
define the optimal two-stage design. Wang et al.
sought the least expensive two-stage design with a
fixed power to detect a variant of a given effect size
with no restriction on sample size. We fix sample
size and seek the least expensive two-stage design
that preserves a given proportion of the one-stage
design power. Interestingly, our observation
that genotyping costs can be substantially lowered
by decreasing the proportion of power preserved is
consistent with Wang et al.’s tables showing that
genotyping costs can be lowered by increasing the
sample size while decreasing the proportion of one-
stage power retained. In both instances, fewer
samples are genotyped in stage 1 and fewer markers
are followed up in stage 2.

Many investigators will be interested in testing
marker associations with one or more disease-

related traits in the same sample. If T independent
traits are tested instead of just one, then the number
of tests performed in stage 1 is TM. If W
false positives are acceptable after testing all traits
on all markers, then the appropriate marker-wise
false positive rate is now approximately W/(TM)
instead of W/M when only one trait was tested.
Thus power to detect a variant influencing any one
trait is reduced. When the traits are independent,
and even if they are moderately correlated, the
markers selected for follow-up for each trait will
tend to have little overlap. Thus, if we follow-up
pmarkers M markers for each trait, the cost of stage 2
will be approximately T times the cost of stage 2
when testing a single trait. Thus, optimizing a two-
stage design that tests for association to T indepen-
dent traits is nearly equivalent to increasing
the stage 2 to stage 1 per genotype cost ratio to TR.
When studying a large number of traits, it may be
that the most economical study is the one-stage
design.

In our examples, we focus on the power to detect a
single variant. For most complex diseases, there will
be several susceptibility variants of varying effect
sizes and our formulae can be extended to accom-
modate this. For example, suppose we assume
K independent susceptibility alleles. The probability
that a genome-wide scan will fail to detect any of

Fig. 5. The designs above employ 1,000 cases and 1,000 controls and have 79% power (ppower 5 .99) to detect a variant with

GRR 5 1.375 and p 5 .35 for a disease with prevalence 5 .10 when amarker 5 1/300,000. The black bars in the left and center panels

denote the values of psamples and pmarkers of the least costly designs that achieve 79% power using amarker 5 W/300,000 for W 5 1, 2.5, 5,
and 10 (x-axis) when R 5 10. The right panel shows the cost of these designs and how it is divided between stage 1 (black bar) and stage

2 (gray bar).
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these alleles is �K
i¼1½1� Pðdetect variant iÞ� and the

probability that the scan will detect at least one of
these alleles is 1��K

i¼1Pðdetect variant iÞ. Power to
detect any specific number of variants can be
calculated approximately using the Poisson-Bino-
mial distribution, with parameters specifying power
for each individual variant.

We have not considered interactions in our current
work. Interaction tests could be performed in stage 1
data on all pairs of markers or on the subset of
markers with modest marginal associations [March-
ini et al., 2005]. The optimal strategy for designing
two-stage GWA studies when testing for interactions
remains an open research problem; nevertheless our
intuition is that because of the much larger number
of tests performed these designs could be quite
different from studies that focus on main effects. For
example, we expect that these designs will likely
require a larger proportion of samples genotyped
in stage 1 to ensure both that the effect of true
interacting variants is great enough that the markers
will be selected for follow-up in stage 2 and that the
number of markers selected for follow-up is small
enough to prove cost-effective.

To simplify calculations and allow us to focus on
the primary factors influencing the cost of two-stage
designs, we made a number of assumptions. These
include using a fixed sample size, allowing any
number of markers to be genotyped in stage
2, linkage equilibrium between markers, and no
population substructure. We chose to focus on fixed
sample sizes since many investigators will already
have samples in hand when designing their GWA
study. Wang et al. [2006] explore designing optimal
two-stage studies when sample size is not limited.

Our assumption that any number of markers can
be genotyped in stage 2 is likely unrealistic, since in
practice the number of markers may be restricted by
the type of custom genotyping arrays employed.
These arrays may, for example, genotype 96, 384,
1,536, 10,000, or 20,000 single nucleotide polymorph-
isms (SNPs) per array. Additional modifications to
the optimization routine are necessary when such
arrays are used since there is a finite number of
possible pmarkers values, the per genotype cost for
each array will differ, and there will likely be
discounts when genotyping a large number of
samples. Appendix A describes how this more
complicated cost structure can be accommodated,
and gives an example that might be typical when
using a high-throughput genotyping service.

Our assumption that all stage 1 markers are in
linkage equilibrium is not true of current genotyping
products, and certainly will not be for future ones.
When linkage disequilibrium (LD) exists between
markers, using a false positive rate of amarker 5 W/M
to control the total number of false positives to be

W still holds, although the variance of the number of
false positives expected increases. However, control-
ling the genome-wide false positive rate by using
amarker 5 agenome/M is conservative and power
is underestimated. In this case, in the design phase
an appropriate marker-wise type I error rate may
be estimated using simulation and genotype and LD
information from a related population in the
HapMap project for stage 1 markers. We have also
implicitly assumed that a disease predisposing
variant is in perfect LD (r2 5 1) with one of the
stage 1 markers. Power to detect the variant when
the value of r2o1 is less. A more accurate estimate
of the one-stage design power is the power to detect
the same variant, but using only Nr2 cases and Nr2

controls [Pritchard and Przeworski, 2001].
We have also assumed that within each stage

there is no population stratification between the
cases and controls. If stratification is present, any
of a number of methods may be employed, and
the two-stage design presents no new challenges
[Pritchard and Rosenberg, 1999; Devlin et al., 2001;
Reich and Goldstein, 2001; Satten et al., 2001; Price
et al., 2006]. Skol et al. [2006] have explored the
impact of heterogeneity between the stage 1 and
stage 2 cases, and although this may affect the
study power, the construction of the joint statistics
ensures that an excess of false positives will not be
an issue.

Our two-stage design approach is broadly applic-
able to GWA studies of SNPs and copy number
polymorphisms, and could also be applied to large
scale sequencing studies. The two-stage framework
can also be used to calculate the increase in power
that could be gained by genotyping additional
samples when the results from existing GWA studies
are treated as the first stage.

In summary, we have outlined guidelines for
designing efficient two-stage designs for GWA
studies. There is no single optimal two-stage GWA
design; each design will depend strongly on the
genotyping costs and budget, and the investigator’s
tolerance for false positives and false negatives.
However, currently available products and pricing
will likely suggest optimal two-stage designs using
between 50 and 60% of the sample in stage 1 and
following up between 0.1 and 1.0% of the markers
per trait of interest in stage 2. If designs with these
parameters are too costly, modestly increasing the
false positive rate (say from 1 to 2.5 false positives
per genome) while maintaining power or modestly
decreasing the proportion of one-stage design power
retained (say from 99 to 95%) while maintaining the
false positive rate can further reduce the genotyping
costs by �15%. To help investigators balance the
goal of high power, low false positive rate, and
manageable cost, we have developed a graphical
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power calculator CaTS to help investigators rapidly
evaluate and optimize two-stage GWA designs. Our
tool is freely available at www.sph.umich.edu/csg/
abecasis/CaTS/.
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APPENDIX

A. OPTIMAL TWO-STAGE DESIGNS WHEN
USING ARRAY-BASED PRODUCTS IN STAGE 2

Stage 2 of a GWA study will often use custom
genotyping arrays which genotypes fixed numbers
of markers. For example, an array may genotype
96, 384, 768, 1536, or more markers simultaneously.
Stage 2 per genotype cost structure is impacted
when using these products because the cost
per genotype for arrays with more markers is
generally smaller. In addition, discounts may
be available when genotyping large number of
samples. We describe how to accommodate these
features when designing optimal two-stage GWA
studies.

Use of arrays that genotype a fixed number of
markers actually simplifies the optimal design
search. We now need to consider only the small
number of values that pmarker can take on instead of
all possible values between 0 and 1. For example, the
genotyping cost structure given in Appendix
Table Ia results in it being less expensive to use a
384 marker array than two 96 marker arrays.
Therefore, we need not consider pmarkers values of
192/300,000 or 288/300,000 since it would never be
economical to do so—these values of pmarkers we call
inadmissible. Each admissible pmarkers value tends to
have a unique R because each array or combination
of arrays typically results in a different per genotype
cost.

We propose the following algorithm to identify the
optimal two-stage GWA design.

Assuming discounts are available when more
samples are genotyped, repeat the following for
each discount cost scheme. Identify the restriction on
psamples for the current discount level (for example,
when the costs are specified for genotyping
o450 samples, we restrict attention to (2N�450)
/(2N)opsamplesr1). Values of pmarkers for which it is
impossible to achieve the desired power are not
considered. For all other values of pmarkers,, identify
the psamples which attains the desired power using a
bisection algorithm and store this value and the
study cost. Repeat these steps for the next level of
discounting (next range of psamples). The optimal
two-stage design is the least costly study identified.

An Example. Consider designing a two-stage
study in which stage 2 genotyping will be conducted
using a genotyping service which offers the cost
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structure given in Appendix Table Ia. A subset of the
possible values pmarkers can take on, the mix of arrays
used to achieve pmarkers, and the cost of the arrays
are given in Appendix Table Ib. The admissible
values of pmarkers are shaded. Appendix Table Ic

shows all admissible values of pmarkers between 96/
300,000 and 19,968/300,000 and their per genotype
cost. Although 208 values of pmarkers are possible
over this range, only 40 are admissible. The per
genotype cost for most of the values of pmarkers is
near $0.05/genotype. For the GWA study using
1,000 cases and 1,000 controls with power of 80% to
detect a variant of modest effect (GRR 5 1.375,
P 5 .35, prevalence 5 .10) when amarker 5 1/300,000
and the stage 1 per genotype cost is $.003/genotype,
the optimal design that maintains 99% of the one-
stage study power uses psamples 5 .536 and
pmarkers 5 .0154, and costs 63.3% of the one-stage
study. Following up 1.54% of the markers requires
the use of three 1,536 marker arrays. Stage 2 of this
study costs $0.05/genotype, giving an R 5 13.67. If
there were no restriction on pmarkers and R 5 13.3,

TABLE Ic. All admissible values of pmarkers and their per genotype costs when between 901 and 1,980 samples are used
in stage 2 and 300,000 markers are genotyped in stage 1

pmarkers b/Genotype pmarkers b/Genotype pmarkers b/Genotype pmarkers b/Genotype

.0003 41.7 .0166 5.5 .0358 4.9 .0515 5.1

.0013 13.0 .0205 4.9 .0362 5.2 .0525 5.1

.0051 4.9 .0208 5.4 .0371 5.2 .0563 4.9

.0054 7.0 .0218 5.4 .0410 4.9 .0566 5.1

.0064 6.5 .0256 4.9 .0413 5.2 .0576 5.1

.0102 4.9 .0259 5.3 .0422 5.1 .0614 4.9

.0106 6.0 .0269 5.3 .0461 4.9 .0618 5.1

.0115 5.8 .0307 4.9 .0464 5.1 .0627 5.0

.0154 4.9 .0310 5.3 .0474 5.1 .0666 4.9

.0157 5.6 .0320 5.2 .0512 4.9 .0669 5.1

TABLE Ia. Hypothetical cost structure of genotyping
using custom arrays

Sample size 96 SNPs 384 SNPs 1536 SNPs

o450 $45 (47b) $73 (19b) $166 (11b)
450–900 $40 (42b) $50 (13b) $75 (5b)
901–1980 $35 (36b) $47 (12b) $63 (4b)
41980 $35 (36b) $45 (12b) $55 (4b)

Values are cost per array, with cost per genotype in parentheses.

TABLE Ib. Examples of admissible pmarkers

No. markers 96 192 288 384 480 576 672 768

pmarkers .0003 .0006 .0010 .0013 .0016 .0019 .0022 .0026

96 1 2 3 0 1 2 3 0
384 0 0 0 1 1 1 1 2
1536 0 0 0 0 0 0 0 0
cost ($) 40 80 120 50 90 130 170 100
cost/geno (b) 41.7 13.0

No. markers 864 960 1056 1152 1248 1344 1440 1536

pmarkers .0029 .0032 .0035 .0038 .0042 .0045 .0048 .0051

96 1 2 3 0 1 2 3 0
384 2 2 2 3 3 3 3 0
1536 0 0 0 0 0 0 0 1
cost ($) 140 180 220 150 190 230 270 75
cost/geno (b) 4.9

Note: Values of pmarkers that are admissible are shaded. Genotyping fewer markers is more expensive.
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then the optimal two-stage design would use
psamples 5 .565, pmarkers 5 .010, and cost 62.6% that
of the one-stage study design.

B. VARIANCE OF Z1 AND ZJOINT

Bukszár and van den Oord show that the dis-
tribution of

z1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Npsamples

q
gðp̂01; p̂1Þ ¼

p̂01 � p̂1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p̂01ð1� p̂01Þ þ p̂1ð1� p̂1Þ�=ð2NpsamplesÞ

q
can be found by writing

p̂1 ¼
X2Npsamples

i¼1

Xi

2Npsamples

where Xi is an indicator that is equal to 1 if the allele
is a risk allele and 0 otherwise [Bukszar and van den
Oord, 2006]. The Central Limit Theorem states thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Npsamples

q
ðp̂1 � pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Npsamples

q

�
X2Npsamples

i¼1

Xi

2Npsamples
� p

� �
!

d
Nð0; pð1� pÞÞ;

where N(x, y) denotes a Normal distribution with
mean x and variance y and!

d
signifies convergence

in distribution [Casella and Berger, 2002]. In
addition, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Npsamples

q
ðp̂01 � p0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Npsamples

q

�
X2Npsamples

i¼1

X0i
2Npsamples

� p0
� �

!
d

Nð0; p0ð1� p0ÞÞ:

We can use the multivariate delta method to find the
distribution of z1 [Lehmann and Casella, 1998]. The
multivariate delta method stated in terms of
p̂01 and p̂1 is ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Npsamples

q
ðgðp̂01; p̂1Þ � gðp01; p1ÞÞ!

d

Nð0;HTgðp01; p1Þ�Hgðp01; p1ÞÞ;

where

Hgðp01; p1Þ ¼

qgðp01;p1Þ

qp0
1

qgðp01;p1Þ

qp1

0
@

1
A

and

� ¼
p01ð1� p01Þ 0

0 p1ð1� p1Þ

� �
:

Given that

Hgðp01; p1Þ ¼

p01þ3p1�2p2
1�2p01p1

2ðp0
1
ð1�p0

1
Þþp1ð1�p1ÞÞ

3
2

p1þ3p01�2p
02
1 �2p01p1

2ðp0
1
ð1�p0

1
Þþp1ð1�p1ÞÞ

3
2

0
BB@

1
CCA;

the variance of z1 is

varðz1Þ ¼ ðp
0
1 þ 3p1 � 2p2

1 � 2p01p1Þ
2
ðp01ð1� p01ÞÞ

þ
ðp1 þ 3p01 � 2p021 � 2p01p1Þ

2
ðp1ð1� p1ÞÞ

4ðp01ð1� p01Þ þ p1ð1� p1ÞÞ
3

:

Note that var(z1) 5 1 under the null hypothesis
p05 p, and tends to be quite close to 1 unless p0�p
is large relative to p or p0.
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