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ABSTRACT: For 30 years, the dynamics of entangled polymers have been explained
using the phenomenological “tube” model, where the “tube” represents the confining
effects of surrounding chains, but the tube properties, such as its length and diame-
ter, could only be inferred indirectly by fitting the tube model to rheological data.
Now, however, molecular simulations are allowing these properties to be directly com-
puted. The computational advances in molecular dynamics and related methods that
have made this possible are here reviewed. In addition, it is discussed how new find-
ings, such as an apparent time dependence of the tube diameter and direct observa-
tion of “hopping” of branch points along the tube, are helping to refine the tube
model. ©2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3240-3248, 2007
Keywords: melt; molecular dynamics; rheology

The most important polymers, from the stand-
point of sheer volume and economic impact,
remain the “simple” thermoplastics. The major-
ity of these are polyolefins (especially polyethyl-
ene and polypropylene), which annually sell at
volumes of hundreds of billions of pounds, with
polystyrene, polycarbonates, and a few others
accounting for much of the rest. The high vol-
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umes of these is explained in part by cheap raw
materials, but also by the ease with which these
thermoplastics are shaped into products in high-
throughput processes such as film blowing, fiber
spinning, blow molding, and the like. The proc-
essing behavior is, in turn, controlled by rheol-
ogy—the response of these materials in the mol-
ten state to the stresses and strains imposed by
the processing environment. Hence, among the
most important tasks in the field of polymer sci-
ence is the creation of a reliable engineering sci-
ence of polymer melt rheology, a science that
can predict processing behavior of polymers
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Figure 1.
shows the “primitive path potential” in which the polymer branch fluctuates.

from a knowledge of molecular structure, which
for thermoplastics depends mainly on the molec-
ular weight and branching distribution, as well
as on the chemical makeup of the polymer,
including its tacticity.

Forty years ago, the rheology of polymer
melts was an empirical discipline. A few “rules”
of rheology were known, such as the famous 3.4
power law in the dependence of zero-shear vis-
cosity on molecular weight for linear polymers,’
and the much steeper, roughly exponential, de-
pendence for star-branched polymers.? It was
also known that such melts were highly shear
thinning.? Causes for these behaviors were
sought in the “entanglements” that long, densely
concentrated, polymers were thought to have
with each other, and some crude theories were
bandied about in an effort to reduce the empiri-
cal observations to usable formulas. But, few
entertained illusions that any deep understand-
ing of the rheology of polymer melts or concen-
trated polymer solutions had been attained.

This situation began to change drastically in
the 1970s. First, in 1971, de Gennes,® in a con-
ceptual breakthrough, envisioned that entangled
polymer chains might move through the entan-
gling mesh of other chains by snaking primarily
along their own coarse-grained random-walk
contour—a process he called reptation. The
coarse-grained path is now called the primitive
path, and its length is proportional to, but much
shorter than, the contour length of the actual
chain. Using the “reptation” idea, de Gennes
was able to predict that there should be a
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The tube model for (a) linear and (b) branched polymer. In (b), the graph

power-law exponent of 3.0 relating the relaxa-
tion time (and also the viscosity) to molecular
weight, not far from the observed 3.4 power law.
Then, starting in 1978, Doi and Edwards® began
publishing their blockbuster series of papers,
and eventually a book,® which presented multi-
ple specific predictions for the major linear and
nonlinear rheological properties, along with pre-
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Figure 2. The coarse-grained pearl necklace model.



3242 J. POLYM. SCI. PART B: POLYM. PHYS.: VOL. 45 (2007)

dictions of molecular diffusivities, and much else
besides, all based on the primitive path, and the
meandering worm-like volume centered on this
path called the “tube,” to which the chain is
largely confined due to the presence of the sur-
rounding molecules; see Figure 1(a). The diame-
ter of the tube, which is assumed to be the same
as the length of a random-walk step of the prim-
itive path, is a priori unknown, and is usually
obtained by fitting of a rheological quantity (the
so-called “plateau modulus”) to the tube model.
From this starting point, the “tube” model
has gone from strength to strength, and has
become the basis for the rheology not only of lin-
ear polymers, but also of ones with long-chain
branching. The effects of long-chain branching
are most easily contemplated for the simple
“star” polymer with a single branch point, from
which emanate several “arms” of equal molecu-
lar weight; see Figure 1(b). Since the branch
point suppresses reptation, the arms are obliged
to relax, Houdini-like, by retracting into the
tube until the tip of the arm threads its way
around the entanglements that are closest to
the branch point, and the arm can thereby take
on a completely different, relaxed, configuration.
The unlikelihood of such processes occurring
spontaneously is governed by a phenomenologi-
cal tube primitive path “fluctuation potential”
that penalizes deep retractions of the arm tip
into the tube. As with reptation, the underlying
idea goes back to de Gennes® and the first clear
predictive models are due to Doi and Kuzuu.”
Until roughly the 1990s, the tube model, out-
lined above, was not developed enough to
account with any accuracy for polydispersity in
molecular weight or branching distributions.
However, over the last fifteen years, polydisper-
sity has been successfully incorporated into a
variety of tube models, through inclusion of con-
cepts of “tube renewal” or “constraint release,”
which allow the tube itself to relax in response
to the motions of the polymers whose entangling
effects define the tube.® This has opened the
door to use of the tube model to predict the rhe-
ology of commercial linear polymers, which are
inevitably polydisperse in molecular weight.
Commercial long-chain branched polymers are
never simple monodisperse stars, but are poly-
disperse in branch length, spacing, and number
per molecule. Describing the rheology of such
melts requires accounting for the relaxation of
“backbone” segments lying between branch
points, which cannot relax by either reptation or

primitive path fluctuations. Modern ideas, aris-
ing from McLeish et al.,”!° model backbone
relaxation by a kind of “hopping” motion of the
branch points, wherein each “hop” occurs when-
ever an arm executes a complete retraction, and
is then temporarily effectively unentangled, at
least near the branch point, and thus the branch
point is free to move roughly a tube diameter or
so along the tube containing the backbone.
These ideas have proven successful in predicting
the rheology of branched polymers with two or
more branch points, with regular, or even irreg-
ular, branching structures.'®'2

These successes, however, have not removed
the phenomenological nature of the “tube”
ansatz nor provided a firm molecular-level pre-
diction of the phenomenological parameters of
the model, which to date are still obtained by
fits to rheological data.>'® The “tube diameter”
is one of these parameters, as is (to some extent)
the “dilution exponent”* that relates the tube
diameter to the polymer concentration in a solu-
tion. Also, for branched polymers, the entropic
“fluctuation potential” is in the main phenome-
nological, as is the “branch point diffusivity,”
although scaling ideas yield some relationships
between these quantities and underlying physi-
cal properties of the polymers.®°

A more satisfying approach would be to
derive the tube model, and the properties of the
“tube,” such as its diameter, the fluctuation
potential, dilution exponent, branch point diffu-
sivity, and other quantities, directly from the
fine-scale statics and dynamics of the polymer
molecules themselves. Fortunately, skillful use
of rapidly increasing computer power is now en-
abling this to be done. Just as de Gennes, and
Doi, Edwards, and coworkers laid the founda-
tions for the tube model, the foundations for
computer simulation of entanglement dynamics
were laid by Kremer et al. The first break-
through, accomplished with Herculean effort,
was the molecular dynamics simulation of
entangled chains by Kremer and Grest in
1990.'® This effort required months of time on
one of the (then) fastest supercomputers in the
world. Besides computational brawn, the effort
also required thoughtful development of a “pearl
necklace” model of a generic linear polymer;'>'®
see Figure 2. The “pearls” of the pearl necklace
are repulsive Lennard-Jones beads, which are
strung together by short, stiff springs, which
cannot be stretched far enough apart to allow to
permit a bead of another chain to squeeze
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Figure 3. Log-log plot of time-dependent mean-
square displacement of monomer of a long entangled
chain according to the tube model. The first 1/2-
power-law regime is Rouse subdiffusion of the mono-
mer, which persists until the chain “feels” the tube at
time t.. Then, the Rouse subdiffusion is directed
along the tube, which is a random walk, leading to a
combined power-law exponent of 1/4. After time g,
the whole chain begins moving coherently (i.e.,
reptates), and so the Rouse subdiffusion disappears,
leaving a 1/2-power-law exponent. Finally, the chain
escapes the tube at the “disengagement time” or
“reptation time” 14, leading to ordinary center-of-mass
diffusion, with power law exponent of unity.

between neighboring beads on the same chain
without experiencing impossibly high repulsive
forces from the beads. Hence, “entanglements,”
or chain noncrossability, are enforced in a
“natural” way, permitting their effects to emerge
in the same way they do in real chains, i.e.,
without assuming that the chains are in a
“tube” to begin with.

Work by Kremer et al.'® revealed the charac-
teristic “signature” of reptation, which is a 1/4-
power law relating mean-square displacement of
the beads with time. This 1/4-power-law diffu-
sion is subdiffusive (i.e., has lower power-law
exponent than “normal” diffusion, with its power
law exponent of unity relating mean-square dis-
placement with time) in two different ways.
First, the bead is tethered to other beads, and
as time goes on, feels itself bogged down by
more and more of them, as their motion becomes
more and more coordinated at longer times.
This effect produces a square-root slow-down of
diffusion in time, identical to that seen in unen-
tangled chains, as described by the well known
Rouse model and appears at the earliest times
in a plot of mean-square displacement with
time; see Figure 3. A second square root rela-
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tionship emerges as a result of the fact that the
chain’s motion must be directed along the primi-
tive path, which itself follows a random walk.
Thus, the distance diffused in real space
increases as the square root of the distance dif-
fused along the tube. This source of subdiffusive
behavior combines with that derived from chain
connectivity (i.e., Rouse subdiffusion) to produce
a net 1/4-power-law behavior of the monomer
mean-square displacement with time that is dis-
tinctive to the reptation model of diffusion in a
tube; see Figure 3 again. The simulations of
Kremer and Grest captured this behavior, thus
demonstrating the emergence of reptation from
realistic monomer-scale motions. (Note, however,
that reptation, as such, is the coordinated slid-
ing of the chain as a whole, and occurs at times
longer than those for which the 1/4-power-law
holds, times at which the Rouse subdiffusive
motion has fallen away, leaving only the 1/2-
power-law resulting from coordinated motion of
the whole chain along the random-walk primi-
tive path—again see Figure 3.)

Showing the 1/4-power-law regime of chain
motion required that long chains be simulated,
chains too long to relax completely in the time
available even on modern computers. The fail-
ure to reach complete relaxation is simply a
result of the incredibly slow processes involved
in reptation. Remember that the longest relaxa-
tion time scales roughly as the 3.4 power of mo-
lecular weight, implying that a mere doubling of
chain length necessitates a 10-fold longer run to
achieve complete relaxation. The longer chains
also necessitate a large box to contain them, and
the box volume scales as the cube of the linear
dimension of the box, which itself scales as the
square root of the chain length. Thus, “well
entangled” linear chains (with more than 10
entanglements per chain) are essentially impos-
sible to equilibrate even today. However, the sig-
natures that the “chain is in a tube” are
revealed as soon as the chain has moved far
enough to “feel” the tube, and this occurs on a
time scale of roughly t.—the so-called “equili-
bration time,” which is roughly the longest
relaxation time of a piece of chain just long
enough to occupy one tube “segment”—i.e, a por-
tion of the tube containing one primitive path
step. Thus, much can be learned through direct
molecular dynamics simulations on short time
scales. In fact, it is at the times scales in the vi-
cinity of 7, that small-scale motions characteris-
tic of simple liquids begin to give way to motions
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along the tube that are characteristic of
entangled polymers. If the details of this transi-
tional process can be studied and understood
through molecular dynamics simulations, then
the behavior at long time scales will likely be
made understandable as well. The reason for
this confidence is that we already know that the
tube model works well for long linear and
branched chains, if only the “tube parameters”
can be specified and understood. And, for the
most part, these parameters characteristic of
the tube are determined by processes that occur
at time scales in the vicinity of 7., or at least,
one can contrive situations where most of the
important physics occurs within a decade or two
in time of ..

But, to study long chains, even at short times,
the chains must be well equilibrated, i.e., their
conformations must be those of a system that
has been able to relax for a time longer than the
longest relaxation time. But, as mentioned, this
time is inaccessible to simulations for the well-
entangled chains we are most interested. To
resolve this problem, again it was Kremer and
coworkers'” who developed methods of rapidly
equilibrating long chains. To do so, Auhl et al.'”
simply followed Flory in noting that on long
length scales, the configurations of long poly-
mers are simply random walks, with effective
random-walk step size set by bond angle and
local packing constraints. Thus, even for isolated
chains one can readily generate arbitrarily long
chains whose configurations on the longest
length scales are those of the melt state. It
remains then to pack these together and relax
out the overlapping-bead configurations over a
short time scale in a way that does not then
introduce distortions at the long length scales
that one has avoided by the initial construction
of the chains. Kremer and coworkers figured out
a way to do this, through a chain-packing algo-
rithm that uses a combination of translations
and rotations of chains with fixed configuration,
so as to make monomer density as uniform as
possible, followed by a short molecular dynamics
run wherein the bead repulsions are gradually
turned on, to remove the bead overlaps. Auhl
et al.'” developed this algorithm, sometimes
called the “slow-push-off” method for long linear
chains. Our group found a way to apply this to
star-branched polymers,'® which are even more
hopeless of relaxing by brute force, owing to
their exponential dependence of relaxation time
on chain length.

Armed with these tools, the physics underly-
ing the tube model is now being revealed. A key
element of the tube model is obviously the tube
itself, along with its centerline, the primitive
path. Again, it was Kremer and coworkers who
made the first dramatic breakthrough in calcu-
lating directly the primitive path from computer
simulations of the pearl necklace model.’® To
determine the set of primitive paths from their
simulations, Everaers et al.'® simply start from
an equilibrated melt and at some point in time
instantaneously freeze in place all chain ends.
They then turn off the excluded-volume repul-
sions between beads on the same polymer while
leaving them in place between beads on differ-
ing polymers. The chains then tend to shrink
their contour length under the action of the
spring forces connecting neighboring beads, and
this tendency is increased by steadily “cooling”
the system to dampen Brownian motion and
leave the chains with no recourse but to shrink
their contour lengths to the “shortest possible”
paths, subject to the constraints that the chain
ends are fixed and the chains cannot pass
through each other. The result is a “network” of
“primitive paths,” pulled tight against each
other, as shown in Figure 4. Everaers et al.
showed that the average length of these primi-
tive paths, and the random-walk step size one
infers from this average length, are consistent
with the plateau modulus one “measures” in
simulations of this melt, thus validating the for-
mula derived from the tube model.

This result, published in the journal Science,
spurred a “cottage industry” of workers develop-
ing alternative methods of deriving primitive
paths.2'25 Our group’s own foray into this area
began with the effort of a graduate student,
Sachin Shanbhag, to derive not just the average
primitive path length, but the whole distribution
of primitive paths, from which the primitive
path “fluctuation potential” can be derived.?!
This work, developed initially for a lattice poly-
mer model that permits huge ensembles of prim-
itive paths to be generated, yielded a primitive
path potential that is roughly consistent with
the “classical” potential used in the standard
tube model. However, further work using real-
space molecular dynamics simulations with the
pearl necklace model revealed that this gratify-
ing result only emerges for a modified version of
the “cooling” method of Everaers et al. in which
the spring forces used to shrink the chains is
replaced by a constant spring tension that mini-
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Figure 4. Network of “primitive paths” (paths)
determined by the “cooling method” from a dense
melt of pearl necklace chains (orange). (Figure from
Larson et al.,?° AIChE J). [Color figure can be viewed
in the online issue, which is available at www.
interscience.wiley.com. |

Figure 6. (Left): Scatter plot of locations of branch
point for four different polymers, each designated
with a different color, selected from a box containing
200 chains. Each branch point is initially confined to
a roughly spherical volume of diameter corresponding
to the tube diameter, but then “hops” to a different
region when the short branch retracts, releasing its
entanglement constraints, before becoming confined
again (from Zhou and Larson,>” Macromolecules).
[Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]
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Figure 5. The monomer “bead” density contour map, determined by direct “tube
sampling.” The primitive paths determined by two different cooling methods (red
and white lines) are both near the center of the “tube” as determined by direct sam-
pling of bead density (from Zhou and Larson,2® Macromolecules). [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]
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mizes not the spring energy but the total length
of all primitive paths.?> The original “cooling”
procedure of Everaers et al. yields a fluctuation
potential that is much steeper than the classical
one, and that, if correct, would badly upset the
current tube models in use for predicting the
rheology of branched polymers. While the width
of the distribution of primitive paths turns out
to be very sensitive to the cooling procedure
used, the mean primitive path length is almost
the same for cooling that minimizes total primi-
tive path length as it is for cooling that mini-
mizes spring energy.

The sensitivity of the distribution of primitive
paths to the method used to generate them calls
attention to a problem with these methods in
general. Namely, the primitive path is a concept
rooted in equilibrium polymer dynamics. How-
ever, cooling procedures, with chain ends held
fixed, can disrupt the structure of the melt, with
unknown consequences for the properties of the
primitive paths. Ideally, one would wish to
derive the primitive paths from an equilibrium
process that allows chains to explore their envi-
ronment without the artificial disturbances pro-
duced by holding chain ends or by cooling. In
principle, one can do this by “tube sampling,” in
which one simply bins the locations of the beads
during a run under equilibrium conditions (i.e.,
with no cooling). An early version of this is
already present in the original simulations of
Kremer and Grest,'® in which the contours of a
single chain taken at various times were super-
imposed on each other, revealing a “tube-like”
bundle of configurations, and confirming that
the chain was exploring a tube-like region.
Another example is shown in Figure 5, where
the bead density is color coded, showing that the
“tube” is defined by a continuous monomer den-
sity field, with high monomer density along the
centerline of the tube, and gradually diminish-
ing monomer density toward the edge. This
monomer density field was generated without
cooling, although the chain ends were held fixed
to prevent the chain from escaping the tube dur-
ing the time the bead densities were accumu-
lated.?® However, the conditions applied at the
chain ends will become less and less important
when longer chains are used, since for very long
chains, the “tube” can be thoroughly explored
during a time of order 7., and which can there-
fore be made much smaller than the time 74
required for the chain to escape the tube. The
latter time scales as 14 oc Z°t., where Z is the

number of steps in the primitive path, which
grows large for long chains. Thus, “tube sam-
pling” is potentially a viable way to determine
the properties of the tube under equilibrium
conditions.

One problem, however, is to determine the
primitive path from the bead density map. One
needs a one-dimensional coordinate along the
tube onto which to map the bead density, and
thereby find the line of maximum monomer den-
sity along the tube. Zhou and Larson?® resolved
this issue by using “primitive paths” determined
by a cooling method, and mapping bead coordi-
nates onto this path, allowing bead distances or-
thogonal to this “primitive path” to be deter-
mined and their cross-sectional density to be
determined. This procedure involved starting at
one chain end, and mapping beads to the closest
primitive path location that is also near the
position to which neighboring beads were
mapped. The need to “march” starting at a chain
end arises because the primitive path has loops,
such as that shown in Figure 5. For a bead on
the “inside” of a loop, it is not a priori clear
where on the loop the bead should be mapped,
i.e., where along the primitive path the bead
resides. However, by marching along the primi-
tive path, one can map the bead to a part of the
primitive path that is close to where the neigh-
boring bead was just mapped. In this way, the
continuity of the chain, and of the mapping of
the chain coordinates to the primitive path, can
resolve the ambiguity posed by the presence of
the loops. In future work, it should be possible
to determine whether a procedure such as this
is robust by performing the “march” twice, once
from each end of the chain. The beads should
obviously be mapped to the same, or nearly the
same, positions along the primitive path, no
matter which chain end is used to initiate the
process.

Note also, that since the beads are projected
onto a primitive path that was produced by
“cooling,” the projection procedure inherits the
ambiguity of the cooling process. It should be
possible to reduce or eliminate this uncertainty
by finding the path of maximum bead density,
once the projection onto the initial “primitive
path” has been carried out. This locus of maxi-
mum density then can be taken as a “revised”
primitive path to be used in a second round of
bead projection, this time projecting onto the
“revised” primitive path. Iteration should hope-
fully lead to a converged primitive path that
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does not change on further iterations. It should
be possible to check that the converged path is
insensitive to the starting path by using differ-
ent approximate starting paths, produced for
example, by different cooling methods, or other
methods. Thus, while there is work ahead, it
appears that there is no longer any obviously
insurmountable hurdle to extracting both the
primitive path and the bead density distribution
normal to that primitive path.

While truly converged primitive paths have
not yet been demonstrated, it has already been
shown that the bead density is usually maxi-
mized near the primitive paths determined by a
cooling method—see Figure 5—which indicates
that the these paths are usually already close to
the “correct” ones. (However, the shortest and
longest paths are sensitive to the method used
to generate them, since the width of the primi-
tive path distribution is sensitive to the cooling
method.) A bead density determined from an
admittedly still imperfect projection method has
been obtained by our group?® and used to deter-
mine the “confinement potential” that keeps the
chain within the tube. The confining potential
appears to be very “soft”—i.e., it is roughly a
harmonic potential near the primitive path, but
rolls over into a soft long-range potential at
larger distances from the primitive path. More-
over, the potential becomes even softer at longer
times.?% Evidently, as time progresses, the chain
finds ways of occasionally wandering ever far-
ther from the primitive path. If these results
hold up for longer chains, the conclusion will be
that the tube diameter appropriate at times
around 7, is significantly smaller than the tube
diameter that prevails at longer times when
reptation is active. This tentative conclusion car-
ries practical implications for how tube models
ought to be used that we will touch on briefly in
the next paragraph.

As a final illustration of the power of molecu-
lar dynamics simulations to explore the under-
pinnings of the tube model, we consider briefly
the case of branched polymers. For star poly-
mers in which all arms are of equal length,
relaxation occurs essentially entirely by branch
fluctuations, and the branch point is confined to
a region whose diameter is roughly that of the
tube. However, for an “asymmetric” three-arm
star, for which one of the arms is very much
shorter than the other two, the short arm will
relax very much faster than either of the other
two, and when it relaxes, current “tube theory”
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predicts that the branch point can “hop” roughly
one tube diameter along the tube confining the
two long arms. This “hopping” motion has now
been observed directly in simulations of asym-
metric star polymers;?>’ see Figure 6. Moreover,
the rate at which “hops” occur appears to be
directly correlated with the time required for
the short arm to completely relax its configura-
tion, as predicted by the theory alluded to at the
beginning of this article. In fact, at long time
scales, the simulation results can be modeled by
replacing the short arm by a large frictional
“bead” whose friction is proportional to the
relaxation time of the arm. Thus, at long time
scales, the “backbone” made up of the two arms
constitutes an effectively “linear” polymer con-
taining a “fat” bead whose drag represents the
resistance to motion presented by the short dan-
gling arm. This picture of how branch-point
relaxation controls the long-time motion of a
polymer backbone is consistent with the theory
developed by McLeish et al.®!° and now in
active use to predict the rheology of polymers
with one or more long-chain branches.'*'? More-
over, the observation that the tube is effectively
“thinner” at time scales near 1, than it is at lon-
ger times is also consistent with both the molecu-
lar dynamics simulations of asymmetric stars,
and with experimental rheological data on such
molecules.?® To account for this effect in a phe-
nomenological tube model of polymer rheology,
one would need to allow the tube diameter to
increase somewhat as the time scale increases
from t. to larger times. Thus, such simulations
are not only confirming some assumptions of the
tube model that have long been in use in practi-
cal rheological theories, but are suggesting ways
in which those models might be modified to make
their predictions more accurate. Much more can
now be learned from these simulations, and some
exciting days are surely in store for the field of
entangled polymer dynamics and rheology. Truly
an old “tube” can still be taught new tricks.

The author is grateful to my graduate students Qiang
Zhou and Sachin Shanbhag, whose persistent work
simulating entangled polymer chains is responsible
for my continued activity in this area. Qiang Zhou
also drafted a number of figures in this article, for
which the author is grateful. The author is also grate-
ful to Michael Rubinstein and Michael Lang for their
communications that have helped deepen my under-
standing of primitive paths and how they should be
estimated from simulations.
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