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Abstract 

 
We observed spiders of the family Linyphiidae and genus Pityohyphantes in two different 

microhabitats at the University of Michigan Biological Station near Pellston, Michigan. The 

purpose of this study was to explore the effects of prey distribution on spider foraging behavior in 

the two microhabitats.  The microhabitats were composed of a temperate forest woodland 

understory and a shoreline habitat along Douglas Lake.  Microhabitat richness was measured by 

observing potential prey abundance, number of prey captured on sheet webs, and biomass of 

captured prey in both microhabitats.  The shoreline microhabitat was found to have a higher 

abundance of potential prey of the two areas under study.  However, the woodland understory 

was observed to have a higher average prey capture count and biomass per web.  Unfortunately, 

our results conflicted depending on what criteria was used.  Though we could not definitively say 

which was the richer patch, we did find variability in patch richness.  Despite the variability in 

patch richness, an equal distribution of sheet webs was found between the two microhabitats. 

These results suggest that factors other than prey distribution affect patch selection.  Although 

outside the scope of our study, tradeoffs such as competition or predation  likely result in 

Pityohyphantes spiders preferring a microhabitat with less potential prey.  

 

 

 

Introduction 

 

An organism’s life history strategy strongly affects a variety of its behavioral 

traits.  In short-lived semelparous organisms, sufficient feeding and the ability to 

reproduce determine much of their fitness.  Both feeding and reproduction greatly depend 

on the foraging strategy of the organism.  According to the optimal foraging theory, a 

predator’s foraging strategy depends greatly on the availability of vital resources, such as 

prey.  Furthermore, optimized foraging strategy maximizes net energy gained from prey 

while minimizing energy spent on the search and handling time of prey.  For web-

weaving spiders, the amount of time pursuing prey can be neglected (Cooper & Anderson, 

2006).  Handling time of prey, however, may become an important variable since spiders 

generally take longer to subdue and consume larger prey.  Optimal foraging theory also 

depends upon an organism’s use of generalist or specialist foraging strategies (Beals 

1999).  Most web building spiders are considered generalist foragers that prey on a wide 

range of arthropods.  Typically a spider will consume any type of prey that becomes 

http://www.tiem.utk.edu/~gross/bioed/bealsmodules/optimal.html
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entrapped in the web and that the spider is capable of consuming (Riechert 1999).  This 

makes web location key to a spider’s foraging strategy. 

As a spider creates a web, many factors affect the location of the web.  The non-

uniform distribution of vital resources in the habitat cause patches of varying resource 

richness in the greater habitat (Levin and Paine 1974, Wiens 1976 in Rotenberry 1998).  

Patch selection is a key aspect affecting the relative fitness of spiders in a habitat since an 

increase in prey capture is correlated with a larger body size, which increases fecundity 

(Edwards 1980).  Patch selection depends on both patch richness and the risk of 

perturbation.  In general, an animal will only hunt in a particular patch if it perceives it is 

more profitable than surrounding areas (Daigle 2004).  However, if energy spent on 

obtaining the prey outweighs the energy gained from the prey due to perturbation in one 

patch, a spider will often emigrate to a new patch with lower prey availability if the new 

area has less perturbation in an attempt to minimize energy spent in web maintenance 

(Leclerc 1991).  Other factors that can influence habitat selection include exposure to 

predators, inter- and intraspecific competition and cover (Rotenberry & Wiens, 1998).  

Due to an organism’s inability to accurately assess environmental variables within a 

habitat, it will make safer, risk averse decisions.  Spiders choose habitats with a more 

consistent prey encounter rate over a habitat that alternates between extremes of high and 

low prey densities (Riechert 1999).   

Predation rates on a spider within a patch can aversely affect its occupation or use 

of that particular patch.  Spiders in patches where predators are prevalent have shown 

suboptimal foraging behavior in order to decrease their risk of predation (Leclerc 1991).  

For example, in patches where there are fewer predators, orb web spiders may position 
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themselves at the hub, or middle, of the web when foraging.  In such a patch, the 

decreased response time due to being in the center of the web outweighs the risk of 

predation since there are few predators.  However, in areas where the risk of predation is 

high, the spiders were found to reside at the edges of webs when foraging.  This puts the 

spiders at less risk to predation but also increases response time, causing them to be less 

efficient hunters (Bruce & Herbstein, 2006).  Although we are studying sheet web 

weavers, a different family of spiders, we noticed during our observations in the field that 

Pityohyphantes exhibited both patterns of positioning on their webs, suggesting they may 

respond to predation pressure in a similar manner.  

As population density increases in a given habitat, foraging efficiency is likely to 

decrease due to increased intraspecific competition with more individuals vying for the 

same resources.  As a population climbs towards a habitat’s carrying capacity individuals 

are forced to occupy suboptimal microhabitats since more optimal microhabitats have 

already been occupied (Svardson 1949).  In our study, although one microhabitat may be 

more profitable, the spider population still occupies a larger range due to intraspecific 

competition. 

Our study looks at the relative success rate of prey capture within the subfamily 

Linyphiinae and genus Pityohyphantes in two different microhabitats of northern 

Michigan. The study attempts to understand the relationship between potential prey 

availability, prey capture count, and captured prey biomass across two microhabitats.  For 

the purpose of our study we designate the entire woodland under study as the habitat.  

The shoreline and woodland understory are defined as two microhabitats that could 

potentially be considered two different patches if a difference in resources, such as prey 
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availability, is found.  If one microhabitat has a higher abundance of potential prey, a 

higher prey capture count, and a higher prey biomass we assume that this patch is a 

higher quality area and thus a more desirable location for Pityohyphantes to build their 

webs. Accordingly, we ask:  

 

1. Does the relative abundance of prey differ in the two microhabitats 

under observation? 

2. Does the relative prey capture count in webs differ in the two 

microhabitats under observation? 

3. Does the relative captured prey biomass in webs differ in the two 

microhabitats under observation? 

4. If a difference in prey abundance, prey capture count, or captured prey 

biomass is found between the two microhabitats, are more spiders 

foraging in the richer patch? 

Materials and Methods 

 

Experimental Organism 

 Sheet web spiders of the subfamily Linyphiinae and the genus Pityohyphantes, 

build nearly horizontal webs to catch pray.  The webs are composed of a central 

horizontal sheet that includes support strands of silk extending to the surrounding 

vegetation in order to keep the web intact.  Like others in the Linyphiinae subfamily, 

spiders in the Pityohyphantes genus are generalist predators that utilize a sit-and-wait 

hunting strategy.  The spider creates a web to catch prey, and once a prey is caught, the 

spider feels the vibrations of the struggling insect.  The spider then injects the insect with 

venom and/or wraps the prey in silk to ensure capture (Encyclopedia of Insects 1071).  

Though identification of species was not carried out due to logistical constraints, the 

spiders observed in our study were generally brown in color, approximately two 

centimeters in length, and had a large, elongated abdomen.  The selected spiders perched 

on juvenile tree branches or other understory plant matter such as fallen trees.  In the 
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inland microhabitat, the spiders notably constructed their webs on young conifers such as 

white pine trees, while the shoreline subset constructed their webs on hanging vines and 

on dead trees, both standing and fallen. 

 

The Effect of Microhabitat on Potential Prey Abundance 

To determine the effect of microhabitat on available prey, we set up five 

transparencies covered with adhesive Tanglefoot in each microhabitat.  These “sticky 

papers” were hanged from trees located along each transect and spaced twenty meters 

apart.  They were used to catch aerial insects from each of the microhabitats to measure 

potential prey abundance.  At the end of a two week time period, we collected the sticky 

papers and counted the total amount of insects caught in each location (Figure 1).   

To statistically analyze the data from both locations, we carried out a t-test on the 

program “SPSS” to compare the mean prey count caught by sticky paper in both 

microhabitats.  

 

The Effect of Microhabitat on Average Prey Capture Count 

 Since abundance alone indicates only what is potentially available to the spiders, 

we measured the actual prey capture count to obtain the number of prey the web catches.  

To determine if there is a difference in prey capture count in the wood and shoreline 

microhabitats, we set up a 100 meter transect divided into ten meter intervals along 

Grapevine Trail on the University of Michigan Biological Station property.  We 

measured the distance from the center of the path to the Douglas Lake shoreline at each 

ten meter interval.  That measurement was then used to measure an equidistant line from 
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the center of the path to the inland woods.  Webs were found within a 2x2 meter box at 

corresponding points along the shoreline and in the woodland (Figure 2).  The chosen 

webs were each at least two meters apart to ensure independence from each other.  Also, 

for each web chosen we noted the approximate web surface area.  Eleven webs were 

marked and observed in the woods.  Seven webs were marked and observed along the 

shoreline (Figure 3).  Only webs 0.25 meters to 2.00 meters above the ground were 

sampled to exclude other families of spiders such as of Tunnel-web weavers, which build 

similar webs in leaf litter.   

Each spider was removed from its respective web in order to remove confounding 

variables caused by behavioral aspects of the spider.  For example, the spider may eat 

and/or discard what was caught in the web or alter the web quality. Removing the spider 

eliminates many variables and assumptions that would otherwise alter our data.  Our web 

observations took place over a four day period.  We returned to the webs every twenty 

four hours at approximately 16:00 to count the number of prey caught in each web.    

To statistically analyze the data from both locations, we carried out a t-test on the 

program “SPSS” to compare the average capture count caught by both inland and shore 

webs.   

 

The Effect of Microhabitat on Captured Prey Biomass 

Another measure of patch richness is the biomass of the captured prey obtained 

from each web sample.  The biomass indicates how much energy the spiders could obtain.  

At the end of our four day study period, we removed the total prey caught in each web 

using tweezers. Otherwise, prey removal after each twenty-four hour period would cause 
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damage to the web altering our data.  We massed the prey from each web using a Mettler 

AE-240 microscale. 

To statistically analyze the data from both locations, we carried out a t-test on the 

program “SPSS” to compare the captured prey mean biomass caught by both inland and 

shore webs.   

 

Relative Abundance of Spiders 

In our study, resource availability in the two microhabitats is indicated by prey 

abundance, captured prey biomass, and prey capture count.  To determine if there is a 

relationship between resource availability and the abundance of sheet web weavers, we 

counted the number of sheet webs in both microhabitats.  On the shoreline, we counted 

webs falling within two meters from the shoreline along the 100 meter transect.  Along 

the woodland transect, we counted all sheet webs along the 100 meter transect limiting 

webs found within one meter on both sides of the transect.  Abundance of spiders is 

indicated by the number of webs found in each microhabitat.  In areas with a larger 

abundance of sheet webs, it is expected that the abundance of sheet web weavers should 

also be greater.  

 To statistically analyze the data, we carried out a X
2
 test to compare the relative 

abundance of webs found in both microhabitats. 
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Results 

 

 Before analyzing data relating to any of our hypotheses, we first considered the 

consistency among each microhabitat.  For seven corresponding webs on the shoreline 

and the woodland, we used an ANOVA and Post Hoc test comparing evenness of 

microhabitats based on prey biomass (p = 0.839) (Figure 4).  This analysis suggests that 

the two microhabitats are consistent to continue our study. 

 

Potential Prey Abundance 

 At the end of our four day study, the sticky papers were collected.  The sticky 

paper placed at the sixty meter location along the shoreline could not be found after the 

two-week time period.  Therefore, at the sixty meter location in the woods, the 

corresponding sticky paper data was not included in the analysis.  A total of 825 insects 

were counted in the shore microhabitat; a total of 455 insects were counted in the 

woodland microhabitat.  Our t-test indicates a statistically significant difference in 

potential prey abundance between the two microhabitats.  The shoreline microhabitat has 

a significantly higher potential prey abundance (Levene’s test, equal variances assumed 

sig. = 0.962, p = 0.043) (Figure 5). 

 

Average Prey Capture Counts 

For the eighteen sampled webs, we compared the average prey capture counts 

between each microhabitat.  Equal variance of average prey capture counts in the two 

microhabitats can be assumed (Levene’s test, p = 0.074).  It was found that the mean prey 

capture count over the four days was significantly different between the two 
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microhabitats, and that the webs in the woodland understory captured a statistically larger 

prey count (t-test, p = 0.032) (Figure 6). 

 

Captured Prey Biomass 

 For the eighteen sampled webs, we compared the mean biomass of the captured 

prey between each microhabitat.  Equal variance of biomass captured per web in the two 

microhabitats cannot be assumed (Levene’s test, p = 0.002).  It was found that the mean 

biomass captured per web over the four days was significantly different between the two 

microhabitats, and that the webs in the woodland understory captured a greater biomass 

of prey (t-test, p = 0.004).  On average, woodland webs captured an average of 0.0016 

grams of prey while shoreline webs captured only an average of 0.000229 grams of prey 

(Figure 7). 

 

Average Prey Capture Counts vs. Web Surface Area 

We graphed the variation in prey capture count in each microhabitat for each day 

of the study (Figure 8 and 9).  In general, we found more variation in the woodland.  The 

average prey capture counts were found to be greater in the woodland microhabitat.  In 

the woodland microhabitat, as the web surface area increases, the average prey capture 

count increases as well.  However, in the shoreline microhabitat, as the web surface 

increases, the average prey count decreases.  We ran a regression test to show correlation 

between average number of prey capture and web surface area for each microhabitat.  

The woodland webs’ regression has a linear R
2
 value of 0.213, and the shoreline webs’ 

regression has a linear R
2
 value of 0.033 (Figure 10).  The higher R

2
 value shows more 
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correlation between webs.  P-values for woodland and shoreline are 0.696 and 0.153 

respectively, showing no significant relationship between average capture count and web 

size in both microhabitats.   

 

Captured Prey Biomass vs. Web Surface Area  

A regression was used to evaluate captured prey biomass versus web surface area 

for both microhabitats.  The woodland webs’ regression has a linear R
2 
value of 0.102, 

and the shoreline webs’ regression has a linear R
2 
value of 0.021 (Figure 11).  The higher 

R
2 
value shows more correlation between webs.  P-values for woodland and shoreline are 

0.338 and 0.757 respectively, showing no significant relationship between captured prey 

biomass and web size in both microhabitats.   

 

Spider-Web Abundance in the Two Microhabitats 

 Fifty-four webs were found in the shoreline microhabitat; seventy webs were 

found in the woodland understory microhabitat.  We performed a X
2
 test to determine the 

significance of web abundance in both microhabitats.  The X
2
 value equals 2.064 

resulting in a p-value greater than 0.05.  This suggests no significant difference in web 

abundance between the two microhabitats. 

 

Reinhabited Webs vs. Vacant Webs 

 Throughout our study, we noticed new spiders reinhabiting the vacant webs which 

we had previously removed the initial spider.  Nine out of the total eighteen webs were 

reinhabited by a new spider at some point in our study.  To determine if these new spiders 
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had any effect on prey capture counts or prey biomass, we performed t-tests comparing 

the means of reinhabited webs and vacant webs.  The t-test comparing average prey 

capture counts suggests no significant difference (p = 0.212) (Figure 12).  The t-test 

comparing means of prey biomass suggests no significant difference  

(p = 0.390) (Figure 13). 
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Discussion 

 At the outset of our study we expected variability in resource richness between 

the shoreline and woodland microhabitats.  Specifically, we expected the shoreline to be 

a richer patch based on all three criteria: 1) potential prey abundance 2) captured prey 

count on the webs 3) captured prey biomass.  As a result, we expected the spiders to 

prefer the shoreline patch. 

Depending on which criteria was used, however, our results indicated an 

inconsistent ranking of the microhabitats’ relative resource richness.  All results point to a 

variability in patch richness, but we cannot definitively rank one patch richer than the 

other based on a single criterion.  If we consider potential prey abundance more reliable 

criteria for patch richness, we conclude that the shoreline is a richer patch since sticky 

paper along the shoreline caught a significantly higher amount of potential prey than the 

woodland sticky paper.  Conversely, if captured prey count and biomass were considered 

more accurate indicators of patch richness, we would conclude that the woodland is the 

richer patch since the woodland webs caught a greater number and prey biomass. 

Due to logistical constraints, none of the criteria used in the study was perfectly 

ideal.  Potential prey abundance may not have been an accurate indicator of patch 

richness for several reasons.  By its very nature, a simple prey count from the sticky 

paper will not take into account size or mass of prey, which are closer estimates of energy 

gained from prey.  Moreover, sticky paper may catch prey that webs cannot, or vice versa, 

so prey count from sticky paper may not accurately estimate what the webs catch.  On the 

other hand, a count and biomass measure of prey caught in the webs may not have been 

ideal criteria for patch richness.  This could be due to the fact that without the spiders, the 
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webs could have caught a non-representative amount of prey.  Also, without the spiders 

present in our study, prey may have fallen off of the web due to wind or other abiotic 

factors that normally would have been secured by the spider.  In our study, we did not 

weigh any one criterion greater than the other so we are unable to definitively say which 

was the richer patch.  Based on our group’s observations, we think that prey biomass 

would be the most sufficient criteria for calculating patch richness.  We chose this option 

because the prey biomass was collected directly off the web. There would be no 

discrepancy in what could be caught and what was actually caught.  Future studies would 

profit from a more comprehensive measure of patch richness in order to avoid such 

conflicting results. 

Assuming that the web count is an accurate representation of the number of 

spiders in each patch, spiders did not show significant preference to the richer patch.  In 

any case, an equal distribution of spiders could be due to several reasons.  First, it could 

be a result of intraspecific competition.  As the richer patch approached carrying capacity, 

the logistic population growth curve explains that crowding stresses on limiting resources 

such as available prey and space for webs would cause stabilized population growth 

(Kingsland 1982).  Furthermore, the marginal value theorem of the Optimal Foraging 

Theory explains that a forager will only remain in a patch as long as it is more profitable 

for that organism to remain than to emigrate to another patch.  Profitability is based on 

reward gained from prey versus required search, and handling time for that particular 

prey (MacArthur and Pianka 1966).  As the richer patch became more crowded, 

intraspecific competition may decrease patch profitability resulting in forager emigration 

from the richer patch to the less rich patch in order to avoid crowding factors.   
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Second, density-dependent predation on the spiders may also explain the trend for 

equal spider distribution in the two patches, despite variability in patch richness.  As the 

spider population increased in the richer patch, predators of spiders such as birds, 

amphibians or other animals may have found it more profitable to prey on spiders in this 

patch (Sih 1984).  Consequentially, increased predation would regulate spider population 

in the richer patch and would also result in increased emigration to a new, more profitable 

patch. 

Assumptions & Errors 

Despite our best efforts to limit confounding variables, there were obviously 

shortcomings to our experimental design.  In order to proceed with our experiment, we 

had to make several key assumptions involving both our organism under study and our 

experimental approach.  When collecting and counting prey caught in the webs, we 

assumed that all prey in the web would be consumed if the spider was present.  This 

ignores both the spider’s ability to subdue prey and also some assumptions of Optimal 

Foraging Theory, which indicates an organism will eat only the prey that best maximize 

its energy obtained.  Unfortunately, it was not possible for us to explore the prey 

preference of Pityohyphantes over our study period due to the intense observation periods 

that this would entail.  When sampling the distribution of webs in both of our study 

patches we had to assume that each web tallied was constructed by one spider and was 

not an old web that was no longer in use.  However, we did not include damaged webs 

due to the fact that spiders will either ingest all or some of the silk used in the web when 

abandoning it (Encyclopedia of Insects 2003).  Furthermore, we were not able to locate 

all spiders on webs tallied and thus were forced to assume that all of the sheet webs were 
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constructed by our study organism, Pityohyphantes.  Lastly, due to our inability to 

accurately identify a particular species of Pityohyphantes, we assumed that all species 

within that genus have similar foraging strategies.  

Some errors added constraints to our study.  Some of these errors were simply 

outside the scope of our study and can be improved on in future studies.  A larger study 

size would have been helpful in establishing stronger trends and allowed us to report our 

conclusion with more confidence.  One of the constraints that restricted us to such a small 

sample size was the difficulty of locating spiders to remove from webs, particularly in the 

shoreline patch.  As previously noted we were only able to locate 7 webs with spiders on 

them in the shoreline patch compared to 11 webs in the woodland patch.  Pityohyphantes 

spent less time poised under its web and concealed itself more along the shoreline.  

Obviously, this is one of the problems that was outside of our control due to the 

correlative approach of our study.  Nonetheless, this is a possible indicator that spiders 

alter their behavior in the face of biotic or abiotic stresses.  Another factor that we had 

difficulty accounting for was the effectiveness of a web without the spider.  It is very 

likely that the capture rate of webs decreased in both patches since the spider was not 

present to subdue prey attempting to escape.  One study, previously mentioned, explains 

the strong effect that the spider has on prey capture.  Even the spider’s position on the 

web, whether it is poised on the fringe or hub of the web, affects foraging efficiency 

(Bruce & Herbstein). 

Future research should consider our study’s constraints when carrying out 

experiments to learn more about the topic of foraging behavior in sheet web spiders.  As 

our experiment progressed and our knowledge of our area of study increased we began to 
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notice more areas of study that were outside the scope of our study but that were 

important to better understanding optimal foraging for Pityohyphantes spiders and other 

organisms.  Future studies should consider several issues.  First, manipulative 

experiments should be used to further consider the effect of predation on a spider’s 

decision to inhabit patches of different profitability. Previous research has explored this 

relationship finding evidence that foragers consistently trade food for safety when 

predation and foraging conflict within a patch (Holbrook & Schmitt 1988, Sih 1980).  

However, this study does not explore the question of the effects of predation on patch 

selection and, in fact, many experiments involving predation and foraging fail to address 

this issue.  This raises the question of what size patch can be considered relevant for such 

a small organism, which would require tests on a spider’s dispersal abilities. Ultimately, 

patch selection is based on many factors, only a fraction of which were included in the 

scope of our study.  
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Figure 4. 
 ANOVA 
 
Biomass  

  
Sum of 

Squares df Mean Square F Sig. 

Between Groups .000 6 .000 .429 .839 

Within Groups .000 7 .000     

Total .000 13       

 
 

 

Figure 5. 

 Independent Samples Test 
 
 
 
 

Figure 6. 

 

 

 

 
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  F Sig. t df 
Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 

Difference 

                Lower Upper 

Sticky Paper Equal variances 
assumed 

.002 .962 -2.562 6 .043 -92.500 36.108 -180.853 -4.147 

  Equal variances 
not assumed 

    -2.562 5.915 .043 -92.500 36.108 -181.162 -3.838 

* 

p value = 0.032 
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Figure 7. 

 

 

 

 
 

Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average Captured Prey Biomass 

Comparison 

* 

p value = 0.004 

Wood: Prey Capture over Time
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Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. 

 

 

 

 
 

Shore: Prey Capture over Time
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Figure 11. 

 

 

 

 
 

 

 

Figure 12.  

 

 
 Independent Samples Test 
 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  F Sig. t df 
Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 

Difference 

                Lower Upper 

Average 
capture 

Equal 
variances 
assumed 

1.156 .299 1.303 15 .212 1.28125 .98334 -.81468 3.37718 

  Equal 
variances not 
assumed 

    1.337 13.764 .203 1.28125 .95807 -.77690 3.33940 

 

 

 

Regression:  

Captured Prey Biomass vs. Web Size 
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Figure 13. 

 
 Independent Samples Test 
 

  

Levene's Test for 
Equality of Variances t-test for Equality of Means 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 

Difference 

Lower Upper 

Prey Biomass Equal variances 
assumed 

1.352 .262 -.884 16 .390 -.0004888 .00055332 -.001661 .0006841 

Equal variances 
not assumed 

    -.884 15.317 .391 -.0004888 .00055332 -.001666 .0006883 

 

 


