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ABSTRACT

In recent years, there has been a proliferation of wide-field sky surveys to search for a variety of transient objects.
Using relatively short focal lengths, the optics of these systems produce undersampled stellar images often marred by
a variety of aberrations. As participants in such activities, we have developed a new algorithm for image subtraction
that no longer requires high-quality reference images for comparison. The computational efficiency is comparable
with similar procedures currently in use. The general technique is cross-convolution: two convolution kernels are
generated to make a test image and a reference image separately transform to match as closely as possible. In analogy
to the optimization technique for generating smoothing splines, the inclusion of an rms width penalty term constrains
the diffusion of stellar images. In addition, by evaluating the convolution kernels on uniformly spaced subimages
across the total area, these routines can accommodate point-spread functions that vary considerably across the focal
plane.

Subject headinggs: methods: statistical — techniques: photometric

1. INTRODUCTION

The advent of low-noise megapixel electronic image sensors,
cheap fast computers, and terabyte data storage systems has en-
abled searches for rare astrophysical phenomena that would
otherwise be effectively undetectable. Examples include the dis-
coveries of MACHOs, transits of extrasolar planets, and vastly
greater numbers of supernovae. Common to all of these efforts is
a need to repeatedly image large portions of the sky to uncover
rare and subtle changes of brightness. This forces the observer to
contend with images taken under less than ideal conditions, such
as poor weather and crowded star fields. To solve the problem of
comparing images taken with different seeing conditions, a num-
ber of research groups have developed image-subtraction algo-
rithms which compensate for image blurring effects prior to
image differencing. In this paper, we describe a variation of this
technique which treats pairs of images in a symmetric fashion,
reducing the requirements of first obtaining an ideal reference
image. The software code is relatively simple and has been made
freely available.

Following our initial discovery of prompt optical radiation from
a gamma-ray burst in 1999, our ROTSE collaboration set out to
construct a set of four identical wide-field telescopes (Akerlof
et al. 2003) to explore these phenomena more deeply. The result-
ing instruments, called ROTSE-III, were installed in Australia,
Texas,Namibia, andTurkey in 2003 and 2004.By explicitly choos-
ing a fast (f /1.9) optical system and short focal length (850 mm),
we provided the option to search for possible orphan GRB after-
glows without unduly compromising the potential for mapping
GRB optical light curves at early times. Although we always
intended to use these instruments for generic astrophysical op-
tical transient searches, it was recognized that the plate scale
(3.300 per pixel) was too coarse for easy identification of a super-
nova embedded in a normal galaxy.

This challenge was addressed by Robert Quimby when he
became a graduate student at the University of Texas. As an un-
dergraduate at the University of California at Berkeley, he had
worked extensively with the Supernova Cosmology Project (SCP)

and was quite familiar with the SN discovery process. Quimby
adapted the SCP image-subtraction code (Perlmutter et al. 1999)
for use as the basic tool for finding 30 SNe over a period of 2 years
from observations with the University of Texas 30% allocation
of ROTSE-IIIb time at the McDonald Observatory. Among those
discoveries are SN 2005ap (Quimby et al. 2007) and SN 2006gy
(Ofek et al. 2007; Smith et al. 2007), which appear to be the in-
trinsically brightest SNe ever identified.
In view of the evident success of the Texas Supernova Search

(TSS; Quimby 2006), our group at the University of Michigan
probed the image-subtraction problem with the goal of applying
this to the considerably more extensive image data available to
the entire suite of ROTSE-III telescopes. The original hope of
using the SCP code was abandoned following the realization that
the programwould not bemade freely available.We attempted to
adopt the ISIS image-subtraction package,2 but were discouraged
by the initial results. The significant undersampling of ROTSE-III
stellar images, coupled with asymmetric point-spread functions
across the image plane, created a severe challenge for making
clean subtractions. These issues are not satisfactorily addressed
by the algorithms described byAlard&Lupton (1998) andAlard
(2000) for two reasons: (1) we do not always have the luxury of
a substantially higher quality reference image, and (2) the point-
spread functions (PSFs) are often approximately elliptical, with
the axes oriented at any angle in the image plane. For a variety of
reasons, the ROTSE-III PSFs can vary with temperature and tele-
scope orientation. Thus, the possibility that one can simply con-
volve a new image to an ideal reference image is not always
viable. With this in mind, we sought to develop a more symmet-
ric algorithm that would be robust enough to handle less pristine
observations.We should emphasize that the aim of this project is
primarily for the reliable identification of transients in a very
large database, not precision photometry.

2. MATHEMATICAL METHOD

The basic technique for image subtraction presented by Alard
and Lupton depends on finding a suitable PSF smearing kernel,
K(u; v), that when convoluted with the reference image, R(x; y),
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generates a transformed image, R�(x; y), that can be compared
on a pixel-by-pixel basis with a new test image of lesser quality,
T (x; y):

R(x; y)� K(u; v) ¼ R�(x; y): ð1Þ

The kernel, K(u; v), is constructed by a linear superposition of
basis functions of the form

fn;p;q(u; v) ¼ upvqe�(u 2þv 2)=2�2n : ð2Þ

Alard and Lupton recommend a threefold ensemble of terms
with �n values spanning a ninefold range. These functions are
poor choices to synthesize an elliptical PSF at an arbitrary angle
with respect to the imager sensor axes, although they will be sat-
isfactory for PSFs with close to azimuthal symmetry. The specific
values for �n, p, and qmust be determined by ad hoc comparisons
with the characteristic PSFs associated with the particular in-
strument in use. The set of amplitudes for the basis functions is
computed by the least-squares technique to minimize the pixel-
by-pixel differences between R� and T.

From this starting point, we decided to symmetrize the Alard-
Lupton procedure by creating two convolution operators, so that

R(x; y)� KR(u; v) � T (x; y)� KT (u; v): ð3Þ

In the limit that the reference image is substantially better than
the test image, the KR operator smears R with the point-spread
function characteristic of T, while KT will be essentially equal to
the identity operator, so that its effect on T will be negligible.
Under these conditions, the computation becomes functionally
equivalent to the procedure adopted by Alard and Lupton. How-
ever, in general, the addition of a second convolution operator
injects new mathematical degrees of freedom that must be con-
strained. The most obvious is that KR and KT can be multiplied
by an arbitrary constant without violating image convolution
equality. This can be conveniently resolved by demanding that
one or both kernels be flux-conserving, i.e.,

X
K(u; v) ¼ 1: ð4Þ

The second, more complex, problem arises from the diffusion
of a stellar image if KR and KT approximate broad Gaussian
distributions. The convoluted image equality will be maintained,
but the signal-to-noise ratio of the subtracted image will drastic-
ally diminish. The solution to this was found by analogy to a
similar problem in the application of smoothing splines to draw-
ing curves through data with errors. In the latter case, one could
trivially create a spline curve that ran exactly through each and
every data point (as long as the abscissas are distinct). Such a
curve would appear very wiggly and would poorly represent the
trend of the data. The solution to this problem is to add a curva-
ture penalty term to the least-squares residuals, so that a trade-off
is reached between adequately fitting the data and inserting un-
necessarily complex behavior into the smoothed interpolation.
The coefficient that scales the curvature term is a measure of the
stiffness of the spline. There exists an elegantmethod called cross-
validation that determines the stiffness parameter from the stan-
dard deviation errors for each data point.

For image subtraction, the degradation of the signal-to-noise
ratio is proportional to the effective number of pixels that are
summed by the convolution kernel. Since each pixel has an asso-
ciated variance, �2

pix, the variance for a signal diffused over Npix

pixels will be Npix�
2
pix. Assuming Gaussian distributions, we can

estimate Npix from the width of the effective stellar point-spread
function, Npix � 4�(�2

PSF þ �2
K ), where �PSF is the basic stellar

PSF width (in pixels) and �K is the diffusive width of the con-
volution, K. If �2

K is evaluated by the normal formula, �2
K ¼P

Kir
2
i , whereKi are the kernel element amplitudes, the sum can

be deceptively small when the values for Ki alternate in sign.
Noting that hKii / 1/�2

K , the value for �
2
K can be better estimated

by (1/2�)
P

K 2
i r

4
i , which equally penalizes both positive and

negative contributions to the kernel elements. Although the scal-
ing behavior of the penalty coefficient is understood in terms of
the image size, �2

pix, and �
2
PSF, we have not investigated whether

there is an elegant way to evaluate this quantity analogously to the
cross-validation technique for splines.

3. COMPUTATIONAL METHODS

The image preprocessing that we require is similar to that de-
scribed by Alard and Lupton. Flat-fielded images are processed
by SExtractor (Bertin &Arnouts 1996) to create object lists with
precise stellar coordinates. The IDL routine3 POLYWARP is used
to warp the new test image to overlay stellar objects in the ref-
erence image as closely as possible. Avalid pixelmap is generated
to avoid pixels close to the image perimeter and screen against
saturated values, etc. At this point, the fundamental image-
subtraction code is invoked as an IDL routine which first per-
forms image flux normalization to equalize the mean values of
the two images under comparison.

The most basic choice that the user must make is the repre-
sentation of the convolution kernels. We have restricted them to
n ; n arrays, with n odd. This permits a simple representation for
the convolution identity operator: K½n=2�;½n=2� ¼ 1, while all other
elements of Ki; j are zero. For the ROTSE-III images, n ¼ 9 ap-
pears to provide more than adequate coverage of stellar point-
spread functions under the worst conditions.

The values for the convolution kernel elements are derived
from the difference image:

D(x; y) ¼ fR(x; y)� KR(u; v)g � fT (x; y)� KT (u; v)g: ð5Þ

Invoking the criterion that
P

D(x; y)2 should be a minimum
subject to the requirements for KR and KT generates 2(n2 � 1)
linear equations via the usual least-squares procedure to solve for
the independent coefficients for KR(u; v) and KT (u; v) after im-
posing the kernel unitarity constraints. As described earlier, these
equations will not provide unique solutions for KR and KT , be-
cause the effective width of the two convolution kernels can still
be radially scaled without substantially affecting the difference
image, D. Thus, the quantity to be minimized must include a
penalty term for radially diffusing the convoluted images any fur-
ther than necessary. Following from earlier remarks, this figure-
of-merit function can be represented as:

Q ¼
X

D(x; y)2

þ k
X

(u2 þ v2)2 KR(u; v)
2 þ KT (u; v)

2
� �

; ð6Þ

where k is a constant selected to balance the contributions of the
two competing error terms. From the discussion given above, the
value for k should scale as

k ¼ 2�Nimage

�2
R þ �2

T

�2
PSF

k0; ð7Þ

3 ITT Visual Information Solutions, ITT Industries, Inc.
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whereNimage is the total number of pixels in the image, �2
R and �

2
T

are the pixel amplitude variances, �PSF is the characteristic stellar
PSF width, and k0 is a constant of order unity.

With two 9 ; 9 convolution kernels, the number of free param-
eters is 160, and the size of the regression matrix becomes prob-
lematic. The main concern is that if the images are essentially
featureless (i.e., no stars), the matrix elements become indistin-
guishable and the inverse matrix will be singular. To avoid these
effects, as well as various other computational issues, a binary
valued mask array is created to eliminate sampling around the
image perimeter, saturated pixels, and all featureless areas not
associated with stellar objects as determined by SExtractor. This
approach was quite successful: the degree of singularity of the
regression matrix was determined during the inversion process
using the IDL singular value decomposition routines SVDC and
SVSOL, codes derived fromNumerical Recipes in C (Press et al.
1992).

For our ROTSE project, computational efficiency is critical,
because we typically acquire 400 images per night with each
telescope, and these must be reduced in situ comfortably within
24 hr. It was easily verified that most of the image-subtraction
calculations were devoted to computing the convolution ker-
nels regression matrix described above. Examination of the two-
dimensional structure of the kernels showed that the amplitudes
near the edges of the 9 ; 9 arrays were always small, and sug-
gested that the representation could be significantly reduced from
81 values to 25 by assuming a mapping from a reduced number
of wavelet functions. Thus, each convolution kernel was repre-
sented by a linear superposition,

K(u; v) ¼
X

AiBi(u; v);

with the basis functions, Bi, chosen as discrete approximations
to bicubic spline functions with characteristic widths of 1, 3

2
, and

2 pixels, centered as shown in Figure 1. Using this technique
shrank the regression matrix from 160 ; 160 to 48 ; 48, with a

consequent reduction in processing time of about an order of
magnitude. This brought the computation throughput to values
similar to what Robert Quimby had obtained using the SCP code
as adapted for his Texas Supernova Search.
Most of the image subtraction code was written in IDL, with

the exception of the evaluation of the regression matrix. Since
this is the core of the computational burden and IDL is not par-
ticularly efficient in handling the necessary array indexing, this
portion was coded in C and linked to the rest of the IDL programs
using the IDL standard external calling interface. A crucial detail,
particularly important for the ROTSE-III telescopes, is the varia-
tion of the stellar PSF across the image plane. To accommodate
this problem, each 2045 ; 2049 imagewas subdivided into 36 sub-
images of roughly equal size. The set of 50 kernel amplitude
coefficients was calculated, one by one, for each of these sub-
images. Cross-convolved images were obtained by bilinear inter-
polation for every pixel using the four nearest neighbor coefficient
sets. The unitarity of the convolution kernels is guaranteed by the
linearity of the interpolation method with respect to the gridded
coefficient reference values. Although this sounds somewhat com-
plicated, the calculation was extremely efficient.
Another significant concern is the estimation of the back-

ground sky intensity. Initially, we relied on SExtractor to remove
this background before subtraction. However, when applying
our code to images containing large galaxies such as M31 and
M33, we realized that these backgrounds are poorly estimated
around the cores of bright galaxies. The solution we adopted
only removes the background difference between the two images
instead of the individual background for each image separately.
After the images are scaled so that stellar fluxes match, a sky
difference map is generated by first performing pixel by pixel
subtraction. The low-frequency spatial variation of this differ-
ence image is obtained by a process similar to the one used by
SExtractor. The difference image is divided into 32 ; 32 pixel
subimages and median pixel values are recursively evaluated,
subject to the constraint that pixels with 3 � excursions from the
median are ignored. Saturated pixels are also excluded from the
median computation. The resultant slowly varying background
is subtracted from one of the input images before invoking the
cross-convolution algorithm. The remaining common nonzero
background does not affect the estimation of the convolution
kernels, and the final subtracted image will be background-free.
A comparison of the results of the cross-convolution and the

single convolution algorithms is shown in Figure 2. In the lim-
iting case where the PSFs of the reference image are azimuthally
symmetric, the two methods should produce rather similar re-
sults. However, when that condition is not satisfied, the cross-
convolution method is more appropriate.
For anyone wishing to employ the cross-convolution technique

described in this paper, the source code can be downloaded from
the University of Michigan Deep Blue institutional repository.4

4. OPERATIONAL EXPERIENCE

Subtraction of a 2045 ; 2049 ROTSE image from a reference
frame using the method described above takes approximately
4 minutes with a 2.0 GHz personal computer. If the same refer-
ence image is used multiple times, it needs to be convolved with
the base kernels just once, saving computational time. Subtractions
of three typical ROTSE images from the same reference frame
takes�10 minutes on the same processor. It should be noted that
the memory allocation for the process, mainly for storing the

Fig. 1.—Diagram of the location of the 25 bicubic B-splines used to construct
the convolution kernels. The 9 circles, 8 squares, and 8 hexagons mark the cen-
ters of the B-spline maxima with widths of 1, 3

2
, and 2 pixels, respectively. The

dashed lines indicate the 9 ; 9 grid of the underlying convolution kernels.

4 Available at http:// hdl.handle.net /2027.42/57484.
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base kernel convoluted images, scales with the size of the image
and number of kernel basis sets. For our choice of 25 kernel base
vectors and a 2045 ; 2049 image size,�1GBmemory is required.
This is not a serious handicap for a modern desktop computer.

Since August 2007, a supernova search pipeline using this
subtraction code has been running on images taken by the
ROTSE-IIIb telescope. Selected fields with nearby rich clusters
and a high density of known galaxies are monitored on a daily
basis, weather permitting, to a typical limiting magnitude of
18.5. For each field, two sets of four 60 s exposures (20 s for
fields with bright target galaxies) are taken with a 30 minute ca-
dence. Following the method developed by the Texas Supernova
Search, the images for each four-exposure epoch are co-added,
as are the total eight images for the night. All three co-additions
are subtracted by the same reference image. The difference im-
ages are processed through SExtractor to find residual objects.
To reject false detections due to bad pixels, cosmic rays, aster-
oids, and subtraction noise, further filtering is applied. The signal-

to-noise ratio of a candidate has to be above 5 in the nightly
eightfold sum and 2.5 for the sum of a single epoch. The posi-
tions of a candidate in three subtractions must match to within
1 pixel for detections above 15 S/N and 1.5 pixels for those with
S/N below 15. The FWHM of the candidate has to lie within the
range of 1 pixel and twice themedian FWHM for stars in the con-
volved reference image. Finally, minimum flux change cuts are
applied, with a lower threshold for detections embedded in known
galaxies and higher for those corresponding to stellar objects.
This later criterion is intended to suppress variable stars.

In the 5 month period to date, the pipeline has identified all 13
reported supernovae that lie within our searched fields. One of
these initially escaped, but was detected following modification
of the mask size to provide better performance during bad see-
ing. Also due to our early inexperience, two of these SNe in rela-
tively bright galaxies were initially missed during hand scanning.
In addition, the pipeline detected 7 novae in the fields of M31
andM33. Twonovae rather close to the center of M31weremissed

Fig. 2.—Comparison of image subtractions using the cross-convolution method described in this paper and the single convolution method described by Alard and
Lupton and implemented in the ISIS code. The initial images were obtained by the ROTSE-IIIb telescope at McDonald Observatory. Shown here are 260 ; 260 pixel
subframes centered on � ¼ 16h50m02:21s, � ¼ þ23�46032:8800, covering a field of 0:235� ; 0:235�. To demonstrate the results, three artificial ‘‘variable’’ stars were
added to the test image (a) and the reference image (b) with PSFs appropriately matched to their respective fields. The locations are shown by black arrows. The sub-
tracted image obtained by cross-convolution is depicted in (c), and the Alard-Lupton results are shown in (d ). The bright star near the lower right corner of the images
has been replaced with a uniform gray level, since neither subtraction technique can extract useful information from saturated pixels.
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before the background evaluation problem was addressed as
described in x 3. In terms of transient recovery efficiency, both
real-world and limited Monte Carlo comparisons show that our
subtraction code is comparable to themodified version of the Super-
nova Cosmology Project search code employed by the Texas
Supernova Search.

5. SUMMARY

The algorithm described in this paper can be adapted for a
wide variety of photometric searches for transient objects. Its per-
formance appears to be at least as good as other codes currently in
use. Since the method is designed to handle images with signif-

icantly varying quality, it should remain effective when alterna-
tive programs may fail.
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