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 Abstract 

Changes in vegetation gross primary production (GPP) and forest aboveground 

standing biomass C (biomass) were investigated to better understand the impacts of 

human and natural disturbances on carbon uptake and storage in two northern hemisphere 

terrestrial ecosystems, which represent primarily forest-dominated and primarily 

urbanizing landscapes, respectively. Research focused on evaluating changes in (a) GPP 

in Southeastern Michigan, where the dynamics of vegetation carbon flux are tied closely 

to urbanization and human development characteristics; and (b) biomass in Eastern 

Siberia, where biomass changes are strongly affected by disturbance and regrowth. 

Both projects exploited remotely sensed data and biophysical or ecosystem 

models to estimate GPP and biomass. Altering the scale of spatial data and summary 

units may generate different results. The scaling effects need to be characterized to 

evaluate scale-related uncertainties associated with carbon estimates. In Michigan, 

sensitivity of inferences about productivity trends among several development types to 

levels of aggregation in the Census housing data were examined from the block-group to 

county scales. In Siberia, impacts of changes in the remote sensing observational scale 

(i.e., sensor resolution) on the estimated biomass trends were analyzed at resolutions 

from 60 to 960 meters. 

Results showed that GPP increased by 53 g C m
-1

 in Southeastern Michigan and 

biomass increased by 3.9 Mg C ha
-1

 in Eastern Siberia between 1990 and 2000, and that 

more productive landscapes resulted from tree-cover expansion and forest recovery, 



 xi

respectively. These results corroborate previous findings of increased vegetation activity 

throughout the northern hemisphere in 1990s. With respect to scaling effects on carbon 

estimates, in Michigan, relationships between the estimated GPP trends and development 

types remained consistent across Census scales; and, in Siberia, degradation of remote 

sensing resolution resulted in the overestimation of changes in biomass by 9-69% at the 

960-meter resolution. Results suggested that, for carbon analysis across broader 

geographic extents (e.g., regional- to national-scale estimation), coarser Census scales up 

to the county level may be used to evaluate carbon trends by development intensities, 

while remote sensing data at coarser resolutions may not maintain accuracy of the 

estimated carbon trends relative to finer resolution data. 
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Chapter I  

 Introduction 

The carbon cycling of terrestrial ecosystems is affected significantly by human 

and natural disturbances (Vitousek 1994, Thornton et al. 2002, Krankina et al. 2005). In 

ecology, it is well known that CO2 fluxes and plant carbon accumulation may change 

dramatically after stand-initiating disturbances, e.g., stand-replacing fire and forest clear-

cut. Following these disturbances, productivity and biomass may increase from zero to an 

equilibrium state (Figure 1.1). However, because of the repeated human and natural 

disturbances (which at times are less severe, e.g., crown fire, insect infestation, and 

farming), such equilibrium state may not be reached. In addition, human land-use 

conversions such as building construction on the cleared forest land may completely 

prevent recovery of biomass. On the contrary, human activities such as agricultural 

abandonment may result in the regrowth of perennial woody species and, therefore, 

increase vegetation biomass. The roles of these human and natural disturbances in 

affecting ecosystem carbon dynamics are not yet fully understood, especially across 

different geographic and ecological settings. 

To provide scientific evidence on impacts of human and natural disturbances, I 

investigated changes in vegetation primary production and biomass (C) in two 

representative landscapes in the northern hemisphere. One is located in Southeastern 

Michigan, U.S.A., and the other in Eastern Siberia, Russia. The two study areas are both 
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human-modified, but have different ecosystem types and land-use histories (Table 1.1). 

These distinctive landscapes formed a basis for comparing carbon changes in two mid-

latitude northern hemisphere ecosystems. My research focused on impacts of urban and 

exurban development on gross primary production (GPP) in the Michigan study area, and 

effects of fire, insect and logging disturbances on aboveground standing biomass in the 

Siberian study area. 

 

 
 

Figure 1.1 Changes in forest ecosystem gross primary production (GPP), net primary 

production (NPP), respiration (R) and biomass (B) after stand-initiating disturbances 

(adapted from Odum, 1969, Figure 1). 

 

 

 

Table 1.1 Comparison of the two study areas. 

 

Study area Southeastern Michigan Eastern Siberia 

Climate Temperate Continental subarctic 

Ecosystem type Temperate hardwood forest Taiga 

Dominant land cover Agriculture 

Urban settlement 

Boreal forest 

Dominant disturbance Urbanization Fire 

Insect infestation 

Logging 

 

Remote sensing and Census data collected at multiple spatial and temporal 

resolutions were used to understand disturbance effects on GPP and biomass in the two 
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study areas. An important question that arises when using such data to understand carbon 

dynamics is associated with uncertainties of the carbon estimates due to spatial scaling of 

remote sensing and GIS data (Tate et al. 2000, Turner et al. 2004). I investigated two 

types of spatial scaling processes that are relevant to understanding the effects of 

disturbances on productivity and biomass in these landscapes: 1) changes in inference 

scale, referring to modification of statistical summary units such as Census block groups 

vs. tracts; and 2) changes in observation scale, referring to modification of observational 

units such as land-cover information extracted from 30-meter vs. 1-km satellite images. 

The type one scaling was examined for the Michigan study case (Chapter III), and type 

two for the Siberian study case (Chapter IV). 

An overview of previous research on ecosystem carbon dynamics and scale 

dependences therein is discussed briefly in the remainder of this chapter. Chapter II 

concentrates on estimating changes in GPP (∆GPP) in the urbanizing environment of 

Southeastern Michigan based on remotely sensed reflectance data and empirical plant 

light-use-efficiency parameters. Chapter III deals with the effects of the spatial scale of 

Census mapping units on inferences about relationships between the estimated ∆GPP and 

development types based on Census housing density. Chapter IV focuses on estimating 

changes in biomass (∆biomass) resulting from disturbances and regrowth and the effects 

of remote sensing resolution on the estimates in Eastern Siberia. Chapter V summarizes 

research findings of the two study cases and discusses future directions extending from 

the presented research. 
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1.1 Productivity and biomass 

Two types of primary production are used to describe the rate at which 

ecosystems produce organic matter through photosynthesis (Barnes et al. 1998). Gross 

primary production (GPP) is the total amount of carbon fixed by plants during the process 

of photosynthesis. Net primary production (NPP) is GPP less plant respiration. GPP 

indicates carbon uptake by plants from the atmosphere, and NPP describes the net flux of 

carbon between plants and the atmosphere. The net carbon gained through NPP is used to 

increase plant biomass or to supply herbivores and decomposers. Plant biomass is defined 

as the sum of dry mass of all plant tissues contained in a defined area and can be reported 

in its carbon equivalent (i.e., kg C ha
-1

; Barnes et al. 1998). It can be partitioned into two 

parts, aboveground biomass (leaf, stem and pole) and belowground biomass (roots). 

Both measures of primary production may be estimated using remote sensing 

observations (Gower et al. 1999, Running et al. 2000). At the global scale, GPP and NPP 

have been estimated based on biophysical parameters derived from vegetation indices 

(such as the normalized difference vegetation index, NDVI), global land-cover data, 

light-use-efficiency parameters, and carbon allometric equations (Running et al. 1999). 

Because previous studies showed that ratios of NPP/GPP are relatively constant for many 

plants (Waring et al. 1998) and because GPP is more directly related to remote sensing 

measurements, I analyzed GPP for the Michigan study case. This study contributes to the 

understanding of urbanization impacts on ecosystem carbon functions in a human-

dominated environment. 

Plant biomass can also be estimated with remote sensing techniques (Dong et al. 

2003). Significant correlations were discovered between woody biomass calculated based 
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on forest inventory and satellite measurements of NDVI in several boreal and temperate 

forests across the mid- to high-latitude of northern hemisphere. However, it was also 

documented that correlation between satellite-based vegetation indices and biomass may 

be low due to saturation of the “sensed” reflectance at high end and variance in plant 

respiration rates (Wang et al. 2005, Zhao et al. 2006). Therefore, in the Siberian study, 

biomass was estimated using forest succession models and Landsat-based land-cover data. 

Results are expected to provide assessment of forest disturbance and regrowth events and 

their impacts on carbon cycles representative of the largely forested geographic extent of 

Siberian Russia. 

1.2 Uncertainty of scale 

In geography and ecology, scale is known to be an important factor affecting 

results of spatial analysis and modeling (Goodchild and Quattrochi 1997, Dungan et al. 

2002, Aplin 2006). For example, the accuracy of land-cover classification changes when 

size (by area) of training samples is altered (Chen and Stow 2002). Estimates of NPP 

were shown to vary with the spatial resolution of imagery upon which maps of forest-age 

categories were generated (Turner et al. 2000). Spatial patterns of social segregation were 

found to change, depending on aggregation levels of Census data (Wong 2004). Many 

landscape pattern indices were found to be scale-dependent, meaning inferences about 

landscape pattern characteristics vary across the assessment scales (Wu 2004). 

The nature of scaling problems differs depending on whether spatial data are 

represented as continuous fields (e.g., satellite images) or discrete geographic entities 

(e.g., Census units). In the case of remote sensing imagery, scaling is often expressed in 

forms of resolution degradation. With discrete data, scaling manifests as the so-called 
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modifiable areal unit problem (MAUP), which refers to the changed characteristics of a 

fixed observation at different geographic aggregation levels (Openshaw 1984). MAUP 

occurs where 1) areal data are aggregated to larger geographic units, e.g., aggregating 

Census population data from the block-group to tract level; 2) the boundaries of areal unit 

change, e.g., modification of Census tract boundaries between the two decennial U.S. 

Census dates; and 3) both aggregation and changes in boundaries take place, such as 

mapping socioeconomic data collected by Census or administrative units to watersheds or 

vice versa. In Chapter III, effects of changes in size and boundary of Census summary 

units on inferences about the relationship between changes in housing density and GPP 

were investigated. This study contributes to the understanding of scaling effects of 

Census mapping levels on interpreting biophysical parameters based on remote sensing 

observations. 

Scale or resolution problems in remote sensing have been well defined in research 

back to the 1980s. Strahler et al. (1986) identified two different types of spatial 

resolutions in terms of the size of target objects in a remote sensing scene: 1) high 

resolution, where ground objects are larger than the pixel size of a sensor; and 2) low 

resolution, where ground objects are smaller than the pixel size of a sensor. By these 

definitions, classification of pure land-cover types is only possible in the high-resolution 

imagery. Mixture, present in low-resolution imagery, may exist in three forms: 1) 

multiple land-cover types occupy the same pixel, 2) gradual transition between two or 

more land-cover types occurs in a pixel, and 3) the land-cover type in a pixel is a “mixed” 

type, e.g., mixed conifer-deciduous forest (Fisher 1997, Brown 1998). All mixture 

problems result in difficulties in land-cover classification and biases in biophysical 
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estimators. Research efforts have sought after seeking optimal resolution(s) for imagery 

analysis such as land-cover classification, but no single resolution was found to be 

optimal for a given scene due to the divergent spatial patterns of ground objects (Marceau 

et al. 1994). Under the circumstances, it is important to document uncertainties of 

analysis due to the scale or resolution problem. In Chapter IV, effects of the changing 

remote sensing resolution on the estimate of biomass trends were evaluated. This study 

provides an assessment of estimation uncertainties due to spatial resolutions commonly 

used by satellite platforms such as Landsat and MODIS/AVHRR. 
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Chapter II   

Increasing Productivity in Urbanizing Landscapes 

Abstract 

In order to understand the impact of urbanizing landscapes on regional gross 

primary production (GPP), we analyzed changes in land cover and annual GPP over an 

urban-rural gradient in ten Southeastern Michigan counties between 1991 and 1999. 

Landsat and AVHRR remote sensing data and biophysical parameters corresponding to 

three major land-cover types (i.e., built-up, tree, and crop/grass) were used to estimate the 

annual GPP synthesized during the growing season of 1991 and 1999. According to the 

numbers of households reported by the U.S. Census in 1990 and 2000, the area settled at 

urban (>1 housing unit acre
-1

), suburban (0.1-1 housing units acre
-1

), and exurban (0.025-

0.1 housing units acre
-1

) densities expanded, while the area settled at rural (<0.025 

housing units acre
-1

) densities reduced. GPP in this urbanizing area, however, was found 

to increase from 1991 to 1999. Increasing annual GPP was attributed mainly to a region-

wide increase in tree cover in 1999. In addition, the estimated annual GPP and its 

changes between 1991 and 1999 were found to be spatially heterogeneous. The exurban 

category (including constantly exurban and exurban converted from rural) was associated 

with the highest annual GPP as well as an intensified increase in GPP. Our study 

indicates that low-density exurban development, characterized by large proportions of 

vegetation, can be more productive in the form of GPP than the agricultural land it 
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replaces. Therefore, low-density development of agricultural areas in U.S. Midwest, 

comprising significant fractions of highly productive tree and grass species, may not 

degrade, but enhance, the regional CO2 uptake from the atmosphere. 

2.1 Introduction 

Data from the U.S. Census has illustrated that much of the Eastern U.S. is 

undergoing significant deconcentration of population, leading to increased prevalence of 

low- to medium-density settlement across broad areas that were previously rural 

(Theobald, 2001). Nationwide, the area of land settled at densities of 1 house per 1 to 40 

acres (i.e., suburban and exurban) increased about 500 percent from 1950 to 2000 (Brown 

et al., 2005). This rate of suburban and exurban sprawl was shown to be more rapid in 

areas outside, but in proximity to, metropolitan regions. Based on these documented 

demographic changes, we identified two important environmental questions: 1) how does 

the density of residential development influence land-cover change? and 2) what are the 

impacts on primary production? Because residential development is affecting such large 

areas, i.e., low-density development occupied 15 times the area of dense urban 

settlements (Brown et al., 2005), the answers to these questions could have significant 

consequences for regional and global carbon accounting. 

In order to answer the two questions listed above, we analyzed changes in land 

cover and gross primary production (GPP) in ten Southeastern Michigan counties where 

suburban and exurban sprawl intensified between 1991 and 1999. Our approaches 

included: 1) mapping land-cover distribution and estimating annual GPP in each year, 

using Landsat and AVHRR remote sensing data; 2) deriving the pixel-wise changes in 

land-cover proportions and annual GPP between 1991 and 1999; and 3) characterizing 
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land-cover proportions and annual GPP by development-density categories (i.e., urban, 

suburban, exurban, and rural) and their changes by development-direction classes (i.e., 

conversions between any two development-density categories). We also examined 

sensitivity of the estimated GPP and its changes to different land-cover datasets and 

estimates of biophysical parameters. Our hypothesis was that low-density exurban 

development may not reduce annual GPP over the region as a whole at the scale of 

Census block group, because GPP that is reduced by increasing impervious surface and 

declining agriculture may be compensated through increasing areas of planted, regrowing, 

or maturing woody vegetation. 

2.2 Background 

2.2.1 Characterizing development density 

In our study, we used housing-unit density instead of population density as the 

indicator of development density, because population counts ignore the effects of changes 

in household sizes (i.e., given a fixed population total, a smaller average household size 

implies more residential dwelling units, leading to a larger settlement area). Housing-unit 

density at the scale of Census block group equals the number of housing units divided by 

the land area of the block group. Housing-unit density does not directly take into account 

commercial and industrial land uses. 

Based on Census housing-unit density, four categories of development density 

were defined, following Theobald (2001) and including: urban (>1 housing unit acre
-1

, or 

less than 1 acre per housing unit), suburban (0.1-1 housing units acre
-1

, or 1-10 acres per 

housing unit), exurban (0.025-0.1 housing units acre
-1

, or 10-40 acres per housing unit), 

and rural (<0.025 housing units acre
-1

, or more than 40 acres per housing unit ). New 
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development associated with increasing housing-unit density may result in conversion 

from a lower to a higher development-density category (i.e., rural to exurban, exurban to 

suburban, and suburban to urban, etc). 

2.2.2 Evaluating primary production 

Two measures of primary production are widely used to describe ecosystem 

exchange of carbon between plants and the atmosphere. Gross primary production (GPP) 

is the total amount of carbon that is fixed by plants during the process of photosynthesis, 

and net primary production (NPP) is GPP less autotrophic respiration (i.e., plant 

respiration). 

We used GPP as the measurement in this study for two reasons. First, compared 

to NPP, GPP can be more directly calculated from remotely sensed vegetation indices, 

given the more direct link of photosynthesis to plant’s reflectance of shortwave radiation 

(e.g., Sellers, 1987). Second, estimates of GPP may have less uncertainty than NPP at 

local to regional scales. Uncertainties of estimation may increase when remote sensing 

measurements are coupled with ecological models that are required to calculate NPP 

(Zhao et al., 2006). These models, in addition to estimating additional biophysical 

parameters, normally involve use of climate and/or soil data at degraded spatial 

resolutions. The increased uncertainty may prevent detection of real changes in 

productivity at the local to regional scale, such as those we aim to detect in our study. 

GPP is difficult to measure directly but can be estimated with reflectance data 

collected by remote sensing instruments, based on light-use efficiency theory (Running et 

al., 2000; Turner et al., 2003). Light-use efficiency (LUE or ε) is defined as the ratio of 

total carbon uptake by green vegetation through photosynthesis (i.e., GPP) to the 
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absorbed photosynthetically active radiation (APAR). It is the energy-to-carbon 

conversion efficiency and varies among different species and communities. APAR can be 

calculated if incident solar radiation and reflectance of the intercepted vegetation canopy 

are known, and used to estimate GPP provided reasonable estimates of LUE are available. 

2.3 Data and Methods 

2.3.1 Study area 

Our study region covers the Detroit-Ann Arbor-Flint consolidated metropolitan 

statistical area (CMSA), a ten-county region consisting of urban, suburban, exurban, and 

rural settlement densities (Figure 2.1). Previous research has documented relatively rapid 

development in the suburban and exurban parts of this region, despite declines within the 

cities of Detroit and Flint from the late 1950s to the present (MaCarthy, 1997; Theobald, 

2001; Brown et al., 2005). The 1990 and 2000 U.S. Census of population showed that the 

city of Detroit lost 8% of its residents, while the population of the CMSA increased 17%.  

 

 
 

Figure 2.1 Study area covered ten Southeastern Michigan counties shown 

 in thick black outlines, with the Detroit-Ann Arbor-Flint consolidated 

 metropolitan statistical area displayed in white color. 
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According to household data of the Census, the total number of housing units declined 

9% in city of Detroit, while it increased 21% in the CMSA. These opposing trends 

indicate continuing decentralization of the city, declining household sizes, and new 

development in suburban, exurban, and rural areas in 1990s. 

2.3.2 Land-cover data 

Landsat TM/ETM+ data collected during summers of 1991 and 1999 were 

geometrically registered and converted to six feature bands per dataset, which included 

Normalized Difference Vegetation Index (NDVI), Tasseled Cap brightness, Tasseled Cap 

wetness, ratio of band 4/band 7, texture of band 5, and texture of band 4/band 3. These 

six feature bands and a road-density map were used in unsupervised classification to 

generate 80 land-cover clusters in 1991 and 1999, respectively. We labeled and combined 

the clusters into five land-cover types, i.e., built-up, tree, crop/grass, water, and other 

(Table 2.1). Land-cover accuracy was assessed using randomly sampled 90-m × 90-m 

blocks of reference data that were scanned from aerial photographs at a resolution of 2 

meters. The overall accuracies of the Landsat classification were 76.84% in 1991 and 

82.27% in 1999. The users’ accuracies were 71.48% (79.35%) for built-up, 70.59% 

(79.43%) for tree, and 81.71% (85.44%) for crop/grass in 1991 (1999). To calculate GPP 

at 1-km resolution, binary presence/absence maps were derived for built-up, tree, and 

crop/grass, respectively, in each year. Classes of water and other were not included in our 

calculations, as they were assumed to be relatively constant with respect to GPP. These 

30-meter resolution binary land-cover data were then aggregated to create 1-km 

resolution grids to describe the percentage of built-up, tree, and crop/grass within each 1-

km × 1-km cell, respectively. 
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Table 2.1 Definition of land-cover types. 

 

Land-Cover Type Description 

Built-Up Combines the high- and low-density residential/commercial lands. 

The former is composed of impervious surface in a large fraction 

(over 70% of cover) and scattered vegetation. The latter is a 

mixture of impervious surface in a smaller fraction (30-70% of 

cover) and increasing proportion of vegetation. 

Tree Combines broadleaf deciduous trees, needleleaf coniferous trees, 

and woody shrubs. Dominant tree species include oak, hickory, 

maple, beech, elm, ash, and cottonwood. According to the 1993 

and 2001 Forest Inventory and Analysis (FIA) data, coniferous 

species occupied only 2-2.5% of the total forested area in the 

Southeastern Michigan region. 

Crop/Grass Combines agricultural farmlands and grassy fields. Dominant 

crops (by area) are corn, soybean, and hay (alfalfa). Over 90% of 

the cropland is rain-fed, according to the 2002 USDA Census of 

Agriculture. 

Water Combines rivers, lakes, and ponds.  

Other Combines wetlands, parks, and golf courses. 

 

 

To evaluate the sensitivity of our analysis to alternative maps of land cover, we 

compared the results calculated using the land-cover data described above with estimates 

calculated using two other independent land-cover datasets that were also compiled from 

Landsat imagery. The datasets from 1992 National Land Cover Data (NLCD; Vogelmann 

et al., 2001) and 1999-2000 Michigan Integrated Forest Monitoring Assessment and 

Prescription (IFMAP; Michigan Department of Natural Resources, 2003) replaced our 

1991 and 1999 land-cover classification, respectively. Land-cover classes of the two 

datasets were grouped to match our definition of built-up, tree, and crop/grass before 

performing the comparative calculations of annual GPP. 

2.3.3 Development density 

We mapped development-density categories in 1990 and 2000 using housing-unit 

counts from the 1990 and 2000 U.S. Census of households. Census block-group 
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boundaries for both Census dates came from the Michigan Geographic Framework (MGF, 

2005), which was created based on the 1994 Census Topologically Integrated Geographic 

Encoding and Referencing (TIGER) line files and improved with the U.S. Geological 

Survey (USGS) 1:12,000 Digital Ortho Quarter Quad (DOQQ) aerial photography. To 

derive the total land area that may be used in development, we removed water from the 

total area of each block group by using masks extracted from our 1991 and 1999 Landsat 

land-cover classification. We then calculated housing-unit density as the ratio of housing 

units to land area for each Census block group. Based on housing-unit density, Census 

block groups were classified into four development-density categories consisting of urban, 

suburban, exurban, and rural, as previously defined. 

2.3.4 Annual GPP 

We calculated GPP using methods based on light-use efficiency theory (Gower et 

al., 1999). Daily GPP ( dGPP ) equals the absorbed photosynthetically active radiation 

(APAR) multiplied by the energy-to-carbon conversion efficiency (i.e., LUE or ε), where 

APAR can be estimated from the incident radiation in photosynthetic wavelengths (PAR) 

multiplied by the fraction of PAR that is absorbed by plants (fPAR; Running et al., 2004). 

We calculated dGPP  of each land-cover type ( lcdGPP , ; g C m
-2

 day
-1

) for each 1-km × 1-

km cell by 

)(% ,, lcddlclclcd fPARPARGPP ×××= ε        (1)  

where lc%  is the proportion of a given land cover (i.e., built-up, tree, or crop/grass) in 

each 1-km × 1-km cell, lcε  is the LUE of the land-cover type (g C MJ
-1

), dPAR  is the 
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daily incident PAR (MJ m
-2

 day
-1

), and lcdfPAR ,  is the fraction of dPAR  absorbed by the 

land-cover type. 

We used 1.8 and 2.2 g C MJ
-1

 for lcε  of tree and crop/grass, respectively, based 

on the growing-season averaged LUE modeled by Turner and others (2003) for 

ecosystems comparable to our land-cover types, i.e., mixed conifer/deciduous forest 

(42.5°N, 72°W) and maize-dominated agricultural field (40°N, 88°W). For built-up, we 

estimated lcε  to be 0.88 g C MJ
-1

 based on the estimated fractions of impervious surface 

(56%), trees (22%), and grass (22%) within our built-up areas. According to our land-

cover classification, the high- and low-density residential/commercial types occupied 

approximately 30% and 70% of the built-up area, respectively. Given an estimated 70-

100% and 30-70% of impervious surface for the high- and low-density 

residential/commercial types, respectively, the average fraction of vegetated cover was 

estimated at 44% for the built-up type. Assuming an even distribution of trees and grass 

on the vegetated surfaces and that imperviousε  equals zero, lcε  of built-up was set to 0.22 

times the sum of treeε  and grasscrop /ε , i.e., 0.88 g C MJ
-1

. Certainly, the proportions of 

impervious surface, tree, and grass varied from place to place in real situation. Our 

assumption of the fixed proportions may introduce uncertainties in the estimated GPP, 

which, though not performed in the present study, can be evaluated by simulating 

different proportion combinations using statistical approaches such as Monte Carlo 

method. 

The land-cover proportion ( lc% ) used in Equation (1) came from our binary land-

cover data aggregated to 1-km resolution. dPAR  was calculated based on monthly mean 
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downward shortwave radiation (J sec
-1

 m
-2

; NASA Data Assimilation Office, 1993) 

multiplied by the scalar 0.45 (i.e., the photosynthetically active proportion of the total 

incident shortwave electromagnetic radiation) and 24 hours in units of seconds. lcdfPAR ,  

was calculated based on the biweekly 1-kilometer AVHRR NDVI (USGS EROS Data 

Center EDC, 1989), using an empirical MODIS NDVI-fPAR look-up table (LUT; 

Knyazikhin et al., 1999). The AVHRR NDVI in the range 0.12 to 0.62 was first 

multiplied by 1.45 (Huete et al., 2002) to convert it into units of MODIS NDVI, for the 

purpose of applying the MODIS-based LUT to estimate fPAR. We used NDVI-fPAR 

LUT values of broadleaf forest and broadleaf crop for our tree and crop/grass types, 

respectively. The LUT values for the built-up type was estimated with values for tree and 

crop/grass types, based on fractions of impervious surface (56%), trees (22%), and grass 

(22%) within our built-up type. 

Once lcdGPP ,  was estimated for each land-cover type in each pixel according to 

Equation (1), the total daily GPP ( dGPP ; g C m
-2

 day
-1

) was derived by summing lcdGPP ,  

values across land-cover types found within each pixel. Because this daily total was an 

estimate based on the maximum AVHRR NDVI over each 14-day time period, the 

accumulated daily GPP in each of the two-week time spans was derived by multiplying 

dGPP  by 14 days. We summed the accumulated biweekly GPP across the 11 two-week 

periods from early May to early October (during this period the average minimum daily 

temperature was 10°C and above), to estimate the pixel-wise growing-season GPP 

( gsGPP ; g C m
-2

 year
-1

) as  

)14(
3

1

,

11

1

∑∑
==

×=

lc

lcd

tp

gs GPPGPP         (2)  
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where lc  is the three land-cover types and tp  is the 11 two-week time periods 

corresponding to the biweekly AVHRR NDVI data over the growing season. 

To evaluate the sensitivity of our estimation of  gsGPP  to alternative LUE values, 

we calculated the growing-season GPP based on five additional combinations of lcε  

(Table 2.2). In total, we developed six representative estimates using 1) the average lcε , 2) 

the maximum lcε , 3) the minimum lcε , 4) lcε  assuming the least productive tree and 

most productive crop/grass, and 5) lcε  assuming the most productive tree and least 

productive crop/grass documented by Turner and others (2003); and 6) lcε  used in 

Biome-BGC (BioGeochemical Cycles) that was applied to the global estimation of GPP 

and NPP with MODIS data (Running et al., 2000). 

Table 2.2 Light-use efficiency (LUE, g C MJ
-1

) used in the estimation of 

 daily GPP by land-cover types. LUE of built-up was approximated from 

 values of tree and crop/grass, which came from Turner et al. (2003) for 

 case 1-5 and Running et al. (2000) for case 6. 

 

Case # Built-Up Tree Crop/Grass 

1 0.880 1.800 2.200 

2 1.120 2.600 2.900 

3 0.550 1.000 1.500 

4 0.858 1.000 2.900 

5 0.902 2.600 1.500 

6 0.362 1.044 0.604 

 

 

2.3.5 Changes in land cover and GPP by changes in development density 

We compared maps of the 1990 and 2000 development-density categories to 

derive changes in development density, which we referred to as development-direction 

classes. Sixteen possible development directions consist of the constant classes (i.e., no 

conversions between development-density categories, including constantly urban, 
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constantly suburban, constantly exurban, and constantly rural), urbanizing classes (i.e., 

conversions from a lower to a higher development-density category, including urban 

converted from suburban, urban converted from exurban, urban converted from rural, 

suburban converted from exurban, suburban converted from rural, and exurban converted 

from rural), and ruralized classes (i.e., conversions from a higher to a lower development-

density category, including rural converted from exurban, rural converted from suburban, 

rural converted from urban, exurban converted from suburban, exurban converted from 

urban, and suburban converted from urban). 

If a class occupied less than 1% of the total study area, we combined it with other 

rare classes to create an “other conversion” class. The class of other conversion consisted 

of nine minor conversion directions and accounted for less than 3% of the total land area. 

The major development-direction classes included constantly urban (U), constantly 

suburban (S), constantly exurban (E), constantly rural (R), urban converted from 

suburban (UfromS), suburban converted from exurban (SfromE), and exurban converted 

from rural (EfromR). We calculated changes in land-cover proportions and gsGPP  for 

each Census block group, and then calculated the area-weighted average of these changes 

by eight development-direction classes (i.e., the seven major development-direction 

classes and the class of other conversion). 

2.4 Results 

Among the five land-cover types identified from the 30-meter Landsat imagery 

(Table 2.3), crop/grass dominated Southeastern Michigan by area, although it declined 

from 52% in 1991 to 49% in 1999. Tree was the second dominant land-cover type and 

increased from 20% in 1991 to 23% in 1999. Area of built-up occupied about 20% of the 
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total study area and showed little change between 1991 and 1999. Water and other land 

covers made up 8% of the total area with little change between 1991 and 1999. 

 

Table 2.3 Area proportion (%) of the classified land-cover types in 1991 and 1999. 

 

 Built-Up Tree Crop/Grass Water Other 

1991 20.3 19.9 52.0 2.4 5.4 

1999 20.2 22.8 48.7 2.8 5.4 

 

 

Table 2.4 Land-cover proportions and annual GPP ( gsGPP ) by development-density 

categories in 1991 and 1999. Values in parentheses are standard error of mean. 

 

Development 

Density 

 

Year 

Land Area 

(acres)* 

 
% Built-Up 

 
% Tree 

 
% Crop/Grass 

GPPgs 

(g C m
-2

 year
-1

) 

Urban 1991 508656 66.4 

(0.36) 

9.2 

(0.15) 

21.1 

(0.24) 

674 

(5.85) 

 1999 588362 67.3 

(0.38) 

13.2 

(0.20) 

14.7 

(0.20) 

713 

(6.41) 

Suburban 1991 905279 21.4 

(0.55) 

24.5 

(0.42) 

45.5 

(0.65) 

1613 

(15.18) 

 1999 1039136 19.1 

(0.60) 

28.0 

(0.48) 

44.0 

(0.65) 

1715 

(16.58) 

Exurban 1991 1351029 9.1 

(0.38) 

24.8 

(0.80) 

61.3 

(1.05) 

1992 

(17.88) 

 1999 1359776 5.2 

(0.36) 

28.1 

(0.79) 

63.0 

(0.98) 

2128 

(12.91) 

Rural 1991 540742 8.5 

(1.08) 

18.0 

(0.88) 

70.2 

(1.35) 

1930 

(33.54) 

 1999 306350 7.2 

(1.86) 

15.6 

(0.88) 

72.1 

(2.03) 

2008 

(49.83) 

 

* Area in 1991 and 1999 was calculated based on the Census housing-unit density in 

1990 and 2000, respectively. 

 

According to Census housing-unit density (Table 2.4), exurban was the dominant 

development-density category by area, followed by suburban and then urban (2000) or 

rural (1990). The total land area of the rural category decreased approximately 43%  

between 1990 and 2000, while the area of both urban and suburban categories increased 
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about 15-16%. The exurban category increased slightly (0.6% by area). In both years, 

crop/grass was the dominant land-cover type in suburban, exurban, and rural categories, 

while built-up dominated the urban category. Proportion of tree by area was higher in the 

suburban and exurban categories than in the urban or rural category. Proportion of built-

up by area was the lowest in the exurban and rural categories. In terms of changes in 

land-cover proportions, tree increased from 1991 to 1999, except in the rural category. 

Built-up declined, except in the urban category. Crop/grass declined in the urban and 

suburban categories, and increased slightly in the exurban and rural categories. 

In both 1991 and 1999, the estimated annual growing-season GPP ( gsGPP ) was 

highest in exurban, followed by rural, suburban, and urban (Table 2.4). Over the entire 

study area, the pixel-wise gsGPP  increased 3% (or 53 g C m
-2

 year
-1

) on average, from 

1682 g C m
-2

 year
-1

 in 1991 to 1735 g C m
-2

 year
-1

 in 1999, which resulted in the total 

increment of GPP by 7×10
5
 ton C. It increased as well in each of the development-density 

categories with different magnitude. The 1991-1999 increment was small for the urban 

category (39 g C m
-2

 year
-1

), but large for the remaining categories (over 78 g C m
-2

 year
-

1
). Although estimates of gsGPP  varied with different assumptions for LUE values 

(Figure 2.2a), the annual GPP was consistently found to be 1) increasing between 1991 

and 1999 and 2) highest in the exurban category and lowest in the urban category. 

No major conversions from higher to lower development-density categories, i.e., 

ruralized classes, were found in our study area. Within the seven major development 

directions (Table 2.5), constant classes accounted for 79% of the total land area, while 

urbanizing classes with conversions from lower to higher development-density categories 

occupied 18% of the total land area. Within the constant classes, the constantly exurban 
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(E) and constantly suburban (S) classes dominated by area. Within the urbanizing classes, 

suburban converting from exurban (SfromE) and exurban converting from rural (EfromR) 

dominated by area.  
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Figure 2.2 Annual GPP ( gsGPP , g C m
-2

 year 
-1

) by development-density categories (a) 

and its changes by development-direction classes (b). Error bars in (a) indicated the 

maximum and minimum annual GPP, which were calculated using the highest and lowest 

light-use efficiency (LUE) of tree and crop/grass adapted from Turner et al. (2003). Error 

bars in (b) indicated the maximum and minimum changes in annual GPP, which were 

calculated from the cross-combination of the highest and lowest LUE for tree and 

crop/grass adapted from Turner et al. (2003). 

 

 

Increase in built-up proportion was high for suburban converted from exurban 

(SfromE) and urban converted from suburban (UfromS). Built-up proportion declined in 

the constantly rural (R), constantly exurban (E), and exurban converted from rural 
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(EfromR) classes. All of the development-direction classes experienced increased tree 

cover, with the greatest expansion of tree cover occurring in constantly exurban (E) and 

exurban converted from rural (EfromR). Crop/grass declined in all development-direction 

classes except constantly rural (R). 

 

Table 2.5 Changes in land-cover proportions and annual GPP ( gsGPP ) between 

 1991 and 1999 by development-direction classes. 

 

Development 

Direction* 
Percent of 

Land Area 

(%) 

Changes in Land-Cover 

Proportions (%) 
Changes in GPPgs 

(g C m
-2

 year
-1

) 
Built-Up Tree Crop/Grass 

Constant U 14.0 4.7 2.7 -8.4 -29.91 

S 22.4 0.9 2.5 -4.0 16.67 

E 34.2 -2.8 4.4 -1.8 92.84 

R 8.4 -3.1 1.0 1.8 190.23 

Urbanizing UfromS 3.0 10.6 1.3 -12.9 -154.67 

SfromE 7.8 21.6 3.3 -3.4 14.28 

EfromR 7.3 -2.4 3.7 -1.2 124.68 

Other Conversion 3.0 1.8 2.1 -5.1 -12.76 

 

* U: constantly urban, S: constantly suburban, E: constantly exurban, R: constantly rural, 

UfromS: urban converted from suburban, SfromE: suburban converted from exurban, 

EfromR: exurban converted from rural, Other Conversion: the aggregation of nine minor 

conversion directions occupying less than 3% of the total land area. 

 

The changes in annual GPP were positive except for the urban converted from 

suburban (UfromS) and constantly urban (U) classes. The constantly rural (R), exurban 

converted from rural (EfromR), and constantly exurban (E) classes were associated with 

the highest GPP increments from 1991 to 1999 (over 92 g C m
-2

 year
-1

). The estimated 

magnitude of changes in annual GPP varied greatly depending on different sets of LUE 

values that were employed in analysis (Figure 2.2b). However, despite variations in 

magnitude, the general pattern of enhanced increment in the constantly rural (R), exurban 

converted from rural (EfromR), and constantly exurban (E) classes was relatively stable 
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for all assumptions of LUE values. Similarly, urban converted from suburban (UfromS) 

was always associated with the declining annual GPP. 

2.5 Discussion 

2.5.1 Increasing GPP in Southeastern Michigan 

According to the Census housing-unit density in 1990 and 2000, Southeastern 

Michigan was characterized by increasing urbanization. Despite this trend towards more 

dense settlement patterns, our study found that the average regional GPP over the 

growing season increased rather than declined. Our investigation of changes in GPP by 

development-density categories (Table 2.4) and by development-direction classes (Table 

2.5) showed that GPP increased in all categories and most classes, although more 

significantly in some than others. What has caused the increased GPP in this urbanizing 

environment? We examined the monthly average temperature and precipitation from the 

National Climatic Data Center Annual Climatological Summary during May through 

October in 1991 and 1999, and found no significantly different climate trends between 

the two years. Therefore, we suggest that the changes in GPP may be attributed to 

alterations in the incident solar radiation and land-cover proportions. 

The temporal pattern of biweekly differences between 1991 and 1999 was very 

similar in the pixel-wise regional average of biweekly NDVI and estimated daily GPP 

(Figure 2.3). Given NDVI as an index of plant photosynthetic activity, Southeastern 

Michigan was greener in 1999 than in 1991 during the second half of the growing season. 

The increases in average NDVI during summer and autumn, 1999, may be attributed 

partially to the decline of incident solar radiation following the volcanic eruption of Mt. 

Pinatubo on June 15, 1991 (Ramachandran et al., 2000). However, because no significant 



 27

decline of NDVI was found in 35-45°N North America between 1991 and 1992 (Tucker 

et al., 2001), this increase in NDVI in the later growing season of 1999 may be attributed  
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Figure 2.3 The pixel-wise regional average of (a) biweekly AVHRR NDVI (adjusted to 

units of MODIS NDVI) and (b) estimated daily GPP ( dGPP , g C m
-2

 day 
-1

) over the 

growing season between early May and early October. Dates on the x-axis  

corresponded to the starting date of each bi-weekly time period in 1991. 

 

alternatively to an increasing fraction of deciduous tree species that develop full crowns 

in summer. We suggest that this is confirmed by our findings of increasing tree cover 

over the study area (Table 2.5). 

The expansion of tree cover in urban and suburban areas most likely results from 

tree and shrub cover filling in open urban lots plus continuing growth of existing urban 
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trees. According to previous studies, the built infrastructure in the city of Detroit has been 

deteriorating since the 1960s due in part to the movement of the automobile and 

associated industries away from the city (McCarthy, 1997). Many old downtown 

neighborhoods, with the exception of scattered stable commercial and industrial areas, 

have been poorly maintained or abandoned with large areas of regrowing woody shrubs 

and trees (Ryznar and Wagner, 2001). Old suburbs might have experienced continuing 

growth and maturation of trees planted 30-60 years ago. The expansion of tree cover in 

the exurban areas was well documented in several concurrent land-cover/land-use change 

studies of the U.S. Upper Midwest (e.g., Bergen et al., 2005). In Southeastern Michigan, 

where there are significant development pressures, this appears to come from a 

combination of agricultural abandonment and the expansion or maturation of tree cover 

in low-density residential areas (including where tree crowns block housing structures 

underneath). 

Among the four development-density categories, exurban was associated with the 

highest annual GPP in both 1991 and 1999. This result agrees with previous findings of 

the highest estimated NPP in exurban area in the U.S. Midwest region (Imhoff et al., 

2004). Our study identified a mechanism for this fact in the form of a very high 

proportion of vegetated surface in exurban areas, i.e., 90-95% of the total land area in 

exurban was covered by tree and crop/grass. Although suburban contained the same 

proportion of tree cover, its built-up area was higher and crop/grass area was lower. 

Therefore, GPP in suburban areas was lower than exurban. GPP in urban areas was the 

lowest due to their large proportion of the built-up type. Depending on different values of 

LUE used in our analysis, rural was found either as productive as exurban or less 
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productive than both exurban and suburban categories. This contradiction results from the 

large proportion (over 70%) of crop/grass in rural areas. Given a major contribution from 

the crop/grass type, the estimated GPP in rural areas is very sensitive to LUE used for 

crop/grass. 

Although annual GPP increased on average throughout the entire region, the 

different development directions behaved somewhat differently. Despite variation across 

the different LUE assumptions, the estimated change in annual GPP was generally large 

and positive for the constantly rural (R), exurban converted from rural (EfromR), and 

constantly exurban (E) classes, which were associated with increasing vegetation. The 

estimated change in annual GPP was high and negative or low and positive for the urban 

converted from suburban (UfromS), constantly urban (U), and suburban converted from 

exurban (SfromE) classes, which were characterized by growing built-up areas. 

2.5.2 Uncertainties associated with land-cover data 

The annual GPP was estimated based on land-cover, solar radiation, NDVI, and 

LUE. Any uncertainties associated with these datasets and parameters cause uncertainties 

in the estimates. For instance, the estimated GPP based on the highest LUE values from 

Turner and others (2003) can reach 3-4 times the estimation based on values from 

Running and others (2000). Despite differences in magnitude of estimates, the overall 

patterns were found to be stable for annual GPP by development-density categories and 

its changes by development-direction classes. 

The estimation procedure also introduced uncertainties. For example, we used the 

daily GPP calculated from the maximum NDVI over each 14-day time period as the 

“daily” estimate of GPP for each day within the time period, whereas actual NDVI 
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changes day by day due to different plant phenology, reflectance of incident radiation, 

and cloud cover, etc. These variations were not taken into account given the AVHRR 

NDVI data prepared at a 14-day time step. However, to obtain the daily cloud-free NDVI 

data is nearly impossible and the 14-day composites are therefore commonly used data in 

remotely sensed productivity mapping and modeling. For calculation of daily GPP, we 

used the empirical MODIS NDVI-fPAR look-up table that was developed based on 

simulated data from the NOAA-11 AVHRR sensor. This might influence the magnitude 

of our estimated annual GPP in a systematic way throughout the entire study area. For 

estimation of biophysical parameters, we used constant estimates for the built-up type 

based on the average fractions of impervious surface, trees, and grass within it. Some 

variability in these fractions might be expected across the study area, which could be 

accounted for in future studies by using available estimates of impervious fraction (Yang 

et al., 2003). Moreover, our estimated GPP did not include contributions from park or 

wetland land-cover types. Ecosystem dynamics might have changed within these two 

types. However, since parks are maintained by people and succession of wetland is a 

slow progress, we assumed that changes in these two land-cover types may be small 

during the time span of a decade. 

Estimation uncertainties can also come from land-cover data in terms of 

classification errors (Figure 2.4). Although the estimated annual GPP continued to be the 

highest in the exurban development-density category, results of comparison showed that 

GPP was lower when NLCD (1992) and IFMAP (2000) were used to replace our 1991 

and 1999 classifications, respectively, except for the rural type in 1991 and urban type in 

1999. We found that higher estimates of GPP for rural areas in 1992 and for urban areas  
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Figure 3.4 Comparison of results using our land-cover classifications (1991 and 1999) 

with those using the NLCD (1992) and IFMAP (2000) classifications: (a) estimated 

annual GPP ( gsGPP ), (b) land-cover proportions in 1991 and 1992, and (c) land-cover 

proportions in 1999 and 2000. 
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in 2000 may have resulted from lower estimates of built-up by the alternative land-cover 

datasets. The differences in proportions of built-up between our dataset and that 

generated from the NLCD dataset (by combining low-density residential, high-density 

residential, and commercial, industrial or transportation) indicate a more relaxed 

definition of our built-up type, inclusive of more vegetation. Thus, proportion of built-up 

by our definition was higher in the suburban, exurban, and rural categories than the 

proportions derived by the NLCD definition. 

2.5.3 Land-cover and GPP related to housing-unit density  

In our study, development-density categories based on Census housing-unit 

density proved to be efficient in capturing land-cover/land-use characteristics along the 

urban-rural gradient (Figure 2.4b and 2.4c). When the maps derived from housing-unit 

density are associated with the land-cover classifications, urban densities are 

characterized by majority of built-up, with at least 30% impervious surface. Suburban 

and exurban densities are composed of less than 20% built-up and about 20-30% tree 

cover, where proportion of built-up is substantially lower in exurban than in suburban. 

Rural densities are characterized by majority of agricultural cropland or grassy fields. 

The estimated GPP and its changes also strongly relate to the four development-density 

categories and seven development-direction classes (Figure 2.2). Given the limited 

correlation between population density and vegetation fraction (Pozzi and Small, 2005), 

especially in the less densely-populated medium-to-small cities or densely-populated 

rural areas, the classification of urbanization based on housing-unit density instead of 

population density enables a stratification tied more closely to human land-use practices. 

This better facilitates the recognition of heterogeneous changes in landscape 
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characteristics and ecosystem functions due to human impacts at different levels of 

intensity. 

2.6 Conclusions 

We analyzed changes in land cover and gross primary production (GPP) between 

1991 and 1999 using remotely sensed data and biophysical parameters for the Detroit-

Ann Arbor-Flint consolidated metropolitan statistical area (CMSA) and vicinity, an 

urbanizing region of Southeastern Michigan. The pixel-wise changes were aggregated at 

the scale of the Census block group and then pooled by conversions between 

development-density categories that are defined from Census housing-unit density. 

Despite the continuing urbanization characterized by conversions from lower to 

higher development densities, we found that the regional annual GPP increased in 

Southeastern Michigan. Increasing GPP was attributed mainly to the increased fraction of 

tree cover throughout the entire region, including the land maintained as urban and 

suburban between 1990 and 2000. Additionally, the increase in GPP was strengthened in 

exurban densities (including those converted from rural land), but was very weak or 

declining in suburban (including those converted from exurban land) and urban 

(including those converted from suburban land) densities. We conclude that 1) low-

density exurban development increases GPP through the extended vegetation cover; and 

2) further intensification of development reduces GPP by subsequent conversion of low-

density exurban settlement to high-density urban or suburban settlement. 

Human settlement can greatly modify the landscape composition and patterns. 

Understanding development impacts on carbon dynamics contributes not only to the 

global estimation of ecosystem production but also to the reliable prediction of future 
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climate. Our measurements of annual GPP and its changes in relation to different levels 

of urbanization over time provide a basis for the understanding of relationships between 

productivity and settlement development. Accurate scenarios of carbon budgets may be 

developed by incorporating localized ecosystem process models into this analysis to 

evaluate development impacts on NPP and biomass. 
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Chapter III   

Census Scaling Effects on Inference of Productivity Trends 

Abstract 

We examined variance in the estimated changes in gross primary production 

(∆GPP) as a function of spatial aggregation levels that corresponded to spatial units used 

by the U.S. Census. The estimate of ∆GPP in Southeastern Michigan was calculated 

based on satellite data and light-use-efficiency parameters. It was statistically 

summarized using a classification of Census units into eight development types at the 

block-group, tract, county-subdivision, and county levels. Results showed that inferences 

about the areal extents of development types were significantly dependent on Census 

scales, and that inferences about the relationships between ∆GPP and development types 

varied less with Census aggregation levels. This study implies that productivity trends 

may be estimated at coarse Census scales, though some of the development types may be 

missing at the coarsest levels. 

Keywords: scale, modifiable areal unit problem, U.S. Census, gross primary production, 

Southeastern Michigan 

3.1 Introduction 

Scale, in this case meaning the level of details in data representations and analyses, 

has always been a necessary topic for research in ecology and geography. All monitoring 

and modeling of socioeconomic and environmental changes over time happen at some 
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scale. This chapter examines the effects of choice of spatial scale on inferences about the 

relationships between human settlement density and landscape productivity. Following 

Dungan et al. (2002), we distinguish two types of spatial scaling processes: alteration of 

observation scale (e.g., sampling plant species in plots sized 0.02 vs. 2 hectares) and 

alteration of inference scale (e.g., reporting biodiversity by townships vs. counties). The 

latter, i.e., spatial scaling of inference (SSI), is the main focus of this study. 

SSI is conceptually analogous to the modifiable areal unit problem (MAUP), 

which refers to variance of statistical results due to changes in the size and zoning (i.e., 

shape) of geographic units (Openshaw 1984; Fotheringham and Wong 1991). MAUP 

studies initially addressed discrepancies in statistics and patterns at different spatial 

aggregation levels relevant to political or administrative units (Schneider et al. 1993; 

Wong 2004). However, it has also been considered in the field of remote sensing, where 

differences in the spatial resolution of sensors (or size of a pixel) are also regarded as a 

special case of MAUP (Jelinski and Wu 1996; Hay et al. 2001). 

In this chapter, the term SSI refers specifically to changes in size and/or layout of 

geographic zones for summarizing an observation made at a fixed and finer spatial scale. 

For example, for observations of land-cover types identified on 30-meter resolution 

Landsat imagery, spatial scaling of inferences about land-cover percentage occurs when 

aggregation of land-cover information is made to the Census block-group vs. tract level, 

or when it is made using Census 1990 vs. 2000 tract boundaries. Perhaps more frequently 

occurring are the cases where both size and layout of the geographic unit change, such as 

mapping Census socioeconomic data by counties vs. watersheds (e.g., Goodchild, 

Anselin, and Deichmann 1993). 
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In this study, we evaluated the effects of SSI on interpretations of the 

relationships between changes in gross primary production (∆GPP) and changes in 

housing density in the urbanizing environment of Southeastern Michigan between 1990 

and 2000. According to the previous research (Chapter II), GPP increased region-wide 

over this period but at different rates by eight development types that were mapped at the 

Census block-group (BG) level (Zhao, Brown, and Bergen 2007). The present study 

concerns sensitivity of aggregated productivity estimates to the spatial scale of inference, 

i.e., alternative Census mapping units such as tracts (TR), county subdivisions (CS) and 

counties (CO). Because development types are the basis for summarizing ∆GPP 

statistically, their spatial patterns as a function of these alternative Census scales are also 

of interest in this study. Our null hypotheses included 1) the distribution of development 

types, which were mapped based on changes in Census 1990 and 2000 housing-unit 

densities, are independent of Census scales; and 2) the relationships between ∆GPP and 

development types vary with Census inference scales. This study will contribute to our 

understanding of the dependence of productivity estimates on modifiable aggregation 

units, and the appropriateness of Census aggregation level(s) for mapping trends in 

primary production at regional or larger geographic scales. 

3.2 Study Area 

Ten counties in Southeastern Michigan were selected for study, which include the 

Detroit-Ann Arbor-Flint metropolitan areas and less-densely populated exurban and rural 

areas (Figure 3.1). The average rate of growth in population and in housing units was 

approximately 12% and 17%, respectively, within the region between 1990 and 2000 

(U.S. Census Bureau 2007). The most rapid growth was in Livingston County, which 
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experienced 36% increase in population and 41% increase in housing units. Wayne 

County, home to Detroit city, was the only county among the ten where population (-2%) 

and housing units (-0.8%) declined. 

 

                  
 

Figure 3.1 Study area included Detroit-Ann Arbor-Flint metropolitan (gray) and 

surrounding areas in ten Southeastern Michigan counties. 

 

 

Corresponding to the regional growth of population and housing densities, 

changes in landscape composition and pattern have been detected based on remote 

sensing and natural resources inventory (Cifaldi et al. 2003; Bergen et al. 2005; Brown et 

al. 2007). According to the land-cover classification from the 1992 and 2001 National 

Land Cover Dataset (NLCD; Vogelmann et al. 2001, Homer et al. 2004), residential and 

commercial land uses increased from 15.7 to 20.5% of the total study area between early 

1990s and early 2000s. However, the proportion of built-up area was found to be 



 41

relatively constant (approximately 20% of the study area) when analyzed using land-

cover data developed specifically for this region between 1991 and 1999 (Zhao, Brown, 

and Bergen 2007). The expansion of built-up area resulted from urbanization and 

suburbanization processes was cancelled out through misclassification of built-up in areas 

where extension of tree crowns obscured buildings underneath. Tree-cover expansion 

was region-wide between 1991 and 1999, increasing from 1.0 to 4.4% of the area among 

different development types in 1991 (Zhao, Brown, and Bergen 2007). This was 

confirmed by trends of tree-cover percentage interpreted on 2-meter resolution aerial 

photos in 13 sampled townships in Southeastern Michigan (Brown et al. 2007). The 

increase in tree cover was due mainly to agricultural abandonment or conversion and 

tree-crown extension. 

3.3 Data and Methods 

The annual growing-season GPP was estimated based on synthesizing biweekly 

AVHRR NDVI, monthly solar radiation, and summertime Landsat land-cover data in 

1991 and 1999 (Zhao, Brown, and Bergen 2007). GPP and its changes between the two 

years were mapped across Southeastern Michigan at 1-kilometer spatial resolution, 

determined by resolution of AVHRR NDVI data. In this study, ∆GPP is the observation 

at the finest scale, upon which inferences about its relationships to development types are 

drawn at different Census mapping unit levels. 

Census data were acquired from two sources. Census boundary files came from 

Michigan Geographic Framework (MGF; Michigan Center of Geographic Information, 

2007). These included boundaries of block groups, tracts, minor civil divisions 

(equivalent to Census county subdivisions) and counties. Boundaries of BG and TR 
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changed partially between the two U.S. Census dates, while geographic coverage of CS 

and CO units remained constant over the time period. Census housing data came from the 

U.S. Census Bureau (2007). Data of the total number of housing units for the ten counties 

were extracted from the Census Summary File 1 100-Percent Data (i.e., population and 

housing unit counts collected from all people and all housing units) at the BG, TR, CS 

and CO levels, respectively. 

Four categories of development densities were adopted in this study (Theobald 

2001): urban (<1 acre per housing unit), suburban (1-10 acres per housing unit), exurban 

(10-40 acres per housing unit) and rural (>40 acres per housing unit) densities. Two steps 

were involved to determine development density categories of each Census unit at each 

aggregation level. First, land area of a Census unit was calculated by subtracting water 

bodies classified in both 1991 and 1999 Landsat imagery from the total area of the 

Census unit. Second, development category was assigned to each Census unit based on 

area per housing unit (i.e., land area divided by number of housing units; hereafter 

“housing density”, though strictly this quantity is the inverse of development density). 

The result was two maps of development densities at each inference scale, one for each 

Census date. 

Changes in development densities during 1990-2000 were derived using two 

approaches. The first approach was to map categorical changes between the four 

development density classes based on calculation of a change matrix. Maps of the four 

discrete housing density categories were overlaid and, in total, 16 possible change 

directions were generated. They were grouped into eight development types consisting of 

four constant, three urbanizing and one “other” type (Table 3.1). The second approach for 
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analyzing changes in development densities was to map a continuous measure of change 

in housing density by Census units. At the CS and CO scales where boundaries of Census 

units remained constant between 1990 and 2000, differences in housing density between 

the two Census dates were derived by subtracting housing density values of the early date 

from values of the later date. At the BG and TR scales where Census boundaries changed, 

the differences in housing density between 1990 and 2000 were calculated in three steps: 

1) we converted Census polygons from each year to a grid with a spatial resolution of 25 

meters and assigned each grid cell a housing density value attached to the cell’s 

corresponding Census polygon, 2) we calculated changes in housing density between the 

two years by subtracting the 1990 grid values from the 2000 grid values, and 3) we 

calculated the zonal average of changes in housing density by zones incorporating 

boundaries of both Census dates. 

 

Table 3.1 Definition of development types 

 

Type Code Definition 

URBAN U Urban densities (<1 acre/housing unit) in both Census 

dates 

SUBURBAN S Suburban densities (1-10 acre/housing unit) in both 

Census dates 

EXURBAN E Exurban densities (10-40 acre/housing unit) in both 

Census dates 

RURAL R Rural densities (>40 acre/housing unit) in both Census 

dates 

URBANIZATION UfromS Suburban densities in 1990, changed into urban 

densities in 2000 

SUBURBANIZATION SfromE Exurban densities in 1990, changed into suburban 

densities in 2000 

EXURBANIZATION EfromR Rural densities in 1990, changed into exurban 

densities in 2000 

OTHER Other Conversions other than the above categories 
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To evaluate scale dependence of changes in development densities, we performed 

accuracy assessment on the discrete development types and analyzed spatial 

autocorrelation of the continuous changes in housing density. Lower levels of accuracy 

and greater changes in spatial autocorrelation levels with the changing scale were both 

taken as indicators of scale dependence. An error matrix was calculated to assess 

accuracies of development types across Census scales. The map of eight development 

types at the Census BG level was used as reference, while those derived at the coarser 

Census levels were used as “classified” (Congalton and Green 1999). To measure spatial 

autocorrelation of changes in housing density, univariate global Moran’s I was computed 

at each Census scale. The global Moran’s I measures spatial autocorrelation based on the 

regression coefficient between values of spatial objects and those of their neighbors 

(Anselin 2003). It detects spatial patterns that can be classified as clustered (value near 

+1.0), random (value close to 0), or dispersed (value near -1.0) distribution. Significance 

of autocorrelation (as opposed to random pattern) is evaluated through comparing the 

actual Moran’s I against the expected value resulting from hundreds of realization that 

randomly shuffles the value of spatial objects. 

We assessed scale dependence of ∆GPP by calculating 1) the root mean squared 

error (RMSE) of ∆GPP at Census TR, CS, and CO levels, using estimates at the BG level 

as reference; and 2) the global Moran’s I of ∆GPP at each Census scale. With respect to 

relationships between ∆GPP and development types across different Census scales, the 

average ∆GPP and its standard error of mean (s.e.m.) were calculated and reported by the 

eight development types. Estimates of ∆GPP across scales were compared among the 

eight development types on scatterplots. 
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3.4 Results 

3.4.1 Changes in development densities 

Patterns of development types varied among the levels of Census mapping units 

(Figure 3.2). Details of the geographic distribution of the eight development types 

disappeared gradually from the BG to CO scales. At the county level, only half of the 

(a) (b)  

(c) (d)  

 
 

Figure 3.2 Development types and their distribution across the study area at the block-

group (a), tract (b), county-subdivision (c), and county (d) levels. 
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eight development types remained, including URBAN, SUBURBAN, EXURBAN and 

URBANIZATION. Across the four scales, areal proportions of all development types at the 

CO level deviated most from values derived at the other Census scales (Figure 3.3).  

Proportions of SUBURBAN and EXURBAN by area varied most among the eight 

development types, and proportion of URBAN varied least. 

 

0

10

20

30

40

50

60

70
U S E R

U
fr

o
m

S

S
fr

o
m

E

E
fr

o
m

R

Development type

%
 o
f 
s
tu
d
y
 a
re
a

BG TR CS CO

 
 

Figure 3.3 Proportion of the total study area by development types 

 at four Census scales. 

 

 

Accuracy assessment using the BG map as reference showed that the Kappa index 

of agreement (Pontius 2002) of development types at the coarser scales declined from 

0.54 to 0.11 (Table 3.2). According to categorical producer’s accuracies, URBAN was 

retained better than any other development types at the three coarser inference scales. 

Accuracies declined from TR to CO scales, expect for RURAL and EXURBANIZATION, 
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which increased at the CS level. Across the three scales, the constant types were 

generally better represented than the urbanizing types, with the exception of RURAL. 

 

Table 3.2 Accuracy of categorization of development types (Kappa).  

Reference was the block-group level results. 

 

Development Types TR CS CO 

U 0.88 0.80 0.33 

S 0.69 0.57 0.28 

E 0.62 0.44 0.09 

R 0.28 0.70 0.00 

UfromS 0.35 0.16 0.09 

SfromE 0.20 0.12 0.00 

EfromR 0.27 0.57 0.00 

Other 0.14 0.00 0.00 

Overall 0.54 0.49 0.11 

 

 

As the scale was coarsened from BG to CO, the range of values of continuous 

change in housing density declined from 120 to 3 acres per housing unit. There was 

variability that indicated both decline and increase in housing density at the BG (-60 to 

+60 acre per housing unit) and TR (-45 to +20 acre per housing unit) levels. Changes 

were all negative at the CS (-10 to 0 acre per housing unit) and CO (-3 to 0 acre per 

housing unit) scales, indicating overall region-wide increases in development density. 

The spatial autocorrelation of changes in housing density was also shown to be scale-

dependent, with significant spatial autocorrelation present at the BG scale and 

disappearing at coarser Census scales (Table 3.3). 

3.4.2 Patterns of ∆GPP 

Spatial autocorrelation of ∆GPP was significant at all four studied Census scales 

(Table 3.4). Values of Moran’s I were all positive, implying clustered patterns of ∆GPP 

values. RMSE of the ∆GPP estimates was approximately 55.48, 63.55, and 56.96 g C m
-2
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when aggregated from the 1-km cells to the TR, CS, and CO scales, respectively, using 

estimates at BG level as the reference. 

 

Table 3.3 Spatial autocorrelation of changes in housing density across four Census scales. 

Changes in housing density were clustered at the block-group scale only. 

 

Scale Moran’s I Expected Z score Degree of cluster 

BG  0.004362 -0.000088  4.052615 Cluster∗ 

TR  0.000258 -0.000239  0.084211 Random 

CS  0.000780 -0.003497  1.468345 Random 

CO -0.163006 -0.111111 -0.889657 Ramdom 

 

 ∗ Sig. = 0.01 

 

Table 3.4 Spatial autocorrelation of the estimated ∆GPP across four Census scales. 

Significant autocorrelation was found at all scales. 

 

Scale Moran’s I Expected Z score Degree of cluster 

BG 0.025747 -0.000088 22.108073 Cluster∗ 

TR 0.031839 -0.000239   4.892610 Cluster∗ 

CS 0.095810 -0.003497 16.848802 Cluster∗ 

CO 0.083068 -0.111111   3.234368 Cluster∗ 

 

 ∗ Sig. = 0.01 

 

 

Values of average ∆GPP for each of the eight development types were compared 

at each of the four inference scales (Figure 3.4). At the finest BG scale, RURAL, EXURBAN 

and EXURBANIZATION types were associated with the highest GPP increase between 1991 

and 1999, with the increment estimated to be 198, 125, and 92 g C m
-2

, respectively. 

Summarized at the BG scale, URBANIZATION was associated with the maximum decline 

of GPP, i.e., -154 g C m
-2

. Although average values of ∆GPP for each development type 

differed from each other by Census scales (s.e.m. <1 g C m
-2

), the overall pattern of 

relationships between ∆GPP and development types was retained across the four Census 

scales. The RURAL, EXURBAN and EXURBANIZATION types always corresponded to largest 
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increases in GPP, regardless of Census inference scales, while GPP of the URBANIZATION 

type declined the most at all scales. At the CO level it is worthwhile noting that three 

development types were missing (Figure 3.2); and that, for the remaining development 

types, the pattern of relationships between ∆GPP and development types remained the 

same. The CO-level ∆GPP values deviated further from statistics drawn at other Census 

scales. At the BG, TR and CS levels, relatively stable estimates of ∆GPP were found for 

the URBAN and SUBURBAN types. 
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Figure 3.4 The estimated ∆GPP by development types at four Census inference scales. 

Relationships between ∆GPP and development types were retained similar across all 

Census levels. The standard error of mean (s.e.m.) is shown for each data point, but the 

ranges are so small that they only appear as black hash marks near the data point. 
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3.5 Discussion 

3.5.1 Scale dependence of housing and GPP inference 

In this study, inferences about changes in area covered by different development 

densities were shown to vary with Census aggregation scales. Changes in housing density 

were clustered spatially by Census block groups. This pattern of spatial autocorrelation 

was missing in larger Census units. This implies that SSI resulted in biased interpretation 

of spatial patterns of Census housing characteristics. The result corroborates previous 

research findings, where patterns of socioeconomic data changed with geographic 

aggregation units. For example, an analysis on patterns of cancer distribution for five 

selected U.S. states showed that, among four available aggregation levels ranging from 

state to Census minor civil division (MCD), spatial clusters of cancer were only identified 

at the finest scale, MCD (Schneider et al. 1993). A study on social segregation also 

showed that measurement indices were sensitive to changes in scale of inference, and that 

smaller areal units at the Census block-group level tended to capture higher segregation 

patterns than larger areal units at the Census tract level (Wong 2004). 

Inferences about spatial patterns of ∆GPP and the relationship of ∆GPP to 

development types were not found to be scale dependent across the Census block-group 

to county levels. Compared to changes in development densities, spatial patterns of 

∆GPP were less sensitive to Census scales. At all inference scales, significant spatial 

autocorrelation of ∆GPP was identified. This indicates that inferences about spatial 

patterns of ∆GPP were not dependent on Census unit sizes ranging from block groups to 

counties. Despite scale dependence of development types (Table 3.2), the rank of 

different development types in terms of ∆GPP remained relatively constant across all 
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Census scales, even at the county level where three development types disappeared 

(Figure 3.4). This result implies that inferences about relationships between productivity 

trends and changes in human development density remained consistent across Census 

scales finer than county level (including counties). 

The inconsistency between changes in housing density and changes in GPP, with 

respective to scale dependence, may result from different base observational scales. The 

minimum mapping unit for housing density is Census units varying across inference 

scales, while it is the fixed 1-km resolution grid cell for GPP. The relatively stable 

relationship between ∆GPP and development types suggests correlation between the two 

variables, which implies similar scaling impacts of Census aggregation units on the two 

variables. Cloud-contaminated Census units were all included in the present analysis, so 

the average GPP for some Census units could be based on a very small number of pixels. 

Future work is need to exclude Census units with over 50% cloud coverage (as was done 

in the analysis in Chapter II) for the comparison of development and ∆GPP across scales. 

We also found that it was not always true that estimates of ∆GPP at the TR level 

are more similar than estimates at the CS level to the block-group estimates (e.g., 

EXURBAN and URBANIZATION, Figure 3.4), though tracts held more detailed patterns of 

changes in development densities than county subdivisions (Figure 3.2). Compared to the 

CS level, values of the CO-level ∆GPP estimates by development types deviated more 

from the BG-level estimates (Figure 3.4); however, the region-wide average of RMSE of 

the ∆GPP estimates compared to the BG-level data was lower at the county scale (57 g C 

m
-2

) than at the finer county-subdivision scale (64 g C m
-2

). This indicates that scaling 

effects of Census inference scale are more complex than expected, in the sense that 
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coarser scale estimates are not necessarily more divergent than finer scale estimates when 

they are both compared to the block-group estimates. 

3.5.2 Mismatching Census boundaries 

Because this study of scaling effects evaluated changes in housing density and 

GPP over time, modification of Census boundaries at the block-group and tract levels 

meant complicated interpretations of the differences in estimates across the four scales 

(BG, TR, CS and CO). For example, as shown in a carefully selected portion of Dundee 

Township in Monroe County, the extents of Census block groups in 1990 differed greatly 

from those in 2000 (Figure 3.5). BG 1 and 2 covered more low-density exurban/rural 

settings in 2000 than 1990; therefore, development density was shown to decline in the 

green (from 1.54 to 0.39 housing units per acre) and olive green (from 1.01 to 0.74 

housing units per acre) areas. 

 

 
 

Figure 3.5 An example of boundary changes at block-group level between the 1990 and 

2000 U.S. Censuses. Census 2000 (blue outlines with blue labels) and 1990 (transparent 

solid colors labeled with black fonts) boundaries were laid on top of a black-and-white 

aerial photos taken in Dundee Township in 2000. 
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The changes in boundaries of the housing density data may introduce errors into 

the map of development types (e.g., small polygons appeared to lose housing units per 

acre and would be classified as the “urban converted to suburban” type, because their 

extents changed between the two Census dates), which may propagate to estimates of 

∆GPP for the corresponding Census block-group and tract units. As a result, a question 

arose whether productivity trends estimated at the block-group or tract scale are accurate 

and may be used as reference to assess estimates made at coarser Census scales. In this 

study we did not try to fix this problem given two considerations. To adjust Census 

housing data fitting to the changed Census boundaries, ancillary data such as 

demographic information finer than the block-group scale are required (Martin 2003). 

Alternatively, high-resolution remote sensing may help us to interpolate housing density 

in Census units with changed boundaries. However, although correlation was found 

between Census housing data and satellite-based residential classification in several 

urban areas (Chen 2002; Li and Weng 2005), strength of the correlation was also shown 

to be limited by housing densities and/or house types (Harvey 2002; Guindon, Zhang, 

and Dillabaugh 2004). 

The mismatching Census boundaries existed only at the block-group and tract 

levels in the Southeastern Michigan study area between the 1990 and 2000 U.S. Censuses. 

They occurred more often in less-densely populated areas. This might provide an 

explanation for the fact that URBAN is the most stable one among all development types 

with respect to estimates of changes in both housing density and GPP across all Census 

inference scales (Figure 3.3 and 3.4). 



 54

3.6 Conclusions 

Sensitivity of the estimated productivity trends to Census aggregation scales was 

investigated along an urban-rural gradient in Southeastern Michigan. Changes in primary 

production were statistically summarized by development types that were inferred at four 

Census levels from the finest block-group to coarsest county scales. Although the areal 

extents of development types were shown to vary across Census scales, estimates of 

∆GPP and relationships between ∆GPP and development types were found to be less 

dependant on Census scales. Values of ∆GPP were closer to the block-group estimation 

at the tract or county-subdivision scales than at the county scale. Although several types 

of changes in housing density were not detectable at the county scale, the overall trends 

of ∆GPP by different development types were consistent with finer scale analyses. The 

results imply that all of the four studied Census scales can be used to interpret 

productivity trends between the decennial U.S. Censuses. In future research of 

productivity trends across the entire U.S., county and county subdivision may potentially 

be good candidate scales of inference. 
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Chapter IV   

 Changes in Biomass at Landsat to AVHRR Resolutions 

Abstract 

We investigated the influence of remote sensing spatial resolution on estimates of 

forest biomass change due to disturbance and regrowth in three study sites (each 

corresponding to a Landsat scene) in Eastern Siberia. Changes in aboveground standing 

biomass (∆biomass) were estimated using 1990 and 2000 Landsat 60-meter land-cover 

data and biomass densities simulated by the FAREAST model. Land-cover data were 

then progressively degraded to 240, 480 and 960 meters, and land-cover change (LCC) 

proportions and ∆biomass were derived at each of the coarser resolutions. Scale 

dependences of ∆biomass and LCC patch characteristics were analyzed. Estimated at 60-

meter resolution, biomass increased in two sites (3.0-6.4 Mg C ha
-1

) and declined slightly 

in one site (0.5 Mg C ha
-1

). Between 31 and 64% of logging, small fires, and 

development disturbances were lost as the resolution was degraded, resulting in higher 

estimates of biomass increase. Fires at a third site were larger in size, and the over-

represented burned area resulted in over-estimation of biomass decrease at coarser 

resolutions. Results indicate that ∆biomass values may be amplified in either direction as 

resolution is degraded, depending on the average patch size of disturbances and that the 

error of ∆biomass estimates also increases at coarser resolutions. 
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4.1 Introduction 

By area, the Russian Federation is the world’s largest country. Approximately 

one-half of its territory is covered by boreal and temperate forests, and these comprise 

approximately 20% of world forest lands (FAO, 2005). The largest part of this Russian 

forest is in Siberia. In addition to its leading role in world forest resources, Siberia is 

increasingly influential in global carbon accounting (Bergen et al. 2003, Mayer et al. 

2005, Schiermeier 2005). To quantify carbon storage and flux in Siberian forest 

ecosystems, several research projects have been conducted and these have yielded 

inconsistent conclusions regarding Siberia’s role as a sink or source of carbon dioxide 

(Schulze et al. 1999, Lloyd et al. 2002, Röser et al. 2002, Vedrova et al. 2002). One of 

the sources of uncertainty is related to the availability of datasets on forest disturbance 

and regrowth. Logistically, these data are very difficult to compile using conventional 

forest inventory methods over large and remote boreal regions. 

Remote sensing techniques facilitate the measurement of dynamic forest changes 

across the vast geography of Siberia. During the last several decades, satellite imagery 

has been employed broadly to monitor and evaluate forest cover, standing biomass, and 

natural or human-induced disturbances in Siberian ecosystems (Bartalev et al. 2003, 

Kharuk et al. 2003, Wagner et al. 2003, Soja et al. 2004, Sukhinin et al. 2004, Krankina 

et al. 2005, George et al. 2006). The resulting products, used in conjunction with field 

investigations, carbon allocation equations and ecological models, can be an efficient 

basis for estimating carbon budgets at the regional to national scales. However, because 
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most affordable continuous satellite data are coarser than 250 meters, there is need to 

understand sample bias in estimates based on these satellite data. Sources for such bias 

may originate from loss of spatial details depending on the relative patch sizes of land 

cover and land-cover change. 

Although research on scaling issues in remote sensing can be dated back to the 

1980s (Strahler et al. 1986, Atkinson and Curran 1997, Asner et al. 2002, Aplin 2006), 

less work has been done until recently to examine uncertainties of satellite-based 

estimation of biomass or ecosystem productivity. In North America, researchers found 

that estimates of net primary production (NPP) and net ecosystem production (NEP) in a 

Pacific Northwest forest decreased when calculated at progressively degraded spatial 

resolutions from 25 meters to 1 kilometer (Turner et al. 2000). In contrast, a study in 

African savanna ecosystems showed that aggregation of heterogeneous landscapes 

resulted in increased estimates of NPP (Caylor and Shugart 2004). 

In this study, we examined spatial scaling effects on the estimated changes in 

biomass (∆biomass) due to disturbance and regrowth at three sample sites in Eastern 

Siberia. The objectives of the study were to 1) quantify ∆biomass resulting from 

disturbances, forest regeneration and forest succession between image dates of 1990 and 

2000; 2) evaluate uncertainties of these satellite-based estimates at degraded spatial 

resolutions equivalent to the pixel size of MODIS (Moderate Resolution Imaging 

Spectroradiometer) and AVHRR (Advanced Very High Resolution Radiometer) sensors; 

and 3) explore the relationships between uncertainties of the estimated ∆biomass and 

patch characteristics of land-cover dynamics. The results of the last objective should 

provide insight into the spatial characteristics of disturbance and regrowth, and the 
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uncertainties associated with ∆biomass estimates at the spatial resolutions of different 

remote sensors for Siberian forests. 

4.2 Study Area and Data 

4.2.1 Study area 

The study area included three case study sites, each the size of a Landsat scene 

footprint, sampled from Tomsk Oblast, Krasnoyarsk Krai and Irkutsk Oblast in Eastern 

Siberia (Figure 4.1). In this region, the climate is continental with long, severe winters 

and short, warm summers, and over 40% of the annual precipitation occurs in summer 

from June to August (WMO 2007). The Tomsk, Krasnoyarsk and Irkutsk sites occur on a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Three case study sites (black box outlines) were sampled from 

 Tomsk Oblast, Krasnoyarsk Krai and Irkutsk Oblast (black outline), centered at 

approximately 57.3°N/86.6°E, 57.3°N/96.1°E and 53.4°N/106.1°E.  

Source of eco-regions came from Olson et al. (2001).  
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slight gradient from wetter in the west to drier in the east. The dominant ecosystem of the 

region is boreal taiga, with only minor incursions of temperate-broadleaved and forest-

steppe ecosystems (Olson et al. 2001). Taiga communities are dominated by tree species 

of pine, larch, spruce, fir, birch and aspen (Alexeyev and Birdsay 1998). Major forest 

types are dark-coniferous forest (Pinus sibirica, Picea obovata and Abies sibirica), light-

coniferous forest (Pinus sylvestris and Larix sibirica), broadleaved deciduous forest 

(Betula pendula and Populus tremula) and mixed coniferous-deciduous forest. 

The characteristic forest disturbances of the study area include logging, fire, and 

insect infestation. The traditional logging practice of using large landscape-sized clear 

cuts continued until 1993, after which new regulations established a maximum size of 50 

ha for industrial forests. Fires, ranging from small fires at several hectares to large fires at 

thousands of hectares, are an intrinsic part of boreal forest ecology and in our study 

region. In our study areas, the Siberian silkmoth (Dendrolimus sibiricus) has caused the 

largest amount of insect damage in recent years. This species primarily attacks mature 

conifer or mixed coniferous-deciduous forests. During 1993-1996 approximately 0.7 

million ha of such forests in Krasnoyarsk Krai were destroyed in silkmoth outbreaks 

(Kharuk et al. 2004). Following logging and fires, young secondary forests, usually 

dominated by birch and aspen, regenerate and grow on the disturbed sites. An additional 

factor in regrowing forest patches in this region is now known to be abandonment of 

collective agriculture fields (Bergen et al. 2003). 

4.2.2 Data 

The land-cover data used for this study were generated from satellite remote 

sensing for a LCC project that evaluated differences in change regimes prior to and after 
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the establishment of the Russian Federation in 1991. The data were generated from 

Landsat MSS (multi-spectral scanner), TM (Thematic Mapper) and ETM+ (Enhanced 

Thematic Mapper Plus) scenes collected in 1975, 1990 and 2000, respectively. The 30-

meter resolution TM and ETM+ data were degraded to 60 meters before classification for 

use of MSS and TM/ETM+ together. Twelve classes were resolved from these 60-meter 

Landsat data: Conifer, Mixed, Deciduous and Young forests; Cut, Burn, and Insect 

disturbances; and Agriculture, Urban, Bare, Wetland and Water. The overall 

classification accuracies ranged from 89 to 96% (Krankina et al. 2005, Bergen et al. 

2008). For this study, the 1990 and 2000 land-cover datasets were selected for analysis in 

order to focus on land-cover and biomass changes under current geo-political conditions. 

All mapped classes were retained for further analysis except Wetland (non-forested) and 

Water which were excluded given the focus of the study on forest biomass changes and 

because they remained mostly constant over the study period. 

4.3 Methods 

4.3.1 Estimating biomass 

To understand changes in aboveground standing biomass, a method for assigning 

appropriate biomass quantities to 60-meter land-cover pixels was required. First, the 

average biomass density for each land-cover class was estimated using a forest gap model 

parameterized for Eastern Siberian Forests. Second, the modeled biomass values were 

assigned to pixels belonging to the corresponding Landsat-derived land-cover classes. In 

this study, biomass refers to the aboveground standing plant material expressed in Mg C 

ha
-1

. 



 63

Composition and biomass of forests ranging from young to mature were estimated 

based on simulation outputs of the FAREAST model, which simulates forest succession 

and estimates corresponding biomass changes for forests in northeast Eurasia over a 

range of altitude and climate conditions (Yan and Shugart 2005). FAREAST simulates 

development of forest stands through the aggregated behavior of individual trees 

occupying forest plots, each about 0.05 ha in size. The model includes 44 tree species 

found across northeast Eurasia. It was initially tested for its ability to simulate forest 

basal area and biomass at different elevations on several tall mountains in Northern China 

and subsequently validated without recalibration against forest composition registered at 

37 sites mostly in Russia and some in China. These sites cover a range of regional 

climate, soil and elevation conditions. 

To apply the FAREAST model to a selected study site, geographic coordinates at 

the center of the study site were used to base 200 simulations that were then averaged to 

present latitude, climate and growing season conditions across the site. FAREAST model 

sites representing multiple forest species compositions in Eastern Siberia were selected to 

run the simulations, based on their location and/or previously published data on 

vegetation of the region (Alexeyev and Birdsay 1998, Morozova 2002). The average 

values of modeled biomass outputs were assigned to each of the categorical Landsat-

derived forest types (i.e., Conifer, Mixed, Deciduous and Young). The resulting 

simulated biomass values for these forest types (Table 4.1) were found to be comparable 

to the aggregation of documented estimates based on field measurements (e.g., Schulze et 

al. 1999). 
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The biomass densities of the disturbance and other land-cover classes were 

estimated based either on extension of the FAREAST-modeled values or previously 

published literature. Cut or Burn patches identified in the Landsat dataset were likely 

clear-cut or severely burnt at or shortly before the imaging date, and they were assumed, 

on average, to be comparable to the initial stage of Young forest with the lowest 

vegetation recovery rate (Table 4.1). Biomass density for forests affected by insect 

mortality was assigned based on the assumptions that: 1) defoliation causes an average of 

10 Mg ha
-1

 loss of carbon in these Conifer or Mixed forests (Baranchikov et al. 2002), 2) 

dead trees stand 15 years, on average, after being attacked (Pauley et al. 1996), and 3) the 

primary insect attack in the study site took place in 1995 (Kharuk et al. 2004). As a result 

of these assumptions, 2/3 of the aboveground woody biomass (i.e., trunks/branches) was 

estimated to remain standing in this class by the imaging date in 2000. Biomass density 

for Agriculture was assigned based on published values in the literature (Shvidenko et al. 

2000). For Urban and Bare classes (very small categories by area), a biomass value of 

 

Table 4.1 Biomass values assigned to individual land-cover classes 

 

Land Cover Biomass (Mg C ha
-1

) Source 

 Range Mean (SD)  

 Min Max   

Conifer 66.9 134.8 115.4 (14.6) FAREAST simulation 

Mixed 72.9 98.7 92.2 ( 8.3) FAREAST simulation 

Deciduous 43.9 100.4 74.8 (19.7) FAREAST simulation 

Young 1.9 22.3 12.1 (14.4) FAREAST simulation 

Cut N/A N/A 1.9 (N/A) FAREAST simulation 

Burn N/A N/A 1.9 (N/A) FAREAST simulation 

Insect N/A N/A 62.5 (N/A) FAREAST simulation, Pauley 

et al. 1996, Baranchikov et al. 

2002, Kharuk et al. 2004 

Agriculture N/A N/A 4.6 (N/A) Shvidenko et al. 2000 

Urban N/A N/A 0 (N/A) N/A 

Bare N/A N/A 0 (N/A) N/A 
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zero was assigned; the mapped Urban category included primarily high-density 

development with limited vegetation. 

4.3.2 Degrading spatial resolution 

To estimate ∆biomass at degraded resolutions, the 60-meter land-cover data were 

aggregated to increasingly coarse resolutions at 240, 480 and 960 meters, roughly 

analogous to MODIS 250-m, MODIS 500-m, and MODIS/AVHRR 1-km resolutions, 

respectively. A point spread function (PSF), simulating the larger pixel for these 

resolutions, was applied in the procedure of resolution degradation. The PSF accounts for 

the contribution of each location within and nearby a pixel to the detected spectral signal 

of the pixel (Townshend 1981, Cracknell 1998). It varies with different remote sensing 

instruments and has been modeled with Gaussian distribution for MODIS and AVHRR 

sensors (Paithoonwattanakij 1989, Baldwin et al. 1998, Huang et al. 2002). 

Two characteristics of the land-cover data prevented use of the published MODIS 

and AVHRR PSF to degrade the finer-resolution data. First, the land-cover data were 

discrete and nominal, as opposed to continuous reflectance values. Second, the original 

30-meter Landsat data had been degraded prior to land-cover classification by averaging 

four neighboring 30-meter Landsat pixels. Therefore, a quasi-PSF was created. This 

quasi-PSF relied on a 3×3 weighted filter that takes into account information from 60-

meter pixels that fell within the degraded pixel and from its eight immediately adjacent 

pixels. The filter approximates a Gaussian distribution in the two-dimensional space by 

giving a higher weight (0.68) to the 60-meter pixels within the center degraded pixel and 

a lower weight (0.04) to those in each of the surrounding eight pixels. The land-cover 

class of a degraded pixel was determined based on the rank of PSF-weighted averages of 
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presence counts for individual land-cover categories in all 60-meter pixels within the 3×3 

moving window. 

4.3.3 Analyzing scale dependence 

At each spatial resolution (i.e., 60, 240, 480 or 960 meters), changes between the 

eleven land-cover classes in 1990 and those in 2000 were assigned a designation of the 

change category to which they belonged. Theoretically, this could result in 121 possible 

change directions, but most of these combinations did not occur. In addition, many were 

functionally similar. Therefore, change directions were grouped into nine meaningful 

change types (thereafter consistently denoted using Small Caps font to distinguish them 

from the static land-cover categories):  

1. LOGGED: Forest in 1990 cut at or shortly before the 2000 image date, not 

regenerated or minimally regenerated to forest; 

2. BURNED: Forest in 1990 burned at or shortly before the 2000 image date, not 

regenerated or minimally regenerated to forest; 

3. INFESTED: Morality of conifer or mixed forest in 19990 due to insect infestation; 

4. DEVELOPED: Forest in 1990 converted to agriculture or urban land in 2000; 

5. REGEN I: Forest regeneration after disturbance or from agricultural abandonment 

occurring between 1990 and 2000 (e.g., Conifer forest in 1990 observed as Young 

forest regeneration in 2000 due to fire or cut between 1990 and 2000); 

6. REGEN II: Young forest regeneration following disturbances or active agriculture 

identified on the 1990 image; 
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7. SUCCESSION: Primarily succession of Young in 1990 into Deciduous or Mixed 

forest types in 2000, also succession of early-successional Deciduous in 1990 to 

mid-successional Mixed forest in 2000; 

8. CONSTANT: Areas of no change between 1990 and 2000; 

9. UNKNOWN: Any change not listed above (likely classification error). 

Changes in biomass at each spatial resolution were estimated by 1) deriving biomass 

values for each pixel based on its land-cover types in 1990 and 2000, respectively, 2) 

calculating differences between biomass values in the two years for each pixel, and 3) 

pooling these biomass changes by the nine LCC types. 

The scale dependence of the estimated changes in land cover and biomass was 

analyzed at the increasingly coarser resolutions using the 60-meter LCC and ∆biomass as 

reference. Scale dependence was defined as the measure of agreement or disagreement of 

an estimate derived at a coarse resolution to the same estimate at the reference resolution. 

Lower agreement (or higher disagreement) is associated with greater scale dependence. 

With respect to changes in land cover, scale dependence was examined using the error 

matrix method, with land-cover changes identified at the coarse resolution analogous to 

‘classified’ data and corresponding changes at the 60-meter resolution analogous to 

‘reference’ data in a conventional error matrix (Congalton and Green 1999). The scale 

dependence of ∆biomass was examined based on the root mean squared error (RMSE) 

between ∆biomass quantities calculated at the 60-meter and coarser resolutions. For these 

analyses, pixels at coarser resolutions were resampled to 60 meters. Lower accuracies or 

higher RMSE indicate lower agreement of the identified LCC and calculated ∆biomass, 

and hence higher scale dependence. 
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4.3.4 Analyzing patch characteristics 

We analyzed land-cover patch characteristics to evaluate the effects of patch sizes 

of characteristic disturbances in Eastern Siberian forests on uncertainties of the estimated 

∆biomass at different remote sensor resolutions. Instead of focusing on the spatial 

arrangement of land-cover classes at individual imaging dates, we investigated patch 

characteristics of different types of land-cover changes observed from the two imaging 

dates. 

At the 60-meter resolution, mean patch size (MPS), edge density (ED) and mean 

shape index (MSI) were calculated for each LCC type in each case study site using 

ArcView GIS Patch Analyst extension (McGarigal and Marks 1995, Rempel 2006). The 

relationships between these landscape indices at 60 meters and RMSE of ∆biomass at 

960 meters were then analyzed using three different generalized linear regression models 

(GLM), one for each landscape pattern index. The GLM independent variable was the 

pixel-wise RMSE of the estimated ∆biomass averaged by LCC types for each of the three 

sites at 960 meters. The GLM predictors included one of the three patch indices at 60 

meters for each model and also a site indicator to test for differences among sites. There 

were 24 observations in each of the regression models, corresponding to the seven, nine, 

and eight existing LCC types for Tomsk, Krasnoyarsk, and Irkutsk sites, respectively. 

4.4 Results 

4.4.1 Changes in land cover and biomass at 60-meter resolution 

The nine LCC types were divided into four groups, including Forest Disturbance, 

Forest Regrowth, Constant, and Unknown (Table 4.2). Forest Disturbance is defined as 

any land-cover change resulting in the net loss of forest biomass. This includes the 



 69

Table 4.2 Changes in land cover (%) and biomass (Mg C ha
-1

) at the 60-meter resolution. The subtotal and total is the sum of 

∆biomass weighted by proportions of area occupied by individual land-cover change types. 

 

Land-Cover 

Change 

Tomsk Krasnoyarsk Irkutsk 

% by 

area 

∆Biomass Area-weighted 

∆Biomass 

% by 

area 

∆Biomass Area-weighted 

∆Biomass 

% by area ∆Biomass Area-weighted 

∆Biomass 

Forest Disturbance 

   LOGGED 1.48 -82.14 -1.22 1.15 -64.44 -0.74 0.50 -95.83 -0.48 

   BURNED 0.00 0.00 0.00 0.66 -56.36 -0.37 2.49 -96.13 -2.39 

   INFESTED 0.00 0.00 0.00 6.20 -30.20 -1.87 0.00 0.00 0.00 

   DEVELOPED 0.58 -44.19 -0.25 1.96 -44.57 -0.88 0.48 -85.93 -0.41 

   REGEN I 2.83 -69.92 -1.98 1.40 -80.11 -1.12 0.51 -60.03 -0.31 

Subtotal   -3.45   -4.98   -3.59 

Forest Regrowth 

   REGEN II 6.09 28.93 1.76 3.74 33.63 1.25 2.15 58.41 1.26 

   SUCCESSION 9.16 51.28 4.70 17.17 58.83 10.10 6.85 27.04 1.85 

Subtotal   6.46   11.35   3.11 

Unknown 4.52 -7.42 -0.34 6.97 4.96 0.34 12.76 -14.62 -1.87 

Constant 75.35 0.00 0.00 60.75 0.00 0.00 74.26 0.00 0.00 

Total
∗∗∗∗   +3.01   +6.37   -0.48 

 
∗
 Excludes the Unknown and Constant types. 

 

6
9
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LOGGED, BURNED, INFESTED, DEVELOPED and REGEN I (i.e., forest that is regenerating 

but still represents a net loss of biomass due to interim disturbance events) types. Forest 

Regrowth refers to land-cover changes between 1990 and 2000 associated with net gains 

in forest biomass. This includes the REGEN II and SUCCESSION types. 

During the time period between 1990 and 2000, approximately 20, 32, and 13% 

of the total area in the Tomsk, Krasnoyarsk and Irkutsk sites experienced changes in 

land-cover type (Table 4.2). In the Forest Disturbance group, a greater amount of 

LOGGED area was directly observed in the Tomsk and Krasnoyarsk sites and a somewhat 

lesser amount in the Irkutsk site. The largest proportion of very recent burn scars (i.e., 

BURNED) was detected in the Irkutsk site (2.5%). Only the Krasnoyarsk site was 

associated with INFESTED during the study period. All three sites had a small amount of 

DEVELOPED. Interim disturbances (i.e., REGEN I) also occurred in all three sites, with the 

slightly greater proportion in Tomsk and Krasnoyarsk sites and slightly less in the Irkutsk 

site. In the Forest Regrowth group, REGEN II (Cut, Burn or Agriculture in 1990 and 

Young or Deciduous in 2000) was present on 2-6% of the total land area with greater 

proportions in the Tomsk and Krasnoyarsk sites than in the Irkutsk site. For all three case 

study sites, a somewhat greater proportion of SUCCESSION was found. 

Among the Forest Disturbance categories, the LOGGED and BURNED types were 

associated with the highest biomass loss per unit area (Table 4.2), as together they 

represented primarily high biomass forests in 1990 converted to negligible biomass Cut 

or Burn in 2000. Similarly, REGEN I (interim disturbances) resulted in a high loss of 

biomass across all three case study sites, with relatively small biomass recovery as Young 

forest at the 2000 date. Of categories in the Forest Disturbance group, INFESTED caused 
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the least reduction of biomass per unit area, because of the biomass retained in the still 

standing tree stems even after defoliation and mortality. Compared to the biomass loss in 

the Forest Disturbance group, the biomass gained per unit area over ten years for LCC 

types within the Forest Regrowth group was much smaller on average. However, since 

the amount of area in the Forest Regrowth group was two to three times larger than the 

area of the Forest Disturbance group, the total biomass increment in a site due to 

regeneration and succession exceeded biomass loss due to disturbances and development 

(Tomsk and Krasnoyarsk sites) except where large-extent severe burns took place 

(Irkutsk site). Forest Regrowth occupied a larger area, because it includes not only forest 

patches regenerating from the disturbed land in 1990 but also patches that were disturbed 

prior to 1990 and underwent succession, plus patches of abandoned agriculture 

undergoing land-cover conversion to forest types. At the site level, the average ∆biomass 

(excluding the Unknown or Constant types) was estimated to be 3.01, 6.37 and -0.48 Mg 

C ha
-1

 for the Tomsk, Krasnoyarsk and Irkutsk sites, respectively. 

4.4.2 Scaling effects 

For all three sites, the CONSTANT LCC type retained a high accuracy relatively to 

the 60-meter reference (Figure 4.2) and, therefore, its scale dependence was low. The 

LOGGED and DEVELOPED types had consistently low accuracy at the degraded resolutions; 

therefore, their scale dependence was high. Producer’s accuracy of the BURNED type 

declined faster in the Krasnoyarsk site (Figure 4.2D) and slower in the Irkutsk site 

(Figure 4.2F), indicating a reduced scale dependence in the Irkutsk site. The two 

regeneration and successional types were also scale-dependent. In the Tomsk and 
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Figure 4.2 User’s and Producer’s accuracy of the degraded land-cover change at the 240- 

(triangle), 480- (square) and 960-meter (solid circle) resolution for the Tomsk (a, b), 

Krasnoyarsk (c, d) and Irkutsk (e, f) sites. The reference is the 60-meter land-cover 

change dataset. Land-cover change codes are: 1 LOGGED, 2 BURNED, 3 INFESTED, 4 

DEVELOPED, 5 REGEN I, 6 REGEN II, 7 SUCCESSION, 8 UNKNOWN, and 9 CONSTANT.



 73

Krasnoyarsk sites REGEN I appeared to be more scale-dependent than REGEN II or 

SUCCESSION, but all three types showed a higher sensitivity to scale in the Irkutsk site. 

Overall accuracies (i.e., indicators of scale dependence) of the detected land-cover 

changes at the 960-meter resolution vs. the 60-meter reference were 74.9%, 65.4% and 

72.8% for the Tomsk, Krasnoyarsk and Irkutsk sites, respectively. Given that the overall 

accuracies of land-cover classifications were 89-96% at the 60-meter resolution, the 

accuracies of land-cover changes were estimated to range between 79 and 92% at this 

resolution (Bergen et al. 2008). Therefore, on the basis of this scale dependency analysis, 

accuracies of the identified land-cover changes at the 960-meter resolution may vary 

between 52% (i.e., 0.79×0.654) and 69% (i.e., 0.92×0.749). This indicates that, based on 

the simulated land-cover data, scale dependence may cause a drop of approximately 20-

30% in accuracy of the detectable land-cover changes between the 60- and 960-meter 

resolutions. 

 Across the three sites, the LOGGED and DEVELOPED types were highly scale-

dependent and, therefore, their areas were not retained well at the degraded resolutions 

(Figure 4.3A-C). BURNED was also highly scale-dependent in the Krasnoyarsk site and, 

therefore, was considerably underestimated at coarser resolutions (Figure 4.3B). However, 

BURNED was less dependent on scales in the Irkutsk site where it was overestimated at 

coarse resolutions (Figure 4.3C). INFESTED in the Krasnoyarsk site had an intermediate 

level of scale dependence and was slightly under-represented at the degraded resolutions 

(Figure 4.3B). Most of the remaining dynamic LCC types were underestimated, in 

contrast to the CONSTANT type, which was always overestimated (Table 4.3). The rate of 
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overall under-estimation of Forest Disturbance types exceeded that of the Forest 

Regrowth types. 

With respect to ∆biomass between 1990 and 2000, the site-level estimates at the 

960-meter resolution were 3.30, 6.97 and -0.83 Mg C ha
-1

 for the Tomsk, Krasnoyarsk 

and Irkutsk sites, respectively. These were equivalent to differences of 9.6, 9.4 and 69.4%, 

compared to the ∆biomass quantities calculated at the 60-meter resolution. For all three 

sites, the magnitude (absolute value) of the estimated ∆biomass increased with 
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Figure 4.3 Proportion of individual land-cover changes identified at the degraded spatial 

resolutions in the Tomsk (a), Krasnoyarsk (b) and Irkutsk (c) sites.
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Table 4.3 Proportions of land-cover change types at 60- and 960-meter resolutions. Their differences in proportion with respect 

 to their 60-m proportion are shown in bold numbers, where negative values indicate under-estimation of area at the 960-meter 

resolution and positive values over-estimation. 

 

Land-Cover 

Change 

Tomsk Krasnoyarsk Irkutsk 

60-m 960-m Diff. (%) 60-m 960-m Diff. (%) 60-m 960-m Diff. (%) 

LOGGED 1.48 1.02 -30.92 1.15 0.65 -43.27 0.50 0.18 -64.27 

BURNED 0.00 0.00 N/A 0.66 0.28 -57.14 2.49 2.71 8.61 

INFESTED 0.00 0.00 N/A 6.20 6.06 -2.36 0.00 0.00 N/A 

DEVELOPED 0.58 0.29 -51.15 1.96 1.81 -7.49 0.48 0.36 -25.38 

REGEN I 2.38 2.89 2.03 1.40 0.88 -37.56 0.51 0.16 -69.95 

REGEN II 6.09 6.68 -6.61 3.74 2.19 -41.51 2.15 1.53 -29.00 

SUCCESSION 9.16 9.05 -1.19 17.17 16.65 -3.02 6.85 5.63 -17.81 

UNKNOWN 4.52 5.26 16.49 6.97 5.71 -18.19 12.76 13.50 5.80 

CONSTANT 75.35 75.81 0.62 60.75 65.78 8.28 74.26 75.95 2.27 

 

 

7
5
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degradation of spatial resolutions (Figure 4.4A). The same trend was found for the pixel-

level RMSE for the estimated ∆biomass (Figure 4.4B). At the 960-meter resolution, 

RMSE was 21.38, 30.22 and 32.12 Mg C ha
-1

 in the Tomsk, Krasnoyarsk and Irkutsk 

sites, respectively. This, on average, is equivalent to up to 28% of the pixel-level 

maximum potential biomass change (Table 4.1) in the study area during 1990-2000. 

 

(a) 

-2

0

2

4

6

8

0 240 480 720 960

Resolution (m)

C
h
a
n
g
e
s
 i
n
 b

io
m

a
s
s
 (

M
g
 C

 h
a

-1
)

Tomsk Krasnoyarsk Irkutsk

 

(b) 

10

15

20

25

30

35

240 480 720 960

Resolution (m)

R
M

S
E

 (
M

g
 C

 h
a

-1
)

Tomsk Krasnoyarsk Irkutsk

 

 

Figure 4.4 Estimated ∆biomass (Mg C ha
-1

) at 60-meter and degraded resolutions (a) 

 and its RMSE with the 60-meter estimates at degraded resolutions (b). 

 



 77

4.4.3 Spatial characteristics of the land-cover changes 

The mean patch size (MPS), edge density (ED) and mean shape index (MSI) 

varied by different LCC types across the three case study sites at the 60-meter resolution 

(Figure 4.5). Across the three sites, LOGGED had a relatively consistent MPS (4.2-5.5 ha) 
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Figure 4.5 Mean patch size (a), edge density (b), and mean shape index (c)  

of three case study sites. 
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and somewhat variable edge and shape characteristics. Spatial characteristics of BURNED 

varied across sites, including: 1) no burns could be conclusively identified in the Tomsk 

site during the time period of 1990-2000; 2) new burn scars were small on average (4.6 

ha) in the Krasnoyarsk site, but large (23 ha) in the Irkutsk site; and 3) the shape of 

BURNED patches was more complex in the Irkutsk site (1.34) than in Krasnoyarsk (1.23). 

The MPS of INFESTED patches was relatively large in the Krasnoyarsk site (the only site 

in which this type occurred; 11 ha), with intermediate MSI (1.28). For REGEN I or II 

patches, MPS and MSI were found similar in the Tomsk and Krasnoyarsk site, but 

different in the Irkutsk site which has more complex terrain. 

The relationships between RMSE of the estimated ∆biomass at 960 meters and 

the three LCC patch indices at 60 meters, based on regression models, showed that MPS 

and ED were significant (p ≤ 0.001) predictors for RMSE of ∆biomass and that MSI was 

not a significant predictor (Table 4.4). The higher the MPS, the lower the RMSE, given 

that, if the landscape were continuous, estimates of changes in biomass at the 960-meter 

resolution would converge on estimates produced at the 60-meter resolution. ED was also 

significantly negatively related to RMSE, which means that the scale dependence of the 

estimated ∆biomass was high for LCC types with low edge densities. The site predictor 

was not significant, based on regression models (Table 4.4). This implied that 

relationships between RMSE and patch indices were consistent across the three sites, 

indicating the general scaling impacts on errors of the estimated ∆biomass rather than 

specific spatial characteristics of a site. 
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Table 4.4 Regression model results for the relationship between RMSE of the estimated 

∆biomass at 960 meters and patch metrics of individual LCC types at 60 meters. The 

pixel-wise RMSE was pooled by LCC types at each case study site. In all three models, 

RMSE is the dependent variable. Independent variables include patch indices and site 

indicator. The adjusted R square is the indicator of model fit. 

 

GLM Adjusted 

R square 

Source Type III sum 

of squares 
df

∗
 Mean 

square 

F Sig. 

1 0.411 Corrected model 3355.732 3 1118.577 6.341 0.003 

  Intercept 56305.828 1 56305.828 319.163 0.000 

  MPS 2803.725 1 2803.725 15.893 0.001 

  Site 730.954 2 365.477 2.072 0.152 

  Error 3528.342 20 176.417   

  Total 64820.782 24    

  Corrected Total 6884.073 23    

2 0.528 Corrected model 4058.132 3 1352.711 9.574 0.000 

  Intercept 47130.159 1 47130.159 333.554 0.000 

  ED 3506.126 1 3506.126 24.814 0.000 

  Site 610.796 2 305.398 2.161 0.141 

  Error 2825.941 20 141.297   

  Total 64820.782 24    

  Corrected Total 6884.073 23    

3 -0.030 Corrected model 719.823 3 239.941 0.778 0.520 

  Intercept 572.853 1 572.853 1.859 0.188 

  MSI 167.816 1 167.816 0.544 0.469 

  Site 544.646 2 272.323 0.884 0.429 

  Error 6164.250 20 308.213   

  Total 64820.782 24    

  Corrected Total 6884.073 23    

 
∗ 
Degree of freedom 

 

4.5 Discussion 

The carbon landscape of Eastern Siberia is a dynamic one driven by forest 

disturbances as indicated by these results and corroborated by regional studies. For 

example, in the southern part of Krasnoyarsk Krai, studies have shown that disturbance 

over the past century has affected 62-85% of forests in that region (Sokolova 2000). 

Whereas a large proportion of the regional forest up through the 19th century was 

comprised of mature dark coniferous forest, the late 20th century forest of the present 
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study is dominated by light-coniferous, mixed or young deciduous forest types, generally 

at early- to mid-successional stages (Hytteborn et al. 2005; Bergen et al. 2008). These 

trends illustrate the overarching importance of forest disturbance and regrowth associated 

with logging, fire, and insect characteristic of the region. 

4.5.1 Changes in forest type and biomass due to land-cover change 

Our estimates based on land-cover changes showed that biomass due to forest 

disturbance and regrowth increased 3-6 Mg C ha
-1

 in the Tomsk and Krasnoyarsk sites 

and declined 0.5 Mg C ha
-1

 in the Irkutsk site between 1990 and 2000. The slight decline 

in the Irkutsk site was due mainly to its extensive and severe fires, identified as fresh 

brun scars in the 2000 Landsat, which were not present or minimal at the Tomsk and 

Krasnoyarsk sites at the same date. Other studies that have mapped fires in the region 

corroborate this spatial and temporal distribution of light to severe fire regimes during the 

same time period (e.g., George et al. 2006). 

The increase of biomass in the Tomsk and Krasnoyarsk sites resulted from 

biomass gained through forest regrowth (regeneration and succession combined), which 

exceeded biomass lost through forest disturbance. Although areas of regrowth had 

generally smaller biomass increments per unit area than those lost due to disturbance, 

during the study period the area of the regrowth was larger. The area of the REGEN II 

category was large due to the fact that this included regeneration of Young forest on 

former agricultural lands. The large area of SUCCESSION was a result of earlier fire and 

logging disturbances prior to the study period. Fire has always been a disturbance factor 

across the study area, and Krasnoyarsk and Tomsk in particular were the sites of large 
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landscape-sized clear cuts prior to the 1990s. The average ∆biomass was 3.9 Mg C ha
-1

 

pooled by the three study sites. 

While the land-cover data were of reasonable accuracy (overall accuracy ranging 

from 89-96%; Bergen et al. 2008), forest type classification errors are one of the 

uncertainties associated with estimates of ∆biomass for this study. In the Tomsk and 

Krasnoyarsk sites, all forest types had the highest accuracy of the land-cover classes. In 

the Irkutsk site, however, classification accuracies of the Mixed, Deciduous and Young 

forest types were relatively lower in both 1990 and 2000 (accuracies ranged from 0.71 to 

0.90 with an average of 0.81). This indicates some classification confusion between 

young and maturing forest stands, which might have introduced bias in the calculated 

proportions of regeneration and succession types in the Irkutsk site. 

Areas that did not change land-cover types between 1990 and 2000 were held 

constant in terms of biomass for the current study. However, in a more complete 

accounting of carbon, biomass changes within a particular successional stage due to 

growth and respiration would also be considered. As noted, wetlands were excluded from 

this study because of little confirmed conversion between wetlands and forested land-

cover classes in the study area between 1990 and 2000 as well as the large discrepancy of 

documented carbon values for wetlands (Arneth et al. 2002, Smith et al. 2004). However, 

their roles as sinks or sources of carbon dioxide are potentially important, though the 

magnitude is debated. 

4.5.2 Scaling and amplified estimates at MODIS/AVHRR resolutions 

Remote sensing data collected with the coarse-resolution sensors such as AVHRR, 

MODIS and SPOT VEGETATION have been employed widely in the monitoring of 
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forest and biomass changes at regional to global scales. These sensors are advantageous 

in their large swath dimension and frequent repeat cycle, which make it possible to obtain 

cost-effective, instantaneous and cloud-minimized data for the large and often remote 

forested regions such as Siberia. However, a major concern in Siberia and elsewhere is 

whether the ability of the sensors to detect change is constrained by their limited spatial 

resolution with respect to characteristic land-cover and disturbance patch sizes. For 

example, a study of the tropical fire database showed that fast-repeating coarse-resolution 

sensors had advantages of capturing many active fires (including those burned out rapidly 

because of low fuel load) at the expense of missing a large number of small fires (Bradley 

and Millington 2006). A study in the Russian Federation documented that over one-third 

of burn scars were smaller than 2 km
2
 and that failure to record these small burn scars in 

the multi-temporal SPOT VEGETATION dataset resulted in a 10% reduction of the 

estimated carbon emission from fires (Zhang et al. 2003). 

We found more complex results based on scaling of the Landsat LCC data in our 

study area. Among all LCC types, CONSTANT (i.e., the unchanged area) was consistently 

less scale-dependent but was over-represented at the degraded spatial resolutions due to 

its large average patch size. All types in the Forest Disturbance group except for a few 

cases of BURNED and likely fire-related REGEN I patches were dependent on scale and 

were underestimated at the 960-meter resolution (Table 4.3). Fire scars in one case study 

site (Krasnoyarsk) were relatively small in size (4.6 ha on average); therefore, >50% of 

these fires disappeared at the 960-meter resolution. On the contrary, fire scars in the 

Irkutsk site were large in size (23 ha), which resulted in an over-estimation of the burned 

area by about 9% at the 960-meter resolution. Patches of LOGGED and DEVELOPED were 
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generally somewhat smaller in size (<5.5 ha on average) than INFESTED (11 ha on 

average); therefore, the proportion of the identifiable patches declined at a greater rate for 

the LOGGED and DEVELOPED types than for the INFESTED type, when LCC data were 

progressively degraded. All categories in the Forest Regrowth group were underestimated 

at the 960-meter resolution, but at a smaller rate compared to the Forest Disturbance 

group. 

In summary, although all of the LCC types as a whole tended to be 

underestimated at the MODIS and AVHRR resolutions, Forest Regrowth types and the 

large-sized Forest Disturbance types (such as INFESTED and large BURNED patches) 

retained presence better than the small-sized disturbances (such as the DEVELOPED, 

LOGGED and small BURNED patches). In turn, the lost information on small disturbances 

or development contributed to the overestimated biomass accumulation at the 960-meter 

resolution in the Tomsk and Krasnoyarsk sites. The over-represented BURNED areas 

contributed to the overestimated biomass decline at the 960-meter resolution in the 

Irkutsk site. This implies that, at the degraded spatial resolution, information on 

disturbances may be under- or over-estimated depending on their average patch sizes. 

Consequently, the estimated value of changes in biomass at the coarse resolutions may be 

amplified regardless of the change directions. 

At the site level, uncertainties in the estimated ∆biomass by different LCC types 

had a significant correlation with the MPS and ED of these LCC types (Table 4.4). Low 

uncertainties were associated with large-sized land-cover changes (i.e., high MPS values), 

indicating that large-sized changes were less prone to errors of identification at degraded 

resolutions. However, the results showed that simple patch edges were clearly associated 
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with high uncertainties of the estimated ∆biomass, while the complex patch edges were 

associated with low uncertainties. LOGGED in the study sites was typically regular in 

shape with simple edges, stemming from logging regulations on industrial forest lands. 

High uncertainties of the estimated ∆biomass of logging occurred at the coarse spatial 

resolution was not because of its simple edges, though they were well correlated, but 

because of the loss of logging due to its small patch sizes. 

This analysis specifically quantifies scaling effects of sensor resolution on 

estimated changes in land cover and biomass. Although not intended to simulate real 

MODIS/AVHRR sensor data, the results of this study have implications for uncertainties 

related to the large-area monitoring of biomass changes using sensors with resolutions 

like those of MODIS/AVHRR. However, there are two noted limitations of this study for 

drawing direct conclusions about the usefulness of these specific sensors. First, the 

simulated point spread function (PSF) was used for estimation of coarse image pixels. 

Such simulation of a coarse pixel, although taking into account distribution of signals at 

different locations, was not identical to the PSF of the MODIS/AVHRR sensors. Second, 

spectral information of the Landsat and MODIS/AVHRR sensors is also different, which 

might introduce different interpretations of land cover using the scaled Landsat vs. 

remotely sensed MODIS/AVHRR data. 

4.6 Conclusions 

We investigated biomass changes due to disturbance and regrowth in three case 

study sites representative of Eastern Siberia, and analyzed the implications of remote 

sensing spatial resolution on the estimated LCC proportions and ∆biomass resulting from 

characteristic forest dynamics of this region. 
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During the time period 1990-2000, up to one-third of the total land area within the 

three sites experienced land-cover changes associated with forest disturbances (logging, 

fire, insect infestation and development) and recovery of natural vegetation (including 

regeneration and succession). Biomass of the Tomsk and Krasnoyarsk sites was estimated 

to increase in 2000, while that of the fire-prone Irkutsk site showed a slight decline 

during the same time period. The increase of biomass was mainly due to natural 

regeneration and succession following historical and contemporary forest disturbances 

and agriculture abandonment. The negligible decrease for Irkutsk was likely due to a 

severe fire year in the 2000 end-point Irkutsk scene, where vegetation had not had a 

chance to regrow. Since biomass accumulation results from the net carbon uptake of 

vegetation, the overall increase in biomass implies that, collectively, the aboveground 

vegetation in the three sampled sites accumulated carbon because of land-cover changes 

between 1990 and 2000. Without information about carbon exchange in soils, however, it 

is impossible to say whether these landscapes were net carbon sources or sinks. 

These data were used to examine the impact of resolution of remote sensing data 

on estimates of ∆biomass. Aggregating from 60 to 960 meters, information lost due to the 

coarsened image resolution was consistently greater for the disturbance types combined 

than for the regrowth types combined. Therefore, in most cases there is an over-

estimation of biomass gain at the degraded spatial resolutions (Figure 4.4A). In areas 

with extensive and continuous fires, over-estimation of biomass loss tends to occur due to 

the over-recorded fire pixels at the coarse resolution (Figure 4.4A). The sizes of 

disturbance patches (especially fires that have wide ranges of sizes) play an important 

role in the carbon estimation based on coarse-resolution remote sensing data. With 
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respect to uncertainties of the estimated ∆biomass, the average pixel-wise RMSE 

increased significantly with the degraded resolution from 60 to 960 meters (Figure 4.4B). 

A rationale for undertaking this study is the concern that estimation based 

on >250 meter satellite data may be biased due to the lost spatial details relative to patch 

sizes of land cover and land-cover dynamics in Siberia. The results illustrate the spatial 

characteristics of disturbance and regrowth patch in representative Siberian forests, and 

the differences in ∆biomass estimated using coarser resolution remote sensing data. With 

caveats related to differences in the spectral and point-spread characteristics of sensors, 

these results can be used to inform selection of remotely sensed data based on spatial 

resolutions and in interpretation of uncertainties associated with the widely used 

MODIS/AVHRR land-cover and biomass data for Siberian Forests. 
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Chapter V   

 Summary 

Trends of primary production along an urban-rural gradient in Southeastern 

Michigan and changes in forest biomass in three sample sites in Taiga ecoregions of 

Eastern Siberia were examined using remote sensing techniques and ecosystem models. 

Results showed that both regions had experienced abandonment of agriculture and 

increase in proportions of woody species (tree-cover expansion in Southeastern Michigan 

and forest regrowth in Eastern Siberia), and that, on average, the total annual CO2 uptake 

increased by 53 g C m
-2

 in Southeastern Michigan and aboveground carbon storage in 

vegetation increased by 3.9 Mg C ha
-1

 (equivalent to 390 g C m
-2

) in Eastern Siberia 

during the 1990s. This implies that both of these study areas have experienced increasing 

vegetation photosynthesis activities over the last decade of twentieth century. 

Increases in northern hemisphere vegetation activity in the 1990s have also been 

documented in other previous studies (e.g., Keeling et al., 1996). NDVI was found to 

increase significantly in the two study areas of my research between 1991 and 1999 

(Slayback et al., 2003), indicating the potential capability of terrestrial vegetation in 

absorbing atmospheric CO2 in these regions. Atmospheric inversion models showed that 

the northern hemisphere land is a significant carbon sink, absorbing 1.53-2.89 Pg C yr
-1

 

during the 1990s (Baker, 2007). The forest area is 8.21×10
8
 ha in Russia (Houghton, 

2005), and biomass increased 3.9 Mg C ha
-1

 from 1990 to 2000 (Chapter IV). Assuming 
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that our sample sites in Eastern Siberia represent the average biomass changes of the 

Russian forests, the aboveground vegetation in boreal and temperate forests in Russia can 

be estimated to have absorbed 3.2 Pg C between 1990 and 2000 due to land-cover 

dynamics alone. This is 43% of the total biomass increment estimated in vegetation and 

soils of Russian forests during 1981-1999 (Beer et al., 2006). The annual net carbon 

uptake by Russian forests, which can be estimated to be 0.32 Pg C yr
-1

 in 1990s based on 

our results between 1990 and 2000 (i.e., 3.2 Pg C divided by 10 years), contributes to up 

to 21% of the annual net uptake of the entire northern hemisphere land (Baker, 2007). 

This number is comparable to the earlier research findings, which showed that Russian 

forests absorbed 0.28 Pg C yr
-1

 between 1995 and 1999 (Dong et al., 2003). It is about 

half of the size of carbon sinks throughout North America and Eurasia and is 2.5 times of 

the net uptake by tropical land (Dong et al., 2003; Baker, 2007), indicating that 

vegetation in Russian forests played an important role in fixing the atmospheric CO2 in 

the 1990s. 

The impacts of human development on carbon uptake from the atmosphere, not 

considering losses to respiration, were shown to vary by development densities according 

to the Michigan case study (Chapter II). The high level of GPP in exurban areas of 

Southeastern Michigan (about 1,992 g C m
-2

 yr
-1

 in 1991, which was higher than GPP in 

rural areas by 62 g C m
-2 

yr
-1

) is consistent with previous research findings that, during 

the growing season, peri-urban areas were more productive than non-urban areas by 

approximately 70 g C m
-2

 yr
-1

 in the U.S. Midwest in 1992-1993 (Imhoff et al., 2004). 

The estimated annual GPP was comparable to the estimation over the same region drawn 

from the global GPP/NPP product (Heinsch et al., 2003), with the root mean squared 
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error of 145 g C m
-1

 year
-1

 (less than 5% of the maximum pixel-wise GPP in 1999). The 

annual GPP in exurban areas (1,992 g C m
-2

 yr
-1

 in 1991 and 2,128 g C m
-1

 yr
-1

 in 1999) 

is much higher than the average global land GPP (877 ± 165 g C m
-2

 yr
-1

; Cramer et al., 

1999) or average GPP values of the global temperate grasslands and crops (456 and 890 g 

C m
-2

 yr
-1

, respectively; Prince and Gower 1995, Zheng et al. 2003, Zhao et al. 2005). 

This indicates that land conversion and landscaping strategies may help low-density 

development exurban areas maintain high vegetation productivity. 

Previous studies also indicated that there is regional heterogeneity in the effects of 

urbanization and exurbanization. Urban sprawl resulted in increases of vegetation 

greenness in some U.S. cities (e.g., Denver, CO, where open shrublands in the urbanized 

area were greener than those in urban outskirt; Imhoff et al., 2000) while it reduced net 

primary production in other U.S. cities (e.g., cities in the Southeastern U.S. contributed to 

0.4% decline of the regional net primary production; Milesi et al. 2003). In Chapter II, 

exurban areas in Southeastern Michigan were found to associate with enhanced increase 

of GPP, which contradicts both of the above findings. This may occur due to regional 

differences in the response of ecological productivity to urban sprawl; or, alternatively, it 

may result from different approaches in defining development types. Development 

categories were determined based on Census housing density for the Michigan case study, 

while they were classified based on satellite images for the two comparison studies. 

Exurban, typically low-density development (10-40 acre per housing unit), may appear to 

be the “non-urban” category in maps based on imagery classification. 

For both study cases, uncertainties in the carbon estimates relating to spatial 

scales were evaluated. For the Michigan case, I investigated the problem of scale 
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dependence in spatial units used to summarize productivity observations based on remote 

sensing images and related them to Census data on housing unit density. Spatial scaling 

of Census aggregation units was not found to affect inferences about productivity trends 

across settlement development types. This implies the feasibility of using coarse-scale 

Census data in detecting the impacts of human-housing development on ecosystem 

carbon functions at the nation level. For the Siberian case, effects of changes in 

observation scale (i.e., remote sensing image resolution) on the estimated changes in 

forest aboveground standing biomass were examined. Estimates of biomass changes were 

found to change with sensor resolutions due to the patch characteristics of disturbance 

and regrowth events that vary by a wide range in sizes. Accordingly, this overestimation 

of biomass accumulation or loss may have consequences for the global carbon accounting, 

which is often based on coarse-resolution remote sensing data. The scaling studies 

showed that inferences about carbon trends based on spatial data are influenced by scales 

of analysis, though scale dependence may vary depending on the nature of variables 

under analysis. 

My research on evaluating carbon trends in the two representative landscapes 

contributes to the understanding of human and natural disturbance impacts on ecosystem 

carbon functions at the local to regional scales. The growth of human settlement has been 

rapid in the mid-latitude northern hemisphere, but their impacts on carbon dynamics are 

not fully understood. Human activities may be reduced in remote places such as Eastern 

Siberia; however, they are still present and occur repeatedly. Their impacts on the carbon 

cycle, together with those from the repeated natural disturbances, are difficult to evaluate 

due to the limited accessibility in these remote areas. Research methods of incorporating 
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remotely sensed land-cover and biophysical data and other ancillary data (such as climate 

records, Census data, and ecosystem model outputs) provide a promising approach for 

carbon accounting under multiple human and natural disturbance regimes over the large 

geographic extents. However, results also showed that the scale of analysis matters in the 

interpretation of carbon trends; therefore, appropriately determining scale of observation 

and scale of inference may be critical for estimation of carbon changes. 

Extending from the present research, new projects may be developed in two 

directions. The first is to apply the approaches and knowledge gained here to account for 

changes in productivity and biomass across broader geographic extents. The second is to 

research the full path of carbon sequestration (e.g., from GPP to net primary production, 

NPP, and to net ecosystem production, NEP) in urban and ecological systems at northern 

hemisphere mid-latitude. The second research direction requires new developments in 

ecosystem modeling that take into account respiration of plants and higher-level 

consumers, while the first research direction is a more straightforward extension from the 

present research. Corresponding to the geographic locations in current studies, the 

immediate future projects may be evaluating productivity trends under urbanization 

across the entire U.S. and assessing biomass changes over the entire Eastern Siberia. 

5.1 ∆GPP due to development across the U.S. 

A future project might seek to understand human settlement impacts on changes 

in primary production. In the study of Southeastern Michigan, low-density development 

in the exurban area was shown to increase GPP, rather than reducing it, due to the 

increasing proportion of tree cover by converting agricultural lands to tree-dominated 

human settlement. Similar trends have been documented in the U.S. Midwest (Imhoff et 
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al. 2004). However, opposite trends were found in the southeastern U.S. (Milesi et al. 

2003). The contradictory results indicate spatial heterogeneity of development effects on 

ecosystem carbon functioning. By investigating GPP trends and their relationships to 

land-cover changes in a systematic way across the U.S., we will have a better idea on 

where and why the carbon sources and sinks occur due to development land conversions. 

My research demonstrated how ∆GPP can be estimated using AVHRR NDVI, 

solar radiation, and land-cover data. The biweekly NDVI composites are available across 

the entire U.S. from 1989 to present. The monthly mean surface solar irradiance data are 

available for the U.S. from 1983 to 1991 and after 1996. The U.S. land-cover data at 30-

meter spatial resolution are publicly available based on classification of Landsat images 

acquired in 1992 and 2001. Given the satellite data availability, ∆GPP across the U.S. 

territory can be estimated between 1992 and 2001, using algorithm adopted in the current 

research. 

Although the productivity trends across the U.S. can be summarized at any 

Census aggregation level, the Census-subdivision scale seems especially promising. At 

this scale, Census boundaries are relatively stable between 1990 and 2000, and, based on 

results in Chapter III, inferences about relationships between ∆GPP and development 

densities were generally equivalent to inferences drawn at the block-group scale. Census 

housing-unit data across the entire U.S. are available through websites of the U.S. Census 

Bureau. These data can be used to categorize all county subdivisions into different 

development types as used in the present study. 
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5.2 Biomass trends in Eastern Siberia 

To calculate biomass changes at the landscape level, land-cover data based on 

Landsat imagery were combined with biomass values derived from ecosystem modeling. 

Theoretically, I believe this approach, with a few modifications, can also be applied to 

analyzing biomass changes in all of Eastern Siberia. In practical application, however, 

regional-scale estimation is difficult, because it is hard to obtain complete datasets of 

forest and disturbance types based on Landsat imagery given the data availability due to 

frequent cloud cover (Landsat has a 16-day repeating cycle; compared to 

MODIS/AVHRR with one-day repeating cycle, chance of obtaining cloud-free data drops 

to 1/16). An alternative option is to use the publicly available regional or global land-

cover datasets to interpret forest, disturbances and other land-cover classes across the 

entire region. Previous research showed that AVHRR data collected at the 1.1-km spatial 

resolution is adequate for the classification of general forest types (e.g., dark-needled 

conifer vs. hardwood) in Siberia (Kharuk et al. 2003). This indicates that the global land-

cover datasets based on AVHRR and MODIS data (Stralher et al. 1999, Hansen et al. 

2000) can be used to derive the broadly defined land-cover types such as forests, wetland, 

agriculture and bare land (including cut). Historical disturbances such as fire and insect 

damage may be derived from previously published regional disturbance database (e.g., 

Kharuk et al. 2004, Sukhinin et al. 2004, George et al. 2006). 

As discussed earlier, estimates based on the coarse-resolution remote sensing data 

are prone to bias because of the missing spatial details. Our analysis at the three sampled 

study sites suggested that missing disturbances caused up to 10% overestimate of 

biomass increment and that over represented large fires produced a 70% overestimate of 
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biomass loss. To characterize errors across the entire region, additional reference sites 

need to be established, which can make use of Landsat images, forest inventory data 

(Krankina et al. 2005), and/or radar-based wood volume products (Santoro et al. 2007). 
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