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CHAPTER 1 

INTRODUCTION 

“Everything should be made as simple as possible, but not simpler.”  

 – Albert Einstein 

1.1. PROBLEM SPACE 

Even though physical experiments are still indispensable in engineering, 

computers provide powerful virtual alternatives, when physical experiments are too time-

consuming, expensive, or even impossible to conduct [11]. These virtual experiments, or 

simulations, prove invaluable for developing and testing new design concepts rapidly and 

inexpensively, and give vital insight into the system behavior. They rely on mathematical 

models that describe physical phenomena; hence, they are only as successful as the 

underlying mathematical model in faithfully and efficiently recreating physical systems 

in the virtual environment. Therefore, mathematical models are at the heart of simulation-

based engineering and science. 

To maximize their utility, mathematical models need to have two fundamental 

characteristics: fidelity and simplicity. For a model to be reliable, it is critical that it has 

enough fidelity, i.e., it describes the behavior of the system it represents accurately 

enough for the intended purpose. It is also important that the model is simple enough to 

comprehend, handle, and simulate efficiently. In other words, a model has to be only as 

complex as necessary to fulfill its purpose. 

Achieving fidelity and simplicity simultaneously, however, is challenging, 

because these two characteristics typically translate into conflicting targets. As more 
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physical phenomena are included in the model, the model’s fidelity increases, but its 

simplicity starts to suffer. If, on the other hand, too few phenomena are incorporated into 

the model to promote simplicity, the fidelity is impaired. Thus, it is important to find a 

balance between fidelity and simplicity. 

This balance can only be achieved by capturing those phenomena, and only those 

phenomena that dominate the system’s behavior in the scenario of interest. Thus, it is 

critical to know which phenomena are crucial to include in the model, which phenomena 

can be neglected, and which phenomena are irrelevant for the considered scenario. 

However, this valuable knowledge is difficult to have, as it requires much time and 

expertise. Therefore, balancing fidelity and simplicity is a great challenge. 

1.2. SCOPE OF THE WORK 

A model that balances fidelity and simplicity is deemed proper in literature [12]. 

Working with proper models is highly desired, yet obtaining them is challenging because 

of the aforementioned reasons. Therefore, many tools have been developed to aid the 

modeler in this task. These tools can be divided into two major categories based on their 

approach to proper modeling: 

1. Deduction tools: These tools assume that there exists a baseline model that 

captures only some basic phenomena, is simple, but lacks fidelity. Then, they 

systematically look for and add next conceivably most important phenomena 

to the model until it becomes proper. 

2. Reduction tools: These tools assume that there exists a baseline model that 

captures more phenomena than necessary, and has therefore excessive fidelity 

and lacks simplicity. Then, they systematically look for and eliminate 

conceivably negligible phenomena from the model until it becomes proper. 
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Between these two approaches reduction is the more common one in the 

literature. This means that initially preference is given to fidelity over simplicity to satisfy 

the fidelity requirement first. Then, reduction tools are utilized to decrease the complexity 

of the model with an acceptable compromise in fidelity to achieve simplicity. This 

philosophy is also accepted in this work. 

This work distinguishes between two special cases of reduction: 

1. Simplification: This refers to eliminating from the model only those 

phenomena whose elimination does not affect model fidelity. In other words, 

simplification removes only the irrelevant phenomena, and can be considered 

as a reduction with 100% fidelity retention (within a numerical tolerance). For 

example, the well-known ideas of pole-zero cancellation [13], Kalman’s 

minimal realization [14], or explicit elimination of Lagrange multipliers [15, 

16] can be referred to as simplification techniques. 

2. Partitioning: This refers to breaking weak two-way couplings in a model into 

one-way connections to create driving and driven submodels. When this is 

done, the output of the driving submodel acts like an input to the driven 

submodel, but the driven submodel does not affect the driving submodel. 

Models can be partitioned, e.g., into slow and fast dynamics [17], high- and 

low-frequency oscillation modes [18], heavily- and lightly-damped dynamics 

[18], or driven and driving sections [19]. 

To illustrate the difference between partitioning, simplification and reduction in 

general, consider an automobile that is modeled with 6 DoF (degrees of freedom), but 

moves only on the pitch plane. Then, assuming that the translational dynamics affect the 

pitch dynamics, but not vice versa, decoupling the two would be deemed as partitioning. 

Recognizing that the vehicle motion is on a plane and eliminating yaw, roll, and lateral 
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dynamics to end up with a 3 DoF model would be simplification. Finally, if the pitch 

dynamics are considered unimportant for the system dynamics of interest and removed 

from the model completely, that is considered reduction in a more general sense. It is 

worth noting that these distinctions are not necessarily universally accepted, but are used 

in this work for ease of presentation. 

This work deals in particular with simplification and reduction in general, but 

partitioning is out of scope. 

As for the types of systems considered in this work, the framework can be 

described as follows: First of all, this work concentrates on energetic systems only, i.e., 

systems composed of components that store, dissipate and exchange energy. Since such 

systems are quite common in engineering, this focus does not present a severe limitation. 

The motivation behind this focus is to take advantage of the domain-independent and 

intuitive notions of energy and power in simplification and reduction considerations. 

Furthermore, only deterministic systems will be considered, i.e., it will be 

assumed that a system’s future state is completely determined by its current state and 

current and future inputs without any random effects. 

Finally, only lumped-parameter representations of systems are considered. This is 

also not considered a severe limitation, as this is a typical way of representation in the 

area of system dynamics and control. Moreover, distributed systems can be brought into 

the scope of this work through their lumped-parameter approximations. 

Therefore, in summary, the scope of this work is the simplification and reduction 

of lumped parameter models of nonlinear energetic deterministic systems. 



 5 

1.3. PROBLEM STATEMENT 

A literature survey on proper modeling techniques is given the next chapter. The 

conclusion of the survey is that each of the existing methods has one or more of the 

following limitations: 

1. Applicability to a limited set of systems: Some proper modeling techniques 

are limited to particular classes of systems (e.g., linear systems, time-invariant 

systems, etc.). 

2. Requiring a realization change: Many proper modeling techniques project the 

dynamics of the given system onto a new state space conducive to 

simplification/reduction. This is often attractive in terms of minimizing the 

approximation error, but one may conceivably model a system using 

particular state variables and wish for this realization to remain invariant 

during simplification/reduction, perhaps because of its intuitive appeal. Any 

simplification/reduction technique that meets this need is referred to as 

realization-preserving in this work. 

3. Trajectory independence: Many proper modeling techniques seek models 

whose accuracy is acceptable over a broad range of state and input 

trajectories. Such input independence is often attractive, but one may 

conceivably seek a model that is proper only for a given trajectory or small 

family of trajectories. For instance, a vehicle safety engineer may seek a 

simple model that accurately captures vehicle dynamics only over the set of 

all maneuvers likely to induce rollover. In such situations, trajectory-

independent proper modeling algorithms may furnish excessively complex 

models, and trajectory-dependent approaches may be preferable.  
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4. Being limited to equation level: Graph representations (e.g., linear graphs, 

bond graphs, etc.) often provide intuitively appealing depictions of system 

models, but most proper modeling algorithms operate at the equation level. 

This means that even though the equations derived from a graph 

representation could be simplified/reduced using the existing techniques, the 

simplification/reduction would not necessarily be reflected at the graph level, 

which may hinder the advantages of having a graph-level representation. 

5. Not considering the structure of the model: Most proper modeling methods 

seek to simplify/reduce the order of a given model, i.e., its number of states. 

Therefore, possible simplifications/reductions in the structure of the model, 

i.e., how the components of the given system interact with each other, are 

typically not taken into account. 

This work strives to develop model simplification and reduction algorithms that 

address the above limitations. Specifically, algorithms are sought that are realization-

preserving, trajectory-dependent, applicable to graph level representations of nonlinear 

systems, and also aimed at both structure and order simplification/reduction. 

1.4. HYPOTHESES 

Because of the fact that the energy flow patterns in an energetic system determine 

the system’s behavior, this work proposes to use energy as the basis of the simplification 

and reduction algorithms to be developed. Such energy-based methods would allow for a 

unified treatment of not only different energy domains (e.g., mechanical, electrical, 

hydraulic, etc.), but also the dynamic components and their interactions in a system, 

thereby enabling simultaneous order and structure simplification/reduction. 

Specifically, the hypotheses of this work can be summarized as follows: 
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1. For simplification purposes, a weighted 
1 -norm of power known as activity 

in literature [20] can be used to detect and eliminate the structure that has no 

effect on the fidelity of the model. In particular, the junction elements 

(structural components in a model that implement Kirchhoff’s generalized 

node and loop laws) whose connections have almost zero activity can be 

removed from the model without compromising fidelity. 

2. For more general reduction purposes, taking into account not only the 

magnitude, but also the correlations between the energy flow patterns 

throughout the model would allow for a better assessment of the relative 

importance of each part of the model to the system behavior. In addition, such 

an evaluation could also be extended to the structure of the model to make 

simultaneous order and structure possible. 

1.5. MODELING PHILOSOPHY AND LANGUAGE 

A modular approach to modeling is adopted here to efficiently create the initial 

models. This means that the system models are obtained from generic component models 

through an assembly process. Due to reuse of submodels, the modular approach allows 

for efficient building, verification and handling of large-scale systems. 

Although models can be obtained rapidly through the modular approach, they are 

hardly proper at the outset. This is because of the level of detail included in the generic 

component models to promote modularity. For example, the generic rigid body model 

used in this work is created with 6 DoF, but in most engineering applications components 

hardly retain all 6 DoF when assembled into a system. Therefore, the modular model is 

subsequently simplified or reduced to make it proper. 

Therefore, in summary, the modeling philosophy of this work is to model the 

system in a modular way first, and then simplify/reduce it to obtain a proper model. It is 
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argued that with the aid of effective simplification/reduction tools this philosophy would 

lend itself very well to automated proper modeling of dynamic systems. 

With the modeling philosophy being modular and the scope being energetic 

systems, it is found especially convenient to use in this work the bond graph language to 

represent models due to its modular, power-based nature [21]. Furthermore, this language 

provides visual, intuitive, and compact representations of models, which will be 

important for presentation purposes especially in Chapter 6, where the proper modeling 

of a large-scale system is discussed. It is worthwhile to emphasize in advance, however, 

that none of the methods developed in this work is fundamentally limited to bond graphs. 

Nevertheless, they are easily implemented and presented using bond graphs. 

1.6. ORGANIZATION OF THIS DISSERTATION 

The rest of this dissertation is organized as follows. First, Chapter 2 reviews the 

state of the art in proper modeling. Chapter 3 formally introduces the inactivity of a 

junction element, and presents the proposed inactive-junction-based simplification 

algorithm. Chapter 4 proposes a method to relax the realization-preserving property of 

the simplification algorithm to the extent that body-fixed coordinate frames in multibody 

systems are automatically reoriented to achieve better simplification results, while still 

preserving the intuitive appeal of the model. Chapter 5 introduces a new energy-based 

metric to evaluate the importance of the various dynamic and structural parts of a model. 

It then presents the proposed reduction algorithm based on this metric, which enables 

simultaneous order and structure reduction. Chapter 6 is a case study which presents the 

proper modeling of the Army’s High Mobility Multipurpose Wheeled Vehicle, 

HMMWV. Chapter 7 concludes this dissertation with a summary, and lists of 

contributions and possible extensions of this work. 
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CHAPTER 2 

A REVIEW OF THE PROPER MODELING LITERATURE 

2.1. INTRODUCTION 

This chapter briefly surveys the numerous proper modeling techniques presented 

in the literature. Some of these techniques begin with simple models and increment their 

complexity until they meet their respective accuracy requirements: a process known as 

model deduction. Most techniques, however, begin with excessively complex models and 

then reduce them until they become proper. The ultimate goal of both model deduction 

and reduction techniques is the same, regardless of how it is achieved: given a dynamic 

system model, balance its accuracy and complexity by massaging it to include only the 

most salient dynamics of the given system. 

This implies that every proper modeling algorithm must have at its core a metric 

for quantifying the relative importance of modeling the different dynamics of a given 

system. Based on the metrics they use for proper modeling, this chapter classifies the 

proper modeling techniques presented in the literature into frequency-, projection-, 

optimization-, and energy-based. This classification is neither a universally adopted 

convention, nor is it strict. In fact, the chapter shows that a given proper modeling 

technique can often conceptually belong to more than one of these categories. However, 

the author finds this classification intuitively appealing and convenient for presentation, 

and hence adopts it herein. 
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Similar reviews exist in the literature [22-32], but this review presented in this 

chapter is unique in its use of proper modeling as a broad contextual framework within 

which different algorithms are compared and contrasted. 

2.2. FREQUENCY-BASED TECHNIQUES 

The fundamental metric used by frequency-based proper modeling techniques for 

assessing the importance of a given system’s various dynamics is characteristic speed. In 

particular, given a dynamic system model, these techniques partition it into submodels 

with comparatively “fast” and “slow” dynamics whose relative importance depends on 

the given application. 

Consider, for instance, the dynamics of a hydraulic car braking system. A full 

model of such a system may simultaneously capture the dynamics of the car’s motion and 

the dynamics of hydraulic pressure wave propagation. The latter dynamics are typically 

orders of magnitude faster than the former. A model capturing both sets of dynamics is 

therefore likely to exhibit significant numerical stiffness, defined as a disparity between 

its different characteristic speeds. Such numerical stiffness may cause the model to be 

computationally intractable, thereby necessitating a more “proper” technique for 

modeling this braking system. Such a proper modeling technique may neglect fluid 

compressibility when the goal is to examine vehicle braking, and conversely neglect 

vehicle motion when the goal is to examine pressure wave propagation. 

This chapter refers to all techniques that use characteristic speed as a metric for 

proper modeling as frequency-based techniques. The term “frequency-based”, in this 

context, underscores the congruence between characteristic speeds and eigenvalues in the 

case of linear systems. Indeed, as the review below shows, frequency-based proper 

modeling techniques are most often used for linear systems, even though many of them 

can be generalized to nonlinear systems. This review focuses on eight established classes 
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of frequency-based proper modeling techniques from the literature, namely, aggregation, 

singular perturbation, the model order deduction algorithm (MODA), modal analysis, 

component mode synthesis (CMS), polynomial approximation methods, oblique 

projection, and optimal Hankel norm approximation. It briefly details the fundamental 

principles behind each technique or class of techniques, in addition to their conceptual 

similarities and differences. 

2.2.1. Aggregation 

One of the basic ideas in the model reduction literature is to ignore the small time 

constants in a system, and keep the large ones, which dominate the response. Thus, the 

earlier model reduction methods were based on retaining the dominant eigenvalues of the 

system in the reduced model [33-40]. While developing his optimal projection method 

Mitra showed that Davison’s method [33] is a special case of optimal projection [41, 42]. 

Aoki later developed the more general method of aggregation [43], and it has been shown 

that Mitra’s optimal projection method is a special case of aggregation [44-46].  

The basic idea behind the aggregation method can be summarized as follows. 

Consider the approximation of the n-dimensional original system 

 
x Ax Bu

y Cx Du

 

 


 (2.1) 

with the r-dimensional reduced model 

 
r r r r

r r

x A x B u

y C x Du

 

 


 (2.2) 

Suppose the reduced state vector 
rx  is related to the original state vector x through 

 
rx Kx  (2.3) 

where K is the r n  aggregation matrix. It follows that 

 

r

r

r

A K KA

B KB

C K C







 (2.4) 
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A least-squares solution can be obtained by using the pseudoinverse as 

 

†

†

r

r

r

A KAK

B KB

C CK







 (2.5) 

It has been shown that a nontrivial aggregation law exists if and only if the 
rA  retains r of 

the eigenvalues of A [46]. Furthermore, K can be obtained by 

   10rK T I V   (2.6) 

where T is any nonsingular matrix, 
rI  is the r r  identity matrix and V is the modal 

matrix of A. 

This basic idea of aggregation has been extended by many researchers. For 

example, Aoki proposed two ways of relaxing the perfect-aggregation condition [47]. 

Hickin proposed a method called nonminimal partial realization that combines the ideas 

of aggregation and moment matching [48]. Siret et al. developed a method to chose the 

arbitrary matrix T in Eq. (2.6) in an optimal way to maximize a performance criterion 

[45]. It must be noted, however, that even though some of the eigenvalues of A are 

retained, the aggregation method is not realization-preserving, because the reduced model 

uses a different set of state variables than the original one; specifically, a combination of 

the original state variables. Hence, the intuitive appeal of the original model may not be 

preserved in the reduced model. 

2.2.2. Singular Perturbation Method 

As the difference between the large and small time constants in a system 

increases, or, in other words, as the underlying characteristic speeds become significantly 

disparate, the system is said to possess multiple time scales. In this case, if the interest is 

in the slow time scale, the problem may become numerically stiff due to the fast time 

scale. Singular perturbation is a reduction technique particularly suited to this type of 

models. 
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Unlike aggregation, singular perturbation is realization-preserving in the sense 

that it does not necessarily require a coordinate transformation as part of model reduction. 

This is quite attractive, because it implies that the physical meaning associated with each 

state in the original model can be preserved in the reduced model. 

In its simplest rendition, singular perturbation implicitly assumes a priori 

knowledge of which state variables of a given model correspond to the fast dynamics and 

which correspond to the slow. Neglecting the influence of the “fast” dynamics on the 

“slow” states partitions the original stiff model into two submodels. The first driving 

submodel captures the slow dynamics and residualizes the fast states, while the second 

driven submodel captures the fast dynamics and treats the slow states as input variables. 

This furnishes a decoupled system model that not only mitigates the original model’s 

numerical stiffness but also approaches the original model in accuracy as this stiffness 

grows. 

Singular perturbation is realization-preserving in the sense that it does not 

necessarily require a coordinate transformation as part of model reduction. This is quite 

attractive, because it implies that the physical meaning associated with each state in the 

original model can be preserved in the reduced model. 

The origins of the singular perturbation method go back to Prandtl’s work on 

boundary layers in fluid dynamics [49]. Later contributions by Tikhonov [50], Levinson 

[51], Vasileva [52], Wasow [53] and Kokotovic [54-57] established singular perturbation 

as a model reduction tool. In its simplest rendition, the singular perturbation method 

assumes that the dynamics of a system are expressed in state space form, where some 

derivatives have a small positive number   as a coefficient, i.e., 

 1 1 1 2 1( , , ),    nx f x x u x    (2.7) 

 2 2 1 2 2( , , ),    mx f x x u x     (2.8) 

The coefficient   represents the disparity between the characteristic speeds of the 

fast and slow dynamics. As this coefficient approaches zero, Eq. (2.8) becomes 
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2 1 20 ( , , )f x x u  (2.9) 

where bars are used to distinguish between this limiting case and the case where   truly 

equals zero. Now assume that Eq. (2.9) can be solved to obtain a distinct real expression 

for 
2x  in terms of 

1x , i.e.,  

 
2 1( , )x x u  (2.10) 

Substituting this solution into Eq. (2.7) effectively furnishes a slow submodel that 

residualizes the fast states, i.e.,  

 
1 1 1 1 1( , ( , ), ) ( , )x f x x u u f x u   (2.11) 

The reduced model for the fast dynamics can be obtained by introducing a fast 

time scale   and fast variables 
1( )x   and 

2( )x   defined as follows: 

 ,    ( ) ( ) ( ),    1,2j j j

t
x t x t x j 


     (2.12) 

Combining Eq. (2.7), (2.8), and (2.12), and letting 0  , the fast-dynamics model is 

obtained as 

 2
2 1 2 2( ( ), ( ) ( ), )

dx
f x t x t x u

d



 


  (2.13) 

This model uses the slow states as inputs, and is hence driven by them. 

Equations (2.7)-(2.13) highlight the simplicity with which the singular 

perturbation method can be applied to a given system. In addition to this simplicity and 

the method’s intuitive appeal, the singular perturbation method furnishes reduced models 

with attractive mathematical properties in some special cases. In particular, let the 

original and reduced models be G  and 
rG , respectively. Furthermore, assume that the 

full model G  is expressed in the time domain using a balanced realization (see Section 

2.3.2), then reduced to 
rG  using the singular perturbation method. Then, the singular 

perturbation method is equivalent to balanced residualization, a projection-based proper 

modeling technique. Furthermore, the maximum error introduced by singular 

perturbation, quantified in terms of the 
  norm of the difference 

rG G , satisfies: 

 12( ... )r n n mG G   
     (2.14) 
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where , 1,...,i i n n m     are the Hankel singular values of G  corresponding to the fast 

dynamics [58]. In other words, the 
  norm of the modeling error introduced by singular 

perturbation cannot exceed twice the sum of the Hankel singular values corresponding to 

the fast states. Furthermore, this modeling error decreases with the parameter , and 

becomes zero in the limit as  approaches zero.  

2.2.3. Model Order Deduction Algorithm 

Like singular perturbation, the model order deduction algorithm (MODA) is a 

realization-preserving technique that deems a model “proper” if it captures only the most 

relevant characteristic speeds of a given system for a given application. Unlike singular 

perturbation, however, MODA is a deduction algorithm that starts with simple models 

and increments their complexity until they become proper. Furthermore, MODA does not 

assume a priori knowledge of which states in a system are “fast” and which are “slow”. 

Instead, it explicitly searches for this knowledge as part of its pursuit of proper models.  

In its simplest rendition [59], MODA deems a linear system model proper for a 

given application if the model’s rank is minimal and its spectral radius exceeds a 

frequency range of interest (FROI) desired for the application. The spectral radius of a 

linear system is defined as the radius of a closed ball containing all its poles, or 

equivalently, as the Euclidian norm of its largest poles. Furthermore, the rank of a model, 

in this context, is the number of components in the model not included in the initial 

baseline model from which the deduction process proceeds. For instance, a finite-element 

model of a shaft that uses 30 finite elements has a rank of 23 compared to a baseline 

finite element model of the same shaft that uses only 7 finite elements. 

MODA begins with a baseline model and proceeds to increment its rank in a 

manner that produces the smallest increase in its spectral radius, repeating this process 

until the spectral radius exceeds the desired FROI [59]. Using this approach, MODA 
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furnishes not only a proper model, but also an understanding of which subsystem 

dynamics need to be captured accurately to furnish a proper system model. For instance, 

given a system containing more than one flexible shaft, MODA can determine the 

number of finite elements needed to model each shaft so that the overall system model is 

proper. This makes MODA particularly attractive for the automated lumped-parameter 

modeling of continuous dynamic systems [59].  

The literature describes several extensions that enhance the capabilities of 

MODA. In particular, Ferris et al. extend MODA to not only satisfy a given spectral-

radius requirement, but also capture system eigenvalues within that spectral radius with a 

desired level of accuracy [60]. Furthermore, Walker et al. modify this algorithm to 

furnish models that accurately capture the eigenvalues of only the observable and 

controllable modes of a given system within the desired FROI [61]. Wilson and Taylor 

modify MODA to seek an accurate representation of a system’s frequency response 

within the desired FROI as opposed to just its eigenvalues [62]. Finally, Taylor and 

Wilson extend MODA to enable the proper modeling of nonlinear systems over a desired 

range of input excitation frequencies [63].  

MODA is not the only algorithm that adopts the deduction approach to proper 

modeling. Pirvu et al., for example, propose a bond-graph-model adaptation algorithm 

that searches for all possible extensions of a given baseline bond-graph model that would 

result in a desired higher-order transfer function [64]. The baseline model can be 

extended by adding new interconnections, i.e., 1- and 0-junctions in bond graph terms, or 

energetic components, i.e., generalized inductors, capacitances or resistors. The transfer-

function-matching objective, however, limits this method to linear systems. 

Another example of the deduction approach is the bond-graph synthesis using 

genetic algorithms [65, 66]. Similar to Pirvu’s method, this method lets a bond graph 

evolve from a baseline model. However, the freedom in choosing the fitness function 
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gives this method more flexibility, allowing it to be used not only as a proper modeling 

tool, but also a conceptual system synthesis tool. 

2.2.4. Modal Analysis 

In its simplest rendition, modal analysis focuses on linear, time-invariant, vector-

second-order dynamic systems satisfying the principle of separation of variables (e.g., 

through proportional damping). Such systems may be finite- or infinite-dimensional. In 

the latter case, one often approximates the given system’s continuous dynamics using a 

finite-dimensional, lumped-parameter model obtained through a discretization technique 

(such as finite differences or finite elements). The resulting finite-dimensional model of 

this vector-second-order system, subject to the assumption of negligible damping, can be 

expressed as [67, 68] 

 0Mx Kx   (2.15) 

where M and K are the effective structural inertia and stiffness matrices, respectively. The 

modes of such a system can be found by solving the generalized eigenvalue problem 

 2Kv Mv  (2.16) 

where the natural frequencies are given by the various solutions for   and the modes 

shapes are given by the corresponding solutions for v. These mode shapes collectively 

form a basis spanning the complete state space corresponding to Eq. (2.15). Therefore, 

the dynamics represented by Eq. (2.15) can be projected onto the eigenspace given by 

these mode shapes without loss of information. Such a projection can also be performed 

on the standard state-space representation of the full model (as opposed to the vector-

second-order representation), leading to a new state-space model with a diagonal A 

matrix (with complex entries), as shown below: 
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

 (2.17) 

Given this new modal representation, modal analysis builds on the congruence 

between the eigenvalues corresponding to a given mode and the characteristic speed of 

the mode to achieve model reduction. In particular, by eliminating the modes 

corresponding to the faster eigenvalues from Eq. (2.17), one can balance the fidelity and 

complexity of a given model, thereby rendering it proper [67, 68]. Modal analysis is 

therefore a frequency-based model reduction technique that does not assume a priori 

knowledge of which dynamics of a given system are “fast” and which are “slow”. Like 

singular perturbation, it has the very attractive property of a guaranteed error bound. In 

particular, the 
  norm of the difference between the original model, G, and reduced 

model, 
rG , is bounded by 

    
1

Re .
n

T

r i i i

i k

G G c b 


 

    (2.18) 

where 
i  is the i

th
 eigenvalue, and   is the largest singular value of the residues 

T

i ic b  [69]. Unlike singular perturbation and MODA, however, modal analysis is not 

realization-preserving. It expresses the reduced model in terms of modal – rather than 

physical – coordinates. Consequently, physical insights associated with the original 

coordinate choice may be lost. Modal analysis shares this property with all projection-

based proper modeling techniques, and is hence both a frequency-based and projection-

based model reduction technique.  

The simple rendition of modal analysis presented above only applies to linear 

finite-dimensional systems. There are several important extensions of this technique, 

however, that make it applicable to a broader range of problems. First, modal analysis 

can be applied directly to the partial differential equations governing the dynamics of an 
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infinite-dimensional system: a process that can furnish proper lumped-parameter models 

of such systems directly. Furthermore, the literature presents many extensions of modal 

analysis to both linear and nonlinear deterministic and stochastic systems that do not 

satisfy the assumptions of the above discussion [70-72]. Finally, the literature describes a 

special extension of modal analysis to modular systems known as component mode 

synthesis. This extension is discussed in further detail below.  

2.2.5. Component Mode Synthesis 

Component mode synthesis is an extension of modal analysis that is particularly 

applicable to large, modular systems. It proceeds in two simple steps. First, it uses modal 

analysis to obtain a proper model of each module in the system separately. Then it 

assembles these proper module models into a system-level proper model. This two-step 

approach can be significantly less expensive from a computational standpoint than the 

direct application of modal analysis to the entire system model, because solving many 

small eigenvalue problems can be significantly more tractable than solving one large 

eigenvalue problem. Because of its computational attractiveness, component mode 

synthesis is widely used in the literature [73-78], particularly in the context of 

applications involving large modular systems, such as automotive vibration applications 

[79-81]. 

2.2.6. Polynomial Approximation Methods 

All five proper modeling techniques presented hitherto deem a model proper if it 

captures the dynamics of a system at either the “fast” or “slow” end of the frequency 

spectrum accurately and with minimal complexity. It is not uncommon, however, for one 

to pursue an accurate model of a system over one or more intermediate frequency bands. 

When modeling automobile noise, vibrations, and harshness (NVH), for instance, one is 
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usually interested in vibration frequencies small enough to be perceptible but large 

enough to cause potential passenger discomfort or drivability issues.  

Padé approximation is a frequency-based model reduction technique particularly 

suited to this class of problems. Given a complex model, it finds a lower-order 

approximation of the model by first constructing Laurent series expansions of the 

frequency responses of both models at one or more interpolation points. It then matches a 

small number of coefficients of these expansions to parameterize the reduced model. 

In particular, let ( )G s  represent the transfer function of the original – or “full” – 

model. Then its Laurent series expansion around some 
0s   is given by 

 0

0

( ) ( )k

k

k

G s a s s




   (2.19) 

The goal is to find a lower order model with the transfer function 

 0

0

ˆ( ) ( )k

r k

k

G s a s s




   (2.20) 

such that for a desired number 
0n , the equalities ˆ ,  0,1,2, ,k ka a k n    are 

satisfied. The coefficients ˆ, , 0,1,2, ,k ka a k    are referred to as moments, and therefore 

this technique is also known as moment matching. When 
0s  , the moments become 

the Markov parameters of the system, in which case the approximation problem can be 

solved using the Arnoldi procedure [82, 83] or the Lanczos procedure [84, 85]. When 
0s  

is arbitrary, the rational Krylov method [86, 87] can be used. It is also possible to use 

multiple interpolation points [85, 87]. 

Padé approximation is attractive when one seeks a good local approximation of a 

model around certain interpolation points in the frequency domain at a low computational 

cost. However, the stability of Padé approximants is, in general, not guaranteed, even if 

the models being approximated are stable. The literature describes some techniques that 

address this problem by extending Padé approximation to seek only stable reduced 

models [88]. Two other important limitations of Padé approximation remain even with 

these methods. First, there are no global error bounds for Padé approximants. Secondly, 
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Padé approximation, by virtue of its dependence on the Laurent series expansion, is not a 

realization-preserving technique.  

The starting point for Padé approximation is a Laurent series expansion of the 

frequency response of a given “full” model. If the full model is expressed as a rational 

polynomial transfer function, one may choose to obtain a proper model by truncating the 

polynomials in this transfer function directly, rather than expanding it into a Laurent 

series then performing moment matching. Continued fraction expansion is a polynomial 

approximation technique particularly suited to this scenario [89-93]. In particular, it 

builds on the fact that a transfer function given by 

 

1
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11 12 1, 1
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n

n

n

n

a a s a s
G s

a a s a s




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
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


 (2.21) 

can be written in the following continuous fraction expansion form 
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 (2.22) 

with 

 
,1

1,1

, 1, , 2
i

i

i

a
h i n

a 

    (2.23) 

where the coefficients 
1ia  are the first elements of the rows of the table 
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

 (2.24) 

This particular expansion, known as the second Cauer form [93], is just one of the 

possible forms of continued fraction expansion. Given this expansion, a reduced transfer 

function of order r can be obtained by retaining the first 2r coefficients h and truncating 

the rest. This preserves the steady state component of the original transfer function [27]. 
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Other forms that can be used for continued fraction expansion include the first and third 

Cauer forms and the Stieltjes form [27, 93]. 

The main drawback of the continued fraction expansion method in general is that, 

like Padé approximation, unstable reduced models can result from stable original models. 

The literature addresses this problem by proposing other polynomial approximation 

methods guaranteed to preserve model stability. One such method is Routh 

approximation [94], which is based on the fact that a transfer function given by 
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 (2.25) 

can be put into a canonical form, known as the alpha-beta expansion, given by 

 
1 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ),n nG s f s f s f s f s f s f s        (2.26) 

where 
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and the coefficients 
i  and 

i  are given by 
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 (2.28) 

A reduced model of order r can then be obtained by 

 
1 1ˆ( )r rG s G
s s

 
  

 
 (2.29) 
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with 
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In addition to preserving stability, the Routh approximant also guarantees that the 

first r coefficients of the Taylor series expansions about 0s   of the original and reduced 

models match. Furthermore, the impulse-response energies of Routh approximants 

converge monotonically to those of the original models, and the poles and zeros of the 

approximants approach the ones of the original model as r increases [94]. 

The literature describes other polynomial approximation methods that preserve 

stability, such as reduction based on stability equations [95]. Furthermore, the literature 

describes mixed methods that use different methods for approximating the numerator and 

denominator. These methods aim to resolve the instability problem of the Padé and 

continued fraction expansion methods, while matching some quantities of the original 

model. Typically, dominant pole retention or some other stability-preserving polynomial 

approximation method is used to calculate the denominator of the reduced model, while 

Padé or continued fraction expansion is used to determine the numerator. Some 

combinations include dominant pole retention and Padé approximation [33, 35, 36, 38], 

Routh stability criterion and Padé approximation [96], Routh array and Padé 

approximation [97, 98], stability equations and Padé approximation [99], and stability 

equations and continued fraction expansion [100]. Nevertheless, two drawbacks of the 

polynomial approximation methods in general still remains, namely, that all such 

methods are limited to linear systems, and they are not realization-preserving.  
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2.2.7. Oblique Projection 

Even though this method is, as its name suggests, a projection-based method, due 

to its close relationship with the polynomial approximation methods it will be reviewed 

here. The relationship is in the sense that this method, using the oblique projection 

approach, gives a unified tool to simultaneously match high and low frequency moments 

of the transfer function, and high and low power moments of the power spectral density 

[101]. 

This method frames the model reduction problem as a projection of the original 

model 
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into the reduced model 
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by 
rA LAT , 

rB LB , 
rC CT , and LT I . Then if L  and T  are chosen such that 
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and X  is the controllability Grammian satisfying 

 0T TAX XA BB    (2.35) 

then the reduced order model will be asymptotically stable if and only if it is controllable, 

and it will match p low frequency moments 

 (0) ,  1, ,i

iM CA B i p    (2.36) 

q high frequency moments 

 ( ) ,  0, , 1i

iM CA B i q     (2.37) 
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p low frequency power moments 

 (0) ( ) , 1, ,i T i T

iiR CA X A C i p     (2.38) 

and, q high frequency power moments 

 ( ) ( ) , 0, , 1i T i T

iiR CA X A C i q     (2.39) 

This basic idea has been extended to controller reduction at selected frequency 

regions, and also to matching the impulse response at selected time regions [101]. Due to 

its projection-based approach, this method is not realization-preserving. 

2.2.8. Optimal Hankel Norm Approximation 

The methods discussed so far deal with local approximations of a given system’s 

frequency response. On the one hand, aggregation, singular perturbation, MODA, modal 

analysis, and component mode synthesis typically aim to approximate the low-frequency 

behavior of a given system. On the other hand, polynomial approximation methods 

typically aim to approximate the frequency response of a given system around some 

frequencies of interest. 

Further extending these ideas, one may also seek a good approximation to a 

system’s entire frequency response. Such an approximation may minimize, say, the 
  

norm of the error 
rG G  between the full and proper models, but the resulting 

  model 

reduction problem does not have a known analytic solution. If, instead, one uses the 

Hankel norm of the error 
rG G  to quantify the “properness” of the reduced model, then 

an analytical solution for the optimal proper model does exist, and the resulting proper 

modeling technique is known as the optimal Hankel norm approximation [102-105].  

For a given, stable, linear, and time-invariant system, G, Hankel norm 

approximation seeks an optimal reduced model, 
rG , whose order, k, is specified a priori 

by the modeler. The resulting optimal proper model minimizes the Hankel norm of the 

error 
rG G  over the set of all linear and time-invariant models of the desired order. This 
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highlights the implicit tradeoff between fidelity (measured by the Hankel norm of 

rG G ) and complexity (measured by the order of 
rG ) that makes Hankel norm 

approximation a proper modeling method. Assuming that the state-space description of G 

is given by  , , ,A B C D , one possible way of finding 
rG  of order k is as follows [106]:  

1. Calculate P and Q, the controllability and observability Grammians of the 

system G, respectively. 

2. Calculate 2

1kE QP I   , where 1 1( )k k PQ    is the k+1
st
 Hankel 

singular value of G. 

3. Find the singular value decomposition of E, 
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4. Apply the transformation 
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5. Form the equivalent model 
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6. The equivalent model can be decomposed additively into a stable part G
with 

k stable poles and an anti-stable part G
 with all poles unstable, i.e., 
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G G G   . Then, G
 is the k-th order optimal Hankel norm approximation 

of the system G, i.e., 
rG G . 

The Hankel norm of the approximation error of any k-th order system ˆ
rG  is 

lower-bounded by 
1

ˆ ( )r k
H

G G G   , and the equality in the error bound is satisfied 

only by the optimal Hankel norm approximation 
rG . 

This minimization of error in terms of the Hankel norm comes at the expense of a 

change in realization due the transformations applied during the calculation of the 

reduced model. Therefore, the optimal Hankel norm approximation is not a realization-

preserving method. 

It is worth noting that even though the Hankel norm approximation does not 

optimize 
  norm of the error, there still exists an 

  error bound, as established first 

by Glover [105] 
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( ) ( ) 2
n

r i

i k

G j G j  


 

    (2.40) 

It is important to note that the D matrix does not affect the Hankel optimality of 

the approximation, but it does affect the 
  norm of the error. It is possible to choose D  

in such a way that upper-bound on the 

  norm of the error is cut in half, i.e., 

 
1

( ) ( )
n

r i

i k

G j G j D  


 

     (2.41) 

Please see [105] for the calculation of such a D . 

The above results for continuous systems have also been extended to discrete-

time systems [107-110], multivariable systems [104, 111], and nonminimal systems 

[106]. An efficient computation method for large scale systems is given in [112].  

2.3. PROJECTION-BASED TECHNIQUES 

The frequency-based proper modeling techniques discussed hitherto assume, in 

general, that the salient dynamics of a given system occur over a fairly limited range in 

the frequency domain. Projection-based techniques make a conceptually analogous 
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assumption in the state domain. Specifically, they all assume that the salient dynamics of 

a given system are limited to a portion of the system’s entire state space. They search for 

this portion – or subspace – by searching for the basis vectors spanning it, and they differ 

in the ways they choose the basis vectors. This section presents three projection-based 

model reduction techniques, namely, Karhunen-Loève expansion, balanced truncation, 

and component cost analysis. 

2.3.1. Karhunen-Loève Expansion 

The Karhunen-Loève expansion [113, 114], also known as principal component 

analysis [115], the method of empirical orthogonal functions [116], proper orthogonal 

decomposition [117], singular value decomposition [118], empirical eigenfunction 

decomposition [119-121], or the method of quasi-harmonic modes [122], is a correlation 

analysis tool that is a key foundation for most projection-based proper modeling 

techniques. It appears to have been suggested independently by several scientists [123], 

e.g., Kosambi [124], Loève [125], Karhunen [114], Pougachev [126], and Obukhov 

[127]. It can be implemented in a numerically efficient manner using the method of 

snapshots [119-121], and has become widely popular in many fields including fluid 

dynamics [128], random variables [129], image processing [130], signal analysis [131], 

data compression [132], oceanography [133], and process identification and control 

[134]. 

Given observation data from either a physical system or its model, the Karhunen-

Loève expansion finds a subspace that captures the dominant dynamics of this system. 

Specifically, it finds the orthogonal basis that optimally captures the energy of the 

observation signals in the least-squares sense. Selecting those basis vectors that capture 

the most observation signal energy furnishes a subspace that captures the dominant 

system dynamics. Projecting the system’s model onto this subspace using the Galerkin 
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projection method then furnishes a reduced model that captures the original system’s 

dominant dynamics. This process leads to a powerful model reduction technique.  

For time-invariant finite-dimensional systems, the Karhunen-Loève expansion 

method can be applied as follows. Consider a system represented by a state space 

equation of the form 

 ( , ),    nx f x u x    (2.42) 

Assume that m n observations are made for each state and arranged in matrix 

form such that 

  1 2 n m n
A x x x


   (2.43) 

Obtain the singular value decomposition of the matrix A, i.e.,  

 TA U V   (2.44) 

where 
1 2( , , , )n m ndiag        with 

1 2 0n      . The columns of the 

orthogonal n n  matrix V form a basis of the state space, and the squares of the singular 

values provide a measure of how much signal energy is captured by each of these basis 

vectors. Assume that the last n k  singular values are small, where k n . Then, a 

reduced order model can be obtained by taking the first k columns of the V matrix, and 

projecting the state space onto the subspace spanned by those k vectors, i.e., 

 ( ) ( , ),    T

r k k r k rx V f V x u x V x   (2.45) 

where x  is the approximation to the original state vector x. The motivation for using the 

first k columns as a basis for the reduced model is the fact that the rank k approximation 

( )T

k k k kA U V  to the original observation matrix A is optimal in a least squares sense. 

Here 
kU  and 

kV  denote the first k columns of the matrices U and V, respectively, and 
k  

denotes the leading k k  principal minor of the matrix  . This optimality is guaranteed 

for any value of k. Furthermore, an error bound exists for the approximation error 
rA A , 

which is given by 
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n

r iF
i k

A A 
 

    (2.46) 
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where 
F

  denotes the Frobenius norm [123, 135]. Note, however, that the optimality 

and the error bound are valid only for the approximation to the observation matrix, and 

not for the reduced order model, i.e., no bound exists for x x  in general. In fact, 

unstable reduced models may result from stable original models. Nevertheless, this 

technique often yields good results and is widely used for model reduction due to its 

applicability to nonlinear systems as well. Furthermore, under certain conditions it may 

be possible to characterize error bounds, consider the effects of small perturbations on the 

observation matrix, provide error estimates and ranges of validity [136-140]. 

In case the state variable is a function of position and time, ( , )z x t , which is 

common in fluid mechanics or in structural vibrations, the same technique can be used to 

obtain empirical modes, such that the state variable can be approximated as 
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M

i i

i

z x t a x b t


  (2.47) 

In this case the observation matrix can be arranged as: 
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 (2.48) 

Then, the columns of the U matrix in the singular value decomposition in Eq. (2.44) give 

the empirical modes known as the proper orthogonal modes and the squares of the 

diagonal elements of   describe how much signal energy is captures by each mode. 

When used this way, the Karhunen-Loève expansion is similar to the modal analysis 

technique described in Section 2.2.4 in the approach to obtaining reduced models; 

namely, by assuming that the total response is a combination of some modal responses 

and retaining the dominant modes in the reduced model. Note, however, that the modes 

in the Karhunen-Loève expansion are empirical. 
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2.3.2. Balanced Truncation 

The Karhunen-Loève expansion can be applied to a wide variety of dynamic 

system models for the purpose of modeling them properly. This includes linear and 

nonlinear, time-invariant and time-varying systems. The Karhunen-Loève expansion can 

also be applied to the same system for different state and input trajectories. This could 

ostensibly furnish significantly different proper models, each being “proper” only in the 

context of the trajectory used for obtaining it. 

Balanced truncation is a special model reduction technique that involves applying 

the Karhunen-Loève expansion in particular ways to particular classes of systems. Its 

simplest rendition was originally proposed by Moore [141]. Specifically, Moore 

suggested the application of the Karhunen-Loève expansion to the state trajectory of the 

balanced realization of a linear and time-invariant system subjected to a series of 

impulses. A system’s realization is balanced if its observability and controllability 

Grammians are equal, meaning that each state is as observable as it is controllable. When 

this is done, one finds that the less observable and less controllable states can be 

eliminated from the given system’s model to furnish a reduced model. This balanced 

truncation process is a very interesting and powerful generalization of the Kalman 

canonical decomposition, which only eliminates the completely unobservable and 

completely uncontrollable states from a given system model to furnish a minimal 

realization of the model [142]. Note, however, that due to balancing the realization of the 

system changes, and balanced truncation is therefore not realization-preserving. 

The balanced truncation technique proceeds mathematically as follows. First, it 

applies a state transformation to put the original model in a form where each state is 

equally controllable and observable. In this case, the controllability and observability 

matrices P and Q become diagonal, with the diagonal elements being the Hankel singular 

values, i.e., 
1 2( , , , )nP Q diag      , where ( )i i PQ   are the Hankel singular 
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values, which give a measure for the controllability and observability of corresponding 

states. Based on this measure, less controllable and observable states are truncated. There 

exists a global 
  error bound, which is the same as the 

  error bound in the Hankel 

norm approximation technique for the case when the D  matrix is not optimized, i.e., 

 
1

2
n

r i

i k

G G 


 

    (2.49) 

where 
i  are the Hankel singular values of G  corresponding to the truncated states. 

Note, however, that in Hankel norm approximation D  can be chosen such that only half 

of the 
  error bound of balanced truncation is achieved. 

It is important to note the norm that is used in Eq. (2.49), because the singular 

values may not be as informative for other norms. As first shown by Kabamba, the 

singular values by themselves are not descriptive enough for the 
2 -norm of error [143]. 

Therefore, Kabamba introduced other invariants of the system, the balanced gains, that 

together with the singular values describe the contribution of each state to the 
2 -norm of 

the impulse response [143]. 

There is an interesting relationship between balanced truncation and singular 

perturbation. The generalized singular perturbation approximation allows for matching 

the magnitude of the original model at a desired frequency 
0s s , and choosing 

0 0s   

corresponds to the singular perturbation as given in Section 2.2.2, whereas choosing 

0s   corresponds to direct truncation [58]. Thus, assuming the original model is 

balanced, choosing 
0s   corresponds to balanced truncation, and furthermore, singular 

perturbation, i.e. choosing 
0 0s  , achieves the same error bound as the balanced 

truncation [58]. 

The literature describes many extensions of the above balanced truncation 

technique. These extensions include approximate balancing techniques that can be quite 

valuable when exact balancing is computationally costly [144-146]. Further extensions 

extend balanced truncation specifically to stochastic [147-149], passive [147], and 
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bounded real systems [150]. The literature also describes LQG balancing techniques for 

reduced order controller design [151] and frequency-weighted balanced truncation for 

reducing the approximation error over a specified frequency range rather than the whole 

spectrum [152-156]. Significant research has also pursued the balanced truncation of 

nonlinear systems [157-168]. This literature highlights the importance of balanced 

truncation, both as a powerful model reduction technique and as the basis for very 

extensive ongoing research, both theoretical and applied.  

2.3.3. Component Cost Analysis 

Another method that can be reviewed under the projection-based techniques 

category is component cost analysis [169-173]. In this approach, a cost function for the 

linear stable system 
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is defined as 
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  (2.51) 

This cost function satisfies the cost decomposition property 
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V V


  (2.52) 

where 
iV  is the contribution of the i

th
 state, 

ix , to the system cost, and is given by 

 T

i ii
V XC C     (2.53) 

where X is the controllability Grammian, satisfying 

 0T TXA AX BB    (2.54) 

The reduced model is then obtained by truncating the low-cost states based on the 

rationale that the system cost should be perturbed minimally. However, it is important to 

know that deleting 
ix , in general, does not necessarily cause a change of 

iV  in V . 
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Note that the component cost analysis in this most basic form does not require a 

state transformation. Nevertheless, if the system is transformed into cost-decoupled 

coordinates, where TXC C  is diagonal, the component costs also quantify the amount by 

which the system cost will change if the corresponding states were truncated from the 

model. Furthermore, in these coordinates 
Cn r  components will have zero component 

costs, where 
Cr  is the rank of the matrix C . Therefore, in these coordinates a reduced 

model can be obtained that preserves the system cost. Cost decoupled coordinates are not 

unique, and one possible transformation into the cost-decoupled coordinates is given by 
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 (2.55) 

There is a close connection between component cost analysis and the idea of 

balanced gains introduced by Kabamba [143]. Specifically, if component cost analysis is 

applied to the balanced coordinates, the component costs exactly match Kabamba’s 

results [171]. 

Furthermore, a very interesting relationship exists between balanced realization 

and cost-decoupled coordinates [173]. A generalization of the basic component cost 

analysis defines 
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 (2.56) 

and considers the system 

 
x Ax Bu

y Cx Du

 

  



   (2.57) 

with the cost function 
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where ( , )y k t  is the response of the system for an impulse at the k
th

 input channel while 

all other inputs being zero, and Q  is a weight matrix. Then, the cost-decoupling 

transformation 
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yields the balanced coordinates, if 
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where 
1

0

( )
n

At i

i

i

e t A




 . These results imply that balanced coordinates are a special case 

of the generalized cost-decoupled coordinates, and thus the component cost analysis is a 

generalization of the balanced truncation. 

2.4. OPTIMIZATION-BASED TECHNIQUES 

The frameworks of both frequency- and projection-based proper modeling 

techniques are based on the same goal: to identify and isolate the dominant characteristics 

of a given model. For frequency-based methods these characteristics lie in the frequency 

domain, and for projection-based methods they are in the state space. 

In addition to this rather intuitive and practical motivation of retaining the 

model’s dominant characteristics, one may also seek to formally achieve a minimal 

difference between the predictions of the full and reduced models subject to a complexity 

constraint. Such techniques are referred to as optimization-based proper modeling 

techniques in this work. 

Optimal Hankel norm approximation, for instance, is an optimization-based 

proper modeling technique, because it seeks to minimize the Hankel norm of the 

difference between a full model and a reduced model, subject to a bound on the reduced 

model’s order. The fact that optimal Hankel norm approximation is also a frequency-
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based proper modeling technique underscores the fact that the classification of proper 

modeling techniques used here, while intuitively appealing, is certainly not strict. 

Interestingly, optimal Hankel norm approximation is also a projection-based proper 

modeling technique. This raises an important question, namely, whether one can 

formulate a “unified” model reduction problem: one that simultaneously seeks optimality 

in the frequency and state space domains.  

The above question was partly answered by Hyland and Bernstein’s seminal work 

on the optimal projection equations [174]. In this work, Hyland and Bernstein formulated 

the proper modeling problem as a problem of minimizing a quadratic measure of the error 

between a full model and its proper counterpart, subject to implicit rank constraints on 

the proper counterpart. This furnished a set of first-order necessary conditions for 

optimality of the reduced proper model, which Hyland and Bernstein expressed as a 

coupled system of two Lyapunov equations. Hyland and Bernstein then studied balanced 

truncation in the context of these necessary conditions for proper model optimality. They 

found that balanced truncation furnished reduced models that deviate significantly from 

quadratic optimality: a conclusion also supported by earlier research by Kabamba [143]. 

The significance of this finding cannot be overemphasized. It highlights the fact that a 

“proper” model developed using one metric (e.g., the relative observability and 

controllability of different states) can be far from being “proper” in the context of a 

different metric (e.g., quadratic optimality). In other words, there is no universal proper 

modeling algorithm applicable to all systems under all circumstances. Rather, different 

proper modeling algorithms are better suited to different problems, and one should 

carefully select the proper modeling metric ideally suited for the problem at hand.  

Optimization-based proper modeling techniques typically seek to minimize the 

2 , 
2 , or 

  norm of the difference between a given “full” model and its proper 

counterpart, subject to a constraint on the order (i.e., “complexity”) of the proper 

counterpart. Wilson, for instance, was the first to solve the 
2  optimal reduction problem 
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[175]. Specifically, he minimized the integral square error of the difference between the 

impulse responses of the full and reduced models. Other examples employing the 
2  

norm in their cost function include [176-186]. Similarly, Luus optimizes a reduced model 

to minimize the deviation of its frequency response from that of the corresponding full 

model [187]. As another example, Sou proposes a relaxation to the non-convex optimal 

  norm reduction problem to turn it into a quasi-convex problem, which is easier to 

solve due to the existence of a unique solution [188]. The proper modeling problems 

resulting from such formulations often do not have analytic solutions, and must hence be 

solved numerically. 

As a result, much of the optimization-based proper modeling literature focuses on 

the development of numerically efficient optimization algorithms, with special attention 

to the convergence properties of these algorithms. Gouda et al., for instance, obtain a 

proper model of a building’s thermal response using sequential quadratic programming 

[189]. Similarly, Hachtel et al. propose an interactive optimization technique 

incorporating linear programming as a tool for nonlinear model reduction [190]. 

Both linear and sequential quadratic programming are local search techniques that 

may not be able to find globally optimal proper models. With this in mind, Assunção and 

Peres propose a branch-and-bound algorithm for the solution of the optimal 
2 -norm-

based proper modeling problem [191]. Finally, Chen and Fang [192], Spanos et al. [193], 

and Ferrante et al. [194] propose reduced model optimization algorithms that have 

attractive mathematical guarantees of convergence.  

Optimization-based approaches may or may not be realization-preserving, 

depending on whether they fix the given system’s realization during the search for an 

optimal reduced model or allow it to vary. While most optimization-based approaches in 

the literature are not realization-preserving, it is certainly possible to construct ones that 

are. 
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2.5. ENERGY-BASED TECHNIQUES 

Energy-based proper modeling techniques are built on the intuitive fundamental 

premise that in an energetic system, the most important components to model accurately 

are those characterized by the largest magnitudes of energy (or power) flow. Therefore, 

these algorithms reduce a given model by eliminating less energetic components, while 

trying to minimize the effect of the elimination on the overall energy flow. The well-

known Rayleigh-Ritz method exemplifies this perspective on model reduction [68]. 

Methods that utilize the 
2 -norm (e.g., [191]) or the 

2 -norm (e.g., [175]) can also be 

classified as energy-based. Other energy-based model reduction algorithms include 

statistical energy analysis [195] and the power-based model reduction algorithms by 

Rosenberg and Zhou [196, 197].  

Rosenberg and Zhou’s model reduction algorithm [196, 197] is based on the 

intuitive notion that in an energetic dynamic system those components characterized by 

higher mean-square energies should be more important to model than those characterized 

by lower mean-square energies. This leads to a simple, intuitive, realization-preserving, 

and powerful model reduction technique with no theoretical proof for convergence, 

reduced model stability, or “optimality”.  

Louca et al. extend Rosenberg and Zhou’s algorithm by proposing a new energy-

based model reduction metric called activity [20]. The activity of an energetic element is 

defined as the time integral of the absolute value of the power flowing through it over a 

particular time-window for a particular input. In a bond-graph setting, where the flow 

through an element i and the effort across it are denoted as 
if  and 

ie , respectively, the 

element’s activity is defined as  

 
0

( ) ( )

T

T

i i iA f t e t dt   (2.61) 

where T is the width of the desired time-window. The activity of an element can, hence, 

be physically interpreted as the total energy flow through the element within a specified 
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time-window for a specific input. It can also be interpreted as the 
1 -norm of the power 

flow through the element, multiplied by the width of the time window used to compute 

that norm. 

Louca et al. conjectured that in an energetic system, the more active elements are 

more important to model than the less active elements. An element, in this context, is any 

component in the system’s bond-graph representation, including generalized resistors, 

capacitors, and inductors. Based on this conjecture, Louca et al. proposed an activity-

based realization-preserving model order reduction algorithm (MORA) [20], and 

developed techniques for physically interpreting the reduced models generated by this 

algorithm [198]. 

The fundamental premise behind MORA, namely, that activity can be used as a 

proper modeling metric, is mostly intuitive. However, it is supported by some important 

application studies [199-201]. Furthermore, recent work by Fathy and Stein has unveiled 

fundamental concordances between MORA and balanced truncation [202]. These 

concordances are special cases where the two algorithms are mathematically guaranteed 

to furnish identical reduced models. While these concordances do not provide a general 

mathematical foundation for MORA, they do lend credence to MORA as a mathematical 

model reduction algorithm, at least in the special cases covered by the concordances 

[202]. 

Beyond its viability as a model reduction metric, activity has also proven viable as 

a model partitioning metric. Specifically, Rideout et al. use activity to quantitatively and 

systematically look for decoupling among the elements of a model and to partition the 

model based on the discovered decoupling [19]. Once the partitions are obtained, the 

simulation can be carried out either by simulating the driving partition first and using its 

output as an input to the driven system, or, in case only the driving partition is of interest, 

by completely eliminating the driven partition and keeping only the driving partition. 
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The methods discussed above are based on some norm of power as a metric. Ye 

and Youcef-Toumi propose an alternative to this approach [203]. Specifically, they 

propose a sensitivity analysis that is applied to the bond energies in a bond graph model. 

Their analytical approach is limited to systems in which the energy levels of independent 

energy-storing components are piecewise invertible functions of their corresponding 

states. However, due to the sensitivity-analysis-based framework of the approach, better 

results may be obtained compared to the metrics above, though at the cost of ease of 

implementation. 

The works discussed above do not provide bounds on the effects of the neglected 

dynamics on the reduced model. Knowledge about such bounds is important especially if 

the reduced model is going to be used for controller design. Specifically, such bounds are 

important for the robustness of the controller. It is known that the closeness of the 

reduced model to the full model in terms of an energy-based metric does not guarantee 

that the stable controller designed for the reduced model will also be stable for the full 

model. In fact, the weakest norm that can guarantee this stability is the gap metric [204-

208]. To address this issue, Chang et al. take a Lyapunov function approach to energy-

based model reduction [209]. This allows them to provide bounds on the disturbances to 

the reduced model caused by the unmodeled dynamics. Even though implementation-

wise this method is not as easy as, e.g., the activity metric, the additional information 

about the bounds can be invaluable for robust controller design. 

2.6. DISCUSSION AND CONCLUSIONS 

The process of modeling a dynamic system invariably entails a tradeoff between 

model accuracy and simplicity. Simpler models can be easier to simulate, analyze, 

comprehend, and control than more complex ones, but this often comes at the expense of 
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accuracy and, hence, potential viability. Recognizing this fundamental tradeoff, the 

literature deems a model “proper” if it balances the needs for accuracy and simplicity. 

The formal definition of “proper” models may be relatively new [59], but its 

underlying emphasis on the need for balancing model fidelity and complexity has been 

recognized for many decades. In fact, the literature presents many techniques for 

reducing complex models until they become proper, or deducing proper system models 

from simpler subsystem models. 

This chapter briefly surveys these techniques and classifies them into frequency-, 

projection-, optimization-, and energy-based depending on their underlying metrics for 

assessing the relative importance of a model’s different dynamics and subsystems. This 

classification is neither well-established nor strict, as evident from the fact that a given 

proper modeling algorithm often belongs to more than one of these categories. However, 

it is adopted herein for its convenience for presentation. 

A careful examination of the different proper modeling techniques in the literature 

leads to the fundamentally important conclusion that there is no universal proper 

modeling technique suitable for all modeling problems and all applications. Rather, 

different proper modeling techniques are often better suited to different problem spaces.  

Despite the richness of the proper modeling literature, many important problems 

remain to be addressed. In particular, one may claim that each of these techniques has 

one or more of the following limitations: 

1. Applicability to a limited set of systems: Some proper modeling techniques 

are limited to particular classes of systems. For example, polynomial 

approximation methods are applicable to linear systems only, and singular 

perturbation is ideally suited for systems with multiple time scales. 

2. Requiring a realization change: Many proper modeling techniques (e.g., 

balanced truncation, optimal Hankel norm approximation, proper orthogonal 
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decomposition, etc.) project the dynamics of the given system onto a new state 

space conducive to reduction. Although this may yield better results in terms 

of minimizing the approximation error, one may also wish to preserve the 

original realization, perhaps because of its intuitive appeal. 

3. Trajectory independence: Many proper modeling techniques seek models 

whose accuracy is acceptable over a broad range of state and input 

trajectories. One example is 
  model reduction, which seeks to reduce a 

given model while minimizing the resulting error over the entire frequency 

spectrum. Such trajectory independence is often attractive, but one may 

conceivably seek a model that is proper only for a given trajectory or small 

family of trajectories. In such situations, trajectory-independent proper 

modeling algorithms may furnish excessively complex models, and trajectory-

dependent approaches may be preferable.  

4. Being limited to equation level: Graph representations (e.g., linear graphs, 

bond graphs, etc.) often provide intuitively appealing depictions of system 

models, but most proper modeling algorithms operate at the equation level. 

This means that even though the equations derived from a graph 

representation could be reduced using the existing techniques, the reduction 

would not necessarily be reflected at the graph level, which may hinder the 

advantages of having a graph-level representation. 

5. Not considering the structure of the model: Most proper modeling methods 

seek to reduce the order of a given model, i.e., its number of states. Therefore, 

possible reductions in the structure of the model, i.e., how the components of 

the given system interact with each other, are typically not taken into account. 
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For brevity, the chapter focuses mostly on the deterministic proper modeling 

problem. The notion of a “proper model” becomes particularly powerful in the context of 

systems with significant uncertainties. In particular, when modeling a stochastic system, 

one may legitimately ask: which of the system’s various uncertainties are more important 

to model, and which are negligible? This leads to the notion of a stochastic proper model: 

one capturing only the most salient dynamics and uncertainties of a given system. 

Significant research exists, and continues, in the area of stochastic proper modeling, but 

this chapter focuses on deterministic proper modeling for brevity. 

Finally, it is important to note that proper models of dynamic systems are often a 

means to an important practical end. In particular, the ultimate goal of any proper system 

modeling exercise is often to not only better understand the system’s behavior, but also to 

use this understanding as a means towards better system designs and controls. This 

implies that a proper model must, therefore, be both scalable and control-oriented. A 

system model is scalable if it captures not only the dynamics of a given system, but also 

how these dynamics change with system design parameters. Furthermore, a system model 

is control-oriented if it accurately captures those dynamics that are most important for the 

effective control of the given system. Both scalable and control-oriented modeling are 

rapidly becoming active research topics, and a thorough discussion of these topics is 

omitted from this chapter for brevity.  
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CHAPTER 3 

STRUCTURAL SIMPLIFICATION OF MODULAR BOND-GRAPH MODELS 

BASED ON JUNCTION INACTIVITY 

3.1. INTRODUCTION 

The modular modeling paradigm facilitates the efficient building, verification and 

handling of complex system models by assembling them from general-purpose 

component models. A drawback of this paradigm, however, is that the assembled system 

models may have excessively complex structures for certain purposes due to the amount 

of detail of the component models, which has been introduced to promote modularity. 

For example, a multibody system can be modeled using generic rigid-body models with 6 

degrees-of-freedom (DoF) to represent the components of the system, but then constraints 

have to be added to the model to match the actual DoF of the system. 

This chapter presents a domain-independent structural simplification technique 

that can detect such unnecessary complexities in a modular bond-graph model and 

eliminate them from the model without compromising accuracy. To this end, the activity 

concept in the literature is extended to define “inactivity” for junction elements, and 

simplification is obtained by detecting and eliminating inactive junction elements and by 

propagating the implications. It is shown by example that this simple idea can result in 

models that are conceptually and computationally more efficient than the original 

modular models. The realization-preserving and input-dependent characteristic of this 

approach is highlighted. 
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3.2. MOTIVATION 

One possible approach to modeling dynamic systems is to develop modular 

models for the components first and then to assemble the system model by combining the 

component models in accordance with the system topology [210]. Such a modular 

approach is well established in the multibody dynamics area, for example, where the 

system model is obtained by augmenting 6-DoF rigid-body models with constraints. 

Commercial software based on this idea is available (e.g., ADAMS [211]). 

The modular approach has many well-established advantages. These include 

independent creation and reuse of submodels, hierarchical model structure, ease of 

adjustment of model complexity, ease of model verification and ease of handling large 

systems.  

A drawback of this approach, however, is that when general-purpose component 

models are assembled into a system model, the resulting model can be excessively 

complex for a given application [9]. The component models need to be created for a 

broad range of applications, and therefore need to include a lot of detail relevant for that 

scope. In the case of modular modeling of multibody systems, for example, a generic 

component model for a rigid body may consider all possible motions in space and include 

all 6 DoF. However, when component models are assembled into a particular system 

model, some of that detail may become irrelevant/unimportant in that particular context. 

Returning to the multibody example, the model for a particular system can be obtained by 

augmenting component models of rigid bodies with relevant constraints, but then the 

number of DoF of the system is less than the sum of the number of DoF of the 

unconstrained components. Therefore, the system model includes an excessive amount of 

complexity, and it may be desired to eliminate this excessive complexity. 

One motivation for eliminating excessive complexity could be that a simpler 

model could prove more insightful by showing only what is of relevance to the problem 
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at hand. Also, a simpler model would typically have fewer parameters and states, which 

reduces the number of parameter values and initial conditions that need to be identified. 

Note that an initial estimate of parameters is necessary for the full model, but a costly 

accurate identification can be delayed until the simplified model is obtained. If the model 

is going to be involved in a control design problem, a simpler model could also simplify 

the control problem [69]. Finally, a simpler model is generally more computationally 

efficient, which makes the model more suitable for iterative processes, such as 

optimization [212], sensitivity analysis [213, 214], Monte Carlo simulation [215], system 

identification [216], etc., or for real-time simulation [217]. It is acknowledged, however, 

that simplicity does not necessarily always imply computational efficiency [211]. 

As mentioned in Chapter 1, the complexity of a model can be reduced in different 

ways. Specifically, it was distinguished between partitioning and simplification as special 

cases of reduction. This chapter focuses exclusively on simplification. 

It was also mentioned in Chapter 1 that as a way of expressing the models in a 

modular modeling environment, bond graphs prove to be suitable due to their power-

based graphical nature and their lending themselves to modularity [21]. As an example, a 

bond-graph-based modular modeling paradigm has been shown to be suitable for 

modeling reconfigurable machine tool servo drives [9]. There are other possible 

representations to create a modular environment, such as block diagrams [210] or 

Modelica [218], but bond graphs are preferred in this work due their convenience. 

Nevertheless, it is noteworthy that although the method presented in this chapter is 

particularly amenable to bond graphs, it is applicable to other representations as well. 

The literature presents many mathematical tools, such as pole-zero cancellation 

[13], Kalman’s minimal realization [14], or explicit elimination of Lagrange multipliers 

[15, 16], that can be used for model simplification, but these techniques apply at the 

equation level. Thus, even though the equations derived from a bond graph could be 

simplified with such techniques, the bond graph itself would still contain the excessive 
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complexities, obscuring insight, and requiring the repetition of the equation-level 

simplification each time the equations are derived from the bond graph.  

There are some well-established rules for bond-graph-level simplification [21], 

such as eliminating loose or power-through junctions, merging adjacent junctions of same 

type, eliminating a null effort (flow) source connected to a 1-junction (0-junction), 

lumping dependent elements, or some structural equivalencies. However, these rules by 

themselves are not enough to eliminate a Lagrange multiplier from a bond graph, for 

example. Hence, they still leave room for more simplification. 

A more advanced model simplification procedure in the bond-graph domain is 

proposed by Rinderle and Subramaniam [219], consisting of four main steps: (1) 

eliminating null sources, (2) eliminating transformers with zero modulus, (3) eliminating 

constraining junction structures, and (4) reducing the number of dependent inertia 

elements through parameter lumping based on the Lagrangian. Although very useful in 

some cases, this technique is not very effective when the transformers are modulated, or 

the constraints are enforced through Lagrange multipliers, for example, so that there are 

no constraining junction structures in the model. 

There are also some bond-graph level tools that have been developed for 

reduction and partitioning purposes, but can serve, to some degree, for simplification 

purposes as well. In particular, as reviewed in Chapter 2, a metric called “activity” for 

measuring power flow among bond-graph elements has been proposed by Louca et al. 

and used to create a model reduction algorithm called MORA [20]. If MORA is used to 

remove zero-activity elements only, it serves as a simplification tool. Nevertheless, a 

significant amount of complexity may still remain in the model, because MORA 

concentrates only on the energy elements and not on the junction structure. In addition, 

the partitioning algorithm proposed by Rideout et al. also leverages the activity concept 

[19]. Weak coupling points can serve for simplification purposes if the driven partition 

consists only of an inactive junction structure and elements that can be removed along 



 48 

with the junction structure, but this is not always the case. Thus, this method is also not 

very effective for simplification. 

This chapter presents a realization-preserving input-dependent algorithm to 

achieve structural simplification of nonlinear models at bond-graph level. To this end, a 

unified treatment of junction elements is introduced. In particular, the activity metric [20] 

is extended to junction elements to identify the inactive ones and eliminate them to 

simplify models. This approach can be considered as a generalization of the well-known 

idea that 1-junctions with zero flow and 0-junctions with zero effort can be eliminated 

from a bond graph. Thus, the contributions of this chapter are the generalization of the 

zero-flow and zero-effort metrics into a unified metric, inactivity; a procedure to identify 

and remove inactive junction structures; and a detailed discussion of the realization-

preserving and input-dependent property of this approach.  

3.3. MODEL SIMPLIFICATION BASED ON JUNCTION INACTIVITY 

3.3.1. Inactivity of Junction Elements 

The activity metric developed by Louca et al. is a measure of power flow in a 

model for a given input [20]. Activity of an energy element (i.e., generalized inertia (I), 

capacitance (C) or resistance (R)) is formally defined as  

 
2

1

t

t

A e f dt   (3.1) 

where A, e and f are the activity, generalized effort and flow of the element, respectively. 

Based on the hypothesis that elements with low activity contribute less to the system 

dynamics, the activity metric is used as the basis for a systematic model reduction 

technique called “Model Order Reduction Algorithm (MORA)” [20]. In MORA, the 

activity metric is defined and used for assessing the single port energy elements (I, C and 

R) only. 
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If the junction structure is also to be considered for simplification, a metric for 

junctions is also necessary. In this work a junction element, 1- or 0-junction, is called 

“inactive,” if all the bonds that are connected to the junction element have a negligible 

activity, i.e., 
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A e f dt i n     (3.2) 

where 
iA , 

ie  and 
if  are the activity, effort and flow of bond i connected to the junction 

element, respectively;  is a small number, which will be referred to hereafter as the 

inactivity threshold; and n is the number of bonds connected to the junction element. 

The hypothesis is that inactive junction structures can be removed from the bond 

graph without compromising accuracy, thus simplifying the model. 

Two things are important to note here: First, the inactive junction concept can be 

considered as the generalization of the idea that 1-junctions with zero flow and 0-

junctions with zero effort can be eliminated from a bond graph without sacrificing the 

accuracy of the model. This is because a 1-junction (0-junction) will be inactive not only 

if its flow (effort) is zero, but also if the efforts (flows) are zero. For example, if a 1-

junction represents a characteristic non-zero velocity component along which no force 

does any work, then that 1-junction is going to be inactive despite the non-zero flow. 

Second, the elimination of an inactive junction does not necessarily correspond to 

removing every null-power bond from the model. In fact, the latter may lead to 

computational problems. To illustrate this, consider a particle of mass m that is 

constrained to move along an arbitrary path (Fig. 3.1a). The particle experiences a 

gravitational force in the –y direction, and a viscous friction, b, as it moves along the 

path. Assume that the modeler has chosen to work with two coordinate frames, the 

inertial (x-y) and constraint (n-t) frames, for their convenience to express the 

gravitational and constraint forces, respectively. The bond graph of this scenario is given 

in Fig. 3.1b, where the pseudo-flow source (PSf) [9] represents the Lagrange multiplier 
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enforcing the constraint, and modulated transformers take care of the coordinate 

transformation between the inertial and constraint frames. Specifically, 

[ ] [ ]T CI T

n t x yv v v v A , where 
CI

A  is the transformation matrix from the inertial frame 

to the constraint frame. Note that the elements of 
CI

A  can become arbitrarily small, since 

the path is arbitrary. In other words, even though 
CI

A  will always be invertible, its 

individual elements may be not. Therefore, all the modulated transformers in Fig. 3.1b 

should have a fixed flow-in-flow-out causality to avoid singularities. In that case, the 

only possible causal assignment is as shown in Fig. 3.1b. Note that the bond between the 

PSf and 0-junction elements will have null power due to the zero normal component of 

the particle velocity. However, it cannot be removed from the bond graph, because that 

would create a causal conflict due to the fixed causal assignment of the MTF elements. 

The proposed metric would identify the 0-junction to which the PSf element is connected 

to as active and would not consider it for simplification, thereby keeping a null-power 

bond in the model.  

   

 (a) (b) 

Figure 3.1. (a) Particle constrained to an arbitrary path, (b) bond-graph model of the 

system 
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3.3.2. The Simplification Procedure 

Using the inactivity metric defined in the previous subsection for a junction 

element, a procedure to simplify bond-graph models is proposed below.  

Note, because activity depends on the excitation and the time-window selected for 

the activity calculation, it is critical to choose them properly for the task at hand. 

Selecting proper excitations and the time-window are considered as prerequisite steps. 

Section 3.4.2 will discuss the importance of proper excitations more in detail. 

After the prerequisites are satisfied, the main steps of the simplification procedure 

can be described as follows: 

1. Detection of inactive junction elements: A simulation run is performed and 

the activity values are recorded. The inactivity threshold  is selected, 

typically on the order of magnitude of the numerical integration tolerance, and 

the inactive junctions are identified using Eq. (3.2). 

2. Preserving modulating signals: Some junction structures may be inactive, yet 

important for generating a modulating signal necessary for the rest of the bond 

graph. To preserve the modulating signal, the inactive bond-graph junction 

structure that generates the modulating signal should be converted into a block 

diagram, instead of being removed completely. 

3. Elimination of inactive junctions: The remaining inactive junctions are 

removed from the model, along with the elements and submodel ports that 

become detached after the removal of the inactive junction elements. 

After the last step, if desired, the well-known bond-graph simplification 

techniques can be applied, such as removal of power through 1- or 0-junctions, removal 

of unity gain transformers, merging adjacent junctions of the same type, or lumping 

dependent inertias onto independent ones. 
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This procedure is given as a flowchart in Fig. 3.2 and is illustrated with an 

example in Section 3.3.3. 

 

Figure 3.2. The flowchart of the simplification process 

3.3.3. Example: Bead on a Stick 

To illustrate how the proposed algorithm works, consider a bead that can slide 

smoothly on a stick, which is swung in a vertical plane with constant angular velocity . 

Figure 3.3 illustrates the described system and shows its modular bond graph, which is 

composed of 3D rigid-body and joint models. For the details of the modules please see 

the Appendix A. One may argue that this system is too simple to justify the modular 

modeling approach, but since the purpose here is to demonstrate and discuss the proposed 
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simplification algorithm, all the example systems in this chapter are intentionally kept 

simple. 

Note that the modular model (Fig. 3.3b), although very easy to create, is quite 

complex considering the given 1-DoF system: The model has two 6-DoF rigid-body 

models representing the stick and bead, and two joint models representing the 

connections between the bead and stick, and the stick and ground. As a result, there are 

many dimensions, in which the system cannot move, but which are included in the model 

anyway because of the modular approach adopted in creating it. For the bond-graph this 

 

 (a) 

 

(b) 

Figure 3.3. (a) The bead and stick system, (b) its modular bond-graph model 
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implies that there are many unnecessary elements in the model. Thus, there is an 

opportunity for simplification created by the modular approach to modeling. 

Simplification is then carried out as follows: A simulation run is performed to 

record the activity values, and the original model is simplified based on an inactivity 

threshold of 510 , which is also equal to the simulation tolerance. The resulting 

simplified model is given in Fig. 3.4. As seen in Fig. 3.4, the proposed algorithm 

significantly reduces the complexity of the bead and joint models, and completely 

removes the stick and ground models. A detailed explanation of the simplification and the 

physical motivation behind it is given next. 

 

Figure 3.4. The simplified bead and stick model 

First, consider the bead model. Figure 3.5 shows the original rigid-body module 

representing the bead and its simplification in detail. In Fig. 3.5 the inactive junction-

structure to be removed is shown in grey, along with the elements to be removed based 

on the implication of the inactive junction-structure. The junction structure that is 

inactive, but important for the generation of a modulating signal, is shown with outlined 

characters and the corresponding bonds are denoted by dash-dotted lines.  
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Figure 3.5. Bead model with inactive junction structure and its implications marked 

The phenomena that are removed due to inactivity or preserved despite inactivity, 

and the physical motivations behind those removals and preservations are as follows: 

Rotational dynamics are eliminated completely, because the stick and, therefore, the bead 

connected to it are rotating with a constant angular velocity. The cross-product r
 

, 

i.e., the velocity of the connection point of the bead due to rotation, is removed, because 

the connection point coincides with the center of mass of the bead, i.e., 0r 


. The 

translational dynamics in the z-direction is removed, because the system is planar. Due to 

the same reason, there is also some simplification in the coordinate transformation from 
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bead frame to the inertial frame. Finally, the preserved inactive structure is generating the 

signal d , i.e., the velocity of the bead relative to the stick. The inactivity of this particular 

structure is due the smoothness of the motion. Nevertheless, the signal d  is important, as 

its integral, d , i.e., the position of the bead relative to stick, is one of the states of the 

system. The associated force variable, however, is not necessary, because there is no 

force that acts along d . Hence, this particular junction structure is converted into a block 

diagram in Fig. 3.4, which is the signal path from the 1-junctions in the bead model to the 

integrator in the translational-joint model. This eliminates the corresponding force 

variable from the model.  

Second, consider the stick and ground models. Note how the algorithm recognizes 

the fact that the dynamics of the stick are irrelevant due to the constant angular velocity, 

and eliminates the rigid-body model representing the stick completely from the model. 

This makes the ground model redundant as well. 

Finally, with 4 DoF removed from the bead model and the stick and ground 

models eliminated completely, the constraints in the joint models become unnecessary 

and are therefore removed, which significantly simplifies the joint models as well. 

Note that all these physical observations are incorporated into the model 

automatically by the simplification algorithm. Therefore, the simplification provides 

additional insight into the system, making the model more conceptually efficient. 

The simplification of the bond graph leads not only to conceptual efficiency, but 

also to computational efficiency. With a reduced number of simulation equations, as 

evident from Table 3.1, the simplified model takes nearly 80% less time than the original 

model for 1000 iterations of simulation while predicting the same behavior as the original 

model. The rationale behind repeating the simulation 1000 times is to reduce the 

stochastic variations in simulation time due to the other processes concurrently running 

on the computer. The quantities in Table 3.1 are obtained with the 20-sim software [220]. 
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Table 3.1. Increase in efficiency due to simplification 

 Original model Simplified model 

Number of equations 557 37 

Number of variables 698 53 

Number of independent states 20 4 

Number of dependent states 9 1 

Number of constraints 2 0 

CPU time for 1000 runs 17.33s 3.64s 

3.4. DISCUSSION OF PROPERTIES OF INACTIVE-JUNCTION-BASED 

SIMPLIFICATION 

The proposed algorithm has two important properties: being realization-

preserving and input-dependent. It is realization-preserving, because the simplified bond 

graph is in essence a subset of the initial bond graph. This property is important to 

preserve the physical meaning of the original model, but has further implications as will 

be discussed further in this section. The proposed algorithm is input-dependent, because 

the power flow in the model and therefore the activity analysis depends on the inputs. 

Here the term “input” collectively refers to excitation, parameters, and initial conditions. 

This can be considered as both an advantage and disadvantage as will be demonstrated 

later in this section.  

3.4.1. Preservation of Realization 

The proposed algorithm simplifies a given bond-graph model by detecting and 

eliminating the elements that do not contribute to the system dynamics. As such, the 

simplified model is a subset of the initial bond-graph. Therefore, the realization of the 

original model is preserved. This realization preserving property is important to preserve 

the physical meaning of the original model. As a result of this property, the realization of 

the original model significantly affects the outcome of the algorithm, because some 

realizations can be more conducive to simplification than others. This is demonstrated by 

two mechanical system examples below. In particular, the first example highlights the 
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effect of the orientation of the coordinate frames, and the second one highlights the effect 

of using absolute vs. relative coordinates.  

Example 1: Orientation of the Coordinate Frames in Multibody Systems 

In the mechanical domain the orientation of the coordinate systems is an 

important factor in simplification, because some coordinate systems can be more 

conducive to simplification than others. If the coordinate systems of the original model 

are not properly aligned with the motions and constraints, then performing a coordinate 

transformation first could yield more dramatic simplification results. 

As an example, consider the simple pendulum shown in Fig. 3.6 with two possible 

choices of coordinates for this system, where the first one is rather arbitrary and the 

second one is aligned with the rotation axis and the pendulum itself. The original modular 

model for both choices of coordinates is given in Fig. 3.7. Due to poor alignment, the first 

frame (Fig. 3.6a) hardly yields a simplification, as shown in Fig. 3.8. If, however, the 

pendulum coordinate frame is oriented as in Fig. 3.6b, the junction structure 

corresponding to the rotation of the pendulum about the x- and y-axes becomes inactive, 

because the angular velocity of the pendulum is completely described by its z-component 

when resolved in this particular coordinate frame. In this case one obtains the simple 

model shown in Fig. 3.9.
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 (a) (b) 

Figure 3.6. Two possible choices for pendulum coordinate frame: (a) arbitrary, (b) 

aligned with motion 

 

 

Figure 3.7. The modular pendulum model 
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Figure 3.8. The simplified pendulum-model for the first coordinate frame 
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Figure 3.9. The simplified pendulum-model for the second coordinate frame 

An automated way to switch from the first frame to the second one could be a 

desirable as a supplement to the proposed algorithm. Such a procedure is proposed in the 

next chapter that employs the Karhunen-Loève expansion to detect the existence of and 

to find the transformation into a better aligned coordinate frame. 

Example 2: Choosing Between Absolute and Relative Coordinates 

Reorienting the coordinate frames may not by itself furnish the realization most 

conducive to simplification. Another realization-related question to consider is whether to 

use absolute or relative coordinates. This example shows how the two different choices 

yield different simplification results. 

Consider a ball, which can move smoothly on the oblique surface of a wedge, as 

shown in Fig. 3.10a. A horizontal force acts on the wedge in the direction shown, so that 

the system starts moving from rest. Figure 3.10b shows the corresponding modular bond 

graph. 

The bond graph as given in Fig. 3.10b uses absolute coordinates to express the 

dynamics, i.e., all the inertia elements are connected to 1-junctions that represent an 

absolute velocity, whether it is resolved in the inertial frame or a body coordinate frame. 
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In this case, no matter how the coordinate frames are oriented, the simplification 

procedure will always end up with two translational degrees of freedom for the ball along 

with a constraint, because the ball moves in two dimensions with respect to the ground. 

It is easy to see, however, that if the generalized coordinates are chosen as X and d 

(Fig. 3.10a), it is possible to express the system dynamics in only two second-order 

differential equations with no constraints. To get the same result with the simplification 

procedure, the same coordinates must be used in the bond graph, i.e., the translational 

dynamics of the ball must be expressed using relative coordinates, since the second 

generalized coordinate is a relative quantity. In bond-graph terms, the inertia elements 

 

(a) 

 

(b) 

Figure 3.10. (a) The ball and wedge system, (b) its modular bond-graph model 
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that are currently connected to the 1-junctions representing the ball’s absolute velocity in 

the inertial coordinate frame must be transferred over to the 1-junctions that stand for the 

ball’s relative velocity with respect to the wedge and reside in the translational joint 

block. This transformation is straightforward and hence its details are omitted for brevity. 

When the aforementioned modification is made to the system bond graph and the 

simplification procedure is applied, one obtains the result shown in Fig. 3.11, where there 

are only two degrees of freedom and no constraints. 

 

Figure 3.11. Simplified ball and wedge model when relative coordinates are used 

This example shows that if the coordinates used to express the dynamics are 

independent, as is the case when relative coordinates are used, the proposed algorithm 

will eliminate all the constraints from the model. Although not essential for the proposed 

algorithm to work, an automated way to convert a realization in absolute coordinates into 

a realization in relative coordinates could be another beneficial supplemental tool for the 

proposed algorithm. 

3.4.2. Dependence on Inputs 

The proposed algorithm is input-dependent, where the term “input” is used in a 

more general sense, referring to excitations, parameters, and initial conditions altogether. 

This subsection demonstrates that this explicit dependence can be both an advantage and 

disadvantage. It is a disadvantage in the sense that if the inputs are not chosen properly, 

the algorithm may yield a model that is simplified for a different scenario than the 

intended one. This is demonstrated on Example 1. Nevertheless, it is also advantageous to 
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have a tool that can take into account different scenarios and simplify the model 

accordingly. This is illustrated by Example 2. 

Example 1: Importance of Proper Excitation 

In this context excitations are considered proper if they correctly represent the 

scenario of interest, e.g., if they cause non-zero constraint forces for all constraints. 

Creating a proper excitation is a very important prerequisite step of the simplification 

algorithm, because an improper excitation may result in an overly-simplified model that 

is not suitable for the intended scenario, as the following example illustrates. 

Consider the pendulum example given in Example 1 of Section 3.4.1 with the 

arbitrary choice of pendulum coordinate frame (Fig. 3.6a). The choice of the excitation 

becomes very critical in this case: if there is no excitation force in the model besides 

gravity, the simplification algorithm simplifies the original model (Fig. 3.7) as shown in 

Fig. 3.12. Note that there are three independent rotational DoF in the rigid-body model 

and no constraints, which means that the number of DoF of the simplified model is three, 

which is two more than the number of DoF of the original model. 

The reason why the number of DoF changes after simplification is the improper 

excitation. Since there is no force that tries to move the pendulum away from its swing 

plane, the constraint forces get eliminated from the original model due to the inactivity of 

junctions, to which the constraint forces are connected. As long as the initial conditions 

satisfy the constraints there is no problem with the simplified model in terms of 

predicting the pendulum behavior. The problem is, however, that there is no mechanism 

left in the model to enforce the conformity of the initial conditions with the constraints. 

The solution to this problem is to augment the original model with proper 

excitations. If we add to the original model forces that try to move the pendulum out of 

its swing plane, the simplified rotational joint model becomes as shown in Fig. 3.8. 
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Although the rigid-body model still has three independent inertia elements, the system 

has only one DoF due to the two constraint elements kept in the rotational joint. 

Therefore, the model can not only prevent inconsistent initial conditions, but can also 

accommodate forces that do not lie in the swing plane. 

A more general conclusion that can be drawn from this example is that a set of 

representative excitations instead of a single one may be necessary to describe the 

scenario of interest. In that case, the simplification has to be repeated for all excitations in 

the set. The simplified model for that particular scenario is then the union of the 

simplified models. In this work the selection of the set of excitations descriptive enough 

for a particular scenario is left to the modeler. Development of a tool to aid in this task is 

beyond the scope of this work, and could be an interesting future work. 

 

Figure 3.12. The simplified pendulum model obtained with a poor excitation 
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Example 2: Advantage of Input-Dependence 

The input-dependent characteristic of the proposed algorithm allows for the 

algorithm to take different scenarios into account. As a result, the algorithm can exploit 

the different scenarios and yield different simplified models. This example shows that the 

algorithm can simplify a model that is already simple enough for many different 

scenarios even further, when a particular input is considered. 

Consider a system where two mass-spring systems are concatenated and the mass 

on the bottom is excited with a harmonic force, as given in Fig. 3.13, which also shows 

the bond graph of the system. 

   

 (a) (b) 

Figure 3.13. (a) Two-mass-spring system, (b) its bond-graph model 

The bond graph of the system may look simple enough, but for a certain 

parameter and initial condition set, the top mass-spring system can act like a perfectly-

tuned passive vibration absorber. In that case, the bottom mass-spring system would not 

move, because the force generated by the vibration absorber would be symmetric to the 

applied force. If one applies the simplification procedure for this particular excitation, 

parameter and initial condition set, one obtains a simpler model, in which the inert mass-

spring system is removed along with the excitation force (Fig. 3.14). In other words, two 

idle states and one excitation are removed from the model, and the system motion is then 

only due to the initial conditions of the remaining two states. 
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Figure 3.14. Simplified two-mass-spring system for the perfectly-tuned vibration 

absorber scenario 

The general conclusion drawn for the previous example also applies here, i.e., the 

simplification may have to be repeated for different inputs to find a simplified model 

suitable for the scenario considered. For example, in the case of parameter uncertainty it 

may be a good practice to perturb the parameters to check if the simplification results are 

not for a very special case such as a perfectly tuned vibration absorber. Similarly, if a 

possible set/range of parameters exists, the simplification should be repeated for a 

representative set of parameters and the union of the results should be taken as the 

simplified model. How the representative parameters should be selected is an important 

issue that goes beyond the scope of this work, and addressing it is left as a future work. 

3.5. SUMMARY AND CONCLUSION 

Inactivity of a junction element is defined, and a bond-graph-level structural 

simplification procedure is proposed that is based on junction inactivity. This approach 

can be considered as a generalization of simplifying a bond graph by removing zero-flow 

1-junctions and zero-effort 0-junctions. The suggested use of the activity metric allows 

for a unified treatment of junction elements and leads to a unified structural 

simplification procedure that is easy to implement at bond-graph level. Although the 

procedure is presented in a bond-graph framework, it can be easily implemented in other 

modeling environments (block diagrams, Modelica, etc.) as well. The procedure is 

illustrated with examples, and its realization-preserving and input-dependent properties 

are highlighted. Even though the examples in this chapter were selected from the 

mechanical domain, the proposed algorithm is applicable to any energetic domain. 

The realization-preserving property of the proposed algorithm helps preserve the 

physical meaning of the model during simplification, but also raises the question about 
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which realizations to use to achieve best results. To some extent, this question is 

answered in the next chapter, and further investigation of this topic is left as a future 

work. 

The input-dependent characteristic of the proposed algorithm, on the other hand, 

has been shown to be both a pitfall and an advantage. It is important to select the inputs 

(excitations, parameters, initial conditions) carefully, as they define the scenario that is 

being subject to simplification. Ill-defined scenarios may lead to overly simplified results, 

which is a potential pitfall. However, when the inputs are selected properly, the input-

dependence of the algorithm can create different simplified models for different 

scenarios. From this point of view, this characteristic is considered as an advantage.  

If more than one set of inputs is necessary to define the scenario of interest, e.g., 

in the case of stochastic inputs, parameter uncertainty, a range of possible parameter 

values, etc., then repetition of the simplification algorithm for all inputs is necessary. In 

that case, the union of the simplification results should be taken as the simplified model 

for that particular scenario. Proper selection of inputs is left to the modeler in this work. 

However, it may be a challenging task, and a tool to address this challenge could be 

valuable. This is another potential area for future work. 

The results obtained so far with the proposed procedure encourage the integration 

of this tool with the modular modeling approach. Instead of creating a simple model by 

hand, which is error-prone and time-consuming, system models can be assembled quickly 

in a modular way, and then simplified automatically to increase insight and efficiency. 

This provides an alternative way to obtaining simple models, not just at the equation 

level, but also at the bond-graph level, while preserving all the benefits of modularity. 

This in turn can be very valuable from both a conceptual and computational point of view 

by allowing for rapid development of mathematical models tailored for specific scenarios 

of interest. 
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CHAPTER 4 

ORIENTING BODY COORDINATE FRAMES USING KARHUNEN-LOÈVE 

EXPANSION FOR MORE EFFECTIVE STRUCTURAL SIMPLIFICATION 

4.1. INTRODUCTION 

Chapter 3 developed a junction-inactivity-based structural simplification 

technique that is particularly suitable for bond-graph models obtained through a modular 

approach. The technique is highly sensitive to the orientation of the body coordinate 

frames in multibody systems: improper alignment of body coordinate frames may 

prohibit a significant simplification. This chapter demonstrates how the Karhunen-Loève 

expansion can be used to automatically detect the existence of and to find the 

transformation into body coordinate frames that render the bond graph of a multibody 

system more conducive to simplification. The proposed technique is demonstrated using 

the simple example of a 3D pendulum constrained to move in a plane, but is applicable to 

arbitrarily complex multibody dynamics problems. The conclusion is that the Karhunen-

Loève expansion successfully complements the junction-inactivity-based structural 

simplification technique when multibody dynamics are involved in the system and thus 

significantly contributes to the development of an automated modular modeling 

environment. 

4.2. MOTIVATION 

As discussed in the previous chapter, modular modeling, although beneficial 

especially for relatively easy creation, verification and management of models for 

complex systems, potentially lacks efficiency in two aspects: modular models may not be 
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as succinct as possible (conceptual inefficiency), which in turn may require more 

computational resources than necessary (computational inefficiency) [9]. The reason for 

these potential inefficiencies is the high level of detail included in the general-purpose 

submodels, which may become unnecessary for specific purposes in a particular system 

configuration. For example, the rotational dynamics in a 3D rigid-body submodel become 

redundant when the submodel is used to represent a point mass. 

Eliminating such redundancies from a model to increase its conceptual and 

computational efficiency is highly desired. However, as systems become more complex, 

identifying the phenomena irrelevant for a specific scenario of interest and simplifying 

the system model becomes an important challenge, requiring much time and expertise. 

An automated model simplification algorithm would hence be an invaluable tool to 

address this challenge. Towards this end, previous chapter has shown that when the bond-

graph language [21] is used to express the models, it is possible to simplify modular 

models at the bond-graph level systematically based on a concept called “junction 

inactivity” [2]. Such a systematic simplification complements the modular modeling 

approach well by increasing the conceptual and computational efficiency of the models 

obtained modularly [2]. 

One characteristic of the junction-inactivity-based simplification is that it does not 

change the realization of a given model. For mechanical systems, for example, this means 

that the original coordinates of a given model are not changed by the simplification 

algorithm. However, this makes the simplification sensitive to the realization of the 

model, because some realizations might be more conducive to simplification than others, 

as shown in previous chapter. Thus, the choice of realization is important for an effective 

simplification. 

As a specific case of realization, this chapter focuses on the choice of body 

coordinate frames used in multibody systems. Certain orientations of a body coordinate 

frame, e.g., when axes are aligned with motions/constraints, can be more conducive to 
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simplification than others. For example, it is preferred to align the coordinate frame of a 

pendulum with the axis of rotation, so that only one rotational coordinate is necessary [2]. 

It is desired to find such preferred orientations systematically to benefit most from the 

simplification. 

Such reorientation of coordinate frames changes the model’s realization. 

However, because the change of realization is limited to coordinate frame reorientation 

and is thus performed only locally, the overall structure of the model continues to 

correspond to the structure of the physical system. Therefore, the model continues to be 

“physically meaningful” and thus intuitively appealing. 

Reorienting coordinate frames is a special case of the problem of selecting a 

suitable set of independent coordinates to solve a set of differential algebraic equations 

(DAE), which has been studied widely in literature under the keywords “coordinate 

partitioning” and “tangent/null space methods”. In particular, these keywords refer to the 

approach, in which, given a set of coordinates and constraints, a set of independent 

coordinates are sought to avoid integrating dependent coordinates and causing constraint 

violations. Kane’s method, for example, provides a way to formulate the equations using 

an independent set of coordinates, and as a result the constraint forces with no virtual 

work are eliminated from the model [221, 222]. The selection of the independent set of 

coordinates, however, is left to the modeler. 

Various approaches exist to automatically select the independent coordinates, 

including selecting a subset of the original coordinates using the LU decomposition 

[223], or creating independent linear combinations of the original coordinates by using 

the zero eigenvalues theorem [224], QR decomposition [225], singular value 

decomposition [226-228], or Gram-Schmidt orthogonalization [229-231]. 

These methods, including Kane’s method, are based on the same fundamental 

concept that in a constrained mechanical system the motion evolves in the null space of 

the constraints, and differ only in the way they generate a basis for that lower 
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dimensional manifold [232]. After a basis is found, the equations are projected onto the 

lower dimensional manifold to obtain an independent set of coordinates. 

The methods mentioned above have three limitations within the context of this 

chapter: (1) They depend on the existence of constraint equations. Hence, they are not 

readily applicable if models are formulated using realistic joints in a way such that there 

are no algebraic constraint equations, or if the motion evolves in a lower dimensional 

space not due to some constraints, but merely due to a particular selection of inputs and 

initial conditions. (2) With the exception of the LU decomposition [223], these methods 

create new coordinates by combining all of the original coordinates, thereby potentially 

losing their intuitive appeal. (3) These methods typically do not take structural 

simplification into account. 

The search for a preferred coordinate frame can also be considered as a search for 

a subspace other than the full motion-space itself that captures the entire dynamics. If 

such a subspace exists, then the body coordinate frame should be aligned with the basis 

of that subspace to allow for simplification in the orthogonal complement of that 

subspace. 

A well-established technique to identify dominant subspaces for a space of 

observations is the Karhunen-Loève expansion (KLE) [113, 114], which was reviewed in 

detail in Chapter 2. It has been widely used to reduce models by observing the dynamics 

of a system and projecting the equations of motion onto the dominant subspaces of the 

system dynamics. The main idea of this chapter, however, is to recognize that if instead 

of a dominant subspace, a subspace capturing the entire dynamics is sought, the KLE 

could solve the problem of orienting a given body coordinate frame to achieve a more 

significant simplification. 

This chapter proposes a technique that utilizes the KLE to check if a preferred 

orientation of a coordinate frame exists, and, if it does, to obtain the transformation into 

the preferred coordinate frame. Thus, in this chapter the KLE is shown as a means to 
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achieve a more significant simplification, rather than reduction, by looking for preferred 

orientations of coordinate frames. In that sense, the usage of the KLE in this chapter is 

novel. Furthermore, the proposed technique furnishes a model more conducive to 

simplification regardless of the way the constraints are implemented (algebraic equations 

or parasitic elements), or even if the lower dimensional motion is due to a specific set of 

inputs and initial conditions rather than some constraints. In addition, because the change 

in realization is restricted to body coordinate frames, the proposed technique preserves 

the physical meaning of the model. Finally, the proposed method also considers the 

model structure, and can potentially yield orientations that yield a better simplification 

not only in dynamics, but also in kinematics. Hence, the proposed method alleviates the 

three aforementioned limitations of the coordinate partitioning methods in this context.  

4.3. ORIENTING COORDINATE FRAMES USING THE KARHUNEN-

LOÈVE EXPANSION 

The general problem that this chapter is concerned with is to find better 

orientations for body coordinate frames to better set up a given model for simplification. 

The proposed procedure, however, is independent of the number of rigid bodies involved 

in the system, because for a multibody system the procedure is applied to each rigid-body 

independently. Hence, without loss of generality, the procedure is presented for a single 

rigid-body in this section.  

As a building block of multibody systems, and as a generic representation of the 

models that are of interest to this chapter, consider the generic bond-graph representation 

of a 3D rigid-body with one connection point shown in Fig. 4.1 (for details please see 

Appendix A). In this representation the rotational dynamics are expressed in the body 

coordinate frame to achieve a constant inertia matrix, and the translational dynamics are 

expressed in the inertial frame. 
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Figure 4.1. Bond-graph model of a 3D rigid body 

Given the generic model in Fig. 4.1, it is desired to check if a certain orientation 

of the body coordinate frame is preferred for simplification, and, if so, to find the 

corresponding coordinate transformation into the preferred orientation. After the 

coordinate-frame reorientation, the junction-inactivity-based simplification can be 

applied to the model to obtain the simplified model. The flowchart in Fig. 4.2 outlines 

this generic procedure. 

 

Figure 4.2. Flowchart of the simplification process 

4.3.1. The Proposed KLE-Based Method for Orienting Coordinate Frames 

Chapter 2 outlined the traditional way of using the KLE for model reduction 

purposes. This subsection presents a KLE-based method to reorient body coordinate 

frames for model simplification purposes. To this end, it is shown how the observation 

matrix S needs to be selected, and how the KLE results are interpreted and utilized. 

First, let us determine the variables to be observed. A rigid body can do pure 

rotation, pure translation, or a combination of both. Thus, in general, 3 angular velocity 
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and 3 translational velocity components are necessary to define its motion. Therefore, to 

observe the full motion-space, the observation matrix S is formed as 

  
6x y z x y z vm

v v v   


   S S S
    

 (4.1) 

where ,  ,  x y zv v v
  

 and ,  ,  x y z  
  

 are the time histories of the x, y, z components of the 

velocity of the center of mass and angular velocity of the body, respectively, and the xyz-

frame refers to the body coordinate frame. 

Note that even though in general 6 variables are necessary to define a rigid body’s 

translational and angular velocity, the physical space in which the body can move is only 

3-dimensional. A KLE analysis with the full S matrix would result in 6-dimensional basis 

vectors, which would exceed the dimension of the physical space. Hence, the observation 

matrix is partitioned into translational and angular velocity observation, each with 

dimension 3m , as suggested by the right-hand side of Eq. (4.1). The KLE analysis is 

then performed separately, yielding 3-dimensional basis vectors in each case, i.e., 

 ,  T T

v v v v     S U W S U W   (4.2) 

Then, there exists a preferred orientation for the translational (angular) velocity, if 

the square of at least one and at most two of the singular values 
vi ( i ) are zero within 

a numerical tolerance, i.e., 2 2 2

1 2 3 0v v v      with 2

1 0v   ( 2 2 2

1 2 3 0        with 

2

1 0  ). This is because the 2

vi  ( 2

i ) specify how much signal energy is captured by 

the corresponding basis vectors 
viw


 (
iw


), and a zero 2

vi  ( 2

i ) implies that there is no 

translation along (rotation about) the corresponding basis vector 
viw


 (
iw


). Note, 

however, that if all 2

vi  ( 2

i ) are zero, then the body is not translating (rotating) and thus 

the orientation of the body coordinate frame is immaterial for translation (rotation). 

Therefore, the singular values are indicators of the existence of a preferred frame. 

Furthermore, the coordinate transformation matrix from the original body 

coordinate frame B into the preferred body coordinate frame 
vP  ( P ) is given by the 

transpose of the matrix 
vW  ( W ), i.e., 

 ,  vP B P BT T

v


 A W A W  (4.3) 
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Note that the preferred frame 
vP  will, in general, be different than P . This means 

that the preferred coordinate frame to express translation will be, in general, different 

than the one to express rotation. One possible way of reconciling the two results is 

proposed in the next subsection. 

Regardless of the way it is chosen, once a preferred coordinate frame is found, 

any vector 
Br


 and the inertia matrix B
J  expressed in the original body coordinate frame, 

and the initial value of 
IB

A , 
0

IB
A , can be transformed into the preferred coordinate frame 

using 

  

 0 0

P PB B

T
P PB B PB

T
IP IB PB

r r





A

J A J A

A A A

 

 (4.4) 

respectively. 

4.3.2. The Proposed Reconciliation Algorithm 

An algorithm is presented in this subsection to reconcile the different results one 

may obtain from the rotational and translational KLE analyses. It is worth noting at the 

outset that the proposed algorithm is just one way of reconciling the results, and may not 

be optimal. It is given here just to show one possible way of reconciliation, and creating 

an algorithm that will yield the best possible orientation for maximum simplification is 

beyond the scope of this work. 

The proposed algorithm is based on several observations and assumptions. These 

can be summarized as follows: First, note that both the angular velocity, 


, and the 

rotational dynamics are expressed in the body coordinate frame. In bond graph terms, the 

I-elements representing the rotational dynamics are directly connected to the 1-junctions 

representing the components of 


. This implies that the removal of a component of 


 

will result in the removal of the rotational dynamics in the corresponding direction. 

Therefore, eliminating a component of 


 directly implies simplification in rotational 
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dynamics. In other words, if the rotational KLE analysis is indicating a preferred 

orientation, it is guaranteed that the preferred frame will give simplification in rotational 

dynamics. 

On the other hand, note that the translational velocity, v, is expressed in the body 

coordinate frame, but the translational dynamics are expressed in the inertial coordinate 

frame. In bond graph terms, the I-elements representing the translational dynamics are 

not directly connected to the 1-junctions representing the components of v. This means 

that it is not possible to achieve any more simplification in translational dynamics by 

reorienting the body coordinate frame. Thus, any simplification in dynamics achieved 

through reorientation is going to be in the rotational domain. In other words, the 

translational KLE analysis can yield simplification only in kinematics and, if at all, in 

rotational dynamics. 

It is also important to note that the generic rigid body model considered in this 

work accepts only orthonormal bases. Oblique bases are beyond scope. Finally, let us 

assume that simplification in dynamics is preferred over simplification in just kinematics. 

Under these observations and assumptions, the following algorithm is proposed to 

reconcile the results obtained from the rotational and translational analyses: 

1. Perform KLE on both 


 and v


. Let the rotational and translational singular 

values be 
i  and 

vi , 1, 2,3i  , respectively. Let the corresponding basis 

vectors be 
iw


 and 

viw


, 1, 2,3i  , respectively. 

2. Because of observations mentioned above, it is first desired to align the body 

frame to eliminate as many 


-components as possible. Hence, 
i  are 

considered first. Four cases are possible: 

a. 0, 1,2,3i i   . This implies that the body is doing a fully 3D rotation 

and there is no preferred frame as far as the rotation is concerned. In this 
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case the coordinate frame should be reoriented according to the 

translational analysis, if it is suggesting a preferred orientation. 

b. 
1 2 3 0       . This implies that two axes are enough to describe the 

body's rotation, namely, 
1w


 and 

2w


, and these are the first two basis 

vectors for the preferred coordinate frame. The third axis is given by the 

cross product 
1 2w w 

 
, and thus the preferred frame is uniquely defined. 

c. 
1 2 3 0       . This implies that the body rotates about one axis 

only, namely, 
1w


, and this is the first basis vector of the preferred 

coordinate frame. The preferred orientation for   is not yet uniquely 

defined: any vector orthogonal to 
1w


 could be used as the second 

preferred basis vector to uniquely define the preferred orientation as far as 

the simplification in the rotational domain is concerned. Thus, the 

translational analysis is considered to see if it is possible to take advantage 

of this remaining degree of freedom in the reorientation:  

i. If it exists, the 
vw


 with zero 
v  that is orthogonal to 

1w


 is taken 

as the second preferred basis vector. The third preferred basis 

vector is then defined by the cross product of the first two. If there 

are two 
vw


 that satisfy the above condition, the choice is arbitrary, 

because the cross product will automatically give the second 

orthogonal 
vw


. As a result, both 
vw


 are included in the preferred 

set of basis vectors.  

ii. If such a 
vw


 does not exist, use the 
2w


 and 

3w


 to fully determine 

the preferred coordinate frame. 
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d. 0, 1,2,3i i   . This implies that there is no rotation. In this case the 

coordinate frame should be reoriented according to the translational KLE 

analysis, if it is suggesting a preferred orientation. 

Because of the rigid-body representation considered in this work, this algorithm 

gives preference to the rotational KLE analysis over the translational one. It gives an 

orientation that will yield maximum simplification rotational dynamics, and if the 

preferred frame is not uniquely defined by the rotational KLE analysis, it attempts to take 

advantage of the translational KLE analysis to achieve more simplification in kinematics. 

The benefit of reorienting the body coordinate frame to simplification is highlighted in 

the next section on an example. 

4.4. EXAMPLE: PENDULUM 

As an illustrative example, consider a simple pendulum with an arbitrarily 

oriented body coordinate frame (Fig. 4.3), which is modeled modularly using 3D rigid-

body and joint models (Fig. 4.4). 

 

Figure 4.3. Pendulum with an arbitrarily oriented body coordinate frame 
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Figure 4.4. The modular bond-graph model of the pendulum 

The parameter values and initial conditions for the model are summarized in 

Table 4.1. With the given orientation of the pendulum coordinate frame, the 

simplification procedure presented in the previous chapter yields the model in Fig. 4.5 for 

an inactivity threshold of 510 , which is set equal to the integration tolerance. Note that 

due to the arbitrary orientation of the body coordinate frame all rotational inertia 

elements are kept in the model along with the two constraints represented by the PSf 

elements. The simplification in the translational dynamics is a result of the fact that the 

translational dynamics are expressed in the inertial frame. When resolved in the inertial 

Table 4.1. Parameter values and initial conditions for the original pendulum model 

Parameters Values 

Gravity   20 9.81 0 m/s
TIg  


 

Pendulum mass 1 kgm   

Pendulum inertia 
2

3 30.004 kg mB

 J I  

Connection point  0.66724 0.48260 -0.56735 m
TBr 


 

Rotation axis  0.66904 -0.05353 0.74130 m
TBa 


 

Initial conditions Values 

Angular momentum   3 2

0 8.028 -0.642 8.896 10 kg m /s
TBH  


 

Position  0 0 1 0 m
TIp  


 

Euler parameters     0 0
, 0.79864,0.16084 1 -2 3

T
e e 


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frame, which is aligned with the axis of rotation, the translational velocity has only two 

non-zero components, and the simplification reflects this. Note, however, when resolved 

in the body coordinate frame, the translational velocity has three non-zero components. 

Thus, the arbitrary orientation of the body coordinate frame prohibits further 

simplification. 

 

Figure 4.5. The simplified pendulum model for the arbitrary pendulum coordinate frame 
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To look for a better orientation of the pendulum coordinate frame the proposed 

KLE-based technique is applied. First, KLE is applied to both the translational and 

angular velocity observations, which give 

 

2

2

-0.3274 -0.6690 -0.6672

(1488.8,0,0); 0.8742 0.0535 -0.4826

0.3586 -0.7413 0.5673

-0.6690 0.2410 -0.7031

(1488.8,0,0); 0.0535 -0.9279 -0.3690

-0.7413 -0.2845 0.6079

v vdiag

diag 

 
 

 
 
  

 
 

 
 
  

W

W





 (4.5) 

The existence of two zero 2

i  indicates that there is a preferred body coordinate frame 

where the angular velocity expressed in the body coordinate frame will have only one 

non-zero component. Using the proposed reconciliation algorithm one obtains the set 

 1 3 1 3 1, ,v v vw w w w w   
    

 as basis vectors of the preferred coordinate frame, i.e., the  

transformation matrix into the preferred frame is given by 

 

T
-0.6690 -0.6672 -0.3274

0.0535 -0.4826 0.8742

-0.7413 0.5673 0.3586

PB

 
 


 
  

A  (4.6) 

The preferred frame is illustrated in Fig. 4.6. 

  

Figure 4.6. The preferred pendulum coordinate frame 



 83 

Reorienting the pendulum coordinate frame as suggested by 
PB

A , and applying 

the junction-inactivity-based algorithm, much more dramatic simplification results are 

achieved, as shown in Fig. 4.7. This result is due to the fact that in the preferred frame 

one of the axes (x) is aligned with the axis of rotation, thereby reducing the number of 

necessary rotational inertia elements to one, and eliminating the need for constraints. 

Furthermore, another axis (y) is aligned with the pendulum. Therefore, in this frame, the 

translational velocity has only one non-zero component, which leads to a better 

simplification. The new values for the parameters and initial conditions that are affected 

by the reorientation are given in Table 4.2. 

Table 4.2. Parameter values and initial conditions affected by the reorientation 

Parameters Values 

Connection point  0 -1 0 m
TBr 


 

Rotation axis  -1 0 0 m
TBa 


 

Initial conditions Values 

Angular momentum   2

0 -0.012 0 0 kg m /s
TBH  


 

Euler parameters     0 0
, 0,0.707107 -1 0 1

T
e e 


 

 

 

Figure 4.7. The simplified pendulum model for the reoriented pendulum coordinate frame 
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4.5. DISCUSSION 

4.5.1. Structural Simplification 

The example given in Section 4.4 shows that by using the proposed KLE-based 

technique it is possible to detect the existence of, and find the transformation into a 

coordinate frame that is more conducive to simplification. The fact that aligning one of 

the axes of the pendulum frame with the axis of rotation yields a better simplification is 

revealed by the KLE analysis. The KLE analysis further reveals that aligning another axis 

with the pendulum, some additional simplification in kinematics can be achieved. 

Specifically, if one of the axes is aligned with the axis of rotation, but the orientation is 

arbitrary otherwise, as is the case with the frame given by the rotational KLE analysis, 

the simplified model given in Fig. 4.8 is obtained. Notice that while the simplification in 

dynamics is the same as in Fig. 4.7, the simplification in kinematics is not to the same 

extent. Thus, while looking for a better orientation the proposed method not only 

 

Figure 4.8. The simplified pendulum model for the P  frame 
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considers the dynamics, but also the kinematics. Since the procedure is systematic, it is 

possible to automate it and reduce the need for human insight. 

The pendulum example illustrates a case in which the translational and rotational 

KLE analyses give different preferred coordinates. The proposed reconciliation algorithm 

is successfully utilized to synergistically combine the results. Note that in this example 

the resulting preferred coordinate frame is equivalent to 
vP . However, this is a special 

case, and in general the resulting frame does not necessarily have to be equivalent to 
vP  

or P . 

4.5.2. Local Change in Realization 

Note that even though the proposed technique results in a change in realization of 

the model, the physical meaning of the model is preserved. This is because the proposed 

technique applies KLE only locally, limiting the changes in realization to reorientation of 

body coordinate frames. Furthermore, recall that the simplification algorithm applied 

after the reorientation is realization-preserving. Thus, the simplified model obtained by 

applying the proposed coordinate-frame-reorientation technique followed by the junction-

inactivity-based simplification is still physically meaningful and intuitively appealing. 

4.5.3. Realistic Joints 

Since the proposed technique relies on the observation of the motion and not on 

constraint equations, it can be readily applied to multibody systems with realistic joints, 

which can be formulated without any constraint equations. Consider the pendulum 

example given in Section 4.4, but assume that the ideal rotational joint block is replaced 

with a more realistic implementation, as shown in Fig. 4.9. This implementation 

considers the stiffness and damping of the joint, as well as the friction in the axis of 

rotation. In addition to the original parameter values considered in Table 4.1, let the joint 
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parameters be 100 N m/radik   , 
1 2 100 N m s/radb b     , 

3 0.1 N m s/radb    , 

500 N/mvik  , and 500 N s/mvib    (please see Appendix A for details). 

In this case the proposed KLE analysis yields the following preferred frame 

 

T
-0.6690 -0.6678 -0.3261

0.0535 -0.4810 0.8751

-0.7413 0.5680 0.3575

PB

 
 


 
  

A  (4.7) 

which is very close to the frame obtained with the ideal joint (Eq. (4.6)). When this 

preferred frame is used, the simplification algorithm yields the model in Fig. 4.9. Note 

that the realistic joint becomes partially idealized by the simplification algorithm, as the 

PSf element in the joint block indicates. Also note that the extent of simplification is less 

in this case due to the considered realistic joint effects. Nevertheless, this example 

demonstrates that the proposed method can be successfully applied to realistic joints as 

well. 

4.5.4. Further Remarks 

It is important to note that after the proposed application of the KLE it is known 

which of the 1-junctions representing the translational or angular velocity components, if 

any, are going to be inactive. Thus, those 1-junctions could be removed without the aid of 

 

Figure 4.9. The modular bond-graph model of the pendulum with a realistic joint 
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the simplification algorithm. However, this would allow for only a limited amount of 

simplification, because the usage of the KLE in the context of this chapter is very local. 

The application of the simplification algorithm presented in [2] considers the model 

globally including the non-mechanical domains, thus yielding better results. 

It is also worth noting that once the simplified model in Fig. 4.7 is obtained, it can 

be further simplified by using some of the well-known bond-graph simplification rules. 

Specifically, the model in Fig. 4.11 can be obtained from the model in Fig. 4.7 by 

lumping the dependent inertias onto the independent one, eliminating the zero-effort 

source 
1mg , and lumping the cross product and the coordinate transformation into the 

effort source 
2mg  to create a modulated effort source. It would be very difficult, 

 

Figure 4.10. Pendulum model with a realistic joint simplified for the reoriented pendulum 

frame 
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however, to obtain the model in Fig. 4.11 starting from the original model in Fig. 4.4 and 

using only these simple rules. Therefore, the proposed KLE-based technique followed by 

the junction-inactivity-based simplification algorithm complements successfully the well-

known bond-graph simplification rules. 

Finally, the pendulum example demonstrates the fundamental steps behind the 

envisioned automated modular modeling environment, in which a system is first modeled 

modularly, and then automatically simplified to tailor the model for specific scenarios of 

interest. As the example shows, the proposed KLE-based technique increases the 

efficiency of the simplification algorithm, and is therefore an important contribution to 

the development of the automated modular modeling environment. 

4.6. SUMMARY AND CONCLUSION 

A Karhunen-Loève-expansion-based technique is proposed to detect the existence 

of and find the transformation into coordinate frames that are more conducive to 

simplification in systems involving multibody systems. The proposed method allows the 

Karhunen-Loève expansion to be used in a novel way as a means for bond-graph level 

simplification, rather than its traditional usage for equation-level reduction. The idea is 

demonstrated on a simple pendulum example, in which the initial arbitrary orientation of 

the pendulum coordinate frame is systematically reoriented to achieve a more significant 

simplification. 

The conclusion is that when multibody systems are part of a complete system, the 

proposed technique complements the simplification algorithm given in the previous 

 

Figure 4.11. Further simplified pendulum model 
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chapter well by reorienting coordinate frames automatically and increasing the 

effectiveness of the simplification. This, in turn, reduces the need for human insight, and 

saves time in creating and simulating complex systems involving multibody systems. 

Therefore, the proposed method also contributes significantly to the development of an 

automated modular modeling environment. 

Future work includes creating reconciliation methods for rigid-body 

representations other than the one considered in this work, such as one that allows for 

oblique frames, or expresses translational dynamics in the body coordinate frame as well. 

Future work may also explore the possibility to automatically look for alternative 

realizations for a given model beyond just reorienting coordinate frames and find the best 

physically-meaningful realization that yields the most significant simplification.  
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CHAPTER 5 

REALIZATION-PRESERVING STRUCTURE AND ORDER REDUCTION OF 

NONLINEAR ENERGETIC SYSTEM MODELS USING ENERGY 

TRAJECTORY CORRELATIONS 

5.1. INTRODUCTION 

Previous chapters developed algorithms for simplifying the structure of a lumped 

dynamic system model. This chapter moves further to enable simultaneous model 

structure and order reduction. Specifically, it introduces a new energy-based metric to 

evaluate the relative importance of energetic connections in a model. This metric (1) 

accounts for correlations between energy flow patterns in a model using the Karhunen-

Loève expansion; (2) examines all energetic connections in a model, thereby assessing 

the relative importance of both energetic components and their interactions, and enabling 

both order and structural reduction; and (3) is realization-preserving, in the sense of not 

requiring a state transformation. A reduction scheme based on this metric is presented 

and illustrated using a simple example. 

5.2. MOTIVATION 

As discussed in Chapter 1, in modeling dynamic systems, one often faces a 

tradeoff between model accuracy on the one hand and model simplicity and tractability 

on the other. Models that balance these conflicting requirements for their respective 

applications are deemed proper by the literature [12]. 

Obtaining such proper models can be challenging, because it is difficult to know 

at the outset which phenomena are important to model and which can be safely neglected. 
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One solution to this problem involves first modeling as many phenomena as possible, 

with an implicit preference to fidelity over simplicity, then reducing the resulting models 

till they are proper.  

As reviewed in detail in Chapter 2, the literature presents many model reduction 

techniques including component cost analysis [170], balanced truncation [141], 

polynomial approximation methods [90, 94, 96], optimal Hankel norm approximation 

[105], optimization-based methods [174, 175], proper orthogonal decomposition [117, 

128], singular perturbation [57], and modal analysis [67, 68]. 

The conclusion of the review in Chapter 2 is, however, that each of these 

techniques has one or more of the following limitations: (1) Applicability to a limited set 

of systems (e.g. linear, time-invariant systems, systems with multiple time-scales, etc.); 

(2) requiring a realization change; (3) trajectory independence; (4) being limited to 

equation level; (5) not considering the structure of the model. 

A model reduction algorithm is sought in this chapter that addresses the above 

limitations. Specifically, an algorithm is sought that is applicable to nonlinear systems, 

realization-preserving, trajectory-dependent, applicable at the graph level, and also aimed 

at both structure and order reduction. In developing this algorithm, the focus is on 

energetic systems, i.e., those composed of components that store, dissipate, and exchange 

energy. Such systems are quite common in engineering. Furthermore, one can potentially 

construct reduction algorithms for such systems that utilize the domain-independent, 

intuitively appealing notions of energy and power as foundations for model reduction.  

Chapter 2 shows that the literature presents several examples of energy-based 

model reduction algorithms. For instance, Rosenberg and Zhou utilize root-mean-square 

power flow in an energetic interconnection to assess its importance [197]. This furnishes 

a trajectory-dependent and realization-preserving model structure and order reduction 

algorithm that can be applied directly to a given model’s graph representation. 
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Similarly, Louca et al. propose to use the normalized 
1 -norm of power flow 

through an energetic component (e.g., mass, spring, damper, etc.) as a metric for model 

reduction [20]. They call this metric the activity index of the given component, and 

further propose a Model Order Reduction Algorithm (MORA) based on it [20]. This 

method is also trajectory-dependent, realization-preserving, and applicable directly to a 

given model’s graph representation. However, as its name suggests, it concentrates on 

reducing model order, rather than model structure. 

Rideout et al. extend the activity metric to systematically detect decoupling 

among the elements of a model and partition it accordingly [19]. The resulting algorithm 

is trajectory-dependent, realization-preserving, and applicable to graph representations of 

nonlinear systems, but it focuses only on model partitioning, and does not consider a 

reduction beyond partitioning. 

Finally, previous chapters present a technique for detecting energetically inactive 

junction structures in a given model and simplifying the model accordingly. The proposed 

algorithm simplifies both the order and structure of the given model, and can be applied 

to graph-level nonlinear models without requiring a realization change. It does not, 

however, enable reduction beyond the simplification threshold.  

This chapter extends the above energy-based reduction literature by developing a 

new reduction metric that takes into account not only the magnitudes of the various 

energy trajectories in a system, but also their correlations. Intuitively, the algorithm seeks 

to determine not only which components and interconnections are most active, but also 

which ones affect overall system behavior the most. Towards this goal, the algorithm 

applies the Karhunen-Loève expansion, a correlation analysis technique, to the various 

trajectories of energy flow through the various interconnections in a dynamic system. It 

then projects the results of the Karhunen-Loève expansion back onto the original system 

realization to quantify the “importance” of the various components and interconnections 

in this realization. This furnishes an energy-based, realization-preserving, and trajectory-



 93 

dependent model structure and order reduction algorithm that is applicable to the graph 

representations of nonlinear systems.  

5.3. PROPOSED METRIC AND REDUCTION METHOD 

Any reduction technique is based on a metric to evaluate which phenomena can 

be neglected in a given model. Hence, this section first introduces a new metric that 

accounts for the correlations between the energy flow patterns in a model. The motivation 

behind creating this new metric is twofold: First, because of the fact that the energy flow 

patterns in a system determine the system’s behavior, it is hypothesized that energy is a 

natural choice for the basis of a new metric. Such an energy-based metric would allow for 

a unified treatment of not only different energy domains (e.g., mechanical, electrical, 

hydraulic, etc.), but also the dynamic components and their interactions in a system. 

Second, it is further hypothesized that taking into account the correlations between the 

energy flow patterns throughout the model would allow for a better assessment of the 

relative importance of each part of the model to the whole response. Based on these two 

hypotheses it is proposed that the Karhunen-Loève expansion be combined with the 

energy-based approach in a new way to assess the energy exchange phenomena in a 

model relatively. After the new metric is introduced, a realization-preserving reduction 

algorithm is proposed based on this metric. 

For ease of presentation, the bond-graph language [21] will be used in the rest of 

this chapter. Since the bonds in a bond graph represent energetic connections, the bond-

graph representation is convenient for the calculations presented below. Furthermore, 

although the metric is not limited to bond graphs, having a metric that is directly 

applicable to bond graphs is advantageous, because the graphical representation is a 

higher-level representation than mathematical equations, which means that bond-graph 
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level simplifications are automatically reflected in the mathematical equations. The 

opposite, however, is not necessarily true. 

With that in mind, the proposed metric is developed as follows. In the first step, 

the Karhunen-Loève expansion (KLE) is applied to the energy trajectories of the bonds in 

a bond-graph model with the goal of capturing the correlations between them. In 

particular, let the energy trajectory of each bond in a bond-graph model be arranged 

column-wise in a matrix S, i.e., 

 
1 2 n

m n
E E E


   S
  

  (5.1) 

where n is the number of bonds in the bond graph, m is the number of observations, and 

iE


 is the energy trajectory of the i
th
 bond. Singular value decomposition of S yields: 

 TS U V  (5.2) 

where 
1 2( , , , )n m ndiag       with 

1 0n    . It is established that the columns 

of the orthogonal n n  V matrix form a basis for the observation space, and the squares 

of the singular values provide a measure of how much signal energy is captured by each 

basis vector [128]. Since the observed quantity is energy, the columns of V give a new 

basis to express the energy flow in the system, so they can be interpreted as energy 

exchange modes in the system. Within each mode, the (absolute value of the) j
th

 

component tells how much j
th

 bond contributes to that mode. Furthermore, the squared 

singular values give a measure of how much each mode contributes to the observed 

response. Thus, in the second step, a measure for the importance of the bonds is obtained 

by a weighted combination of the absolute values of the modes, where the weights are the 

squared singular values, i.e., 

 
2

1

n

i i

i

I v



 
  (5.3) 

where 
iv


 is the i
th
 column of V, and I


 is the importance vector of the bonds, whose j

th
 

component gives the importance of bond j. The importance vector can be normalized 

with respect to its maximum element to give a relative measure of importance, i.e., 
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 / max( )RI I I
  

 (5.4) 

Based on this proposed metric, a model reduction algorithm can be outlined as 

follows: 

1. Simulate the model, and record the energies of the bonds of interest. 

2. Arrange the data in a matrix such that the columns are the energy trajectories 

of the corresponding bonds, i.e., 
1 2

ˆ
n

m n
E E E


   S
  

 . 

3. Calculate , ,
ˆ ; 2, , ; 1, ,i j i i jt i m j n   S S   , where 

it  is the time step 

between the i-1
st
 and the i

th
 observations. This step is to account for unevenly 

spaced observations. 

4. Perform singular value decomposition on S, i.e., TS U V . 

5. Calculate the relative importance of the bonds using Eq. (5.3) and (5.4). 

6. Arrange bonds in decreasing order of relative importance RI. Let p be an 

index for the rows of this ordered list. 

7. If 1/p pRI RI r   for some row 1p n   and user-defined ratio 1r  , then 

bonds in rows 1, ,p n   are subject to reduction. There may be more than 

one such threshold, i.e., more than one level of reduction. It is up to the 

modeler to decide on the ratio r and which threshold to use for reduction. 

8. Remove the elements that got disconnected from the rest of the model as a 

result of step 7. 

Note that if all bonds are subject to the analysis, this algorithm gives a unified 

approach to the reduction problem in the sense that not only the order, but also the 

structure of the model can be reduced. This will be hereafter referred to as a global 
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application of the metric. It is also possible to perform the analysis locally, e.g., only for 

the bonds connected to the components representing the states for the purposes of model 

order reduction, or only for the bonds connected to a junction element for the purposes of 

model partitioning. Both the global and local applications of the proposed method are 

demonstrated in the next section on an example. 

5.4. ILLUSTRATIVE EXAMPLE 

This section provides an example to illustrate the mechanics of the proposed 

method and emphasize its advantages. The example system is first reduced globally for 

two different scenarios. This shows the proposed method’s applicability to nonlinear 

systems, ability to achieve graph-level reduction, and ability to reduce the order and 

structure of the model, while taking into account the scenario of interest and preserving 

the realization of the model. Then, the analysis is performed locally for the second 

scenario to compare the proposed method to MORA, thereby stressing the benefit of 

having a metric that considers the correlations between the energy flow patterns in a 

system. 

Consider the system shown in Fig. 5.1, where a mass-spring-damper system is 

connected to the slider of a crank mechanism. A rotational spring and damper are 

connected to the crank arm, and the rotational spring is undeflected when / 2  . 

There is viscous friction between the slider and ground. The parameter values are given 

in Table 5.1 and the bond graph model of the system is given in Fig. 5.2, which will be 

 

Figure 5.1. Schematic representation of the example system  
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hereafter referred to as the full model. The bonds are numbered such that each bond with 

a unique energy receives a unique index. Bonds connected to power-through junctions 

therefore have the same index. The full model includes the dynamics of the links and 

masses, as well as the kinematics 
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 (5.5) 

Table 5.1. The parameters of the example system 
Parameter Value Parameter Value 

A

ABI  5 23.53 10  kg m   2k  100 N/m 
G

BCI  3 28.84 10  kg m   f 1 N s/m  

BCm  0.42 kg 1b  0.01 N m s/rad   

Cm  10 kg 2b  0.1 N s/m  

Dm  0.1 kg 1L  0.05 m 

1k  1 N m/rad  2L  0.5 m 

 

Figure 5.2. Bond graph of the example system 
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along with the constraint 

 1 2cos cos 0Cyv L L       (5.6) 

5.4.1. Scenario 1 – Global Analysis 

Consider the scenario in which the springs 
1k  and 

2k  are given initial 

displacements of 1 rad and 0.01 m, respectively, where a positive sign indicates 

extension, and the free response of the system is observed. Let the output of interest be 

the position of the mass 
Dm . When the proposed method is applied to this scenario, the 

results summarized in Table 5.2 are obtained for a global relative importance analysis 

with 2r   and a simulation time-window of 5 seconds. 

The dashed lines in Table 5.2 indicate the 5 thresholds for 2r  , and hence 5 

different levels of reduction, which can be explained physically as follows: 

Level 1: This threshold points to a well-known structural simplification that can 

be made in the bond graph; namely, the null flow-source can be removed along with the 

1-junction 
Cyv  without affecting the accuracy of the model. 

Level 2: The moment of inertia of the second link is removed. Even though it is 

Table 5.2. Relative importance of bonds for Scenario 1 and reduction thresholds for 2r   
Bond Relative importance Bond Relative importance 

7  100% 1  1.86% 

26  64.93% 21  1.69% 

3  64.93% 17  1.37% 

13  56.60% 31  0.91% 
14  39.84% 18  0.48% 3 

6  27.11% 22  0.21% 

15  21.25% 5 8  0.21% 

11  10.25% 23  0.13% 

29  10.25% 2  0.13% 

28  10.25% 5  0.08% 

4  10.25% 25  0.07% 

27  10.02% 24  0.07% 

10  10.02% 4 9  0.07% 2 

19  2.79% 12  0.02% 1 

16  1.90% 30  0 

20  1.86%    
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larger than the moment of inertia of the first link, the second link goes through a much 

less amount of rotation, and therefore the energy associated with its rotational dynamics 

is very low. 

Level 3: The rotational and translational dynamics of the first link, and the 

translational dynamics and kinematics of the second link in y-direction are removed. 

Furthermore, the translational kinematics of the point G in x-direction is reduced by 

neglecting the terms involving   and its derivatives, i.e. the expression for 
Gv


 in Eq. 

(5.5) reduces to 

 
1 sinGv L i  


  (5.7) 

Level 4: The dynamics and kinematics of the mass-spring-damper system 

connected to the slider are removed, as well as the translational dynamics and kinematics 

of the second link in x-direction. 

Level 5: The kinematics associated with   are removed. As a result, the 

expression for 
Cv


 in Eq. (5.5) reduces to 

 
1 sinCv L i  


  (5.8) 

and the constraint Eq. (5.6) is not needed. Figure 5.3 shows the schematic representation 

of this reduced system, and Fig. 5.4 shows the corresponding bond graph. Figure 5.5 

compares the output of this reduced model to the output of the full model. 

 

Figure 5.3. Schematic representation of the 5
th
-level reduced model for Scenario 1 
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Figure 5.4. Bond graph of the 5
th
-level reduced model for Scenario 1 

 

Figure 5.5. Output of the full model vs. the 5
th
-level reduced model for Scenario 1 

So far this example illustrated the mechanics of the global application of the 

proposed metric and highlighted the following benefits of it: applicability to nonlinear 

systems, ability to achieve graph-level reduction, preservation of the original realization 

of the model, and ability to reduce the structure of the model, i.e. reducing not only the 

dynamics, but also the kinematics. The next part highlights the metric’s ability to furnish 

different reduced models for different scenarios. 
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5.4.2. Scenario 2 – Global Analysis 

Consider now the scenario in which an initial momentum of 0.05 kg m/s  is given 

to the mass 
Dm , and the free response of the system is observed. As in Scenario 1, let the 

output of interest be the position of the mass 
Dm . When the proposed method is applied 

to this scenario, the results summarized in Table 5.3 are obtained for a global relative 

importance analysis with 2r   and a simulation time-window of 3 seconds. 

Table 5.3. Relative importance of bonds for Scenario 2 and reduction thresholds for 2r   
Bond Relative importance Bond Relative importance 

17  100% 21  0.02% 1 

19  85.70% 4 4  0.00% 

18  21.93% 29  0.00% 

31  19.22% 3 28  0.00% 

16  1.81% 11  0.00% 

13  1.14% 10  0.00% 

3  1.14% 27  0.00% 

26  1.14% 22  0.00% 

7  0.83% 8  0.00% 

14  0.48% 2  0.00% 

6  0.35% 23  0.00% 

15  0.21% 2 25  0.00% 

5  0.03% 24  0.00% 
20  0.02% 9  0.00% 

1  0.02% 12  0.00% 

  30  0 

 

Table 5.3 indicates 4 thresholds and hence 4 different levels of reduction, 

however since the level 4 corresponds to practically discarding the model completely, it 

will be ignored. The remaining reduction levels can be explained physically as follows. 

Level 1: All kinematics involving  , the translational kinematics and dynamics of 

the second link in y-direction as well as its rotational dynamics, and the constraint Eq. 

(5.6) are removed. Without any kinematics involving  , the expression for 
Gv


 in Eq. 

(5.5) reduces to Eq. (5.7). 

Level 2: The rotational and translational dynamics of the first link, and the 

kinematics and dynamics of the second link in x-direction are removed. 
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Level 3: The kinematics involving  , the rotational stiffness 
1k  and damping 

1b , 

the kinematics and dynamics of mass 
Dm  along with the friction between 

Dm  and the 

surface are removed. Schematically, the system reduces down to Fig. 5.6, and the bond 

graph reduces to Fig. 5.7. Figure 5.8 compares the output of this reduced model to the 

output of the full model. 

 

Figure 5.6. Schematic representation of the 3
rd

-level reduced model for Scenario 2 

 

Figure 5.7. Bond graph of the 3
rd

-level reduced model for Scenario 2 

 

Figure 5.8. Output of the full model vs. the 3
rd

-level reduced model for Scenario 2 

Notice the difference between the reduced models for the two scenarios (Fig. 5.4 

and 5.7), and how the proposed method tailors the reduction according to the scenario of 

interest. 
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5.4.3. Scenario 2 – Local Analysis 

The last part of this example applies the proposed metric only to bonds connected 

to I, C and R elements to look for possibilities of reduction in dynamics only. This serves 

two purposes: first, the local application of the proposed metric is illustrated; and second, 

this makes it possible to compare the proposed method to MORA, and emphasize the 

benefit of taking into account the correlations between the energy flow patterns. 

When the I, C and R elements in the full model are assessed with both relative 

importance and activity, the results summarized in Table 5.4 are obtained. Notice the 

difference between the rankings of the elements, especially in the top three rows. The 

reason for this difference is twofold: First, MORA works with activity, a weighted 
1 -

norm of power, whereas the proposed method works directly with energy. That means 

that the activity of an element always increases, even though its energy might decrease, 

and that may cause activity to overestimate the significance of some elements. Second, 

MORA uses only the final value of activity to rank the components, while the proposed 

method makes use of the entire history of energy flow. 

As a result, notice how low the activity index of the R element 
2b  (bond 19) is, to 

the extent that it looks like 
2b  can be removed from the model without affecting the 

response too much. If MORA is used to preserve, for example, 96% of the total activity 

in the system (threshold 2 in Table 5.4), 
2b  would be eliminated, and the response 

characteristic of the system would change dramatically. If, however, a slightly more 

conservative threshold, such as 97% (threshold 1 in Table 5.4), is used, MORA would 

keep 
2b  in the reduced model. This high sensitivity to the threshold is a result of the low 

activity index of 
2b  that is actually a quite important element. 

On the other hand, the proposed metric ranks 
2b  as the most important element, 

thereby keeping it in the reduced model regardless of the chosen threshold, and 

preserving the damped nature of the response. Therefore, this shows that taking into 
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account the correlations between the energy flow patterns in the system improves the 

assessment of what is negligible and what is not. 

5.5. DISCUSSION 

The proposed metric is not the first application of the KLE for model reduction 

purposes. In fact, KLE is the basis for some well-established reduction methods such as 

the proper orthogonal decomposition or balanced truncation. However, the proposed 

metric differs from the existing KLE-based methods in two ways: (1) It observes energy 

trajectories rather than state trajectories, which broadens the scope from state variables to 

any energetic connection, enabling the inclusion of system structure in reduction 

considerations. (2) As opposed to projecting the system onto the new basis given by V 

and using the singular values to differentiate between the important and unimportant 

states in this new realization, which may have no physical meaning, the proposed metric 

combines the modes and singular values to reflect back on the original realization and 

assess the relative importances of the bonds in the given realization. 

As illustrated in the previous section, the proposed reduction algorithm has the 

following characteristics: 

Table 5.4. Comparing the proposed method to MORA 
Proposed method MORA 

Bond Rel. Importance Bond Activity Index 

19  100% 4 18  48.35% 

31  27.36% 31  48.00% 2 

18  27.13% 3 19  2.42% 1 

7  0.98% 14  0.91% 

14  0.60% 6  0.24% 

6  0.40% 21  0.04% 

15  0.24% 2 7  0.03% 

5  0.03% 15  0.01% 
21  0.03% 1 5  0.00% 

25  0.00% 25  0.00% 

12  0.00% 12  0.00% 

 



 105 

1. It not only reduces the order of the model, but also its structure. This unified 

treatment gives the proposed scheme a novel reduction perspective compared 

to the existing methods.  

2. It preserves the realization of the original model. Therefore, if the original 

realization has a physical meaning of particular interest, that physical meaning 

will be preserved in the reduced model. 

3. It is applicable to nonlinear models at graph-level. 

4. It considers local and global applications of the proposed metric. The local 

application, where only some of the bonds in the model are included in the 

analysis, can be used for, e.g., model order reduction or model partitioning. 

The global application, which considers all bonds in the model, allows for 

concurrent reduction of the order and structure of the model. 

5. It accounts for the input trajectories and initial conditions of interest, and 

furnishes different reduced models for different inputs and initial conditions. 

Because of the trajectory-dependent nature of the proposed method, it is important 

to select the inputs and initial conditions carefully, such that they truly capture the 

scenario of interest. This might involve performing the importance analysis several times, 

if necessary, with different sets of inputs and/or initial conditions, and combining the 

results. Although the algorithm will yield a proper model for the considered set of inputs 

and initial conditions, it is up to the user to make sure that this set properly captures the 

scenario of interest. 

It is also important to select carefully the initial values in the energy calculations. 

If a bond is connected to an energy storage element, the initial energy of that element 

should be taken into account in the energy calculation of the bond connected to it. In the 
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first scenario, for example, the springs have the initial potential energies 

 
2

1
1 02 2

0.5 Jk     and 21
2 02

0.005 Jk x  , and those initial energies are taken as the 

initial conditions for the energies in bonds 6 and 18, respectively. 

In addition to initial conditions and input dependency, output dependency may 

also be a desired characteristic in a reduction algorithm, i.e., the algorithm should be able 

to tailor the reduction according to the outputs of interest. However, the proposed metric 

is not, in its current form, output dependent. This means that it may eliminate some low-

energy parts of a system from the model, even if they are providing some outputs of 

interest. Although it is possible to avoid that by keeping the model parts that are of 

particular interest out of the scope of analysis by applying the proposed method locally to 

the rest of the model, it is still desired to formally incorporate the different output weights 

of the different parts of the system into the method. This is left as future work. 

5.6. SUMMARY AND CONCLUSION 

A new energy-based metric is proposed to assess the importance of energetic 

interconnections in a nonlinear energetic system model. The proposed metric combines 

the energy-based and correlation-analysis-based approaches in a unique way, such that 

not only it improves the assessment of what is important and what is negligible in the 

original realization, but also makes it possible to include the model structure in the 

assessment. In terms of the bond-graph representation this corresponds to ranking all the 

bonds in the order of relative importance. 

Based on this metric, a reduction algorithm is proposed that is applicable to 

nonlinear models at graph level, preserves the original realization, and simultaneously 

reduces the model order and structure based on the inputs and initial conditions of 

interest. An example is provided to illustrate the mechanics and highlight the benefits of 

the proposed method. 
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CHAPTER 6 

CASE STUDY: PROPER MODELING OF THE HMMWV 

6.1. INTRODUCTION 

So far the algorithms developed have been demonstrated on simple textbook-type 

examples. This chapter aims to present a case study on a system that better reflects the 

complexity of contemporary engineering systems to illustrate the performance of the 

proposed algorithms on such systems. Specifically, the proper modeling of the Army’s 

High Mobility Multipurpose Wheeled Vehicle (HMMWV) is presented in detail. 

First, the multibody dynamics of the HMMWV is modeled through a modular 

approach using the 3D rigid body and joint models library previously developed by the 

author. This model is referred to as the “full” model. 

Three different scenarios are then considered, for which proper models are 

sought: a two double-lane-change maneuver, shaker table, and driving straight. In the 

first scenario the vehicle is accelerated from rest, two double lane change maneuvers are 

performed, and the vehicle is brought back to rest. This scenario might be of interest for 

rollover studies. The second scenario represents a virtual shaker table testbed to study, 

e.g., the ride quality of the vehicle. In the third scenario the vehicle is accelerated, driven 

at constant speed, and decelerated to stop without any steering input. This scenario could 

be useful for studying the acceleration properties of the vehicle.  

The full model is then simplified considering all three scenarios simultaneously, 

i.e., a single simplified model is obtained that retains the accuracy of the full model for 

all three scenarios. This is done by performing the junction-inactivity analysis for all 
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three scenarios and combining the results. The simplified model is then reduced for the 

three scenarios separately, obtaining a different reduced model for each scenario. As a 

result, different proper models of the same system are obtained that are tailored for 

different scenarios of interest and for different levels of fidelity. 

6.2. MODULAR MODELING OF THE HMMWV 

Previous work by the author has created the framework for a modular approach to 

modeling 3D multibody systems using the bond graph representation [9, 10]. Using this 

approach, as well as the information about the kinematic structure and some parameter 

values of the HMMWV available in literature [233-235], a multibody model of the 

HMMWV is created in this section. 

The model includes: the chassis; the four suspensions comprising lower and upper 

A-arms, wheel hubs, suspension springs and dampers; the front and rear anti-roll bars; the 

four tires with tire stiffness and damping, and longitudinal and lateral slip models; and 

the steering mechanism consisting of the steering link, idler arm, Pitman arm, and tie 

rods. Figure 6.1 shows the components of the HMMWV considered in this case study. 

The anti-roll bars are not shown in the figure. 

Modular modeling of these components is presented next in detail, and the 

HMMWV model is assembled from these component models. The parameter values are 

given in the Appendix B. 
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Figure 6.1. The components of the HMMWV 

6.2.1. The Chassis 

The chassis is modeled as a rigid body with connection points for the lower and 

upper A-arms, and the idler and Pitman arms. Figure 6.2 shows the chassis module. In the 

subscripts, FLU refers to the front left upper A-arm, RRL refers to the rear right lower A-

arm, etc., and subscripts I and P stand for the Idler and Pitman Arms, respectively. For 

details of the rigid body model, please refer to the Appendix A. 

 

Figure 6.2. Model of the chassis 
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6.2.2. The Suspensions 

The HMMWV has an independent suspension system both in front and rear, i.e., 

each wheel on the same axle can move independently of each other. The suspensions are 

composed of lower and upper A-arms, wheel hub, and suspension spring and damper. 

The A-arms and the wheel hub are modeled as rigid bodies that are connected through 

joint models as shown in the kinematic structure in Fig. 6.3. Note that the kinematic 

structure of the front and rear suspensions are different. Specifically, the wheel hubs are 

connected to the A-arms through rotational joints in the back, and through spherical joints 

in front to allow for steering. For the same reason, the front wheel hubs have an 

additional connection point where the tie rods of the steering mechanism are connected, 

but this interconnection is not shown in the figure. 

   

 (a) (b) 

Figure 6.3. The suspension mechanism: (a) front; (b) rear 

The suspension models for the front and back are given in Fig. 6.4 and 6.5, 

respectively. Note that when modeling the suspension springs and dampers, an auxiliary 

coordinate frame is introduced, whose z-axis is aligned with the suspension spring and 

damper. 
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Figure 6.4. The front suspension model 

 

Figure 6.5. The rear suspension model 
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6.2.3. The Tires 

The tires are modeled mainly as rigid bodies except that the tire stiffness and 

damping are taken into account. To this end, a coordinate frame C is introduced whose 

origin and y-axis coincide with those of the body-fixed frame, but the z-axis always 

points towards the contact point with the road, as illustrated in Fig. 6.6. The tire stiffness 

and damping act along the z-axis of this coordinate frame C. The multibody model of the 

tire is given in Fig. 6.7. 

 

Figure 6.6. The auxiliary tire coordinate frames 

The contact of the tire with the road is modeled through longitudinal and lateral 

slip models and a constraint equation. To aid with representing the tire-road interaction, 

another auxiliary coordinate frame, D, is introduced, also shown in Fig. 6.6. The origin of 

D is the contact point of the tire with the road. The z-axis is the normal of the road 

surface at the contact point, and the y-axis of D is the projection of the y-axis of the 

body-fixed frame onto the plane tangent to the road surface at the contact point. Thus, the 

x- and y-axes of D respectively define the longitudinal and lateral directions, which are 

necessary to express the slip models, and the z-axis defines the direction for the 

constraint force that keeps the contact point on the road surface. Figure 6.8 gives the tire 

and road model, in which the longitudinal and lateral slip models are implemented 

through R-elements, and the constraint through the PSf-element. 
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Figure 6.7. The multibody model of the tire 

 

Figure 6.8. The tire and road model 
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The tire slip models are adopted from DADS [236] as follows. The longitudinal 

force is given by 

 
acceleration

breaking

z f

x

z f

F
F

F






 


 (6.1) 

where 
zF  is the normal force, and 

f  is given by the piecewise linear function of slip, 

x , 
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 (6.2) 

with   being the friction coefficient, and   being defined as 

 x
x

x

R v

v


 


   (6.3) 

where  , R, and 
xv  are the rotational speed, radius, and longitudinal velocity of the tire. 

The sketch of the 
xF   curve is shown in Fig. 6.9. 

 

Figure 6.9. The 
xF   curve 

The lateral tire force, on the other hand, is given by 

 
0

0

lat y

y

lat y

F v
F

F v

 
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
 (6.4) 

where 
latF  is given by 
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The coefficients 
ia  are chosen such that the slope at the origin is the cornering 

stiffness,
aC , and the slope is zero and 

latF  is equal to 
zF  when 

n  . 
n  and the 

lateral slip , 
y , are defined as 
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 (6.6) 

yv  is the lateral speed of the tire. The sketch of the 
yF   curve is shown in Fig. 6.10. 

 

Figure 6.10. The yF   curve 

6.2.4. The Steering Mechanism 

The steering mechanism consists of the idler and Pitman arms, the steering link, 

and the two tie rods connecting the mechanism to the wheel hubs. The mechanism is 

driven through the Pitman arm. The steering mechanism is shown in Fig. 6.11, and its 

model is given in Fig. 6.12. 
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Figure 6.11. The steering mechanism 

 

Figure 6.12. The model of the steering mechanism 
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6.2.5. Assembling the HMMWV Model 

Once the subcomponent models are obtained as above, the HMMWV model can 

be assembled as shown in Fig. 6.13. In addition to the components discussed so far, the 

assembled model also includes the effects of the front and rear anti-roll bars implemented 

as spring elements applying restoring forces on the velocity differences between the left 

and right suspension struts. This model will hereafter be referred to as the full model. 

 

Figure 6.13. The full HMMWV model 

6.3. SCENARIOS OF INTEREST 

The first scenario of interest is a two-double-lane-change maneuver on a flat road. 

Such a maneuver could be employed in, e.g., vehicle rollover and handling studies. The 

particular inputs considered for this scenario are given in Fig. 6.14. The output of interest 

is the roll acceleration of the vehicle. 
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(a) 

 

(b) 

Figure 6.14. The inputs used in the lane-change scenario: (a) the wheel speed; (b) the 

Pitman arm angle 

The second scenario is the shaker table scenario. This scenario might be of 

interest when studying, e.g., the suspension characteristics and ride-quality of a vehicle. 

In this scenario the tires are removed from the model, and a sinusoidal sweeping 

displacement with an amplitude of 5 cm and frequency range of 0-8 Hz is applied to all 

four wheel hubs. Figure 6.15 shows the particular input considered. The output of interest 

is the z-position of the chassis. 
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Figure 6.15. The shaker table displacement input used for the shaker table scenario 

The third scenario is driving straight on a flat road. This scenario could be useful, 

e.g., when studying the acceleration characteristics of the vehicle, sizing the engine, or 

designing a cruise controller. In this particular scenario the input dictates the wheel 

speed, as shown in Fig. 3.1. The output of interest is the longitudinal acceleration of the 

vehicle. 

 

Figure 6.16. The wheel speed input used in the straight-driving scenario 

6.4. SIMPLIFICATION AND REDUCTION OF THE FULL HMMWV MODEL 

As shown above, the modular approach enables the rapid modeling of systems as 

complex as the HMMWV. However, the resulting model may not be proper for certain 



 120 

scenarios of interest. Indeed, the full model obtained above is overly complex for all the 

three scenarios considered. Therefore, the methods developed throughout this work are 

employed here to obtain proper models for the scenarios of interest. 

First, the full HMMWV model is simplified using the algorithm proposed in 

Chapter 3. It is desired to obtain one simplified model that is valid for all three scenarios. 

Thus, this exercise also demonstrates how multiple scenarios can be taken into account. 

To this end, the full model is simulated and the junction inactivity analysis is performed 

for the three scenarios of interest. Each scenario produces a different set of inactive 

junctions. The intersection of these three sets is then taken, and the full model is 

simplified using this set. Table 6.1 highlights what is removed from the model during 

simplification. There are other structural simplifications in the model in addition to what 

is shown in Table 6.1, especially in cross products and coordinate transformations, but 

due to space considerations the details of these have been omitted. 

Table 6.1. Highlights of simplified parts of the full model 
 Translational Rotational 

 Dynamics Kinematics Dynamics Kinematics 

Front Suspensions     

 Rot. Joints –  – x 
 Upper A-Arm   y1, z  

Rear Suspensions     

 Rot. Joints –  – x 

 Upper A-Arm   y, z  

Steering     

 Pitman Arm   x, y, z x 

 Trans. Con. XY – z – – 

 Rot. Joints –  – z 

 Steering Link   y  

 Idler Arm   x, y, z x 

 Tie Rods   y y 
1 Rotational dynamics in y-axis is kept in the model in the front left suspension. 

 

The simplified model is then reduced for each scenario separately using the 

algorithm proposed in Chapter 5. For the two-double-lane-change scenario the model is 

first reduced using the global application of the proposed metric. Further reduction is then 
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obtained by the local application of the metric to the energy storing/dissipating elements 

only. For the other scenarios, only the global approach is used. Figures 6.17-6.19 show 

the global reduction thresholds obtained in each scenario. The thresholds below a relative 

importance of 910  are not shown, and the bond number in bold indicates the threshold 

chosen for reduction. The thresholds are chosen to achieve highest levels of reduction 

with an acceptable compromise in accuracy. 

 

Figure 6.17. Thresholds for 1.5r   in the lane change scenario 

 

Figure 6.18. Thresholds for 1.2r   in the shaker table scenario 
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Figure 6.19. Thresholds for 1.5r   in the straight driving scenario 

Tables 6.2- 6.4 highlight what is removed from the model in each scenario. Parts 

that were already removed during simplification are shown in grey. Once again, due to 

space considerations, these Tables do not give an exhaustive list. 

Table 6.2. Highlights of reduction for the lane change scenario 
 Translational Rotational 

 Dynamics Kinematics Dynamics Kinematics 

Front Suspensions     

 Rot. Joints   – x 

 Upper A-Arm z  x, y1, z  

 Wheel Hub z2  x, y, z  

 Lower A-Arm z  x, y, z  

Rear Suspensions     

 Rot. Joints   – x 

 Upper A-Arm z  x, y, z  

 Wheel Hub z2  x, y, z  

 Lower A-Arm z  x, y, z  

Tires & Roads     

 Wheel z  x2, z2  

Steering     
 Pitman Arm z  x, y, z x 

 Trans. Con. XY – z – – 

 Rot. Joints –  – z 

 Steering Link z  x, y, z  

 Idler Arm z  x, y, z x 

 Tie Rods z  x, y, z y 
1 In the right suspension this was already removed during simplification. 
2 These are removed by the local analysis. 
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Table 6.3. Highlights of reduction for the shaker table scenario 
 Translational Rotational 

 Dynamics Kinematics Dynamics Kinematics 

Chassis x, z y x, y, z x, z 

Front Suspensions     

 Rot. Joints   – x, y, z 
 Upper A-Arm x, y, z  x, y1, z y, z 

 Wheel Hub x, y  x, y, z  

 Lower A-Arm x, y  x, y, z y, z 

Rear Suspensions     

 Rot. Joints x2  – x, y, z 

 Tans. Con. YZ – x –  

 Upper A-Arm x, y, z  x, y, z y, z 

 Wheel Hub x, y  x, y, z y, z 

 Lower A-Arm x, y x x, y, z y, z 

Steering     

 Act. Rot. Joint – y – x, y, z 

 Pitman Arm x, y, z y x, y, z x, y, z 

 Trans. Con. XY – y, z – – 

 Rot. Joints – y, z3 – x, y, z 
 Steering Link x, y, z y x, y, z x, y, z 

 Idler Arm x, y, z y, z x, y, z x, y, z 

 Tie Rods x, y, z x x, y, z y, z 
1 In the right suspension this was already removed during simplification. 
2 Only in the rotational joint between wheel hub and lower arm 
3 Only in the rotational joint between steering link and idler arm 

 

Table 6.4. Highlights of reduction for the straight-driving scenario 
 Translational Rotational 

 Dynamics Kinematics Dynamics Kinematics 

Chassis y, z y, z x, y, z x, y, z 

Front Suspensions     

 Rot. Joints – y, z – x, y, z 

 Spherical Joints – y, z – – 

 Upper A-Arm x, y, z y, z x, y1, z x, y, z 

 Wheel Hub x, y, z y, z x, y, z x, y, z 

 Lower A-Arm x, y, z y, z x, y, z x, y, z 

Rear Suspensions entirely removed 

Front Tires&Roads     

 Rot. Joint – y – x, z 

 Wheel x, y, z y x, y, z x, z 

 Long. Slip removed 
 Lat. Slip removed 

Rear Tires&Roads entirely removed 

Steering entirely removed 
1 In the right suspension this was already removed during simplification. 
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It is worth noting that in the last scenario the model essentially reduces down to 

two disks rolling without slip. 

Tables 6.5-6.7 compare the full, simplified and reduced models in various aspects 

for the three scenarios. These Tables highlight the computational efficiency gained by 

using the proposed algorithms. Recall that the simplified model is obtained for all three 

scenarios. Better results would be obtained with simplification, if the full model was 

simplified for each scenario separately. 

Table 6.5. Comparison of the models for the lane-change scenario 
 Full Simplified Reduced 

  quantity % decrease quantity % decrease 

Processing time [min] 8.0 4.7 41.0% 4.5 43.8% 

Number of equations 8126 6034 25.7% 4967 38.9% 
Number of variables 10263 7657 25.4% 6330 38.3% 

Number of independent states 226 199 11.9% 176 22.1% 

Number of dependent states 72 83 -15.3% 44 38.9% 

Number of constraints 50 27 46.0% 34 32.0% 

Simulation time [s] 138.5 86.4 37.6% 16.3 88.2% 

Simulation speed 1  1.6   8.5   

Table 6.6. Comparison of the models for the shaker table scenario 
 Full Simplified Reduced 

  quantity % decrease quantity % decrease 

Processing time [min] 4.6 2.9 37.4% 0.5 88.5% 

Number of equations 6333 4729 25.3% 1824 71.2% 

Number of variables 8006 5888 26.5% 2694 66.4% 

Number of independent states 186 159 14.5% 35 81.2% 

Number of dependent states 54 65 -20.4% 8 85.2% 

Number of constraints 48 25 47.9% 40 16.7% 
Simulation time [s] 17.7 14.0 20.6% 0.9 94.7% 

Simulation speed 1  1.3   18.8   

Table 6.7. Comparison of the models for the straight-driving scenario 
 Full Simplified Reduced 

  quantity % decrease quantity % decrease 

Processing time [min] 8.2 4.7 43.2% 0.01 99.9% 

Number of equations 8054 5962 26.0% 152 98.1% 

Number of variables 10232 7626 25.5% 234 97.7% 

Number of independent states 226 199 11.9% 12 94.7% 

Number of dependent states 72 83 -15.3% 0 100% 

Number of constraints 50 27 46.0% 0 100% 

Simulation time [s] 48.5 34.3 29.2% 0.1 99.8% 

Simulation speed 1  1.4   437   
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Finally, Fig. 6.20-6.22 show the outputs of the full, simplified and reduced 

models for the three scenarios. The approximation errors are given in Table 6.8. 

Table 6.8. Approximation errors of the simplified and reduced models 
 Maximum error Relative L2-norm of error 

 Simplified Reduced Simplified Reduced 

Lane change -41.85144 10  -32.41157 10  -43.72147 10  -36.7397 10  

Shaker table -64.98328 10  -31.64458 10  -53.4559 10  -25.54002 10  

Straight driving -38.00417 10  0.755391 -56.63184 10  0.1348 

 

 

Figure 6.20. Outputs of the full, simplified and reduced models for the lane-change 

scenario 

 

Figure 6.21. Outputs of the full, simplified and reduced models for the shaker table 

scenario 
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Figure 6.22. Outputs of the full, simplified and reduced models for the straight-driving 

scenario 

6.5. DISCUSSION OF THE RESULTS 

The first part of this case study verifies the benefits of the modular approach to 

modeling, especially for complex systems such as the HMMWV. The subcomponents are 

modeled independently, and many model blocks, such as rigid bodies, joints, and 

coordinate transformations, have been reused during modeling. The submodels are 

verified independently, and the full model is assembled rapidly from the component 

models. 

The second part of the case study analyzes the performances of the proposed 

algorithms. First of all, both the simplification and reduction algorithms are successfully 

applied to the rather large-scale nonlinear full model. The scenarios of interest are 

explicitly taken into account during the simplifications and reductions. The simplified 

and reduced models preserve the realization, and thus the physical meaning of the full 

model. Simplifications and reductions are achieved not only in the dynamics, but also in 

the kinematics. Finally, simplifications and reductions are obtained at the graph-level, 

preserving the intuitive appeal of the graph representation. 

Note that, as expected, the outputs of the simplified model accurately follow the 

outputs of the full model in all three scenarios with less computational cost. Furthermore, 
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with some user-controllable compromise in accuracy, the reduced models can improve 

the conceptual and computational efficiency of the simplified model even further. 

It is important to keep in mind that the reduced models presented above are results 

of particular choices of reduction thresholds. In this case study the thresholds are chosen 

as high as possible to achieve maximum reduction. If a higher fidelity is desired, it is 

possible to work with lower thresholds. 

The lane-change and shaker table scenarios make it clear that the proposed 

importance metric would benefit from being output-dependent as well. In both cases 

there are model parts that can be eliminated without compromising the output accuracy 

too much, however since they are within the same threshold as other parts that are 

important to keep in the model, they are kept in the model as well. For example, in the 

shaker table scenario the steering system can be safely eliminated from the model, but 

that also means the elimination of the vertical kinematics of the upper arms at the points 

where they are connected to the chassis, which are critical to keep in the model. 

Similarly, in the lane-change scenario the lateral dynamics of the Pitman arm could be 

removed, but then the anti-roll bars would be removed as well, because they are within 

the same threshold. However, the anti-roll bars are clearly important in a rollover study 

and should not be eliminated. 

These cases exemplify the persisting challenge that some relatively high-energy 

components might be kept in the model by the proposed algorithm even though they 

might be unimportant for certain outputs. In that case, local application of the metric 

could be one option for overcoming this challenge, i.e., one can perform the analysis with 

a subset of the graph that leaves out the parts that are to be kept in the model. This is 

indeed what has been done in the lane-change scenario. The global application of the 

analysis was followed by the local analysis with the energy storing/dissipating elements 

to further remove some dynamics that were not removed by the global analysis because 

of some important kinematics that were within the same threshold. Nevertheless, the local 
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analysis offers only a limited solution to the problem, since it is not always clear to see 

which bonds isolate. A sensitivity analysis reveals that a better solution can be obtained 

by adding output dependence. Specifically, the sensitivity of the output (as measured by 

the integral-of-squared-value criterion) to a 10% change in the stiffnesses of the front and 

rear anti-roll bars is 13% and 32%, respectively, whereas it is only 0.02% for a 10% 

change in the Pitman arm mass. Thus, it is beneficial to find an efficient way to 

incorporate the outputs of interest in the analysis. This is left as future work. 

The sensitivity results reported above are obtained with the full model. When the 

same analysis is performed using the reduced model, the output sensitivity to front and 

rear anti-roll bar stiffnesses and the Pitman arm mass are obtained as 14%, 32%, and 

0.4%, respectively. The close agreement between the full and reduced models indicates 

that even though the model was reduced for a specific set of parameters, it is still valid 

for the considered change in parameters. However, a formal study of the range of validity 

of the models reduced with the proposed method is left as future work. 

This case study also exposed two computational issues with the proposed 

reduction method, which may pose not fundamental, but practical limitations for large-

scale systems. First, the singular value decomposition associated with the proposed 

metric can become computationally expensive when the number of bonds and/or the 

number of observations increase (although still not as expensive as performing a full-

scale sensitivity analysis). Second, if the energy calculations are performed at each bond 

during the simulation, the simulation can slow down significantly due to the increase in 

the number of states. Applying the simplification algorithm first before performing 

reduction alleviates both issues by decreasing the number of bonds. Furthermore, the 

energy observation matrix may be resampled to decrease the number of observations. 

Both approaches have been used in this case study to make the reduction problem more 

numerically tractable. In addition, the energy calculations may be performed offline to 
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avoid an increase in the number of states, but this needs further investigation as to 

whether aliasing would be an issue or not. 

6.6. SUMMARY AND CONCLUSION 

The proper modeling of a HMMWV for three different scenarios is presented as a 

case study. The multibody dynamics of the vehicle is first modeled modularly to obtain 

the full model. The full model is then simplified and reduced for the following scenarios: 

two double-lane-change maneuvers, shaker table, and driving straight. The full, 

simplified and reduced models are compared in various aspects. 

The conclusion is that the proposed algorithms can successfully simplify and 

reduce even very complex systems. Moreover, the modeling philosophy adopted in this 

work – modular modeling accompanied by simplification/reduction – has been shown to 

be an efficient way for proper modeling of complex systems. This case study also verifies 

that incorporating output-dependence to the proposed methods is an important future 

work, if the properness of models is to be maximized for the considered outputs. 
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CHAPTER 7 

CONCLUSION 

“Simplicity is the ultimate sophistication.”  

 – Leonardo da Vinci 

7.1. SUMMARY 

Proper models are critical for efficient simulation and design. They are defined as 

models that balance fidelity and simplicity, or accuracy and complexity. These two goals 

are typically contradictory. Moreover, achieving them simultaneously requires much time 

and expertise. Therefore, obtaining proper models is challenging. 

This work has been done to advance the knowledge in the domain of proper 

modeling of dynamic systems. Specifically, a review of literature revealed that there is a 

need for methods that can handle nonlinear models at graph-level, are realization-

preserving and trajectory-dependent, and target not only the order, but also the structure 

of a model. 

With a reductive approach to proper modeling, i.e., assuming that a model with 

satisfactory accuracy and excessive complexity exists, this work first set out to simplify 

the structure of models. Models obtained through a modular approach have been 

considered, because these models are typically prone to having an excessive complexity 

in them. The concept of junction-inactivity has been introduced, and a simplification 

algorithm based on this concept has been developed. Examples are used to illustrate the 

mechanics and benefits of the algorithm, as well as to discuss its important properties. 
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One of these properties was preserving the realization of a given model. While 

this property was listed as one of the desired properties of the algorithms sought in this 

work, the work also explored the possibility of allowing a change in realization to a 

limited extent. Particularly, the orientation of the body-fixed coordinate frames in 

multibody systems has been considered. The rationale for this focus was that reorienting 

a coordinate frame would not change the physical meaning of the coordinates, which was 

the main goal behind preserving the realization in the first place. With this in mind, an 

algorithm has been proposed that can automatically reorient body-fixed coordinate 

frames in a multibody system to render the realization more conducive to simplification. 

An example illustrated that the reorientation algorithm complements the simplification 

algorithm well. 

The work then moved to the reduction of models beyond just simplification. To 

this end, a new energy-based metric has been proposed to assess the relative importance 

of dynamic and structural components in a system to the system’s overall behavior. 

Specifically, the metric applied the Karhunen-Loève expansion to energy trajectories 

within the system to identify dominant energy flow patterns in a given realization. Based 

on this metric a reduction algorithm has been proposed that can yield simultaneous order 

and structure reduction. Examples demonstrated the mechanics and advantages of the 

proposed algorithm. 

Finally, a case study has been done with the High-Mobility-Multipurpose-

Wheeled-Vehicle (HMMWV), a system that is representative of the contemporary 

engineering systems. The multibody dynamics of the vehicle have been modeled by a 

modular approach. This full model has then been simplified and reduced for three 

different scenarios through successful applications of the developed algorithms. 
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7.2. LIST OF CONTRIBUTIONS 

This work contributes to the proper modeling literature in the following aspects: 

1. The inactive-junction concept has been introduced. This concept builds on the 

existing notion of activity and extends it to junction elements. Furthermore, 

this concept generalizes the well-known ideas that zero-flow 1-junctions and 

zero-effort 0-junctions can be removed from a bond graph model to simplify 

it. 

2. A structural simplification algorithm has been developed based on the 

inactive-junction concept. This algorithm can yield simplifications beyond 

what can be achieved with existing rules and methods. Specifically, it yields 

trajectory-dependent realization-preserving simplifications in nonlinear 

models at graph-level, and its numerical nature makes it able to handle not 

only exact, but also approximate cases. For example, the algorithm can 

simplify not only ideal constraints, but also constraints that are approximated 

using dynamic elements such as springs and dampers. 

3. A Karhunen-Loève-expansion-based algorithm has been developed to reorient 

body-fixed coordinate frames in multibody systems and render the realization 

more conducive to simplification. Due to this very specific focus, unlike some 

existing methods, the physical meaning of the coordinates is preserved.  

4. An energy-based metric has been developed to assess the relative importance 

of dynamic and structural components in a system. This metric, for the first 

time, combines the correlation-based idea behind the Karhunen-Loève 

expansion with the energy-based reduction philosophy. This uniquely allows 
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for the unified assessment of dynamic and structural components, or, in other 

words, dynamics and kinematics. 

5. A reduction algorithm based on this metric has been developed that can 

reduce not only the order, but also the structure of a model. This algorithm is 

also trajectory-dependent, realization-preserving, and can handle graph-level 

representations of nonlinear systems. 

6. Proper models of the multibody dynamics of a HMMWV have been created 

for three different scenarios. This is achieved by first developing a very 

detailed multibody model of the HMMWV using the modular approach, and 

then simplifying and reducing the model using the proposed algorithms. 

7.3. FUTURE WORK 

As pointed out throughout this document, this work presents many possible 

directions for future work. These can be summarized as follows: 

1. All algorithms developed in this work are trajectory dependent. Choosing the 

input trajectory that properly describes the scenario of interest was left to the 

modeler in this work. However, this may itself be a challenging task. For 

example, one may legitimately seek a model that is proper for a set of various 

excitations, or a range of parameter values. One possible way of handling the 

first case was presented during the simplification of the HMMWV model, 

where the junction-inactivity-analysis results of the three different scenarios 

were combined to obtain one simplified model valid for all three scenarios. 

This approach, however, may not always be feasible, especially if a large or 

infinite number of input trajectories or parameter values are considered, as is 

the case with a continuous range of design parameters. Can one then use a 
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feasible number of sampled inputs/parameters? If yes, how to choose the 

samples? Or, is it possible to create a single simulation run to cover all inputs 

or parameter values of interest? If yes, how? These are important questions 

that need to be answered. 

2. Instead of repeating the analyses for several trajectories, it may also be 

possible to determine the range of validity of the simplified and reduced 

models obtained with the proposed methods by utilizing a Lyapunov-function-

type approach. Such an analysis would be beneficial for design and control. 

3. Both the simplification and reduction algorithms developed in this work are 

realization preserving. The main motivation behind this property is to preserve 

the physical meaning of the original realization. The coordinate-frame-

reorientation algorithm, however, investigated one possible way of changing 

the realization without changing the physical meaning to make the model 

more conducive to simplification. There may be other possibilities, and this 

could be investigated further. 

4. The coordinate-frame-reorientation algorithm was created for the specific 

rigid-body representation considered throughout this work. Particularly, the 

rotational dynamics were expressed in a body-fixed frame located at the 

center of mass, and the translational dynamics were expressed in the inertial 

frame. Although this is a widely-used representation, the algorithm could be 

extended to more general representations. 

5. The proposed algorithms are not output dependent. This means that some 

model parts may not be eliminated even if they do not contribute to the 

outputs of interest, because they may be contributing to some other outputs. 
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To take most advantage of simplification/reduction, output dependence should 

also be incorporated into the proposed algorithms. 

6. The importance metric introduced in this work was utilized for reduction 

purposes only. However, it may also be useful in other applications such as 

partitioning, scaling, or system identification. Particularly, the literature shows 

successful applications of the activity metric to partitioning [19, 201], scaling 

[237] and system identification [216], and the proposed metric may improve 

those results. This should be investigated further. 

7. It may also be interesting to investigate the possibility, advantages and 

disadvantages of implementing the proposed algorithms as part of a numerical 

solver. It may be possible to increase the computational efficiency of 

numerical solvers by performing simplifications/reductions online as the 

integration proceeds. 

8. Only deterministic systems were considered in this work. Extension to 

stochastic systems is another important future direction. How the proposed 

methods can be used or should be extended to identify which uncertainties are 

important to model and which are negligible is a very interesting question. 

9. Only continuous models were considered. There are many engineering 

systems, however, that would be best modeled using hybrid models, like the 

clutch in a transmission. Proper modeling of hybrid systems is also an 

important challenge, and the proposed algorithms should be extended to 

hybrid systems as well. 

10. This work concentrated on energetic systems. As such, the methods developed 

cannot be readily applied to systems in which there is no energy, but 
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information flow, such as control systems or economic systems. If proper 

modeling of such systems is of interest, the proposed methods should be 

extended to be able to handle signals as well. 

7.4. CONCLUSION 

The work presented in this document supports the two hypotheses stated in 

Chapter 1. Specifically, the activity metric has been successfully utilized as a structural 

simplification tool; and the importance metric has been shown to give a good assessment 

of various dynamic and structural components of model, thereby helping reduce not only 

the order, but also the structure. The identified need for realization-preserving trajectory-

dependent structure and order simplification/reduction algorithms that are applicable to 

nonlinear systems at the graph level has been partially addressed, and opportunities for 

further research have been pointed out. 
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APPENDIX A 

BOND GRAPH MODEL LIBRARY 

 

Figure A.1. Rotational dynamics 

 

Figure A.2. Translational dynamics 
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Figure A.3. Cross product 

 

Figure A.4. Coordinate transformation for flow-in-flow-out causality 

 

Figure A.5. Coordinate transformation for effort-in-effort-out-causality 
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Figure A.6. Rigid body 

 

Figure A.7. Ground 

 

Figure A.8. Rotational joint for flow-in-flow-out causality in translational domain
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Figure A.9. Rotational joint for effort-in-effort-out causality in translational domain 

 

Figure A.10. Actuated rotational joint 

 

Figure A.11. Real rotational joint 
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Figure A.12. Spherical joint for flow-in-flow-out causality 

 

Figure A.13. Spherical joint for effort-in-effort-out causality 

 

Figure A.14. Translational constraint XY 

 

Figure A.15. Translational constraint YZ 
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APPENDIX B 

PARAMETERS OF THE HMMWV MODEL 

Table B.1. Parameters of the chassis 
Description Value 

Moment of inertia 
2

1504.55 0 0

0 5950.4 0  kg m

0 0 6357

 
 


 
  

 

Mass 3514 kg 

Front right upper A-arm connection point  
T

2.032 0.4455 0.627  m   

Rear left upper A-arm connection point  
T

1.27 0.4455 0.627  m   

Front left upper A-arm connection point  
T

2.032 0.4455 0.627  m  

Front left lower A-arm connection point  
T

2.032 0.2275 0.897  m  

Front right lower A-arm connection point  
T

2.032 0.2275 0.897  m   

Rear left lower A-arm connection point  
T

1.27 0.2275 0.897  m   

Rear right upper A-arm connection point  
T

1.27 0.4455 0.627  m    

Rear right lower A-arm connection point  
T

1.27 0.2275 0.897  m    

Idler arm connection point  
T

1.647 0.28 0.762  m   

Pitman arm connection point  
T

1.647 0.25 0.762  m  
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Table B.2. Parameters of the front suspensions 
Description Value 

Upper A-arm moment of inertia 
2

0.0114 0 0

0 0.0104 0  kg m

0 0 0.0205

 
 


 
  

 

Upper A-arm mass 4.704 kg 

Upper A-arm to chassis connection point  
T

0 0.0778 0  m  

Upper A-arm to wheel hub connection point  
T

0 0.1222 0.02  m  

Lower A-arm moment of inertia 
2

0.1976 0 0

0 0.2158 0  kg m

0 0 0.1106

 
 


 
  

 

Lower A-arm mass 34.351 kg 

Lower A-arm to wheel hub connection point  
T

0 0.2846 0.02  m  

Lower A-arm to suspension strut connection point  
T

0 0.0846 0  m  

Lower A-arm to chassis connection point  
T

0 0.1704 0  m  

Wheel hub moment of inertia 
2

0.1976 0 0

0 0.2158 0  kg m

0 0 0.1106

 
 


 
  

 

Wheel hub mass 34.351 kg 

Wheel hub to upper A-arm connection point  
T

0 0.0505 0.115  m  

Wheel hub to lower A-arm connection point  
T

0 0.0135 0.115  m   

Wheel hub to tire connection point  
T

0 0.0635 0  m  

Wheel hub to tie rod connection point  
T

0.1354 0.0251 0  m   

Suspension stiffness 250 kN/m 

Suspension damping 22460 N s/m  
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Table B.3. Parameters of the rear suspensions 
Description Value 

Upper A-arm moment of inertia 
2

0.0114 0 0

0 0.0104 0  kg m

0 0 0.0205

 
 


 
  

 

Upper A-arm mass 4.704 kg 

Upper A-arm to chassis connection point  
T

0 0.0778 0  m  

Upper A-arm to wheel hub connection point  
T

0 0.1222 0.02  m  

Lower A-arm moment of inertia 
2

0.1976 0 0

0 0.2158 0  kg m

0 0 0.1106

 
 


 
  

 

Lower A-arm mass 34.351 kg 

Lower A-arm to wheel hub connection point  
T

0 0.2846 0.02  m  

Lower A-arm to suspension strut connection point  
T

0 0.0846 0  m  

Lower A-arm to chassis connection point  
T

0 0.1704 0  m  

Wheel hub moment of inertia 
2

0.1976 0 0

0 0.2158 0  kg m

0 0 0.1106

 
 


 
  

 

Wheel hub mass 34.351 kg 

Wheel hub to upper A-arm connection point  
T

0 0.0505 0.115  m  

Wheel hub to lower A-arm connection point  
T

0 0.0135 0.115  m   

Wheel hub to tire connection point  
T

0 0.0635 0  m  

Suspension stiffness 300 kN/m 

Suspension damping 35025 N s/m  

Table B.4. Parameters of the anti-roll bars 
Description Value 

Front anti-roll bar stiffness 33.3333 kN/m 

Rear anti-roll bar stiffness 66.6667 kN/m 
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Table B.5. Parameters of the steering mechanism 
Description Value 

Idler/Pitman arm moment of inertia 
-2 2

0.0566 0 0

0 1.88 0 10  kg m

0 0 2.15

 
 

 
 
  

 

Idler/Pitman arm mass 2 kg 

Idler/Pitman arm to steering link connection point  
T

0.051 0 0  m  

Idler/Pitman arm to chassis connection point  
T

0.051 0 0  m  

Steering link moment of inertia 
4 2

0.204 0 0

0 8.33 10 0  kg m

0 0 0.205



 
 

 
 
  

 

Steering link mass 5 kg 

Steering link to right tie rod connection point  
T

0.0629 0.35 0  m  

Steering link to pitman arm connection point  
T

0.011 0.25 0  m  

Steering link to idler arm connection point  
T

0.011 0.28 0  m   

Steering link to left tie rod connection point  
T

0.0629 0.35 0  m  

Right tie rod moment of inertia 
-2 2

1.85 0 0

0 0.08 0 10  kg m

0 0 1.85

 
 

 
 
  

 

Right tie rod mass 2 kg 

Right tie rod to steering link connection point  
T

0 0.1605 0  m  

Right tie rod to wheel hub connection point  
T

0 0.1605 0  m  

Left tie rod moment of inertia 
-2 2

1.85 0 0

0 0.08 0 10  kg m

0 0 1.85

 
 

 
 
  

 

Left tie rod mass 2 kg 

Left tie rod to steering link connection point  
T

0 0.1605 0  m  

Left tie rod to wheel hub connection point  
T

0 0.1605 0  m  
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Table B.6. Parameters of the tires 
Description Value 

Moment of inertia 
2

1 0 0

0 1 0  kg m

0 0 1

 
 


 
  

 

Mass 30 kg 

Wheel hub connection point  
T

0 0.15 0  m  

Damping 200 kN s/m  

Stiffness 1 MN/m 

Radius 0.461 m 

Cornering stiffness 100 kN 
Friction coefficient 1.8 
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